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Abstract
Divide-and-conquer recurrences of the form

f .n/ D f
��

n
2

˘�
C f

�˙
n
2

��
C g.n/ .n > 2/;

with g.n/ and f .1/ given, appear very frequently in the analysis of computer algorithms
and related areas. While most previous methods and results focus on simpler crude ap-
proximation to the solution, we show that the solution satisfies always the simple identity

f .n/ D nP .log2 n/ �Q.n/

under an optimum (iff) condition on g.n/. This form is not only an identity but also an
asymptotic expansion because Q.n/ is of a smaller order than linearity. Explicit forms for
the continuous periodic function P are provided. We show how our results can be easily
applied to many dozens of concrete examples collected from the literature, and how they
can be extended in various directions. Our method of proof is surprisingly simple and
elementary, but leads to the strongest types of results for all examples to which our theory
applies.
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during visits to the Isaac Newton Institute for Mathematical Sciences (EPSCR Grant Number EP/K032208/1) and
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1 Introduction
Divide-and-conquer is one of the most widely used design paradigms in computer algorithms,
and it often appears in the form of subproblems of nearly the same cardinalities. Indeed, such
a “principle of balancing” has long been observed to be “a basic guide to good algorithm
design”; see [1, ~2.7] and has found fruitful applications in algorithmics; typical examples can
be found in computer arithmetics, mergesort, sorting and merging and networks, digital sums,
fast Fourier transform, computational geometry algorithms, combinatorial sequences, random
trees, etc. The analysis of the corresponding algorithms often leads, in its simplest form, to
recurrences of the form

f .n/ D f
��

n
2

˘�
C f

�˙
n
2

��
C g.n/ .n > 2/; (1.1)

for given g.n/ and f .1/; here the function g.n/ is often called the toll function. The recurrence
(1.1) can also be written as(

f .2n/ D 2f .n/C g.2n/;

f .2nC 1/ D f .n/C f .nC 1/C g.2nC 1/
.n > 1/: (1.2)

For simplicity, we refer to (1.1) (or (1.2)) as the BDC (Balanced Divide-and-Conquer)
recurrence. Such a recurrence also naturally arises as the solution of the recurrences with
maximization or minimization such as

f .n/ D min
16j<n

ff .j /C f .n � j /g C g.n/ .n > 2/;

when g.n/ is convex (namely, the second difference of g.n/ is nonnegative and g.3/ > g.2/);
see [34, 39, 46].

In most cases, one seeks crude upper or lower bounds for the solution of the BDC recurrence
(1.1), and for that purpose there are many different approaches used in the literature, three
common ones being as follows.

� Change the two-sided recurrence (1.1) into a one-sided one: Replace the floor function
in (1.1) by ceiling function or the other way round, resulting in the two recurrences(

f .n/ D 2f
��

n
2

˘�
C g.n/;

f .n/ D 2f
�˙

n
2

��
C g.n/;

.n > 2/; (1.3)

which provide then good lower and upper bounds to the original solution. Such one-sided
recurrences are easier to solve because

�
1
2
b

n
2
c
˘
D b

n
4
c and

˙
1
2
d

n
2
e
�
D d

n
4
e for all n, so

that their solutions can be readily obtained by iteration:(
f .n/ D

P
06k<Ln

2kg
��

n
2k

˘�
C 2Lnf .1/;

f .n/ D
P

06k6Ln�1
2kg

�˙
n

2k

��
C f .1/2Ln�1C1;

.n > 2/;

respectively, where, here and throughout this paper, Lx WD blog2 xc for x > 0. Then
the asymptotic behavior of g.n/ can be translated into that of f .n/ by a direct bounding
argument. In particular, we have f .n/ D O.n log n/ when g.n/ D O.n/.
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� From power-of-two to general n: alternatively, the BDC recurrence can be solved by
assuming that n is a power of two and then by iterating the resulting difference equation,
giving

f .n/ D 2f
�

n
2

�
C g.n/ D

X
06k<Ln

2kg
�

n
2k

�
C 2Lnf

�
n

2Ln

�
; (1.4)

and then the growth order of f .n/ may be deduced from that of g.n/ by induction or by
monotonicity.

� Master Theorems: yet another widely used approach is to apply the so-called “Master
Theorems”, which for our BDC recurrence has the form

f .n/ D

8̂<̂
:

O.n/; if g.n/ D O.n1�"/;

O.n log n/; if g.n/ D O.n/;

‚.g.n//; if g.n/ D �.n1C"/ and regular varying:
(1.5)

We see particularly that linearity serves as a “watershed function” [74] separating small
and large cost: very roughly if g.n/ is sufficiently smaller than linear, then f .n/ is al-
ways linear, while if g.n/ is larger than linear, then f .n/ is of the same order as that of
g.n/. This form was proposed by Bentley et al. in [6], which is the first paper on Master
Theorems and shaped much of the early development of the topic; note that special cases
such as g.n/ D O.1/ and g.n/ D O.n/ were discussed in Aho et al.’s classical book [1]
on algorithms. On the other hand, “Master Theorems” first appeared in Cormen et al.’s
book [19].

Master Theorems such as (1.5) for different recursions have been the subject of many pa-
pers; we briefly summarize the major ones in Table 1.

Bentley, Haken and Saxe [6]
Verma [71];Mogos [54] f .n/ D cf .bn/C g.n/

Wang and Fu [73] f .n/ D cnf .bn/C g.n/

Akra and Bazzi [2]
Leighton [52]

Kao [49];Verma [72]
Schöning [66];Yap [74]

f .x/ D
P

16k6r ckf .bkx/C g.x/

Roura [65] f .n/ D
P

16k6r cn;kf .bn;k/C g.n/

Drmota and Szpankowski [24]
f .n/ D

P
16k6r ckf

�
bbknC ıkc

�
C
P

16k6r c0
k
f
�
dbknC ı0

k
e
�
C g.n/

Table 1: Master Theorems for some recurrences: except for the last two references, most results
are of an O-type and one major proof-technique is based on iteration and induction. Here
c; cn; cn;k ; c

0
k

are all positive constants, b; bn; bn;k 2 .0; 1/ and ık ; ı
0
k
D O.k1�"/ for some

" > 0.

It is worth mentioning that recurrences of similar types, particularly the form examined by
Akra and Bazzi [2] and Leighton [52], were also studied in number theory, functional equations
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(often referred to as “linear functional equations”) and other areas; see for example [29, 44],
[51, Ch. 6] and the references therein.

Returning to the BDC recurrence (1.1), as far as the asymptotic linearity of f .n/ is con-
cerned, namely, f .n/ D O.n/, the following conditions on g.n/ have been proved to be suffi-
cient; here and throughout this paper " > 0 represents a small constant whose value may differ
from one occurrence to another.

� Aho et al. [1]: g.n/ D O.1/;

� Bentley et al. [6]: g.n/ D O.n1�"/;

� Brassard and Bratley [8, p. 77], Yap [74]: g.n/ D O
�

n
.log n/1C"

�
;

� Verma [71]:

g.n/ > 0; g.n/

n
nonincreasing and

P
k>1

g.2k/

2k convergesI (V)

� Akra and Bazzi [2] and Leighton [52]:

g.x/ > 0; c1g.x/ 6 g.u/ 6 c2g.x/ for 1
2
x 6 u 6 x and

P
16k6n

g.k/

k2 D O.1/:

(ABL)

Our natural motivating question was: what is the optimum (necessary and sufficient) condi-
tion for the asymptotic linearity of f .n/, namely, under what condition(s) on g.n/ does f .n/
satisfy the estimate f .n/ D ‚.n/ and vice versa? Verma addressed this question in [71] and
argued that f .n/ D ‚.n/ iff g.n/ satisfies conditions (V). However, as we will see, his suffi-
cient conditions are not necessary; for example, neither positivity nor monotonicity is needed.
On the other hand, the conditions (ABL) are not necessary neither because the polynomial
growth condition is very strong and does not apply to sequences containing gaps (for example,
g.n/ D 1n odd). Also g.n/ in general may oscillate between positive and negative values.

Since the monotonicity condition in (V) and the polynomial growth condition in (ABL)
are both very restrictive, we then ask if the boundedness of the two partial sums appeared in
both conditions (V) and (ABL) alone are optimum? This is a very natural guess in view of
the closeness of the other sufficient conditions to n we listed above. However, the answer is
still in the negative as the following two examples show (they are not even sufficient). More
precisely, that the condition

P
06k6m

g.2k/

2k D O.1/ is insufficient for f .n/ D O.n/ is seen by
the example

g.n/ D

(
2`

`
; if n D 3 � 2`; ` > 1

0; otherwise
H)

(P
06k6m

g.2k/

2k D O.1/

but f .3 � 2m/ D ‚.2m log m/:

Similarly, the insufficiency of the condition
P

06k6n
g.k/

k2 D O.1/ becomes obvious through
the example

g.n/ D

(
2`

`
; if n D 2`; ` > 1I

0; otherwise
H)

(P
06k6n

g.k/

k2 D O.1/

but f .2m/ D ‚.2m log m/:

As we will see these conditions are, although not sufficient, very close to being optimum.
Note that partial sums of the form

P
16k6n

g.k/

k2 also appeared in other contexts such as
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� divide-and-conquer algorithms in computational geometry; see [18, 21, 22];

� quicksort and search trees: [16, 17, 45];

� linearity of subadditive functions; see [38, 39],

and the partial sum
P

16k6m
g.2k/

2k arises in the analysis of queue-mergesort [13] and bounds
for recurrences with minimization or maximization [46, 53].

In addition to more rough O-bounds, the exact and asymptotic aspects exhibited by the
BDC recurrence lead to many interesting periodic oscillating phenomena (as will be demon-
strated in this paper through many concrete examples), which have been less explored so far.
One of the main goals of this paper is to show that the BDC recurrence (1.1), under very general
conditions on g.n/, has always an exact solution of the form

f .n/ D F.n/C nP .log2 n/ �Q.n/ .n > 2/; (1.6)

where F.n/ is either 0 or larger than linear, P .x/ is 1-periodic and Q.n/ D o.n/. Furthermore,
each of these functions can be readily computed or even admit a simple closed-form expression.
This implies that most crude or asymptotic approximations to (1.1) by using uniquely ceiling
or floor functions are to some extent unnecessary. Indeed, we also show that approximating
(1.1) by (1.3) will not only lose precision of approximation but also result in discontinuous
periodic functions, as opposed to continuous P in (1.6). Thus the continuity of P represents a
characteristic property of the BDC recurrence.

Asymptotic solutions to (1.1) were systematically analyzed in [30, 31] by a novel, powerful
analytic approach based on Mellin-Perron integral, finite differences and Dirichlet series; see
also [32, 35]. This approach was later refined in [36, 42, 43], leading to exact solutions that
are also asymptotic in nature. These papers deal with more specific problems although the
approaches used are quite general. By a completely different approach, Kieffer [50] shows that

g.n/ D O.1/ H) f .n/ D nP .log2 n/C o.n/; (1.7)

where P .t/ is a continuous 1-periodic function. Then it is also natural to ask: what is the iff-
condition for the estimate on the right-hand side of (1.7)? See also [30, 31, 36, 41, 57] for more
examples with explicitly computable periodic function P and more precise approximations.

The key to our optimum condition of the asymptotic linearity of f .n/ relies on linear in-
terpolation, which extends the sequence f .n/ to a function defined for all real x > 0 by

f .x/ WD f .bxc/C fxg.f .bxc C 1/ � f .bxc// .x > 0/; (1.8)

where fxg denotes the fractional part of x, and g.x/ is defined similarly; see Table 2 for a few
concrete examples of a sequence and its interpolated function. With the introduction of this
relation, the recurrence (1.1) can then be written in the more general yet much simpler form
(see Lemma 1)

f .x/ D 2f
�

x
2

�
C g.x/ .x > 2/; (1.9)

whose solution is readily obtained by iteration as in (1.4), provided that we define g.0/ and
g.1/ properly; see Lemma 2 for more details.
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Theorem 1 (Asymptotic linearity of f .n/: O-bound). Define the sequence f .n/ by (1.1) and
Gm.t/ WD

P
06k6m 2�kg.2k t/. Then

f .n/ D O.n/ iff Gm.t/ D O.1/ for m > 1 and t 2 Œ1; 2�: (1.10)

We see that our optimum condition requires neither positivity nor monotonicity nor polyno-
mial growth condition of g.n/ such as that in (ABL) but instead relies on the boundedness of a
weighted partial sum of the interpolated function. Note that the results mentioned above from
[1, 2, 6, 8, 52, 74, 71] yielding f .n/ D O.n/ under various conditions all follow immediately.

It turns out that in almost all cases of interest, the O-bound can indeed be replaced by
more precise asymptotic or exact expressions, under a slightly stronger condition. Recall that
a sequence ffn.x/g of functions converges uniformly to a limiting function f .x/ for x 2 Œa; b�

if for any " > 0 there exists an integer N such that jfn.x/ � f .x/j < " for all n > N and for
all x 2 Œa; b�. While the usual continuity is defined at a point, the uniform continuity is defined
on an interval.

Theorem 2 (Asymptotic linearity of f .n/: asymptotics and identity). Define g.0/ D g.1/ D 0.
Then the following statements are equivalent.

(i) f .n/ D nP .log2 n/C o.n/ as n!1, for some continuous and 1-periodic function P

on R.

(ii) f .x/ D xP .log2 x/C o.x/ as x !1, for some 1-periodic function P on R.

(iii) Gm.t/ WD
P

06k6m 2�kg.2k t/ converges uniformly to G.t/ WD
P

k>0 2�kg.2k t/ for
t 2 Œ1; 2� as m!1.

When these conditions hold, we have indeed an identity

f .x/ � xP .log2 x/ �Q.x/ .x > 1/; (1.11)

and the closed-form expression for the 1-periodic function P and the remainder Q

P .t/ WD
X
k2Z

2�k�ftgg.2kCftg/C f .1/ D
X
k>0

2�k�ftgg.2kCftg/C f .1/ .t 2 R/ (1.12)

and
Q.x/ WD G.x/ � g.x/ D

X
k>1

2�kg.2kx/; (1.13)

with Q.x/ D o.x/ as x !1.

Note that the continuity of P in (ii) is not part of the condition and is automatically implied
if (ii) holds.

A trivial case when g.n/ � c gives P � c C f .1/ and Q.n/ D c.
The following sufficient condition is stronger but in most cases easier to check.

Corollary 1. If g.n/ D O.n.log n/�1�"/ with " > 0, then f .n/ D nP .log2 n/ � Q.n/ for
n > 1, where P;Q are defined as in Theorem 2 and Q.n/ D O.n.log n/�"/.
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We give many examples below where g.n/ is known explicitly and it is possible to compute
P .t/ and Q.n/ exactly by (1.12) and (1.13). However, Theorem 2 and Corollary 1 are as useful
in cases where we only have an estimate of the toll function g.n/; in this case (1.11) still
yields a representation of f .n/ and (1.12) and (1.13) can be used to derive estimates of the
periodic function P .t/ and the error term Q.n/. As an example, the result (1.7) by Kieffer [50]
follows immediately; indeed, we obtain a stronger error term Q.n/ D O.1/ under his condition
g.n/ D O.1/. Similarly, if g.n/ D O.n1�"/, then Q.n/ D O.n1�"/.

A common case encountered in many examples below is g.n/ D 0 when n is even. In this
case, Q.n/ D 0 for n > 1 by (1.13).

Corollary 2. If g.n/ D 0 when n is even, then f .n/ D nP .log2 n/ for n > 1.

While Theorem 2 and the two corollaries are formulated in terms of a sublinear toll function
g.n/, their use is not limited to this range. Indeed, if g.n/ is of a higher order, then one can often
normalize f .n/ properly so that the resulting sequence satisfies (1.1) with a sublinear g.n/ for
which our framework applies. Roughly, for a suitable F.n/, the sequence f .n/�F.n/ satisfies
(1.1) with a new g.n/ satisfying our conditions, which yields (1.6). For example, if g.n/ D bn

2
c

(see Example 5.2(b) below), then one can write g.n/ D n
2
�
˚

n
2

	
, and express the solution into

two parts: the part corresponding to n
2

can be easily solved by iterating (1.9), leading to a
simple closed-form expression, and the part corresponding to

˚
n
2

	
is well within the range of

applicability of Theorem 2. See Section 5 for details.
The key idea of linear interpolation we used here also extends to the more general recur-

rence

f .n/ D f̨
��

n
2

˘�
C f̌

�˙
n
2

��
C g.n/ .n > 2/; (1.14)

with f .1/ and g.n/ given, but the technicalities are more involved because the interpolation
function is no more linear when ˛ ¤ ˇ. This and finer properties of the periodic function P

under stronger conditions will be discussed in a companion paper [47].
From a methodological point of view, it is of interest to mention that many different tech-

niques have been developed for clarifying the asymptotics of general divide-and-conquer re-
currences of the form (1.14) and their extensions; these include (i) real-analytic (including
calculus, functional iteration, linear algebra, additivity, repertoire, etc.): see, for example,
[2, 6, 37, 39, 62, 71, 74], (ii) complex-analytic: [24, 30, 31, 32, 36, 42], (iii) Tauberian theo-
rems: [24, 34], (iv) renewal theory: [29], and (v) fractal geometry and iterated function system:
[25, 50, 56]. These techniques show not only the wide occurrence of the recurrence (1.14) but
also its rich mathematical connections to other tools.

This paper is structured as follows. We prove Theorem 1 and 2 in the next section. Ap-
plications to a large number of examples, mostly from analysis of algorithms and Sloane’s
OEIS, Online Encyclopedia of Integer Sequences [68], will be discussed in Sections 3–6. We
then consider a few variants and extensions in Section 7 such as the recurrence arising from
dividing into q > 2 parts of nearly of the same sizes

f .n/ D
X

16k6q

f
��

nCk�1
q

˘�
C g.n/; (1.15)

which reduces to (1.1) when q D 2. The final section deals briefly with the simpler cases (1.3).
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Notation. For convenience, we introduce the operator ƒ as follows:

ƒŒf �.n/ WD f .n/ � f
��

n
2

˘�
� f

�˙
n
2

��
;

so that (1.1) can be written as ƒŒf �.n/ D g.n/ or simply as ƒŒf � D g (where n > 2 is tacitly
understood). Let Lx D blog2 xc when x > 0. The (generic) functions P;Q;G are always
defined as in Theorem 2 (except in Sections 7 and 8).

2 The recurrence ƒŒf � D g

We prove Theorems 1 and 2 in this section. Observe first that the recursion equation (1.1) for
n > 2 does not involve f .0/;g.0/ and g.1/, so we may choose their values arbitrarily. For
definiteness and for our purposes, we will later choose f .0/ D g.0/ D g.1/ D 0.

From the sequence f .n/ to the continuous function f .x/.

Lemma 1. If we extend f .n/ to f .x/ and g.n/ to g.x/ by the linear interpolation (1.8), then
f .x/ satisfies (1.9) for x > 2.

Proof. If x D n is an integer, then (1.9) is the same as (1.1), recalling (1.8). Hence, (1.9) holds
for integer x D n > 2. Moreover, both sides of (1.9) are linear on each interval Œn; nC 1�, so
since they are equal at the endpoints, they are equal for all x 2 Œn; nC 1�, n > 2.

A few concrete cases of g discussed below are listed in Table 2 together with their interpo-
lated version.

g.n/ g.x/ g.n/ g.x/

c c n x

1n is odd

(
fxg; if bxc is even
1 � fxg; if bxc is odd

1n�2 mod 4

8̂<̂
:
fxg; if bxc � 1 mod 4

1 � fxg; if bxc � 2 mod 4

0; if bxc � f0; 3g mod 4

blog2 nc

8̂<̂
:
blog2 xc C fxg;

if bxc D 2LxC1 � 1

blog2 xc; otherwise
b

n
2
c

(�
x
2

˘
C fxg; if bxc is odd�

x
2

˘
; if bxc is even

Table 2: Some examples of g.n/ and their interpolated extensions g.x/.

Identities. By iterating the functional equation (1.9), we obtain first the following relation.

Lemma 2. For any x > 1 and 0 6 m 6 Lx,

f .x/ D
X

06k<m

2kg
�
2�kx

�
C 2mf

�
2�mx

�
: (2.1)
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Remark 2.1. Lemmas 1 and 2 are valid for any f .0/, g.0/, and g.1/, since we only claim
(1.9) for x > 2. If we choose f .0/ D f .1/ and g.0/ D g.1/ D �f .1/, then (1.1) holds also
for n D 0; 1 and the proof above shows that (1.9) holds for all x > 0. These choices provide a
more elegant formulation, which may have other uses, but for our purposes, we find it simpler
to choose g.1/ D 0 and consider only x > 2 in (1.9).

From now on and throughout this section, we choose g.0/ D g.1/ D 0, so that g.x/ D 0

for x 2 Œ0; 1�. With this choice of g.0/ and g.1/, we obtain the following basic identities.

Lemma 3. The identities

x�1f .x/ D
X

06k6Lx

.2�kx/�1g.2�kx/C f .1/ (2.2)

D

X
k>0

.2�kx/�1g.2�kx/C f .1/ (2.3)

hold for x > 1.

In particular, if f .1/ D 0, then

x�1f .x/ D
X
k>0

.2�kx/�1g.2�kx/ .x > 1/:

Note also that the Master Theorems in (1.5) follow immediately from (2.2).

Proof. By (1.9), f .2/ D 2f .1/C g.2/, and thus, by (1.8),

f .x/ D f .1/C .f .1/C g.2//.x � 1/ D f .1/x C g.2/.x � 1/ .1 6 x 6 2/:

But since g.1/ D 0, we have g.x/ D g.2/.x � 1/ for 1 6 x 6 2; thus

f .x/ D f .1/x C g.x/ .1 6 x 6 2/:

Substituting this relation into (2.1) with m D Lx gives, for x > 1,

f .x/ D
X

06k<Lx

2kg
�
2�kx

�
C 2Lxf

�
2�Lx x

�
D

X
06k6Lx

2kg
�
2�kx

�
C f .1/x; (2.4)

since 1 6 2�Lx x < 2. This proves (2.2), and (2.3) follows since g.2�kx/ D 0 for k > Lx.

Proof of Theorem 1. Write �x WD flog2 xg, so that x D 2LxC�x . Then by (2.2) and making the
change of variables k 7! Lx � k, we see that for x > 1

x�1f .x/ D
X

06k6Lx

2�k��x g
�
2kC�x

�
C f .1/ D 2��x GLx

.2�x/C f .1/: (2.5)

Thus if Gm.t/ D O.1/, then f .x/ D O.x/, and vice versa.
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Proof of Theorem 2. (iii) (uniform convergence of Gm.t/) H) (i),(ii) (asymptotics of f .n/
and f .x/): Assume that (iii) holds. Then we first show that the series

P1.t/ WD
X
k2Z

2�.kCt/g
�
2kCt

�
D

X
k2Z

2�.kCftg/g
�
2kCftg

�
(2.6)

is a well-defined continuous 1-periodic function. For that purpose, let t 2 Œ0; 1�. Since g.x/ D

0 for 0 6 x 6 1, we have

P1.t/ D
X
k>0

2�.kCt/g.2kCt/ D 2�tG.2t/ .0 6 t 6 1/; (2.7)

where G.2t/ D limm!1Gm.2
t/ converges uniformly for t 2 Œ0; 1�. The uniform convergence

theorem and the continuity of g.x/ imply that P1.t/ is continuous on Œ0; 1�. Furthermore, by
replacing k by k � btc, we see that for every t 2 R, the two sums in (2.6) are equal, and both
convergent; thus, P1 is well-defined and 1-periodic on R. Consequently, P1 and P D P1Cf .1/

are continuous 1-periodic function on R.
To show (ii), we apply (2.5) and obtain, with �x D flog2 xg and using (2.7),

x�1f .x/ D 2��x GLx
.2�x/C f .1/ D 2��x G.2�x/C f .1/C o.1/

D P1.�x/C f .1/C o.1/ D P .�x/C o.1/ D P .log2 x/C o.1/;
(2.8)

as x !1. Thus (ii) holds with the continuity of P , which in turn implies (i).
(i) H) (ii): Assume that (i) holds. We prove that

jx�1f .bxc/ � P .log2 x/j ! 0 and jx�1f .dxe/ � P .log2 x/j ! 0; (2.9)

as x ! 1, which will then imply (ii) since f .x/ linearly interpolates between f .bxc/ and
f .bxc C 1/. We split the first difference into three parts:

jx�1f .bxc/ � P .log2 x/j 6 jx�1f .bxc/ � bxc�1f .bxc/j

C jbxc�1f .bxc/ � P .log2bxc/j

C jP .log2bxc/ � P .log2 x/j:

By assumption, n�1f .n/ is bounded; thus the first term satisfies

jx�1
� bxc�1

jjf .bxc/j D O
�
x�1
bxc�1f .bxc/

�
D O.x�1/:

The second term on the right-hand side tends to zero as x !1 by assumption. Finally, since
the continuity of P ensures uniform continuity and j log2bxc � log2 xj D O.x�1/, we see that
the third term also converges to zero. This proves the first relation in (2.9). The proof of the
other convergence in (2.9) is similar.
(ii) H) (iii): Assume that (ii) holds. Then for any " > 0, there exists K > 0 such that for all
x > 2K

jx�1f .x/ � P .log2 x/j < ": (2.10)

For t 2 Œ1; 2�, let x D 2k t , where k > K. Then (2.10) yields

j.2k t/�1f .2k t/ � P .log2 t/j < "; (2.11)
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since P .log2 x/ D P .k C log2 t/ D P .log2 t/. By (2.5) for 1 6 t < 2 and by continuity for
t D 2,

.2k t/�1f .2k t/ D t�1Gk.t/C f .1/:

Thus, as k !1, (2.11) yields

t�1Gk.t/! P .log2 t/ � f .1/;

uniformly for t 2 Œ1; 2�, which implies (iii).
To complete the proof of Theorem 2, we observe that if we define Q.x/ WD xP .log2 x/ �

f .x/, implying that (1.11) holds, then for x > 1, by (2.7) and (2.5), since log2 x D Lx C �x

where �x D flog2 xg,

Q.x/ D xP .�x/ � f .x/ D xP1.�x/C xf .1/ � f .x/ D x2��x G
�
2�x
�
� x2��x GLx

�
2�x
�

D 2Lx

X
k>Lx

2�kg
�
2kC�x

�
D

X
j>1

2�jg
�
2jx

�
D G.x/ � g.x/;

showing (1.13). Moreover, Q.x/ D o.x/ as x !1 by (1.11) and (ii).

The following sufficient condition is generally simpler to apply.

Corollary 3. Define Am WD sup2m6n62mC1 jg.n/j. ThenX
m>0

2�mAm <1 implies f .x/ D xP .log2 x/ �Q.x/ for x > 1;

where P is continuous, 1-periodic and is given by (1.12) and Q.x/ WD
P

k>1 2�kg.2kx/ D

o.x/.

Similar conditions on blockwise suprema appear in many other areas of mathematics such
as the “direct Riemann integrability” in renewal theory; see [64, ~3.10].

Remark 2.2. If Theorem 2 applies, then necessarily g.n/ D o.n/. In fact, (iii) implies
2�kg.2k t/ ! 0 uniformly for t 2 Œ1; 2� as k ! 1, and thus g.x/=x ! 0 as x ! 1.

Remark 2.3. The sum G.t/ WD
P

k>0 2�kg.2k t/ in (iii) may fail to converge absolutely. One

counterexample is given by taking g.n/ WD .�1/k

k
min

�
n � 2k ; 2kC1 � n

�
for n 2 Œ2k ; 2kC1/,

k > 1. Then G.3
2
/ D 1

2

P
k>1

.�1/k

k
.

Remark 2.4. Any continuous 1-periodic function P .x/ can occur in Theorem 2 for some
f .1/ and g.n/. For example, given P , we may take f .1/ D P .0/, and then define P1 and G

backwards by P1.t/ WD P .t/�f .1/ and (2.7), implying that G.1/ D G.2/ D P1.1/ D 0. Then
define Gm.t/ for t 2 Œ1; 2� by linear interpolation between the values Gm.2

�mn/ WD G.2�mn/,
n 2 Œ2m; 2mC1�. There exists a g.x/ on Œ1;1/ such that Gm.t/ D

P
06k6m 2�kg.2k t/ for

t 2 Œ1; 2� and m > 0; this function is linear on each interval Œn; n C 1�, and is thus given
by linear interpolation of the sequence g.n/. Finally, note that Gm.t/ ! G.t/ uniformly on
Œ1; 2� since G.t/ is continuous. See the graphic renderings of diverse P in Sections 3–7 on
applications.
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An example with non-uniform convergence. We now show by a simple example that uni-
form convergence of Gm.t/ is needed for the continuity of P , which also reflects the difference
between Theorem 1 and Theorem 2.

Define

f .n/ D

(
0; if n D

�
2k

3

˘
or n D

˙
2k

3

�
; k > 1I

n; otherwise;

and let g.n/ be defined by (1.1). Then g.n/ D 0 unless
ˇ̌
n � 2k

3

ˇ̌
6 7

3
for k > 1. Note that˙

2k

3

�
D
�

2k

3

˘
C 1 for k > 0. More precisely, g.n/ ¤ 0 if and only if, writing nk WD

�
2k

3

˘
,

n 2 f4; 7g or n 2
[

k>5 odd

˚
nk � 1; nk C 2; nk C 3

	
or n 2

[
k>6 even

˚
nk � 2; nk � 1; nk C 2

	
:

Note first that f .n/ D O.n/, and thus Gm.t/ D O.1/ for t 2 Œ1; 2� by Theorem 1.
Furthermore, f .x/ D x unless

ˇ̌
x � 2k

3

ˇ̌
6 5

3
for some k. If x 2 Œ1; 2� and x ¤ 4

3
(or for

any x …
˚

2k

3

	
k2Z), then this holds for 2mx for all large x, and thus f .2mx/ � 2mx. However,

f
�

2m

3

�
D 0 for all m. Thus we see that .2mx/�1f .2mx/! P .log2 x/ as m!1, where the

function

P .x/ D

(
0; x C log2 3 2 ZI
1; otherwise;

(2.12)

is not continuous.

Figure 1: The functions f .x/

x
and g.x/

x
in logarithmic scale.

Moreover, it follows from (2.5) that if 1 6 x < 2 and m > 0, so L2mx D m, then
.2mx/�1f .2mx/ D x�1Gm.x/. Consequently, x�1Gm.x/! P .log2 x/ as m!1, and thus

Gm.x/! G.x/ D xP .log2 x/ (2.13)

for 1 6 x < 2; it is easily verified that Gm.2/ D 2GmC1.1/, so (2.13) holds for x D 2 too.
However, since the limit (2.12) is discontinuous, the convergence is not uniform on Œ1; 2�. In
fact, g.n/ D n for arbitrarily large n, so g.n/ is not o.n/; cf. Remark 2.2. In this example,
f .n/ D 0 for arbitrarily large n, and thus n�1f .n/ 6! 1, although (1.12) converges for every t .

2.1 Fourier expansions
The periodic function of P can be computed, in addition to the series expansion (1.12), via
its Fourier series. Although the polynomial convergence rate of the Fourier series is generally

12



much worse than the exponential rate provided by (1.12), the viewpoint from the frequency
domain (rather than from the time domain) provides much information; for example, the mean
value of P in the unit interval is given by the 0th Fourier coefficient, and the other coefficients
yield an estimate of the magnitude of the oscillations of P .

Theorem 3 (Fourier series expansion of P ). Suppose that the equivalent conditions (i)–(iii) in
Theorem 2 hold. Let

�k WD
2k� i

log 2
.k 2 Z/; (2.14)

and let
D.s/ WD

X
n>2

g.n/
�
.nC 1/�s

� 2n�s
C .n � 1/�s

�
; (2.15)

which converges at least for s 2 f�k W k 2 Zg [ fs W <.s/ > 0g. Then P .t/ has the Fourier
series expansion:

P .t/ � f .1/C
D0.0/

log 2
C

1

log 2

X
k¤0

D.�k/

�k.�k C 1/
e2k� it ; (2.16)

where
D0.0/ WD

X
n>2

g.n/
�
2 log n � log.nC 1/ � log.n � 1/

�
: (2.17)

Compare the expansions in [31]. Here, we use the symbol “�” for the Fourier series since
the series may not converge for every t (although it does in typical examples); see Remark 2.8.

Proof. Since P .t/ is 1-periodic and integrable (in fact, continuous), it has a Fourier series
expansion P .t/ �

P
k2Z
OP .k/e2k�it , and since P .t/ D P1.t/ C f .1/, we have OP .k/ D

OP1.k/C ık0f .1/. By (2.7) and the uniform convergence of Gm to G on Œ1; 2�, and noting that
2�k D 1,

OP1.k/ D

Z 1

0

P1.t/e
�2k�it dt D

Z 1

0

G.2t/2�te�2k�it dt D
1

log 2

Z 2

1

G.v/v�2��k dv

D
1

log 2
lim

m!1

Z 2

1

X
06j6m

2�jg.2jv/v�2��k dv

D
1

log 2
lim

m!1

X
06j6m

Z 2jC1

2j
g.y/y�2��k dy

D
1

log 2
lim

m!1

Z 2mC1

1

g.y/y�2��k dy:

(2.18)

Furthermore, g.n/ D o.n/ (see Remark 2.2), and thus
R 2mC1

2m jg.x/jx�2 dx D o.1/ as m!1.
Consequently, (2.18) shows that

OP1.k/ D
1

log 2

Z 1
1

g.y/y�2��k dy D
1

log 2

Z 1
0

g.y/y�2��k dy; (2.19)

where the integrals converge conditionally in the usual sense, namely, as limA!1

R A.

13



Now the linear interpolation (1.8) can be written as

g.x/ D
X
n>2

g.n/min
�
x � .n � 1/; nC 1 � x

�
1n�16x6n; (2.20)

and thus for any s such that the integral
R1

1
g.x/x�2�s dx converges conditionally, as N !1,Z 1

1

g.x/x�2�s dx D

Z N

1

g.x/x�2�s dx C o.1/

D

X
26n6N

g.n/

Z nC1

n�1

min
�
x � .n � 1/; nC 1 � x

�
x2Cs

dx C o.1/:

(2.21)

An elementary integration yields, for s ¤ 0;�1,Z nC1

n�1

min
�
x � .n � 1/; nC 1 � x

�
x2Cs

dx D
1

s.s C 1/

�
.n � 1/�s

� 2n�s
C .nC 1/�s

�
(2.22)

and thus by (2.21) and (2.15), for every s such that integral converges (at least conditionally),Z 1
1

g.x/x�2�s dx D
D.s/

s.s C 1/
; (2.23)

with the sum in (2.15) converging. In particular, (2.19) and (2.23) yield

OP1.k/ D
D.�k/

�k.�k C 1/ log 2
.k ¤ 0/: (2.24)

For k D 0, we similarly obtain
R1

1
g.x/x�2 dx D D0.0/ given by (2.17), using an analogue of

(2.22) (or by letting s ! 0 in (2.22)), and thus

OP1.0/ D
D0.0/

log 2
: (2.25)

This completes the proof of Theorem 3.

Remark 2.5. By (2.19), OP1.k/ equals 1= log 2 times the Mellin transform Qg.s/ WD
R1

0
g.x/xs�1 dx

evaluated at s D �1 � �k . Since g.x/ D o.x/ as x !1 and g.x/ D 0 for x 6 1, the Mellin
transform converges absolutely and is analytic at least for <.s/ < �1; however, we are inter-
ested in points on the boundary of this domain. The proof above shows only that the Mellin
transform converges conditionally at the points s D �1 � �k at which absolute convergence
may not be guaranteed. Indeed, there may exist other s with <.s/ D �1 where the Mellin
transform does not even converge conditionally; a counter example is given by g.n/ in Remark
2.3.

Similarly, D.s/ converges absolutely for <.s/ > 0, and is analytic there, and the proof
above shows that it converges at least conditionally for s D �k , but the same counterexample
shows that absolute convergence may not be guaranteed there.

On the other hand, if
P

n>1 jg.n/jn
�2 < 1, then the sum D.s/ converges absolutely also

for <.s/ D 0, including s D �k , and under the stronger assumption g.n/ D O.n1�"/, D.s/

converges, and is analytic, for <.s/ > �". (And similarly for the Mellin transform Qg.)
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Remark 2.6. Since the series D.s/ may not be defined in an interval around 0, it may not be
differentiable in the standard sense at 0. Nevertheless, the right derivative at 0 always exists,
and equals D0.0/ as defined in (2.15). In fact,

R1
1

g.x/x�2 dx exists by the proof above, and it
follows easily by an integration by parts that s 7!

R1
1

g.x/x�2�s dx is continuous for s > 0,
and then (2.23) implies D.s/=s ! D0.0/ as s & 0.

Remark 2.7. The series (2.15) can be rearranged as a Dirichlet series

D.s/ D
X
n>1

�
g.nC 1/ � 2g.n/C g.n � 1/

�
n�s; (2.26)

provided <.s/ is so large that the latter series converges.

Remark 2.8. The function P .t/ may be any continuous 1-periodic function (see Remark 2.4),
and thus the Fourier series (2.16) converges for almost every t by a well-known theorem of
Carleson [9]. However, the Fourier series may not converge for every t , but instead converge
under suitable summation techniques such as Cesàro means (or Fejér sums) [76, Theorems
VIII.1.1 and III.3.4]; see [47] for a more detailed discussion of convergence of the Fourier
series.

3 Applications. I. Bounded g.n/

We apply our results derived above to examples involving the BDC recurrence (1.1) with
bounded g.n/ in this section and to larger order g.n/ in the next three sections.

Example 3.1. [Constant g.n/] The simplest case is when g.n/ � c for some constant c. If the
recurrence (1.1) holds for n > 2 and f .1/ is given, then the solution is easily seen to be

f .n/ D .f .1/C c/n � c: (3.1)

Many practical cases either have more complicated toll functions or start the recurrence from
n > n0 with n0 > 2. For simplicity, we assume that n0 D 3 and g.n/ D c for n > 3. The
cases when n0 > 3 can be treated similarly. Note that f .n/C c satisfies (1.1) with g.n/ D 0

for n > 3. We choose m D Ln � 1 in (2.1), so that 2 6 n
2m < 4 and for n > 2

f .n/C c D nP .log2 n/; (3.2)

where P .t/ D P .ftg/ is defined for t 2 Œ0; 1� by

P .t/ WD 2�1�t
�
f
�
21Ct

�
C c

�
D 2�1�t

�
f21Ct

gf
�
b21Ct

c C 1
�
C
�
1 � f21Ct

g
�
f
�
b21Ct

c
�
C c

�
:

Note that b21Ctc assumes either 2 or 3 for t 2 Œ0; 1�. So if log2

�
1C r

2

�
6 t < log2

�
1C rC1

2

�
for r D 0; 1, then b21Ctc D 2C r , and

P .t/ D 2�1�t
�
f .2C r/C c

�
C
�
1 � 2�t

� r2�1�t
��
f .3C r/ � f .2C r/

�
; (3.3)

for r D 0; 1. The periodic function P thus consists of two different pieces of smooth functions
(see Figure 2), and the values needed here are ff .2/; f .3/; f .4/g, where f .3/ and f .4/ can
be computed from f .1/ and f .2/.

15



Example 3.2. [Finding the minimum and the maximum in a set of n elements by divide-and-
conquer] This is one of the classical divide-and-conquer examples described in, for example,
Aho et al.’s classic book [1] on algorithms. It finds the smallest and the largest elements of a
file of n given elements simultaneously by splitting the input into two equal halves with sizes
b

n
2
c and dn

2
e, respectively, by finding the smallest and the largest in the two subfiles and then

by completing the task by two additional comparisons; see [1, 40]. The number of comparisons
used satisfies obviously (1.1) with g.n/ D 2 (n > 3) and f .1/ D 0 and f .2/ D 1. Applying
(3.2) and (3.3), we obtain f .n/C 2 D nP .log2 n/ for n > 2, where P .t/ D P .ftg/ is defined
in the unit interval by

P .t/ D

(
2 � 2�1�t t 2 Œ0; log2

3
2
�

1C 2�t t 2 Œlog2
3
2
; 1�:

(3.4)

Equivalently, for n > 2, f .n/C 2 D nCminfn� 2Ln�1; 2Lng; see also [40, 46]. By (2.16)
(or (2.24)–(2.25)), we see that the average value of P equals bP .0/ D log2 3 � 1:584, andbP .k/ D 1�3��k

.log 2/�k.�kC1/
(k ¤ 0); see Figure 2.

While the sequence f .n/ is not in OEIS, it is connected to many sequences there, which all
satisfy (1.1) (after properly shifted) with constant g. Twenty of them are listed in Table 3.

OEIS seq. in terms of f for n >? Notes

A159615.n � 1/ f .n/C 1 2
D A275202.n/ � 1 for n > 2

(“odious numbers”)

A005942.nC 1/ 2.f .n/C 2/ 1
D A214214.n/C 1

(complexity of Thue-Morse seq.)

A006165.n/ f .n/ � nC 2 1

D A066997.n � 1/ for n > 3

D A078881.n � 1/ for n > 2

(2nd order Josephus problem)

A053646.n/ 2f .n/ � 3nC 4 2
D A080776.n � 1/

.distance to nearest power of 2/

A166079.nC 1/ 2n � 1 � f .n/ 1
D A060973.n/C 1 for n > 1

(phone-user arrangement problem)

A007378.n/ 3n � 2 � f .n/ 2
D A080645.n/ for n > 3

." seq. with a.a.n// D 2n/

A080637.n � 1/ 3n � 3 � f .n/ 2
D A079905.n � 1/ for n > 3

." seq. with a.a.n// D 2nC 1/

A080653.n � 2/ 3n � 4 � f .n/ 3

D A079945.n � 3/C 1 for n > 3

D A080596.n � 3/C 1 for n > 5

D A080702.n � 4/C 2 for n > 5

D A115836.n � 1/ for n > 2

Table 3: Twenty sequences from OEIS directly expressible in terms of f .n/ of Example 3.2 (for
min-max finding).

Note that the question “whether A078881 equals A006165” posed on OEIS can be directly
proved, a proof being given in Appendix A.
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On the other hand, for some of the sequences in the table shifting is a crucial step in getting
a simpler form for g.n/. Take for example f .n/ WD A080637.n/ (f .n/ equals the smallest
positive integer consistent with the sequence being monotonically increasing and satisfying
f .1/ D 2, f .f .n// D 2nC 1 for n > 1), which in our format satisfies f .2/ D 3 and

g.n/ D blog2.nC 1/c � blog2
4
3
.nC 1/c .n > 3/:

The sequence g consists of a block of 2k 0’s followed by a block of �1’s of the same length for
k > 1 and n > 3. If we define Nf .n/ D f .n� 1/C 1 for n > 2 with Nf .1/ D 1, then we obtain
a sequence (which coincides with A007378) still satisfying the same recurrence (1.1) but with
g.n/ D 0 for n > 3. We then deduce that f .n � 1/ D nP .log2 n/ � 1, where P .t/ D P .ftg/

is defined by

P .t/ D

(
1C 2�1�t t 2 Œ0; log2

3
2
�

2 � 2�t t 2 Œlog2
3
2
; 1�I

see Figure 2 for an illustration. About half of the examples listed in the above table have the
same P .t/, for example, A079945, A080653 and A007378.

(3.4) Fourier approximation A080637 without shift A080637 with shift

Figure 2: Left: the periodic function P .t/ in (3.4); middle-left: truncated Fourier series ap-
proximation to (3.4); middle-right (A080637.n/C1

n
) and right (A080637.n�1/C1

n
): for n D 2; : : : ; 128

in logarithmic scale.

Example 3.3. [OEIS: the role of initial conditions] Consider the sequence f .n/ WD A080639.n/,
which equals the smallest integer larger than f .n � 1/ and consistent with the condition “for
n > 1, n is a member of the sequence if and only if f .n/ is even”. In our format, this sequence
satisfies (1.1) but with a non-constant g.n/ having a more complicated pattern. If we define
instead Nf .n/ WD f .n � 2/ C 2 with Nf .1/ D 1 and Nf .2/ D 2, then Nf satisfies (1.1) with g

given by

n 6 4 5 6 7 8 9 > 10

g.n/ 0 2 3 3 3 1 0

By extending the argument used in Example 3.1, we deduce that

Nf .n/ D

8̂<̂
:

nC 3 � 2Ln�3; if 2Ln 6 n < 9
8
2Ln;

2n � 3 � 2Ln�2; if 9
8
2Ln 6 n < 3

2
2Ln;

nC 3 � 2Ln�2; if 3
2
2Ln 6 n < 2LnC1;

.n > 5/;
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or f .n � 2/C 2 D nP .log2 n/, where

P .t/ D

8̂<̂
:

1C 3 � 2�3�t ; if 0 6 t 6 log2
9
8
;

2 � 3 � 2�2�t ; if log2
9
8
6 t < log2

3
2
;

1C 3 � 2�2�t ; if log2
3
2
6 t < 1:

(3.5)

Other sequences with a very similar behavior include A088720, A088721, A079000, and
A079253. Indeed, A079000.n/ D A080639.nC1/�1 and A079253.n/ D A080639.nC2/�2.

Example 3.4. [Optimal algorithms for finding the minimum and the maximum in a set of n

elements] The balanced divide-and-conquer algorithm for finding the minimum and the max-
imum in a set of n elements we mentioned above is simple but not optimal for general n (for
example n D 6). A better divide-and-conquer strategy is to split the elements into two parts of
sizes 2blog2

2
3

nc and n � 2blog2
2
3

nc, respectively, leading to the recurrence

f .n/ D f
�
2blog2

2
3

nc
�
C f

�
n � 2blog2

2
3

nc
�
C 2 .n > 3/;

with f .1/ D 0 and f .2/ D 1. The solution is easily seen to be (see [13, 46])

f .n/ D
˙

3
2
n
�
� 2 D 3

2
n � 2C

˚
1
2
n
	

.n > 1/:

The complexity is identical to that of the optimum algorithm proposed by Pohl in [60]. It is
easy to show that such an f .n/ also satisfies (1.1) with g.n/ D 2 � 1n�2 mod 4 for n > 2; see
also Example 3.7. On the other hand, f .n/ coincides with A032766.n � 1/ for which many
combinatorial interpretations can be found on its OEIS webpage. Also a huge number of OEIS
sequences of the form cnCdCh.n/with h.n/ periodic satisfy (1.1) with bounded and periodic
g; examples include A032766, A047335, A004523, and A047229.

Example 3.5. [Mergesort] The variance of the number of comparisons used by the top-down
mergesort (see [31, 43]) satisfies (1.1) with

g.n/ D
2
˙

n
2

�2�˙n
2

�
� 1

��˙
n
2

�
C 1

�2�˙n
2

�
C 2

� .n > 2/: (3.6)

Since g is bounded for all n, our theorems apply and it is easy to see that

f .n/ D nP .log2 n/ �Q.n/ .n > 1/; (3.7)

where

P .t/ D
X
k>1

2�k�ftgg
�
2kCftg

�
.t 2 R/; (3.8)

and

Q.n/ D
X
k>1

2�kg
�
2kn

�
D 2C

X
k>0

1

2k

�
7

2knC 1
�

12

2knC 2
�

2

.2knC 1/2

�
:
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Note that g.t/ D 0 for t 2 Œ0; 2� because g.0/ D g.1/ D g.2/ D 0. The identity (3.7) was
derived in [43] by a purely analytic approach based on second difference and Mellin-Perron
integrals; the elementary proof here is more general and to some extent simpler. Also (3.8) is
new.

The Fourier coefficients can be computed by applying Theorem 3. We obtain from (2.24),
(2.26) and (3.6) easily, with �k D

2k�i
log 2

as usual,

bP .k/ D 2

.log 2/�k.1C �k/

X
m>1

m.5m2 C 10mC 1/

.mC 1/2.mC 2/2.mC 3/
..2m/��k � .2mC 1/��k /;

for k ¤ 0, which is identical to that derived in [31]. Similarly, when k D 0, the mean value of
P over the unit interval equals, using (2.25) and (2.17),

bP .0/ D 1

log 2

X
m>1

2m.5m2 C 10mC 1/

.mC 1/2.mC 2/2.mC 3/
log

2mC 1

2m

� 0:34549 32539 59979 17006 74766 : : :

Figure 3: The periodic function arising from the variance of mergesort as approximated by the
first N terms of the series in (3.8) (left) for N D 5; : : : ; 20 and by (3.7) (right) for n D 1 to
n D 2048 (plotted against flog2 ng).

See Figure 3 for two different plots of P .t/.
Higher order cumulants of the number of comparisons used all satisfy the same recurrence

(1.1) with bounded g.n/, and can be treated in the same manner; see [43] for the third and the
fourth orders.

Example 3.6. [Lossless compression of balanced trees] The logarithm of the total number of
the 2-balanced trees with n leaves (A110316 in OEIS) satisfies (1.1) with g.n/ D 1n is odd for
n > 2 and f .1/ D 0; see [57]. We then obtain Q.n/ D 0 by (1.13), and thus f .n/ D
nP .log2 n/, where

P .t/ D
X
k>1

2�k�ftgg
�
2kCftg

�
; (3.9)

with g.x/ D fxg if bxc > 2 is even and g.x/ D 1 � fxg if bxc > 3 is odd. The Fourier
coefficients can be computed by (2.16). Note that (2.15) yields

D.s/ D
X
m>1

�
.2mC 2/�s

� 2.2mC 1/�s
C .2m/�s

�
D .22�s

� 2/�.s/ � 2�s
C 2; (3.10)
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(where � denotes Riemann’s zeta function; see [75, Ch. XIII]), first for <.s/ > 1, and thus by
analytic extension for <.s/ > �1 (where the sum converges absolutely). In particular,

D0.0/ D �4.log 2/�.0/C 2� 0.0/C log 2 D 3 log 2C 2� 0.0/ D 2 log 2 � log�: (3.11)

Thus, (2.16) provides the Fourier series expansion for P .t/:

P .t/ D 2 � log2 � C
1

log 2

X
k¤0

1C 2�.�k/

�k.�k C 1/
e2k� it .t 2 R/I (3.12)

see Figure 4. In particular, the mean value of P equals

bP .0/ D D0.0/

log 2
D 2 � log2 � � 0:34850 38705 : : : :

By the known estimate for Riemann’s zeta function (see [75, p. 276])

j�.i t/j D O
�
jt j

1
2
C"
�

.jt j > 1/; (3.13)

for any " > 0, we see that the Fourier series (3.12) is absolutely convergent.

Figure 4: The periodic fluctuations of the two sequences in Example 3.6: periodic functions
successively refined by f .n/

n
(in blue) and

Nf .n/C1

n
(in green) plotted against flog2 ng (left), ren-

dered by their series expressions of the form (3.9) (middle), and their Fourier series represen-
tations (right).

A “conjugate” sequence (A003661) arises in the context of bipartite Steinhaus graphs for
which the total number on n C 1 nodes equals 2n C Nf .n/ (see [28]), where ƒŒ Nf � D 1n is even

with Nf .n/ D 0 for n 6 3. We then obtain Nf .n/C1 D n NP .log2 n/, where NP has the same series
expression as (3.9) with g there replaced by Ng.x/ D fxg if bxc is odd and Ng.x/ D 1 � fxg if
bxc is even, for x > 3. The corresponding Fourier series is then given by

NP .t/ D log2 3� � 3 �
1

log 2

X
k¤0

3��k C 2�.�k/

�k.�k C 1/
e2k�it .t 2 R/:

On the other hand, the sequence A268289.n � 1/ satisfies the same recurrence and the same
toll function but with different initial conditions.

Example 3.7. [A sensitivity test] Motivated by Example 3.4 above and Example 5.5 below,
we consider and compare the four sequences ƒŒfj � D gj with fj .0/ D fj .1/ D 0, where
gj .n/ WD 1n�j mod 4 for j D 0; 1; 2; 3. While the definitions are almost identical, their periodic
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behaviors differ significantly. The simplest case among these four is f2.n/ D b
n
2
c for n > 1,

the others three having no such an explicit form. This means that f2.n/ D nP2.log2 n/ �
˚

n
2

	
,

where the periodic function P2.t/ D
1
2

is a constant. Note also that
P

06j63 gj .n/ D 1 for all
n > 2, and thus by (3.1),

P
06j63 fj .n/ D n � 1 and

P
06j63 Pj .t/ D 1. See Figure 5 for an

illustration. These examples show how a minor change in the toll function g results in rather
different periodic fluctuations in P . Such a sensitive change in fluctuations becomes invisible
if one absorbes all gj .n/ by O.1/.

Figure 5: Periodic fluctuations of the four cases corresponding to different gj .n/ D 1n�j mod 4

and approximations of Pj .log2 n/ by fj .n/�Qj .n/

n
, for n D 2; : : : ; 1024 and j D 0; 1; 3: P0 in

green, P1 in blue and P3 in brown. P2 is a constant.

4 Applications. II. Sublinear g.n/

We begin with logarithmic orders g.n/ D dlog2 ne and g.n/ D blog2 nc for which we can
still derive rather precise expressions for the periodic functions, and then discuss cases when
g.n/ D ‚..log n/d/ with d > 1 and g.n/ D ‚.n�/ with � 2 .0; 1/, which arise in the analysis
of computational geometry algorithms using divide-and-conquer.

Example 4.1. [Heights in balanced binary trees] The sum of heights of the nodes in a certain
balanced binary tree with n leaves gives a sequence (A213508 in OEIS) such that f .n/ D
A213508.n � 1/ satisfies (1.1) with g.n/ D dlog2 ne and f .1/ D 0; see [11].

We now simplify f .n/ and prove that

f .n/ D nP .log2 n/ � dlog2 ne � 2 .n > 1/; (4.1)

where the periodic and continuous function P has the closed-form (see Figure 6)

P .t/ D

(
21�ftg C .1 � 2�ftg/

�
21�flog2.2

ftg�1/g � blog2.2
ftg � 1/c

�
; t … Z;

2; t 2 Z:
(4.2)

This is one of the few cases beyond bounded g.n/ for which P admits a closed-form expression.
Of course, the sublinear term �dlog2 ne� 2 in (4.1) is nothing but Q.n/, but the proof for (4.2)
is more complicated.

To prove (4.2), we start from the identity (2.4) together with (1.8)

f .n/ D
X

06k6Ln

2k
�
g
��

n
2k

˘�
C
˚

n
2k

	�
g
��

n
2k

˘
C 1

�
� g

��
n

2k

˘���
:
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Note that g.n C 1/ � g.n/ D 1 only if n is a power of two, i.e., if n D 2Ln . If n D

.1bLn�1 : : : b0/2, and �0 D �0.n/ WD Ln�2Ln denotes the position of the largest k smaller
than Ln such that bk D 1, then 1b n

2k
cD2Ln�k D 1�0<k6Ln

; which holds also when n D 2Ln if
we define L0 WD �1 and thus in this case �0.n/ WD �1. Hence for 0 6 k 6 Ln(

g
��

n
2k

˘�
D Ln � k C 1 � 1�0<k6Ln

;

g
��

n
2k

˘
C 1

�
� g

��
n

2k

˘�
D 1�0<k6Ln

:

Thus we get
f .n/ D

X
06k6Ln

2k.Ln � k C 1/ �
X

�0<k6Ln

2k
�
1 �

˚
n

2k

	�
:

The first sum equals 2LnC2 �Ln � 3. For the second sum, observe that when �0 < k 6 Ln, or
equivalently

�
n

2k

˘
D 2Ln�k , then 2kf

n
2k g D n � 2kb

n
2k c D n � 2Ln . ThusX

�0<k6Ln

2k
�
1 �

˚
n

2k

	�
D

X
�0<k6Ln

.2k
C 2Ln � n/ D 2LnC1

� 2�0C1
C .2Ln � n/.Ln � �0/:

We thus obtain

f .n/ D 2LnC1
�Ln � 3C 2�0C1

C .n � 2Ln/.Ln � �0/ .n > 1/:

In particular, when n D 2Ln , so 2�0C1 D 1 by our convention, f .n/ D 2n � Ln � 2, which
verifies (4.1) with P .Ln/ D 2.

Assume now n ¤ 2Ln . Write Ln D log2 n � #n, where #n WD flog2 ng > 0. Thus
n�2Ln D n

�
1 � 2�#n

�
D 2Ln.2#n �1/. Let # 0n WD

˚
log2.n � 2Ln/

	
D
˚
log2

�
2#n � 1

�	
: Then

�0 D Ln�2Ln D log2 nC log2

�
1 � 2�#n

�
� # 0n D Ln C blog2

�
2#n � 1

�
c:

Thus 2�0C1 D 2n
�
1 � 2�#n

�
2�#

0
n and

f .n/C dlog2 ne C 2

n
D

2LnC1 C 2�0C1 C .n � 2Ln/.Ln � �0/

n

D 21�#n C 2
�
1 � 2�#n

�
2�#

0
n �

�
1 � 2�#n

�
blog2

�
2#n � 1

�
c;

from which we deduce (4.1)–(4.2).
We then obtain the mean value of P over the unit interval

bP 0 D

Z 1

0

P .t/ dt D 1C
1

2 log 2
C

Z 1
0

2fvg C bvc

.2v C 1/2
dv:

For other Fourier coefficients, we can still use (4.2) to simplify bP .k/ but it is simpler
to apply (2.16) as follows (alternatively one may apply the analytic approach developed in
[31, 43]). Define Qf .n/ D f .n/C dlog2 ne C 2. Then Qf .n/ satisfies (1.1) with g.n/ D ın and
Qf .1/ D 2, where ın D 1 when n D 2k C 1, k > 1 and ın D 0 otherwise. So we deduce the

identity f .n/C dlog2 ne C 2 D nP .log2 n/, where, by (2.16),

P .t/ WD 2C
QD0.0/

log 2
C

1

log 2

X
j¤0

QD.�j /

�j .�j C 1/
e2k�it ;
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with
QD.s/ WD

X
k>1

�
2�ks
� 2.2k

C 1/�s
C .2k

C 2/�s
�

.<.s/ > �2/:

Numerically, the mean value of the periodic function equals (see Figure 6)

bP 0 D 2C
QD0.0/

log 2
� 2:25352 40379 34699 65912 : : : :

A very similar example is A213509 (which comes from [11]): if we define f .n/ WD
A213509.n � 1/ � 1, then ƒŒf � D dlog2 ne for n > 4. A closed-form expression of this
sequence can be similarly characterized.

Example 4.2. [The case when g.n/ D blog2 nc with f .1/ D 0] By the same arguments used
above for dlog2 ne, we have

f .n/ D 2LnC1
�Ln � 2C

X
06k6Ln

2k
˚

n
2k

	 Y
k6j6Ln

bj D 2LnC1
�Ln � 2C

X
�16k6Ln

2k
˚

n
2k

	
;

where

�1 WD min
�

k W
Y

k6j6Ln

bj D 1

�
D L2LnC1�n�1 C 1 D

˙
log2.2

LnC1
� n/

�
;

where as above L0 WD �1. Since when �1 6 k 6 Ln, 2k
˚

n
2k

	
D n � 2LnC1 C 2k , we see that

f .n/CLn C 2 D 2LnC1
C n � .2LnC1

� n/.Ln � �1/ � 2�1 :

We thus deduce, similarly as above, the exact expression

f .n/C blog2 nc C 2 D nP .log2 n/ .n > 1/;

where (see Figure 6)

P .t/ D 1C 21�ftg
� .21�ftg

� 1/
�
21�flog2.2�2ftg/g

� blog2.2 � 2ftg/c � 1
�
:

In particular, the mean value of P over the unit interval is given by

bP .0/ D Z 1

0

P .t/ dt D 1C
1

log 2
�

Z 1
0

2fug C buc

.21Cu � 1/2
du:

The same approach as above using Qf .n/ WD f .n/C blog2 nc C 2 D nP .log2 n/, leads to, by
(2.16),

P .t/ WD 2C
QD0.0/

log 2
C

1

log 2

X
j¤0

QD.�j /

�j .�j C 1/
e2k�it ;

where
QD.s/ WD �

X
k>2

�
.2k
� 2/�s

� 2.2k
� 1/�s

C 2�ks
�

.<.s/ > �2/:

Numerically, the mean value of the periodic function equals

bP 0 D 2C
QD0.0/

log 2
� 1:79191 68246 62028 52468 : : : :
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Figure 6: The periodic functions arising in the two log-cases: dlog2 ne (upper part) and
blog2 nc (lower part) for n D 2; : : : ; 1024 in logarithmic scale (left), approximated by Fourier
partial sums (middle), and the difference between the two periodic functions (right).

Example 4.3. [Computational geometry algorithms] Divide-and-conquer with balanced part
sizes has been one of the most widely used design paradigms in computational geometry (see
[61]). In terms of the average-case time complexity, such a paradigm yields simple yet efficient
procedures, leading often to many linear or linearithmic expected time algorithms. Typical
problems of this category include convex hull, maxima-finding, closest pairs, etc.; see, for
example, [7, 27, 61].

Recall that the maxima of a set of points in Rd are the points dominated by no other points
(a point dominating another if the coordinate-wise difference has no negative entry). A simple
way to find the maxima of a set of points is to first split the input points into two halves,
find the maxima of each half recursively and then merge the two sets of maxima by pairwise
comparisons; see [14, 30, 61] for more information on maxima and related algorithms. If we
assume that the input n points are randomly chosen from the d -dimensional hypercube Œ0; 1�d ,
then it is known that the expected number of maxima can be computed recursively by the
recurrence

Mn;d D
1

d � 1

X
16j<d

H .d�j/
n Mn;j where H .a/

n WD

X
16j6n

j�a;

with Mn;1 � 1 for n > 1; see [4] and the references therein. In particular, Mn;2 D Hn and
Mn;3 D

1
2

�
H 2

n CH
.2/
n

�
. For fixed d > 2, Mn;d D ‚

�
logd�1 n

�
.

Let f .n/ be the expected number of pairwise comparisons. A naive pairwise comparison
gives the toll function g.n/ D Mbn

2
c;dMdn

2
e;d for n > 2 with g.1/ D f .1/ D 0. Note that

g.n/ D ‚
�
log2.d�1/ n

�
. So we obtain an identity of the form

f .n/ D nP .log2 n/ �
X
k>0

2�k�1M 2
2kn;d

; (4.3)

where P .t/ WD
P

k>0 2�k�ftgg.2kCftg/ and the series converges absolutely. In particular, when
d D 2, M 2

2kn;d
D H 2

2kn
. Note that the error term provided by the series on the right-hand side

is crucial in the graphic rendering of the periodic function P ; see Figure 7.
From Figure 7, we see that the mean values of the periodic functions increase very fast with

d ; these can be reduced by using more efficient algorithms to merge the two sets of maxima;
see [14, 23] for more references.

The same divide-and-conquer algorithm applies to computing the convex hull of a given set
of points; see [7, 27, 61]. According to known theory, the expected number of extreme points
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Figure 7: The periodic functions arising in the expected cost of maxima-finding algorithms
using divide-and-conquer: d D 2 (left), d D 3 (middle) and d D 4 (right), approximated by
using (4.3) for n D 2; : : : ; 1024 and plotted against flog2 ng.

is in different typical situations of order .log n/� or n� with � > 0 and � 2 .0; 1/; see [27, 61].
However, in most cases, we do not have an exact expression for the toll function, but we can
get estimates. Suppose, for example, that jg.n/j 6 An� for some constants � < 1 and A <1.
Then, Theorem 2 shows that f .n/ D nP .log2 n/ � Q.n/, where the error term Q.n/ can be
estimated by jQ.n/j 6 A.21�� � 1/�1n� .

5 Applications. III. Linear g.n/

Linear toll functions abound in algorithmics and related structures, and they are often of the
form g.n/ D nC Ng.n/, where Ng.n/ D O.1/. By additivity, we can separate the toll function
into two parts: one with n and the other with Ng.n/ for which we already showed how such
sequences can be systematically handled.

Example 5.1. [Binary entropy function, A003314] When g.n/ D n (n > 2) and f .1/ D 0,
the sequence is called the binary entropy function in OEIS (A003314). An exact solution can
be obtained by taking m D Ln in (2.1) (so that 1 6 2�mn 6 2), giving

f .n/ D nLn C 2n � 2LnC1 .n > 1/: (5.1)

Accordingly,
f .n/ D n log2 nC nP .log2 n/;

where

P .t/ D 2 � ftg � 21�ftg
D

3

2
�

1

log 2
C

1

log 2

X
k¤0

e2k� it

�k.1C �k/
.t 2 R/ (5.2)

is a continuous periodic function.
As in the bounded toll function cases, the sequence f .n/ is also connected to many other

sequences in OEIS. In particular, f .n/ D A123753.n � 1/ � 1. Some others are listed as
follows.
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OEIS seq. in terms of f for n >? notes (a.n/ D Axxxxxx.n/)
A001855.n/ f .n/ � nC 1 1 max # comparisons used by mergesort

A083652.n � 1/ f .n/ � nC 2 1 sums of lengths of binary numbers

A033156.n/ f .n/C n 1
a.1/ D 1 and for n > 2

a.n/ D nC min
16k<n

fa.k/C a.n � k/g

A054248.n/ f .n/C 1n is odd 1
a.1/ D 1; a.2/ D 2 and for n > 3

a.n/ D nC min
16k<n

fa.k/C a.n � k/g

A097383.n � 1/ f .n/ �
�

3
2
n
˘
C 1 2 optimal binary search with equality

A061168.n � 1/ f .n/ � 2nC 2 1
P

16k6nblog2 kc

We will discuss some of these later.

Example 5.2. [Mergesort] We discussed in Example 3.5 above the variance of the number of
comparisons used by the top-down mergesort (see [31]). We consider here the number itself in
the worst, the average, and the best cases, whose treatments are similar. In all cases f .1/ D 0.

(a) Worst-case: this has the toll function g.n/ D n�1, which implies that g.x/ D x�1 for
x > 1. This yields, e.g. by (2.1) or (2.4), the exact solution f .n/ D nLnCn�2LnC1C1;

which can be written as

f .n/ D n log2 nC nP .log2 n/C 1; (5.3)

where

P .t/ D 1 � ftg � 21�ftg
D

1

2
�

1

log 2
C

1

log 2

X
k¤0

e2k� it

�k.1C �k/
.t 2 R/: (5.4)

This sequence is A001855 in OEIS and also enumerates a few other objects such as
the number of switches in an AS-Waksman network [5], and (shifted by 1) n times the
expected total number of probes for a successful binary search.

Note that compared to Example 5.1, g.n/ differs by 1 and thus the sequence f .n/
differs by n � 1 from A003314 there; see (3.1). The sequence f .n/ here can also be
expressed in terms of other OEIS sequences as in Example 5.1. In addition to those
mentioned above, A001855 is also connected to A097384 (shifted by 1), which satisfies
(1.1) with f .1/ D f .2/ D 0 and g.n/ D n � 1 for n > 3, so it differs from A001855
by A060973 mentioned in Example 3.2.

(b) Best case: The minimum number of comparisons used by merging two sorted subfiles
of sizes bn

2
c and dn

2
e equals bn

2
c. Hence the minimum number of comparisons used by

top-down mergesort satisfies (1.1) with g.n/ D bn
2
c. The sequence f .n/ with this a toll

function (A000788 in OEIS, shifted by 1) occurs in a large number of different contexts
such as optimal search, quicksort, hypercube graphs, game theory, random generation,
binary trees, sorting networks, etc.; see [15, 46, 70] for more information and references.
The most notable connection is that f .n/ counts the total number of 1’s in the binary
expansions of the first n nonnegative integers for which there is a rich literature; see the
survey paper [15].
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In addition, the sequence here A000788.n/ D f .nC 1/ equals essentially A078903
(differing by n) and A076178 (twice of A078903). Other connected sequences include
A163095.n/ D f .nC1/2, A059015.n/ D A083652.n/�f .nC1/ and A122247.n/ D
n.nC 1/ � f .nC 1/ (see also Example 6.2).

Figure 8: The periodic functions arising in the best case (left and middle) and average-case
(right) of mergesort: P .t/ in the best case approximated by f .n/

n
�

1
2

log2 n (left), and approx-
imated by truncated Fourier series (5.6) (middle); P .t/ in the average case approximated by
(5.8) (right).

Write g.n/ D bn
2
c D

n�1
2
C Ng.n/, where Ng.n/ D 1

2
�
˚

n
2

	
D

1
2
1n is even for n > 2.

Recall that we treated the case with essentially the same toll function in Example 3.6
but with different initial conditions. The sequence Nf .n/ satisfying ƒŒ Nf � D 2 Ng and
Nf .1/ D 0 equals A268289.n � 1/ in OEIS. This says that the minimum number of

comparisons used to sort n elements by top-down mergesort equals half the maximum
number plus a roughly linear term.

Applying (1.13) to Ng yields NQ.n/ D 1
2

for n > 1 and we then deduce from Theorem
2 and (5.3) that f .n/ D 1

2
n log2 n C nP .log2 n/, where P is the Trollope–Delange

function (see [20])

P .t/ D
1

2
�

1

2
ftg � 2�ftg C

X
k>0

2�k�ftg
Ng
�
2kCftg

�
; (5.5)

where Ng.x/ D 1
2
.1 � fxg/ if bxc is even and Ng.x/ D 1

2
fxg if bxc is odd. The function

defined by the infinite series is often referred to as the Takagi function; see the recent
survey paper [3] for more information. Furthermore, we also get the Fourier series
expansion

P .t/ D
log2 �

2
�

1

4
�

1

2 log 2
�

1

log 2

X
k¤0

�.�k/

�k.�k C 1/
e2k�it ; (5.6)

where the Fourier series is absolutely convergent by (3.13). See Figure 8.

In a similar way, the total number of zeros in the binary expansions of 1; 2; : : : ; n� 1

satisfies (1.1) with g.n/ D dn
2
e�1 and f .1/ D 0. This time g.n/ D n�1

2
� Ng.n/, with the

same Ng.n/ D 1
2
1n is even as above. We then get f .n/ D n

2
log2 nCnP .log2 n/C1, where

P D P(5.4) � P(5.6). This yields the two sequences A181132 and A059015 (differing by
1; both shifted by 1).
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(c) Average case: if f .n/ is the average number of comparisons, then (1.1) holds with
g.n/ D n �

bn
2
c

dn
2
eC1
�

dn
2
e

bn
2
cC1

for n > 2. It suffices to consider the toll function

Ng.n/ WD 1 �

�
n
2

˘˙
n
2

�
C 1
�

˙
n
2

��
n
2

˘
C 1
D �1C

2˙
n
2

�
C 1

.n > 1/; (5.7)

since the difference n � 1 corresponds to the worst-case whose solution is given in (a)
above. By Theorem 2, we see that, denoting by Nf .n/ the sequence satisfying (1.1) with
g.n/ D Ng.n/, Nf .n/ D n NP .log2 n/ � NQ.n/, where NP .t/ WD

P
k2Z 2�k�ftg Ng

�
2kCftg

�
and

NQ.n/ WD �1 C
P

k>0
1

2k.2knC1/
. Adding this result and the cost in the worst-case, we

obtain the expected cost of top-down mergesort

f .n/ D n log2 nC nP .log2 n/ �Q.n/; (5.8)

where Q.n/ D �1 C NQ.n/, which is consistent with the result in [31, 42]. Here the
periodic function equals, using (5.4),

P .t/ D 1 � ftg � 21�ftg
C

X
k2Z

2�k�ftg
Ng
�
2kCftg

�
;

where Ng.x/ is extended from Ng.n/ by linear interpolation. The Fourier coefficients have
the form, using e.g. (2.16) and (2.26),

bP .0/ D 1

2
�

1

log 2
�

2

log 2

X
m>1

log.2mC 1/ � log.2m/

.mC 1/.mC 2/

� �1:24815 20420 99653 84890 29565 64329;

and for k ¤ 0

bP .k/ D 1

�k.�k C 1/ log 2

�
1 � 2

X
m>1

m��k �
�
mC 1

2

���k

.mC 1/.mC 2/

�
:

Example 5.3. [Quicksort] The minimum number of comparisons used by the standard quick-
sort (see [67, pp. 106–116]) satisfies

a.n/ D a
��

n�1
2

˘�
C a

�˙
n�1

2

��
C n � 1 .n > 2/;

with a.0/ D a.1/ D 0. Write f .n/ D a.n� 1/. Then ƒŒf � D n� 2 for n > 2 with f .1/ D 0.
Since g.n/ D n � 2 differs by 2 from Example 5.1 and by 1 from (a) above, it follows that
f .n/ D A003314.n/� 2nC 2 D A001855.n/� nC 1. The sequence a.n/ is A061168, which
equals

P
16k<nblog2 kc. Another closely related sequence is A097384, mentioned in Example

5.2(a), which satisfies the same recurrence of a.n/ but with the toll function n�1 there replaced
by n.

From (2.1) (see also (5.1)), we obtain f .n/ D nLn � 2LnC1 C 2 for n > 1. It follows that
f .n/ D n log2 nC nP .log2 n/C 2, where P .t/ D �ftg � 21�ftg; see (5.3)–(5.4).
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Another sequence with the same g.n/ but with a nonzero initial condition f .1/ D 1 is
A083652 (sum of the lengths of binary numbers), which equals f .n/C n.

In general, the cost used by quicksort in the best case satisfies the same recurrence but with
the toll function of the form cnC d (see [67, pp. 106–116]), which can be manipulated in the
same manner.

There is yet another sequence connected to the best case
of quicksort: A067699, which is the number of comparisons
made in a version of quicksort for an array of size n with
n identical elements. In our format, it satisfies (1.1) with
g.n/ D 2dnC1

2
e D nC 2 � 1n is odd. This time we obtain, for

example by combining Example 5.2 (a) and Example 3.6,
f .n/ D n log2 n C nP .log2 n/ � 2 for n > 1, where P is
given by

P .t/ D 4 � ftg � 21�ftg
�

X
k>1

2�k�ftg
Ng
�
2kCftg

�
; Figure 9: P .log2 n/

(A067699).

where, for x > 2, Ng.x/ D

(
fxg; if bxc is even;
1 � fxg; if bxc is odd:

Example 5.4. [Interconnecting networks] A Benes network is designed to realize any permu-
tation. The number of switches f .n/ used by a class of networks called AS-Benes networks
satisfies (1.1) with g.n/ D 2bn

2
c for n > 3 with f .1/ D 0 and f .2/ D 1; see [12]. See also [5]

for more information. This sequence is A220001 in OEIS.
The sequence f .n/ is essentially twice the minimum number of comparisons used by

mergesort (see Example 5.2(b) above); the difference lies at the initial condition f .2/ D 1.
Thus we denote the sequence A000788.n � 1/ in Example 5.2(b) by f0.n/ and consider the
difference Qf .n/ WD 2f0.n/� f .n/, which satisfies (1.1) with Qg.n/ D 0 (n > 3), Qf .1/ D 0 and
Qg.2/ D Qf .2/ D 1. This difference sequence is indeed A060973.n/ D A007378.n/ � n (see
Example 3.2), and we obtain Qf .n/ D n QP .log2 n/, where (see (3.4))

QP .ftg/ D

(
2�1�ftg; if ftg 2 Œ0; log2 3 � 1�;

1 � 2�ftg; if ftg 2 Œlog2 3 � 1; 1�:

Thus we obtain, using also (5.5), f .n/ D n log2 n C

nP .log2 n/, where

P .t/ D �ftg C
X
k>0

2�k�ftg
Ng
�
2kCftg

�
�

(
5 � 2�1�ftg � 1; if ftg 2 Œ0; log2 3 � 1�

2�ftg; if ftg 2 Œlog2 3 � 1; 1�;

where Ng.x/ D 1 � fxg if bxc is even and Ng.x/ D fxg if bxc is
odd. The corresponding Fourier series is given by

Figure 10: P .log2 n/

(A220001).

P .t/ D log2 3� �
1

log 2
�

5

2
C

1

log 2

X
k¤0

1 � 3��k � 2�.�k/

�k.�k C 1/
e2k�it ;
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which is absolutely convergent by (3.13).

Example 5.5. [Number of ones in Gray code representation] The Gray code representation
of integers has the characteristic feature that the codes for any two neighboring integers differ
in exactly one digit; such a coding scheme and its underlying concept are useful in many
applications. As discussed in Example 5.2(b), the cost used in the best case of mergesort is
identical to the total number of 1’s in the binary expansions of the first n nonnegative integers.
Enumerating the same quantity for the (binary reflected) Gray code of the first n nonnegative
integers yields the same recurrence (1.1) with the toll function (D A004524.n C 1/) g.n/ D

b
nC1

4
c C b

nC2
4
c for n > 1. This gives rise to sequence A173318.n � 1/ of OEIS. There are

several different ways to decompose g.n/ into linear and bounded terms so as to describe the
periodic fluctuations of f .n/; we consider the decomposition g.n/ D n�1

2
C Ng.n/, where

Ng.n/ D 5
4
�
˚

nC1
4

	
�
˚

nC2
4

	
D

1
2
�

1
2
1n�1 mod 4 C

1
2
1n�3 mod 4. Then (1.13) yields NQ.n/ D 1

2

and thus Nf .n/ D n NP .log2 n/ � 1
2
, where NP .t/ D

P
k2Z 2�k�ftg Ng

�
2kCftg

�
with

Ng.x/ D

8̂̂̂<̂
ˆ̂:

1
2
.1 � fxg/; if bxc � 0 mod 4I

1
2
fxg; if bxc � 1 mod 4I

1
2
.1C fxg/; if bxc � 2 mod 4I

1 � 1
2
fxg; if bxc � 3 mod 4:

for x > 1 and Ng.x/ WD 0 for x 2 Œ0; 1�.
We then obtain from (2.15) or (2.26)

ND.s/ D
X
m>0

�
.4mC 1/�s

� .4mC 3/�s
�
�

1
2

D 2 � 4�s�
�
s; 1

4

�
� .1 � 2�s/�.s/ � 1

2
;

(5.9)

for <.s/ > �1, where �.s; v/ denotes Hurwitz zeta func-
tion defined for <.s/ > 1 by �.s; v/ WD

P
j>0.j C v/�s

(v 2 .0; 1�). Note that ND is also expressible in terms of Dirich-
let’s L-function.

Figure 11: P .log2 n/

(A173318).

We thus obtain, again using also Example 5.2(a), f .n/ D 1
2
n log2 nC nP .log2 n/, where

P .t/ D 1
2
.1 � ftg � 21�ftg/C

X
k2Z

2�k�t
Ng
�
2kCt

�
; (5.10)

with the Fourier series expansion, using (5.4) and (5.9),

P .t/ D c0 C
2

log 2

X
k¤0

�
�
�k ;

1
4

�
�k.�k C 1/

e2k� it :

Here c0 WD �
5
4
�

1
2 log 2

� log2 � C 2 log2 �
�

1
4

�
. This rederives the results in [33] (the better

converging series expansion (5.10) being new). For more examples of a similar type; see [32]
and [48].

A different decomposition is to start with the difference Ng.n/ WD bnC1
4
c C b

nC2
4
c � b

n
2
c D

1n�3 mod 4 and then consider ƒŒ Nf � D Ng; see Examples 5.2(b) and 3.7 and the discussions there.
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Example 5.6. [Recurrences with minimization] The sequence A003314 (referred to as the
binary entropy function in OEIS) we examined in Example 5.1 is the solution of the following
recurrence

a.n/ D nC min
16k<n

˚
a.k/C a.n � k/

	
; (5.11)

for n > 2 with a.1/ D 0; see [10, 55].
If we change the initial condition to a.1/ D 1, then we get A033156 (also discussed in

Example 5.1). Changing further the initial conditions to be a.1/ D 1 and a.2/ D 2 gives
the sequence A054248, which is identical to the sequence f .n/ satisfying ƒŒf � D g with
g.n/ D n � 2 � 1n�2 mod 4 and f .1/ D 1. A proof by induction of this is given in Appendix B.
Note that for this sequence the minimum in (5.11) is attained at k D 2bnC2

4
c, in contrast to the

two sequences A003314 and A033156.
Then we deduce (see (5.1) and f2.n/ in Example 3.7) the closed-form solution

f .n/ D n.Ln C 2/ � 2LnC1
C 1n odd .n > 1/;

implying that f .n/ D n log2 n C nP .log2 n/ C 1n is odd, where P .t/ D 2 � ftg � 21�ftg as in
(5.2).

On the other hand, a minor variant of (5.11) has the form

a.n/ D nC min
16k<n

˚
a.k/C a.n � 1 � k/

	
.n > 2/;

with a.0/ D 0. If a.1/ D 1, then the shifted sequence a.n � 1/ coincides with A001855
(studied in Example 5.2(a)), while if a.1/ D 0, then the resulting sequence equals A097383.
Now the optimal choice of k is k D 2bnC3

4
c � 1. By an argument similar to the proof of

Lemma 5 in Appendix B, we can show by induction that the shifted sequence a.n� 1/ satisfies
the recurrenceƒŒf � D g with g.n/ D n� 1� 1n�2 mod 4 with f .1/ D 0. The solution is easily
seen to be, e.g. by combining Examples 5.2(a) and 3.7, f .n/ D n.LnC 1/� 2LnC1 � b

n
2
c C 1

for n > 1, so that f .n/ D n log2 nC nP .log2 n/C 1C
˚

n
2

	
, where P .t/ D 1

2
� ftg � 21�ftg.

These examples show the sensitivity of recurrences with minimization under the change of
initial conditions and simple shift.

Example 5.7. [Lebesgue constants of the Walsh system] This represents an example from
harmonic analysis for which the periodic oscillations are rather different in look. The Lebesgue
constants of the Walsh system (defined via binary coding) satisfy the recurrence (see [41])

�.n/ D 1
2
�
��

n
2

˘�
C

1
2
�
�˙

n
2

��
C

1
2
1n is odd .n > 2/; (5.12)

with �.0/ WD 0 and �.1/ D 1. Then the partial sum f .n/ WD
P

k<n �.k/C
1
2
�.n/ satisfies the

recurrence (1.1) with
g.n/ D 1

2

�
n
2

˘
C

1
2

�
�.n/ � �

�˙
n
2

���
:

We then split the toll-function into two parts: g0.n/ WD
1
4

n, which by Example 5.1 yields
f0.n/ D

1
4
n log2 nC nP0.log2 n/ with P0.t/ D

1
2
�
ftg

4
� 2�1�ftg, and

Ng.n/ D �1
2

˚
n
2

	
C

1
2

�
�.n/ � �

�˙
n
2

���
.n > 2/:
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Figure 12: The periodic function P approximated by (5.14) (left), by (5.15) (middle) and by its
Fourier series (5.16) (right), respectively.

Observe first that (5.12) implies that Ng.2n/ D 0 and Ng.2nC 1/ D �1
4
��.n/ for n > 1, where

��.n/ WD �.nC 1/ � �.n/, and also that ��.n/ satisfies the recurrence

��.n/ D 1
2
��

��
n
2

˘�
C

.�1/n

2
.n > 0/: (5.13)

Note that NQ.n/ D 0 by (1.13).
We then deduce that, using Nf .1/ D f .1/ D 1

2
,

f .n/ D 1
4
n log2 nC nP .log2 n/; (5.14)

where

P .t/ D 1 � ftg
4
� 2�1�ftg

C

X
k>1

2�k�ftg
Ng.2kCftg/: (5.15)

This periodic function has a very different shape when compared with most others appeared in
this paper, which is also visible from the corresponding Fourier series already given in [41] by
a completely analytic approach

P .t/ D �
5

24
�

3� 0.�1/

log 2
C

3

log 2

X
k¤0

�.�1C �k/

�k.�
2
k
� 1/

e2k�it : (5.16)

For more examples of (1.1) with linearithmic orders, see [32, 36].

6 Applications. IV. Quadratic and higher order g.n/

Fewer interesting examples were found for the recurrence (1.1) with higher order toll function
g.n/ although many sequences in OEIS are of the form cn2C dnC e, which also satisfy (1.1)
with quadratic g.

Example 6.1. [Polynomials of the form nm] The sequence A001105 in OEIS f .n/ D 2n2

satisfies (1.1) with g.n/ D n2 � 1n is odd. This simple example is interesting because it is a non-
trivial example without periodic fluctuation terms. In some sense, the fluctuation is transferred
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from f .n/ to g.n/. More generally, given any constant x0, we can construct f .n/ containing
no periodic oscillations as follows (with the right f .1/)

g.n/ D

(
n2 C x0; if n is even
n2 C x0 � 1; if n is odd

H) f .n/ D 2n2
� x0:

Similarly, A002378 (Oblong numbers) in which f .n/ D n.n C 1/ satisfies (with shift by 1)
(1.1) with g.n/ D bn2

2
c. See also A046092, A000217, A005563, A001844, A161680, . . . (and

many others).
It is also easy to extend such an idea of constructing g.n/ such that f .n/ D cnm (again

non-oscillating) for m > 3. For example, assuming f .1/ D 1,

g.n/ D

(
3
4
n3; if n is even

3
4
.n3 � n/; if n is odd

H) f .n/ D n3:

This implies that f .n/ D n3 (A000578) satisfies (1.1) with g.n/ D 3
4
n3 �

3
4
n1n is odd. Simi-

larly, many other numbers (such as A000292, tetrahedral numbers) connected to the cubes also
satisfies (1.1) with (roughly) polynomial toll functions.

More generally, we have f .n/ D nm for m > 2 if f .1/ D 1 and

g.n/ D

(
.1 � 21�m/nm; if n is even
.1 � 21�m/nm � 21�m

P
16j6bm

2
c

�
m

2j

�
nm�2j ; if n is odd

:

Example 6.2. [A122247] The sequence A122247 consists of the partial sums of A005187,
where the latter is defined as 2n � �.n/, with �.n/ denoting the number of 1’s in the binary
expansion of n. By summing k from 1 to n, we obtain

A122247.n/ D
X

16k6n

.2k � �.k// D n.nC 1/ � A000788.n/: (6.1)

It follows (see Examples 6.1 and 5.2(b)) that the shifted sequence f .n/ WD A122247.n � 1/

satisfies the recurrence (1.1) with g.n/ D n.n�1/

2
, the triangular numbers (A000217).

To solve this recurrence, we can use (6.1) and the results in Example 5.2(b) for the best case
of mergesort. We thus obtain

f .n/ D n2
�

1
2
n log2 n � n.1C P(5.5).log2 n//: (6.2)

Three other sequences in OEIS are closely connected to f .n/ and satisfies (after properly
shifted) (1.1) with quadratic g.n/:

� A077071.n � 1/ D 2f .n/,

� A122248.n � 1/ D f .n/ � 1
2
n2 C

3
2
n � 1, and

� A174605.n � 1/ D f .n/ � 1
2
n2 C

1
2
n.
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In particular, such a connection and (6.2) lead to

A077071.n � 1/ D 2n2
� n log2 n � 2n.1C P(5.5).log2 n//; .n > 2/;

which clarifies and improves the statement in OEIS for A077071 “it seems that f .n/ D 2n2C

O
�
n

3
2

�
”. Note that shifting n to n � 1 again plays an important role in getting a simpler g

and the corresponding solution. On the other hand, A077071 is also connected to A067699
(discussed in Example 5.3).

7 Variations and extensions
The algorithmic and combinatorial literature abounds with a huge number of recurrences of
multifarious forms; we discuss some interesting variants and extensions of the recurrences we
have discussed so far.

7.1 The recurrence f .n/ D �f
��

n
2

˘�
� f

�˙
n
2

��
C g.n/

Most of our arguments apply well to the more general recurrence

f .n/ D f̨
��

n
2

˘�
C f̨

�˙
n
2

��
C g.n/ .n > 2/; (7.1)

although our theorems do not. The essential fact is that Lemma 1 extends to this case, using
the same linear interpolation to real arguments and with (1.9) replaced by

f .x/ D 2 f̨
�

x
2

�
C g.x/:

For simplicity, we here only discuss briefly the case ˛ D �1, whose behavior seems less
anticipated; see the companion paper [47] for general results and many examples with ˛ D 2.

Example 7.1. [A005536: an example with a 2-periodic function] This sequence is a “von
Koch” sequence generated by the first Feigenbaum symbolic sequence A035263; it is also the
sequence of partial sums of A065359. The shifted sequence f .n/ D A005536.n � 1/ satisfies
the recurrence (7.1) with ˛ D �1 and g.n/ D bn

2
c and f .1/ D 0. By decomposing g.n/ into,

say n�1
2

and 1
2
�
˚

n
2

	
, and by applying the same arguments used above forƒŒf � D g, we obtain

f .n/ D nP .log2 n/, where

P .t/ D
1

4
C

.�1/btc

2

�
1

2
�

21�ftg

3

�
C .�1/btc

X
j>0

.�1/j2�j�ftg
Ng
�
2jCftg

�
;

where, for x > 1, Ng.x/ D 1
2
.1 � fxg/ if bxc is even and Ng.x/ D 1

2
fxg if bxc is odd. Note

that P .0/ D P .2/ D 0, and because of the occurrences of .�1/btc, P .t/ is 2-periodic; also
it is continuous; see Figure 13. The Fourier series expansion can also be computed by the
arguments used above: with �0

k
WD

.2kC1/�i

log 2
,

P .t/ D
1

4
C

3

log 2

X
k2Z

�.�0
k
/

�0
k
.�0

k
C 1/

e.2kC1/�it .t 2 R/:

A closely related sequence is A087733.n�1/, which is given by Qf .n/ D
P

16k<n.�1/v2.k/.n�

k/, where v2.n/ denotes the largest power of two dividing n. This sequence satisfies (7.1) with
˛ D �1, Qf .1/ D 0, and Qg.n/ D n2

4
�

1
2

˚
n
2

	
. Let Nf .n/ D 3

2

�
Qf .n/ � n.n�1/

6

�
. Then Nf .n/ D f .n/

for n > 1.
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Figure 13: Periodic fluctuations of f .n/
n

when plotted against log4 n: for n from 1 to 1024 (left),
normalized in the unit interval (middle), which approximates P , and approximation of P by its
Fourier series expansions using 1; 3; : : : ; 21 terms (right).

7.2 From binary to q-ary
One of the most natural extensions of our study is to recurrences of the form (resulting, e.g.
from dividing into q > 2 subproblems in the divide-and-conquer algorithm)

f .n/ D
X

06j<q

f
��

nCj

q

˘�
C g.n/ .n > q/; (7.2)

with f .1/; : : : ; f .q � 1/ given. Alternatively, (7.2) can be rewritten as

f .n/ D q
�
1 �

˚
n
q

	�
f
��

n
q

˘�
C q

˚
n
q

	
f
�˙

n
q

��
C g.n/:

We can apply the same linear interpolation techniques used in the binary case (1.1) and then
obtain a closed-form solution, which turns out to be useful for characterizing the corresponding
asymptotic behaviors and periodic fluctuations. We thus define f .x/ and g.x/ for real x by
(1.8). Then the recurrence (7.2) implies

f .x/ D qf
�

x
q

�
C g.x/ .x > q/:

We then get the closed-form solution

f .x/ D
X

06j<m

qjg
�

x
qj

�
C qmf

�
x

qm

�
.0 6 m 6 logq xIx > 2/: (7.3)

Instead of formulating a more general theorem, we content ourselves with the discussion of
two examples.

Example 7.2. [Lossless compression of balanced trees] The sequence f .n/ (see [57]) satisfies
(7.2) with g.n/ D log2

�
q

n mod q

�
and f .n/ D 0 for n < q; see Example 3.6 where the case

q D 2 was treated. We then deduce from (7.3) that f .n/ D nP .logq n/, where

P .t/ WD
X
k2Z

q�k�ftgg
�
qkCftg

�
D

X
k>1

q�k�ftgg
�
qkCftg

�
;

with g.x/ D 0 for 0 6 x 6 q and g.x/ D fxgg.bxc C 1/C .1 � fxg/g.bxc/ for x > q. This
provides an effective means of computing P ; cf. the fractal approach in [57]. The correspond-
ing Fourier coefficients are also easily computed (similarly to binary case) as follows. By using
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g.q`C j / D Ng.j / WD log2

�
q

j

�
for 0 6 j < q and ` > 1, and noting Ng.0/ D 0,

D.s/ D Dq.s/ WD
X
k>q

g.k/
�
.k C 1/�s

� 2k�s
C .k � 1/�s

�
D

X
16j<q

Ng.j /
X
`>1

..q`C j � 1/�s
� 2.q`C j /�s

C .q`C j C 1/�s/ :

Let hj .s/ WD
P
`>1.q`C j /�s. Then, by partial summation, using Ng.0/ D Ng.q/ D 0,X

16j<q

Ng.j /�2hj�1.s/ D Ng.1/h0.s/C
X

16j<q

hj .s/�
2
Ng.j � 1/C Ng.q � 1/hq.s/:

Now h0.s/ D q�s�.s/, hj .s/ D q�s�
�
s; j

q

�
� j�s for 1 6 j < q, and hq.s/ D q�s.�.s/ � 1/.

Also Ng.j / D Ng.q � j /. Thus

Dq.s/ D Ng.1/q
�s.2�.s/ � 1/C

X
16j<q

�2
Ng.j � 1/

�
q�s�

�
s; j

q

�
� j�s

�
:

In particular, we obtain, as already seen in the binary case in (3.10),

D2.s/ D 2 � 2�s
� 2.1 � 21�s/�.s/;

D3.s/ D .log2 3/.1C 2�s
� 3�s/ � .log2 3/.1 � 31�s/�.s/

D4.s/ D 3 � log2 3 � .1 � log2 3/21�s
C .3 � log2 3/3�s

� 2 � 4�s

�
�
3 � log2 3 � .5 � 3 log2 3/2�s

� 2.1C log2 3/4�s
�
�.s/:

The Fourier series expansion is then given by, defining �.q/
k
WD

2k� i
log q

,

D0q.0/

log q
C

1

log q

X
k¤0

Dq.�
.q/

k
/

�
.q/

k
.�
.q/

k
C 1/

e2k�it .t 2 R/:

This answers a question in [57]. Note that this result can also be derived by the analytic ap-
proach in [31] and that the series is absolutely convergent by an estimate similar to (3.13) for
j�.i t; c/j; see [75, p. 276]. In particular, the mean value can be simplified as follows. Since
�.0; t/ D 1

2
� t and � 0.0; t/ D log�.t/ � 1

2
log 2� , we obtain, using Ng.1/ D log2 q,

�q WD
D0q.0/

log q
D log2

2q�
�

2
q

�
�
�

1
q

�2 C X
26j<q

Ng.j / logq

�
�

j�1

q

�
�
�

jC1

q

�
.j 2 � 1/

�
�

j

q

�2
j 2

:

For small q, this gives

�2 D 2 � log2 �;

�3 D
5
2

log2 3 � 2 � log2 �;

�4 D
17
4
� log2 � �

9
4

log2 3C 1
2
.log2 3/2;

�5 D �
7
2
� log2 � � log5 3C log5.

p
5C 1/C 9

4
log2 5C 1

2
log2.
p

5 � 1/:
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A large number of concrete examples satisfying (7.2), possibly after a shift by ˙1 or ˙2,
can be found on OEIS; for example, A003605, A006166, A073849, A080722, A080723,
A080724, A080726, A080727, A081134 for q D 3, and A073850, A080678, A275974 for
q D 4. See also [11] for other examples connected to balanced trees.

Example 7.3. [Partial sum of the sum-of-digits function] The second example is the sum-
of-digits function in the q-ary expansion for which f .n/ D

P
k<n �q.k/, where �q.n/ DP

06j6blogq nc cj when n D
P

06j6blogq nc cjqj with cj 2 f0; : : : ; q � 1g. Such partial sums
have been well studied in the literature and one finds the following correspondence of f .n/ in
OEIS:

q OEIS q OEIS q OEIS
2 A000788 5 A231668 8 A231680
3 A094345 6 A231672 9 A231684
4 A231664 7 A231676 10 A037123

Now, by the obvious recurrence �q.qk C j / D �q.k/C j for 0 6 j < q, we get

f .n/ D
X

06j<q

X
k<bnCj

q
c

�q.qk C q � 1 � j / D
X

06j<q

f
��

nCj

q

˘�
C g.n/

where, writing n D qmC `, 0 6 ` < q,

g.n/ D
X

06j<q

.q � 1 � j /
�

nCj

q

˘
D

1
2
.q � 1/n � 1

2
`.q � `/: (7.4)

Then we deduce, again by (7.3), Delange’s closed-form expression f .n/ D q�1

2
n logq n C

nP .logq n/, where P is a continuous and 1-periodic function; see [20] for more information.

Figure 14: Periodic fluctuations arising from the recurrence (7.2) with g.n/ D log2

�
q

n mod q

�
for q D 3 (left) and q D 4 (middle-left), and with g given by (7.4) for q D 3 (middle-right)
and q D 4 (right).

7.3 Sensitivity
The solutions to divide-and-conquer recurrences are often very sensitive to minor changes,
particularly if one aims at exact solutions. This is probably one reason that some common
sequences have many variants in OEIS. Nevertheless, the asymptotic aspect is generally more
robust.
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Some of the variants can be readily approached by our theory by either a simple shift of the
parameter (as in many examples above) or a change of variables. We also discussed briefly the
sensitivity of examples involving minimization in Section 3. We consider two more examples
here.

Example 7.4. [A perturbed recurrence] We considered in Example 5.2(b) the recurrenceƒŒf � D
g arising from the analysis of the best-case of mergesort, where g.n/ D bn

2
c, which has the

standard form f .n/ D n
2

log2 nC nP .log2 n/. Motivated from a heuristic for finding the min-
imum weighted Euclidean matching (see [42, 63]), it is of interest to compare f .n/ with the
sequence Qf .n/ satisfying the perturbed recurrence

Qf .n/ D

(
Qf
��

n
2

˘�
C Qf

�˙
n
2

��
C
�

n
2

˘
; if n 6� 0 mod 4; n > 2

Qf
�

n
2
� 1

�
C Qf

�
n
2
C 1

�
C

n
2
; if n � 0 mod 4; n > 4;

(7.5)

with Qf .0/ D Qf .1/ D 0. This sequence (not in OEIS) starts with

f Qf .n/gn>1 D f0; 1; 2; 4; 5; 7; 9; 11; 13; 15; 17; 20; 22; 25; 27; 30; � � �g:

We show that such a simple perturbation at multiples of four results not only in a lower cost
( Qf .n/ 6 f .n/ for all n), but also with a more smooth periodic function.

Figure 15: The periodic functions arising from the two sequences f .n/

n
�

1
2

log2 n (blue) and
Qf .n/�".n/

n
�

1
2

log2 n (green), where ".n/ WD 1
2
�
.�1/blog2 3nc

6
if n is even and ".n/ WD 1

4
C
.�1/blog2 3nc

12

if n is odd. The latter is more smooth than the former. Lower-left:
Qf .n/�".n/

n
�

1
2

log2 n plotted

against flog2 ng; lower-right: f .n/� Qf .n/

n
.

Consider the difference Nf .n/ WD Qf .nC 1/ � Qf .n � 1/, which satisfies the recurrence8̂<̂
:

Nf .2n/ D Nf .n/C 1; .n > 1/

Nf .4nC 1/ D Nf .n/C 2; .n > 1/

Nf .4nC 3/ D Nf .nC 1/C 2; .n > 0/

which leads to the closed-form solution Nf .n/ D blog2.3n/c for n > 1. We then deduce that

Qf .n/ D
X

16j6bn
2
c

blog2.3.nC 1 � 2j //c .n > 1/;
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It follows that

Qf .n/ D
n

2
log2 nC nP .log2 n/C

(
1
2
�
.�1/blog2.3n/c

6
; if n is evenI

1
4
C

.�1/blog2.3n/c

12
; if n is odd;

where P .t/ D 1
2

log2 3 � 1
2
ft C log2 3g � 2�ftClog2 3g. This simplifies largely the expression in

[42]. To show that Qf .n/ 6 f .n/, it suffices to observe that their difference d.n/ WD f .n/ �
Qf .n/ satisfies ƒŒd �.n/ D 0 when n 6� 0 mod 4, and d.4n/ D 2d.2n/ C 1C.�1/blog2.3n/c

2
for

n > 1.
See [42] for another example of the same type

f .n/ D

(
f̨
��

n
2

˘�
C f̌

�˙
n
2

��
C

1
2
.1C .�1/n/c; if n 6� 0 mod 4

f̨
�

n
2
� 1

�
C f̌

�
n
2
C 1

�
C c; if n � 0 mod 4

for n > 2 with f .0/ D f .1/ D 0, where ˛ D ˇ D 1
p

2
and c D

p
3.

Example 7.5. [Two recurrences from the analysis of a “dichopile algorithm”] The following
two recurrences were taken from [58, p. 45] and [59]

f1.n/ D f1

��
n
2

˘
� 1

�
C f1

��
n
2

˘�
C d

n
2
e;

f2.n/ D f2

��
n
2

˘
� 1

�
C f2

�˙
n
2

��
C b

n
2
c;

with the initial conditions fj .0/ D 0 and fj .1/ D 1 for j D 1; 2. The second sequence was
also recently studied in [26]. In addition to their algorithmic connection, these two recurrences
serve as additional concrete examples for illustrating the sensitivity of divide-and-conquer re-
currences when compared particularly with ƒŒf �.n/ D bn

2
c or (7.5).

For both sequences, we can prove that they have the asymptotic form fj .n/ D
n
2

log2 nC

nPj .log2 n/CO.log n/, with different periodic functions:

P1.t/ D
1
2
P(5.4).t/ D

1
2

�
1 � ftg � 21�ftg

�
and P2.t/ D

1
3
.P(5.4).t/C P(5.5).t//:

Briefly, for f1, we consider the difference f1.n/ � f1.n � 1/ � f1.n � 2/C f1.n � 3/ and for
f2 the difference f2.nC 1/ � f2.n/ � f2.n � 2/C f2.n � 3/, and then sum these differences
back to get expressions for f1 and f2, respectively.

7.4 Asymptotic robustness of (1.1)

The large number of examples we discussed show that the recurrence ƒŒf � D g can be solved
in its entirety if g is known explicitly. How to quantify the total cost of f .n/when an expression
of g.n/ is only available through regression or numerical procedures? More precisely, if g.n/

can somehow be approximated to with an error of order n�c , where c > 0, then what is the
maximal error made at the level of total cost f .n/? So assumeƒŒfc � D gc , where gc.n/ D n�c

for n > 2 with fc.0/ D fc.1/ D 0. Then Theorem 2 yields

fc.n/ D nPc.log2 n/ �
n�c

2cC1 � 1
.n > 2/;

where Pc.t/ D P .ftg/ D
P

k>1 2�k�tg.2kCt/Cg.2/.1� 2�t/ for t 2 R. A plot of Pc.t/ with
c D 0; 1

4
; : : : ; 2 is given in Figure 16(i), where we see that Pc gets smaller for increasing c.

On the other hand, if we fix g.n/ D n�1, and change the initial conditions so thatƒŒf Œm�� D
n�1 for n > m and f Œm�.n/ D 0 for n < m, then we get f Œm�.n/C 1

3
n�1 D nP Œm�.log2 n/ for

n > m, where P Œm� has smaller amplitude for increasing m; see Figure 16 for an illustration.
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(i) (ii) (iii) (iv)

Figure 16: The periodic functions Pc.t/ (i) with c D 1
4
l for l D 0; 1; : : : ; 8 (from top to bottom)

and n D 4; : : : ; 128 in logarithmic scale; P Œm� with m D 2; 3; 4 (ii) (from top to bottom),
m D 4; : : : ; 8 (iii), and m D 8; : : : ; 16 (iv).

8 The one-sided recurrences (1.3)

We complete our study by discussing briefly the two cases in (1.3). Such cases arise more
frequently than the recurrence (1.2) we analysed above in the analysis of divide-and-conquer
algorithms, mainly because cruder bounds are simpler to analyze and still useful in many prac-
tical situations.

8.1 Only floor function
We consider first the recurrence

f .n/ D 2f
�
b

n
2
c
�
C g.n/ .n > 2/: (8.1)

with f .1/ given. Observe that when a satisfies a.n/ D 2a.bn
2
c/ C b.n/, then the partial sum

of a, say, f .n/ WD
P

k<n a.k/ satisfies (7.1) with ˛ D 2, where g denotes the partial sum of b.
Thus we expect that the corresponding periodic functions arising from (8.1) will be less smooth
in nature.

Our arguments used above for (1.1) also apply to (8.1). In particular, the extension of f .n/
from a sequence to all positive reals is now simply

f .x/ D f .bxc/ .x > 0/;

and in such a case f .x/ is discontinuous (except in trivial cases). The solution to (8.1) is easily
seen to be

f .n/ D
X

06k<m

2kg
��

n
2k

˘�
C 2mf

��
n

2m

˘�
;

for any 0 6 m 6 Ln. Taking m D Ln gives

f .n/ D
X

06k<Ln

2kg
��

n
2k

˘�
C f .1/2Ln .n > 1/:

Theorem 4. Assume that f satisfies (8.1) with f .1/ given. Define g.1/ D 0. Then the follow-
ing statements are equivalent.

(i) f .n/ D nP .log2 n/C o.n/ as n!1 for some 1-periodic function P on R satisfying

jP .log2 x/ � P .log2bxc/j ! 0 .x !1/: (8.2)
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(ii) f .x/ D xP .log2 x/C o.x/ as x !1 for some 1-periodic function P on R.

(iii) The function G.t/ WD
P

k>0 2�kg.b2k tc/ converges uniformly for t 2 Œ1; 2�.

When these conditions hold, the periodic function P is given by

P .t/ WD 2�ftg
�
G.2ftg/C f .1/

�
:

In typical cases, P is discontinuous. Moreover, we have the exact formula f .n/ D nP .log2 n/�

Q.n/, where
Q.n/ WD G.n/ � g.n/ D

X
k>1

2�kg
�
b2knc

�
:

The proof is similar to that of Theorem 2 and is omitted here.

8.2 Only ceiling function
We now consider

f .n/ D 2f
�˙

n
2

��
C g.n/ .n > 2/; (8.3)

with f .1/ given. In this case, the extension of f is simply f .x/ D f .dxe/. Again f .x/ is
discontinuous, and we have the solution

f .n/ D
X

06k6Ln�1

2kg
�˙

n
2k

��
C f .1/2Ln�1C1 .n > 2/:

Define ft�g as the left-continuous version of ftg, i.e., ft�g D 1 when t 2 Z, and ft�g D ftg
otherwise. This can also be defined as ft�g WD 1 � f�tg.

Theorem 5. Assume that f satisfies (8.3) with f .1/ given. Define g.1/ D 0. Then the follow-
ing statements are equivalent.

(i) f .n/ D nP .log2 n/C o.n/ as n!1 for some 1-periodic function P on R satisfying

jP .log2 x/ � P .log2dxe/j ! 0 .x !1/: (8.4)

(ii) f .x/ D xP .log2 x/C o.x/ as x !1 for some 1-periodic function P on R.

(iii) The function G.t/ WD
P

k>0 2�kg.d2k te/ converges uniformly for t 2 Œ1; 2�.

When these conditions hold, the periodic function P is given by

P .t/ WD 2�ft
�g
�
G.2ft

�g/C 2f .1/
�
:

In typical cases, P is discontinuous. Moreover, we have the exact formula f .n/ D nP .log2 n/�

Q.n/, where
Q.n/ WD G.n/ � g.n/ D

X
k>1

2�kg
�
d2kne

�
:
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8.3 An example
A large number of examples can be worked out as above; see [69] for many recursive sequences
of this type. We content ourselves with the following example from OEIS.

Example 8.1. [A038554, “the derivative of n”] In this sequence, f .n/ is obtained by XOR-ing
each binary digit with the next one; equivalently f .n/ is the XOR of n and its right-shift, with
the first bit dropped. This sequence satisfies (8.1) with

g.n/ WD
1 � .�1/dn=2e

2
.n > 2/;

and f .1/ D 0. We easily see from Theorem 4
that f .n/ D nP .log2 n/ � 1

2
1n is odd, where P .t/ WDP

k>1 2�k�ftgg
�
b2kCftgc

�
is a discontinuous function.

Sequence A003188, the value of the Gray code regarded as
a binary number, is another sequence satisfying the recurrence
(8.1) with the same g.n/, but now f .1/ D 1. Hence this
sequence differs from A038554 by 2Ln , and P .t/ differs by
2�ftg.

Figure 17: P .log2 n/

(A0388554).
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Appendix

A Proof of A078881D A006165 (shifted by 1)
Table 3 with twenty sequences from OEIS includes the sequence A078881.n/; it is in OEIS
noted that this equals A006165.nC 1/ for n 6 1023, and it is asked whether this holds for all
n. For completeness we prove here that this indeed is true:

A078881.n/ D A006165.nC 1/ .n > 1/: (A.1)

This also implies A078881.n/ D A066997.n/ for n > 2.
We prove the following exact expression for A078881.n/, which implies (A.1) by compar-

ison with formulas for A006561 in OEIS.

Lemma 4. Let f .n/ D A078881.n/ denote the largest size of a subset S of f1; 2; : : : ; ng with
the property

i ¤ j 2 S H) .i XOR j / 62 S; (A.2)

where XOR is the bitwise exclusive-OR operator. Then

f .n/ D 2Ln�1
Cminfn � 2Ln C 1; 2Ln�1

g .n > 1/: (A.3)

Proof. The method of proof consists of three steps: We first show that the expression in (A.3)
is a lower bound by explicitly constructing a set S of this size; we then prove two different
upper bounds, corresponding to the two terms in the minimum in (A.3).
Step 1: Lower bound by construction. Let the subset S be composed of two non-overlapping
parts:

1. An WD fk W k 2 Œ2
Ln�1; 2Ln � 1�g. Then jAnj D 2Ln�1 and each k 2 An has the binary

expansion .01x � � �x/2.

2. Bn WD fk W k 2 Œ2
Ln;minfn; 2LnC 2Ln�1� 1g�g. Then jBnj D minfn� 2LnC 1; 2Ln�1g

and each k 2 Bn has the binary expansion .10x � � �x/2.

Then we have (A.2) for S WD An [ Bn by checking the following properties:

� if i; j 2 An, then .i XOR j / D .00x � � �x/2 62 S ;

� if i; j 2 Bn, then .i XOR j / D .00x � � �x/2 62 S ; and

� if i 2 An and j 2 Bn, then .i XOR j / D .11x � � �x/2 62 S .
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Consequently,

f .n/ > jS j D 2Ln�1
Cminfn � 2Ln C 1; 2Ln�1

g: (A.4)

Step 2: The first upper bound. Assume that S D fs1; : : : ; skg � f1; 2; : : : ; ng with the property
(A.2). Define T WD fs1 XOR sj W 2 6 j 6 kg. From the property (A.2), S \ T D ;. Note
that .s1 XOR si/ 6 2LnC1 � 1 for all 2 6 i 6 k and .s1 XOR si/ ¤ .s1 XOR sj / if si ¤ sj .
Thus jT j D jS j � 1 and

jS j C jT j 6 2LnC1
� 1:

Thus jS j 6 2Ln . Consequently,

f .n/ 6 2Ln : (A.5)

Step 3: The second upper bound. Assume again that S � f1; 2; : : : ; ng with the property (A.2).
Consider the restriction Q D S \fk W 1 6 k 6 2Ln�1g. The set Q inherits the property (A.2)
from S , and thus by (A.5) jQj 6 2Ln�1. Thus

jS j D jS �Qj C jQj 6 n � 2Ln C 1C 2Ln�1
D n � 2Ln�1

C 1:

Consequently,

f .n/ 6 n � 2Ln�1
C 1: (A.6)

Combining (A.5) and (A.6), we obtain

f .n/ 6 2Ln�1
Cminfn � 2Ln C 1; 2Ln�1

g;

which together with (A.4) shows (A.3).

B Optimality of a recurrence with minimization
We prove the first claim in Example 5.6, which, for ease of reference, is formulated as a lemma.
The second claim has a similar proof which is omitted here.

Lemma 5. The sequence defined recursively by

a.n/ D nC min
16k<n

fa.k/C a.n � k/g .n > 3/; (B.1)

with a.1/ D 1 and a.2/ D 2 satisfies the recurrenceƒŒf � D g with f .1/ D 1 and g.n/ D n�

2 � 1n�2 mod 4 for n > 2. Moreover, the minimum is reached at k D bn
2
c except for n � 2 mod 4

for which the minimum is attained at k D bn
2
c ˙ 1.

Proof. We begin with the exact expression for f .n/, which is of the form (see Examples 5.1
and 3.7)

f .n/ D n.Ln C 2/ � 2LnC1
C 1n is odd .n > 1/: (B.2)
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We prove a.n/ D f .n/ for n > 1 by induction. The initial cases f .1/ and f .2/ are easy to
check. Assume n > 3 and a.m/ D f .m/ for 1 6 m < n. By the definition of g, we now prove
that

min
16k<n

ff .k/C f .n � k/g D

(
f .bn

2
c/C f .dn

2
e/ � 2; if n � 2 mod 4I

f .bn
2
c/C f .dn

2
e/; otherwise:

(B.3)

For that purpose, let h.n/ WD n.Ln C 2/ � 2LnC1. It is easily verified that (also when nC 1 is
a power of 2)

h.nC 1/ � h.n/ D Ln C 2: (B.4)

Hence, h is a convex function (second difference being nonnegative) for n > 1. This implies,
by convexity,

min
16k<n

fh.k/C h.n � k/g D h
��

n
2

˘�
C h

�˙
n
2

��
.n > 2/:

The difference between f and h is the error term 1n is odd in (B.2). This extra term may change
the location of the minimum in the right-hand side of (B.1).

� If n is odd, then exactly one of k and n � k is odd, so the sum of the two error terms is
always 1 for 1 6 k < n.

� If n is a multiple of 4, then both bn
2
c and dn

2
e are even. Thus no extra error is produced.

� If n � 2 mod 4, say n D 4mC 2, then there are three cases:

– If k D n � k D 2mC 1, then the two errors sum to 2.

– If k D 2m and n � k D 2m C 2, then the errors sum to 0. Furthermore, (B.4)
implies that

h.2m/C h.2mC 2/ D 2h.2mC 1/; (B.5)

and thus f .2m/C f .2mC 2/ D 2f .2mC 1/ � 2.

– If k < 2m, then, by the convexity of h, we also have

f .k/Cf .n�k/ > h.k/Ch.n�k/ > h.2m/Ch.2mC2/ D f .2m/Cf .2mC2/;

Thus the minimum is reached at k D 2m.

In all three cases, (B.3) follows, and thus, using the induction hypothesis, a.n/ D f .n/. This
completes the proof of Lemma 5.
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