ON EDGE EXCHANGEABLE RANDOM GRAPHS

SVANTE JANSON

ABSTRACT. We study a recent model for edge exchangeable random
graphs introduced by Crane and Dempsey; in particular we study as-
ymptotic properties of the random simple graph obtained by merging
multiple edges. We study a number of examples, and show that the
model can produce dense, sparse and extremely sparse random graphs.
One example yields a power-law degree distribution. We give some ex-
amples where the random graph is dense and converges a.s. in the sense
of graph limit theory, but also an example where a.s. every graph limit
is the limit of some subsequence. Another example is sparse and yields
convergence to a non-integrable generalized graphon defined on (0, 00).

1. INTRODUCTION

A model for edge exchangeable random graphs and hypergraphs was re-
cently introduced by Crane and Dempsey [11, 12], who also gave a repre-
sentation theorem showing that every infinite edge exchangeable random
hypergraph can be constructed by this model. An equivalent model, using
somewhat different formulations, was given by Broderick and Cai [7] and
Campbell, Cai and Broderick [8], see Remark 4.7.

The idea of the model is that random i.i.d. edges, with an arbitrary distri-
bution, are added to a fixed vertex set; see Section 4 for a detailed definition
(slightly modified but equivalent to the original definition).

The general model defines a random hypergraph. In the present paper, we
concentrate on the graph case, although we state the definitions in Section 4
more generally for hypergraphs.

Since edges can be repeated, the model defines a random multigraph,
but this can as always be reduced to a random simple graph by identifying
parallel edges and deleting loops. Typically, many of the edges will be
repeated many times, see e.g. Remark 6.7, and thus the multigraph and the
simple graph versions can be expected to be quite different. Both versions
have interest and potential, possibly different, applications, and we consider
both versions. Previous papers concentrate on the multigraph version; in
contrast and as a complement, in the present paper we study mainly the
simple graph version.

The model is, as said above, based on an arbitrary distribution of edges.
Different choices of this distribution can give a wide range of different types
of random graphs, and the main purpose of the paper is to investigate the
types of random graphs that may be created by this model; for this purpose
we give some general results on the numbers of vertices and edges, and a
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number of examples ranging from dense to very sparse graphs. The examples
show that the model can produce very different graphs. In some dense
examples we show that the random graphs converge in the sense of graph
limit theory. However, that is not always the case, and we even give a
chameleon example (Theorem 8.7) that has every graph limit as the limit
of some subsequence. We give also a sparse example (Example 9.1) with a
power-law degree distribution and convergence to a generalized graphon in
the sense of Veitch and Roy [40].

An important tool in our investigations is a Poisson version of the con-
struction by Crane and Dempsey [12], see Section 4.2, which seems interest-
ing also in its own right.

After some preliminaries in Sections 2-3, we give the definitions of the
random hypergraphs in detail in Section 4. The graph case is discussed
further in Section 5. Section 6 studies the numbers of vertices and edges
in the graphs. Section 7 considers an important special case of the model,
called rank 1; we study two multigraph examples previously considered by
Crane and Dempsey [11] and Pittel [36] and show that they are of this type.

The remaining sections consider various examples of the simple graph
version, with dense examples in Section 8, and sparse examples in Sections
9 and 10. Finally, we give some tentative conclusions in Section 11.

2. SOME NOTATION

In general, we allow hypergraphs to have multiple edges; we sometimes
(but usually not) say multihypergraph for emphasis. Moreover, the edges
in a hypergraph may have repeated vertices, i.e., the edges are in general
multisets of vertices, see Remark 4.3. An edge with repeated vertices is
called a loop. A simple hypergraph is a hypergraph without multiple edges
and loops. (Warning: different authors give different meanings to “simple
hypergraph”.)

The vertex and edge sets of a multigraph G are denoted by V(G) and
E(G), and the numbers of vertices and edges by v(G) := |V(G)| and e(G) :=
B(G)).

f(x) ~ g(x) means f(z)/g(x) — 1 (as = tends to some limit, e.g. z — o0).
We also use v ~ w for adjacency of two vertices v and w in a given graph,
and X ~ £ meaning that the random variable X has distribution £; there
should not be any risk of confusion between these (all standard) uses of ~.

f(x) =< g(x) for two non-negative functions or sequences f(x) and g(x)
(defined on some common set S) means that f/g and g/ f both are bounded,
equivalently, there exist constants ¢, C' > 0 such that cg(x) < f(x) < Cyg(x)
for every x € S. f(x) =< g(x) as x — 0o means that f(z) < g(z) for x in
some interval [zg, 00).

We use ’increasing’ (for a function or a sequence) in its weak sense i.e.,
r <y = f(z) < f(y), and similarly with ’decreasing’.

x Ay is min{z,y} and = V y is max{z,y}.

N:={1,2,...} and No:={0,1,2,... }. [n] :={1,...,n}.

If 1 is a measure on a set S, then ||u| = u(S) < co.
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Exp(\) denotes the exponential distribution with rate A, i.e., the first
point in a Poisson process with rate A; this is thus the exponential distribu-
tion with mean 1/\. For convenience we extend this to A = 0: X ~ Exp(0)
means X = 400 a.s.

We say that a sequence G,, of simple graphs with v(G,) — oo is dense
if e(Gr) < v(GR)?, sparse if e(G,) = o(v(Gy)?), and extremely sparse if
e(Gn) < v(Gy) as n — oo, and similarly for a family G; of graphs with a
continuous parameter.

We let C,c,Cq,cq,... denote various unspecified positive constants.

3. SOME PRELIMINARIES ON GRAPH LIMITS, GRAPHONS AND CUT METRIC

We recall some basic facts on graph limits and graphons. For further
details, see e.g. [5; 6], [14] and the comprehensive book [32].

A (standard) graphon is a symmetric measurable function W : Q x Q —
[0, 1], where Q = (Q, F, ) is a probability space. (2 may without loss of
generality be taken as [0,1] with Lebesgue measure, but it is sometimes
convenient to use other probability spaces t0o.)

If ¢ : Q1 — Qo is a measure-preserving map between two probability
spaces 21 and g, and W is a graphon on g, then W% (x, y) := W (p(z), ¢(y))
is a graphon on €27 called the pull-back of W.

If W is an integrable function on 92, then its cut norm is

Wlie = sup| | W, y) duaw) duty)] (3.1)

taking the supremum over all measurable sets T, U C ).
For two graphons W; and Ws, defined on probability spaces €21 and o,
their cut distance is defined as

6g(W1, Wo) = inf [WY" — W3||o, (3:2)

taking the infimum over all pairs (¢1,¢2) of measure-preserving maps ¢; :
1 — €1; defined on some common probability space 2.

Two graphons Wi and Wy are equivalent if oo(W1, Wa) = 0. Note that a
graphon W and any pullback W¥ of it are equivalent. For characterizations
of equivalent graphons, see [4] and [22, Section 8]. The cut distance d can
be regarded as a metric on the set W of equivalence classes of graphons, and
makes W into a compact metric space.

A graph limit can be identified with an equivalence class of graphons, so
we can regard WV as the space of graph limits. Thus, every graphon defines
a graph limit, and every graph limit is represented by some graphon, but
this graphon is unique only up to equivalence.

For every finite graph G, there is a corresponding graphon W that can be
defined by taking 2 = V(G) with the uniform probability measure u{i} =
1/v(G) for every i € V(G) and letting Wq(4,7) := 1y;jy; thus We equals
the adjacency matrix of G, regarded as a function V(G)? — {0,1}. (Wg
is often defined as an equivalent graphon on [0, 1]; for us this makes no
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difference.) We identify G and W when convenient, and write for example
6o(G, W) = 6a(Wq, W) for a graph G and a graphon W.!

Remark 3.1. Let G be a finite graph. A blow-up G* of G is the graph
obtained by taking, for some integer m > 1, the vertex set V(G*) = V(G) x
[m] with (v,i) ~ (w,j) in G* if and only if v ~ w in G. Then, W~ is a
pull-back of W¢ (for ¢ : V(G*) — V(G) the natural projection), and thus
n(G*,G) = oo(Wg,Wg+) = 0. Hence the graphs G and G*, which are
different (if m > 1) are equivalent when regarded as graphons.

There are several, quite different but nevertheless equivalent, ways to de-
fine convergence of a sequence of graphs, see e.g. [5; 6; 14; 32]. For our
purposes it suffices to know that a sequence G,, with v(G,,) — oo is con-
vergent if and only if there exists a graphon W such that 5(G,, W) — 0
as n — oo. We then say that G, converges to W, or to the corresponding
graph limit.

Remark 3.2. The standard graphons defined above are appropriate for
dense graphs. For sparse graphs, other, more general, graphons have been
constructed by several authors. We will in Section 5.1 compare the edge ex-
changeable graphs studied in the present paper with random graphs defined
by graphons that are defined on R4 or another infinite (o-finite) measure
space instead of a probability space, see [39; 3]. Furthermore, in Section 9 we
consider an example of edge exchangeable graphs that yields sparse graphs,
where we show that the graphs converge in a suitable sense (see [40]) to such
a graphon defined on R;. We postpone the definitions to these sections.

4. CONSTRUCTIONS OF RANDOM HYPERGRAPHS

In this section, we define the random hypergraphs. We give several ver-
sions; we define both multihypergraphs and simple hypergraphs, and we
give both the original version with a fixed number of edges and a Poisson
version. In later sections we consider only the graph case, but we give the
definitions here in greater generality.

Note that the edge exchangeable random hypergraphs constructed here
are quite different from the vertex exchangeable graphs in e.g. [5; 6; 32; 9;
39; 3], see Section 5.1.

We begin with some preliminaries.

Let (S, F) be a measurable space, for convenience usually denoted simply
by §. To avoid uninteresting technical complications, we assume that S is a
Borel space, i.e., isomorphic to a Borel subset of a complete separable metric
space with its Borel o-field.

Let 8* be the set of all finite non-empty multisets of points in S. We
can regard a multiset with n elements as an equivalence class of sequences
(x1,...,2,) € 8", where two such sequences are equivalent if one is a per-
mutation of the other. Denoting this equivalence relation by = and the set
of multisets of n elements in & by SV, we thus have SV = §"/~ and

lUsually I keep a distiction between graphs and graphons (and graph limits); this is
easiest done by identifying a graph G with the pair (Wg,1/v(G)) € W x [0,1] (and a
graphon W with (W,0)), see also [14]. In the present paper, this point of view is not
needed.
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S* = UJo2; 8V Note that SY™ and S* are Borel spaces. (One way to see
this is to recall that every Borel space is isomorphic to a Borel subset of
[0,1]. We may thus assume that S C [0, 1], and then we can redefine SV as
{(x1,...,2y) € S" 1 21 <...< xp}, which is a Borel subset of [0,1]™.)

Remark 4.1. Definitions 4.2 and 4.8 below use a probability measure p
to define the random (hyper)graphs. In general, this measure may be a
random measure, and then the constructions should be interpreted by con-
ditioning on p, i.e., by first sampling p, and then using the obtained measure
throughout the construction. In other words, the distribution of the ran-
dom hypergraphs constructed by a random measure 4 is a mixture of the
distributions given by deterministic p. For convenience, and because most
examples will be with deterministic 4, we usually tacitly assume that p is
deterministic; results in the general case with random p then follow by con-
ditioning on u. (See Remark 4.11 for a typical example, where this for once
is stated explicitly.)

4.1. Random hypergraphs with a given number of edges. We give a
minor modification of the original definition by Crane and Dempsey [11, 12];
we will see at the end of this subsection that our definition is equivalent to
the original one.

Definition 4.2. Given a Borel space S and a probability measure u on S*,
define a sequence of finite random (multi)hypergraphs (G},)5°_; as follows.

(1) Draw Yi, YQ, <. NViid M.
(i) Let V(G5) = Y and E(GL) = {¥1,..., Yy} (multiset). (41)

<m
Note that V(G},) is the vertex set spanned by the edges; thus there are no
isolated vertices in G},. (The same holds for the related definitions in (4.2),
(4.6), (4.7) below.)

We also similarly define the infinite (multi)hypergraph G having edges
(V).

The edges in G}, may be repeated, so G, is in general a random multi-
hypergraph. We define (G, as the simple hypergraph obtained by merging
each set of parallel edges in G}, to a single edge and deleting loops; thus the
simple hypergraphs (G,,)° are defined by:

(i) Draw Y7,Ys,... ~iiq p-

(ii) Let E(Gyn,) ={Y;:i<m,Y; not loop} and
ViGn) = |J Y

YzEE(Gm)

(4.2)

Thus V(Gy,) C V(GE,), and strict inequality is possible if there are loops.

Note that G7 C G5 C ..., and thus G; C G2 C ..., ie., (G})n and
(Gm)m are increasing sequences of random hypergraphs.

Remark 4.3. We follow [12] and allow for increased generality Y; to be a
multiset (see e.g. the examples in Section 7); thus the edges in G}, and G,
are multisets and may contain repeated vertices. If we choose p with support
in the set $** :=Jo2; 8" C 8* of finite subsets of S, where S C SV is
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the set of subsets of & with n distinct elements, then the edges in G}, and
G, are ordinary sets of vertices (i.e., without repeated vertices). (This is
commonly assumed in the definition of hypergraphs.)

In particular, if g has support in S"? = {{z,y} : 2,y € S,z # y},
then G}, is a multigraph without loops, and G, is a simple graph with
V(Gm) = VI(Gr).

The construction above yields hypergraphs with vertices labelled by el-
ements of S. We (usually) ignore these labels and regard G}, and Gy, as
unlabelled hypergraphs.

Remark 4.4. We usually also ignore the labels on the edges. If we keep
the labels 7 on the edges Y;, then the distribution of G, is obviously edge
exchangeable, i.e., invariant under permutations of these edge labels, because
(Y;); is an i.i.d. sequence. Conversely, as shown by Crane and Dempsey [12,
Theorem 3.4], every infinite edge exchangeable hypergraph is a mixture of
random hypergraphs G, i.e., it can be constructed as above using a random
measure g. In the present formulation, the proof in [12] simplifies somewhat:
Give the vertices in the edge exchangeable hypergraph random labels that
are i.i.d. and U(0,1) (uniformly distributed on [0, 1]), and independent of
the edges. Then the edges become multisets in [0, 1]*, and their distribution
is clearly exchangeable, so by de Finetti’s theorem, the edges are given by
the construction above for some random probability measure p on §*, taking
S =10,1].

It is obvious from the definition that if ¢ : S — Sj is an injective measur-
able map of S into another measurable (Borel) space S, then p is mapped to
a probability measure p1 on S;, which defines the same random hypergraphs
Gy, and Gy, as pu. Hence, the choice of Borel space S is not important, and
we can always use e.g. S = [0, 1]. Moreover, we can simplify further.

Define the intensity of y as the measure on (S, F)

a(A):=E|ANY]|, AeF, (4.3)

where Y has distribution p. Note that for a singleton set {z}, [{z} NY| =
1{zevy, and thus (4.3) yields

i({z}) =Pz € V). (4.4)
We have ji(A) = 77| fin(A), where jin(A) :=E(|ANY]- 1{|y|:n}), and
since each [i, is a finite measure, it follows that the set of atoms

A:={zeS:n{x}) >0} (4.5)

is a countable (finite or infinite) subset of S. By (4.4) and (4.5), if x ¢ A,
then P(z € Y) = 0. Hence, in the construction of G}, if an edge Y; has a
vertex = ¢ A, then a.s. ¢ ¢ Y; for every j # i. Consequently, a vertex x ¢ A
of G%_ a.s. appears in only one edge. (Such a vertex is called a blip in [12].)
On the other hand, if x € A, so P(x € Y) = a({z}) > 0, then by the law of
large numbers, a.s. z belongs to infinitely many edges Y; of G%.

It follows that when constructing the hypergraphs G7,, if the edge Y; =
{yi1, ..., Yin, }, we do not have to keep track of the vertex labels y;; unless
they belong to A; any y;; ¢ A will be a blip not contained in any other

edge and the actual value of y;; may be forgotten. (Except that if we allow
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repeated vertices in the edges, see Remark 4.3, then we still have to know
whether two vertex labels y;; and y;;, on the same edge are the same or not.)

Now, enumerate A as {a;}Y;, where N < oo, and replace, for every
multiset Y = (y1,...,y¢) € S*, every vertex label y; = aj, for some a; € A
by the new label y; = k, and the vertex labels y; ¢ Aon Y by 0,—1,....
(For definiteness, we may assume that S C [0,1] so S is ordered, and take
the labels in order in case Y has more than one vertex label not in A.)
This maps p to a probability measure p/ on the set Z* of finite multisets
of integers, and it follows from the discussion above that we can recover
the random hypergraphs G7, from p/ by the construction in Definition 4.2,
if we first replace each vertex label y§ € {0,—1,...} by a random label
with a continuous distribution in some set, for example U(0,1), making
independent choices for each Y;. Equivalently, and more directly, we obtain
G, from the probability measure u/ on Z* by the following construction,
which is the original definition by Crane and Dempsey [11, 12].

Definition 4.5 (Crane and Dempsey [11, 12]). Given a probability mea-
sure p on Z*, we define a sequence of finite random (multi)hypergraphs
(Gr)°_, as in Definition 4.2 with the modification that in every edge
Yi = {vi1,...,vir,} we replace every vertex label y;; < 0 (if any) with a
new vertex that is not used for any other edge.

Since we ignore the vertex labels in G7,, it does not matter what labels

we use as replacements for 0, —1,... in Definition 4.5. Crane and Dempsey
[11, 12] use the same set 0,—1,... of integers, taking the first label not
already used. An alternative is to take random labels, e.g. i.i.d. U(0,1) as
above.

Remark 4.6. To be precise, Definition 4.5 is the definition in [12]. The
definition in Crane and Dempsey [11] treats only the binary case |Y,| = 2
in detail; and differs in that only labels y; > 0 are used, and that an edge
{0,0} is replaced by an edge {z1, z2} with two new vertex labels z; and zs.
This version is essentially equivalent; apart from a minor notational differ-
ence, the only difference is that this version does not allow for “loop dust”,
where a positive fraction of the edges are isolated loops. Cf. Remark 5.2.

We have shown that Definition 4.2 is essentially equivalent to the original
definitions by Crane and Dempsey [11, 12]. One advantage of Definition 4.2
is that no special treatment of vertex labels < 0 is needed; the blips (if
there are any) come automatically from the continuous part of the label
distribution; a disadvantage is that this continuous part is arbitrary and thus
does not contain any information. Another advantage with Definition 4.2 is
that it allows for arbitrary Borel spaces S; even if it usually is convenient
to use S = N to label the vertices, it may in some examples be natural to
use another set S.

Remark 4.7. The construction in Campbell, Cai and Broderick [8] is stated
differently, but is equivalent. It uses a generalization of Kingman’s paintbox
construction of exchangeable partitions; in the version in Campbell, Cai and
Broderick [8], the paintbox consists of families (Cj;),j>1 and (C}))j=1 of
subsets of [0, 1]; it is assumed that every = € [0,1] is an element of only
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finitely many of these sets, and that for each j and k # I, Cj; N Cj = 0 and

"+ C% = 0. (In general these sets may be random, but similarly as above,
in the construction we condition on these sets so we may assume that they
are deterministic.) Furthermore, we generate i.i.d. U(0, 1) random labels ¢y,
and ¢y for k, N, j,1 > 1. For each N > 1 we construct a edge Yy by taking
a uniformly random point Vi € [0, 1], independent of everything else; then,
for each (j, k) such that Viy € Cj, Yy contains k vertices labelled ¢;, and
for each (j, k) such that Viy € CJ; and every [ < k, Yy contains j vertices
labelled ¢pj;. (The latter vertices are thus blips.)

Note that this gives the vertices random labels as in Remark 4.4; however,
we then ignore the vertex labels. (Actually, in [8], each vertex is represented
by a multiset of edge labels (called a trait), which contains the label of each
edge that contains the vertex, repeated as many times as the vertex occurs in
the edge. This is obviously an equivalent way to describe the hypergraph.)

It is obvious that, conditioned on the labels ¢, and ¢y j;, this construction
gives a random multiset with some distribution p; conversely, every distri-
bution p of a random (finite) multiset can easily be obtained in this way by
suitable choices of Cj; and le'k- Hence, the construction is equivalent to the
one above. (In our opinion, it is more natural to focus on the distribution
of the edges, since the sets C}, and C]/'k in the paintbox construction have
no intrinsic meaning; they are just used to describe the edge distribution.)

4.2. The Poisson version. The multihypergraph G}, has exactly m edges
(not necessarily distinct). It is often convenient to instead consider a Poisson
number. (This was done by Broderick and Cai in [7, Example 2.7].) It is then
natural to consider a continuous-parameter family of hypergraphs, which we
define as follows. We may think of the second coordinate t as time.

Definition 4.8. Given a probability measure p on §*, we define a family of
random (multi)hypergraphs (G} )0 as follows. Recall that a Poisson point
process on an infinite, o-finite measure space is a random countably infinite
set of points that can be enumerated as in (i), in our case, for some random
Y; € §* and 7; € [0,00).

(i) Let 2= {(Y;,7) :i > 1} be a Poisson point process on S* x [0, c0)

with intensity p x dt;
(i) Let E(Gy):={Yi: 7 <t} (multiset), and V(G}) := U Y.
YEE(GY)
(4.6)

Define G as the simple hypergraph obtained by merging each set of par-

allel edges in G to a single edge, and deleting loops (together with their

incident vertices, unless these also belong to some non-loop). Hence, with
(i) as in (4.6),
(i) Let E(Gy):={Y;notloop: 7 <t},and V(Gy):= (] VY.
Y€EE(Gy)
(4.7)

Note that the random hypergraphs @2‘ and Gy are a.s. finite for every
t < oo.
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The projection =" := {1;}°, of the Poisson process Z to the second

coordinate is a Poisson point process on [0, c0) with intensity 1, and we may
and will assume that the points of = are enumerated with 7; in increasing
order; thus a.s. 0 < 73 < 79 < .... Let N(¢) be the number of points of = in
S* x [0,1], i.e.

N(t):== |EN(S* x [0,t])| = max{i : 7; < t}; (4.8)

this is a Poisson counting process on [0,00) and N(t) ~ Po(t). Conversely,
Tm is the time the process N(t) reaches m, so the increments 7, — Tp—1
(with 79 := 0) are i.i.d. and Exp(1), and 7,,, has the Gamma distribution
I'(m). Moreover, the random multisets Y; are i.i.d. with distribution y and
independent of {7;}, so they can be taken as the Y; in Definition 4.2, which
leads to the following simple relation between the two definitions.

Proposition 4.9. If u is a probability measure on §*, then we may couple
the random hypergraphs constructed in Definitions 4.2 and 4.8 such that
Gy, = G35 and thus Gy, = G-, for all m > 1, and conversely G} = ’;V(t)

and Gy = G for allt > 0. U

Although we usually tacitly consider ¢ < oo, we may here also take ¢t = oo:
Gi, =G5 and G = Go.

Note that the relations in Proposition 4.9 hold not just for a single m
or t, but also for the entire processes. Hence, asymptotic results, and in
particular a.s. limit results, are (typically) easily transfered from one setting
to the other.

Remark 4.10. Instead of stopping at the random time 7,,, we can also
obtain G}, and Gy, from G} and G; by conditioning on N(t) = m, for any
fixed t > 0.

Remark 4.11. One reason that the Poisson version is convenient is that
different edges appear independently of each other. If we for convenience
assume that there are no blips, we may as explained above assume that
S =N, so V(Gf) € N. In this case, the number of copies of an edge
I € 8* in G has the Poisson distribution Po(tu({I})), and these numbers
are independent for different I € S*. Hence, different edges I € &* appear
independently in Gy. (In the case p is random, this holds conditionally on
i, but not unconditionally.)

Note that this independence does not hold for G,,; the stopping in Propo-
sition 4.9 or the conditioning in Remark 4.10 destroys the independence of
different edges.

4.3. Unnormalized measures. We have so far assumed that p is a prob-
ability measure. This is very natural, but we can make a trivial extension
to arbitrary finite measures. This will not produce any new random hyper-
graphs but it is convenient; for example, it means that we do not have to
normalize the measure in the examples in later sections.

When necessary, we denote the measure used in the construction of our
random hypergraphs by a subscript; we may thus write e.g. Gy, ;-

Definition 4.12. Let p be a finite measure on §*, not identically zero. Let
po be the probability measure pg = |||, and define G = G,

m, o *
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Furthermore, define é;fu as in Definition 4.8. Let, as usual, Gy, , and ét,u
be the corresponding simple graphs.

Thus, u = cpp, where ¢ := ||u]| = p(S*). It is obvious that, using obvious
notation, the Poisson process =, can be obtained from =, by rescaling
the time: If Z,) = {(¥;,79)}, we can take Z, = {(Y;,c '7?)}, and thus
G}, = G- Hence, the random hypergraph process defined by p is the
same as for g, except for a simple deterministic change of time. This implies
the following result.

Proposition 4.13. Proposition 4.9 extends to arbitrary finite measures
w (not identically zero), with stopping times T, that are the partial sums
Yot Ty of i.i.d. random variables T; ~ Exp(]|p|).

In particular, the law of large numbers yields, as m — oo,
T/ == [ (4.9)

Remark 4.14. Definition 4.8 can be employed also when p is an infinite
and, say, o-finite measure. In this case, G has a.s. an infinite number of
edges for every t > 0. We will not consider this case further.

5. RANDOM GRAPHS

From now on, we consider the graph case, where p is a finite measure
on 82 = {{z,y} : x,y € S}. This allows for the presence of loops; often
we consider y supported on S"? = {{x,y} : x # y}, and then there are no
loops.

As explained in Section 4, in particular Definition 4.5, if there are no blips
(i.e., if the intensity f is discrete), we may without loss of generality assume
that S = N, and if there are blips, we may assume that S = NU {0,—1}
with the special convention that 0 and —1 are interpreted as blips. Unless
stated otherwise, we use this version, and we then write y;; for ({7, j}); we
say that f;; is the intensity of edges ij. Thus, (u;) is an infinite symmetric
matrix of non-negative numbers, with indices in NU{0, —1} (or in N if there
are no blips); note that, because we consider undirected edges, the total

mass of p is
ol =5 3 it Y pa (5.1)
i,j: ij i

We assume that 0 < |ul| < oo, or equivalently that >, ;ju;; is finite
(and non-zero), but we do not insist on p being a probability measure.
As described in Section 4.3, we can always normalize p to the probability
measure ||z ~'p when desired.

We also define (for ¢ > 1)

Hi 2= Z,Uijy (5:2)
J

this is the total intensity of edges adjacent to vertex i.

Remark 5.1. The diagonal terms pu;; correspond to loops. Loops appear
naturally in some examples, see e.g. Example 7.1 below, but we are often
interested in examples without loops, and then take p; = 0. Moreover, in
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the construction of the simple graphs G, and G; we delete loops, so it is
convenient to take p; = 0 and avoid loops completely. Note that, since
different edges appear independently in G’;“, see Remark 4.11, deleting all
loops from é;‘ is equivalent to conditioning é;‘ on containing no loops; this
is also equivalent to changing every p;; to 0. (For Gy, this is not quite true,
since the number of non-loop edges may change; however, the difference is
minor.)

Note also the in the construction leading to Definition 4.5, in the graph
case, vertex label —1 is used only for the edge {0, —1}, so we may (and will)
assume that p;, 1 = 0 unless ¢ = 0.

Suppose now that we are given such a matrix (u;;)ij>—1. We can de-
compose the matrix into the three parts (pij)ij>1, (fio)iz1, (Hio)iefo,—1}5
which by the construction and properties of Poisson processes correspond to
a decomposition of the Poissonian multigraph GZ‘ as a union of three parts,
which are independent random graphs:

Central part: The edges ij € é;k with 7,7 € N.
Attached stars: For each i > 1 a star with Po(tu;) edges centred at i.
Dust: Po(t00) isolated loops and Po(tup,—1) isolated edges.

Moreover, the Poisson random variables above, for different ¢ and for the
two types of dust, are independent. The vertex set is by definition the set
of endpoints of the edges, so there are no isolated vertices. The edges and
loops in the dust are always isolated, i.e. with endpoints that are blips (have
no other edges). Similarly, the peripheral vertices in the attached stars are
blips without other edges, while the central vertex ¢ may, or may not, also
belong to the central part.

Note that multiple edges only occur in the central part.

Remark 5.2. We have here discussed the model in full generality, but it is
obvious that the main interest is in the central part, and all our examples
will be with u supported on N x N i.e., without dust and attached stars.
(Of course, there may be other stars or isolated edges, created in the central
part.)

In particular, the dust part is quite trivial, and the dust loops are even
less interesting than the dust edges. In a case with dust but no loops in
the dust, it is convenient to relabel 110, —1 as poo, so p is a symmetric matrix
with index set Np; this corresponds to using the version of the definition in
[11], see Remark 4.6.

5.1. A comparison with vertex exchangeable graphs. Consider the
case without dust, attached stars and loops, so p is supported on N x N,
with gy = 0. Then G} has Po(tpi;) edges ij, for every pair of distinct
integers i, j € N.

We may compare this to the vertex exchangeable random graphs stud-
ied by e.g. Borgs, Chayes, Lovdsz, Sés and Vesztergombi [5, 6], Diaconis
and Janson [14], Lovész [32] and their generalizations by Caron and Fox
[9], Veitch and Roy [39] and Borgs, Chayes, Cohn and Holden [3], see also
Orbanz and Roy [34], Herlau, Schmidt and Mgrup [17], and Janson [23].

In the classical case [5; 6; 32], with a standard graphon W defined on
a probability space (§2,v) as in Section 3, the vertex exchangeable random
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graph G(n, W) has a given number n of vertices and is constructed as follows.
(i) Draw x1,x9,...2y, ~iq V. (Think of z; as the “type” of i.)
(ii) Let V(G(n,W)):={1,...,n}. For each pair (,7), i < j, (5.3)
let ij € E(G(n,W)) with probability W (z;, x;).

(Different edges are added independently, given the types z;.)

The generalization to graphons on Ry or another o-finite measure space
(Q,v) [9; 39; 3] is similar. This type of graphon is still a symmetric mea-
surable function W : Q2 — [0,1] (satisfying some conditions to make the
graphs G(t,W) defined below a.s. finite). {2 can be regarded as a space of
types, and the random graph, here denoted G(t, W), is defined as follows.
The number of vertices N ~ Po(tv(2)) is a random variable, with N = oo
if v is an infinite measure.

(i) Let = = {z;}Y, be a Poisson point process on  with intensity tv.
(i) Let V(G(t,W)):={i € N:i < N}. For each pair (i,7),i <j, (5.4)

let ij € E(G(t, W)) with probability W (z;, z;).
Finally, we may delete all isolated vertices, giving a graph G(t, W) without
isolated vertices (as in the construction in Section 4 above):

(iii) Let V(G(t,W)) :={i:ij € E(G(t,W)) for some j},

E(G(t,W)) := E(G(t,W)). (5.5)

In both cases (5.3) and (5.4)-(5.5), a natural multigraph version is to
modify (ii) by instead taking a Poisson number Po(W (x;,x;)) of copies of
the edge ij. (Cf. e.g. [2, Remark 2.4]. One might also take Po(—log(1 —
W (x;,24))) copies, keeping the probability of no edge the same as for the
Bernoulli model. Note that if the W(z;,z;) are small, then the standard
(Bernoulli) and the two Poisson versions are almost the same.)

The Poisson versions of the edge exchangeable and vertex exchangeable
random graphs thus add edges in the same way, if we condition on the
types of the vertices in the latter and let p;; = t~1W(z;, 2;). However, the
vertices are constructed in very different ways. To see the similarities and
differences clearly, consider the case where the type space {2 = N, with some
(finite or infinite) measure v, and consider the Poisson multigraph version of
the vertex exchangeable graphs, which we denote by G*(t, W) and G* (¢, W).
Then the vertex exchangeable G*(t, W) has a Poisson number Po(tv{i}) of
vertices of type ¢, for each ¢ € N, while the edge exchangeable G’;‘ has at most
one vertex ¢ for each ¢ € N. (We can reformulate the construction of @2‘ and
say that we start with exactly one vertex of type i for every ¢ € N, and then
remove all isolated vertices after having added edges.) Moreover, although
for a fixed ¢, each pair of distinct vertices of types i and j has Po(W (i, j))
edges between them in G*(t, W) or G*(t, W) and Po(ty;;) edges in Gy, which
coincide if W (4, j) = tpu;j, we see that if we keep W and p fixed and increase
t, the two families G*(t,W) and G} behave differently: In G the number
of edges between each pair of vertices increases linearly as t increases, the
number of vertices increases more slowly (by Corollary 6.6 below; recall that
we only keep vertices with at least one edge), and there is at most one vertex
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of each type. In G*(t,W) and G*(¢t, W), the number of vertices of each type
increases linearly, while the number of edges between each pair of vertices
remains the same.

6. NUMBERS OF VERTICES AND EDGES

By construction, the number of edges is m in the multigraph G}, and ran-
dom Po(t/|x||) in the multigraph Gf. The numbers of vertices in the graphs
and the numbers of edges in the simple graphs G, and G, are somewhat
less immediate, and are studied in this section.

We use the notation of Section 5, and assume that we are given a (deter-
ministic) matrix g = (u;;) of intensities. Moreover, for simplicity we assume
that u is concentrated on N x N, so there are no attached stars and no dust,
and that p; = 0 for every 4, so there are no loops. We consider briefly the
case with dust or attached stars in Section 6.1.

Note that G, is a simple graph without isolated vertices, and thus

Ly(G) < eGom) < (”((;m)) < Lo(G). (6.1)
Recall that Gy, is dense if e(G,) < v(Gp)?, sparse if e(Gp) = o(v(Gm)?),
and extremely sparse if e(Gp,) < v(G,,) as m — oo. By Propositions 4.9
and 4.13, these are equivalent to the corresponding conditions for G,.

The number of edges in G, is the number of different values taken by the
i.i.d. sequence Y7, ...,Y,,. Equivalently, it is the number of occupied bins if
m balls are thrown independently into an infinite number of boxes, with the
probability p;; (normalized if necessary) for box {4, j}. Such numbers have
been studied in, for example, [13; 30; 31; 15; 19], where central limit theo-
rems have been proved under various assumptions, see Theorem 6.8 below.
These results are often proved using Poissonization, which in our setting is
equivalent to considering G; instead of G,,. We too find it convenient to
first study the Poisson version.

The Poisson model is convenient because, as said before, edges ¢j arrive
according to a Poisson process with intensity p;; and these Poisson processes
are independent for different pairs {7, j}. Let N;;(¢) be the number of copies
of the edge ij in G, and let N;(t) be the degree of vertex i in G}. Then

Nij(t) ~ Po(tui), (6.2)
and, recalling (5.2),
= Nij(t) ~ Po(tu). (6.3)
J#i

Moreover, let T; ~ Exp(u;) and T;; ~ Exp(u;;) be the random times that
the first edge at ¢ and the first edge ij appear, respectively. Thus, N;(t) >
1 «— ﬂétand]\%(t)}l <~ Tz‘jét.

By the construction of Gy,

v(Gy) = v(GY) Z Linvoy=1y = Z Len<ys (6.4)

1<j 1<j
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Recall that for every fixed ¢, the numbers N;;(t) are independent ran-
dom variables, and thus the indicators in the sums (6.5) are independent.
However, the numbers N;(¢) and the indicators in the sums in (6.4) are de-
pendent, which is a complication. (For example, v(G;) = 1 is impossible,
since there are no isolated vertices and no loops.)

We give first a simple lemma for the type of sums in (6.5), where the
terms are independent.

Lemma 6.1. Let Z; ~ Exp(\;), i = 1,2,..., be independent exponential
random variables with \; > 0 and 0 < Y 2, N < oo, and let W(t) =
Yoie1 Yiz,<ty- Then, the following hold.

(i) For everyt >0,

EW(t) = i[@(zi <t) = i@ —e M) < o0 (6.6)

and thus a.s. W(t) < oo for every t > 0. Furthermore, EW (t) is
a strictly increasing and concave continuous function of t > 0 with
EW(O0)=0 and EW(t)/t — 0 as t — occ.

(i) Fort >0,

EW(t) < i@ A (Ait)). (6.7)
i=1

(iii) For everyt >0,

Var(W(t)) = i e*’\"t(l - e*)‘it) <EW(1). (6.8)
i=1
(iv) Let L :=|{i: \; > 0}| < 0o. Then ast — oo, EW(t) — L, W(t) %
L and
W(t) as,

EW () (6.9)

(v) If (tn) and (t)) are two sequences of positive numbers with t} /t, — 1,
then EW (t))/ EW (t,) — 1.

Proof. This is presumably all known, but it seems easier to give a proof than
to find references. Note that W (¢) is increasing as a function of t.

(i): The calculation (6.6) of the expectation is immediate, and the sum is
finite because 1 — e~ < \;t. Hence W (t) is a.s. finite for, say, each integer
t, and thus for all £ > 0.

It follows by (6.6) that EW (t) is strictly increasing and concave. More-
over, the sum converges uniformly on every finite interval [0,7], and thus
EW (t) is continuous. Finally, EW (¢)/t = > 52, (1 — e ) /¢, where each
summand tends to 0 as t — oo, and is bounded by \;. Hence EW(t)/t — 0
as t — oo by dominated convergence of the sum.

(ii): An immediate consequence of (6.6) and 1 —e™* < 1 Ax.
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(iii): Since the summands in W are independent,

[e.9] o0

Var(W(t) = S B(Zi < ) (1-B(Z < 1)) = 3 e M (1 — e M)
=1 i=1
S iP(Zi <t)=EW(). (6.10)
=1

iv): First, by (6.6) and monotone convergence, as t — 00,
y DY

EW(t) =Y P(Zi<o0) =) 1gs0 =L (6.11)
i=1 i=1

Furthermore, if L < oo, then a.s. W (t) = L for all large ¢, and thus (6.9)

holds.

Suppose now that L = co. Then EW (t) — oo by (6.11). Let ¢ € (0,1),
let @ := 1+ ¢ and choose, for n > 1, ¢, > 0 such that EW (¢,) = a”. (This
is possible by (i).)

By (6.8) and Chebyshev’s inequality, for any t > 0,

]P’(‘ W (t) Var(W (t)) < 1
EW (t) (FEW ()2 =~ 2EW(t)
Hence, by our choice of t,, and the Borel-Cantelli lemma, a.s. there exists a
(random) ng such that 1 —§ < W (t,)/EW(t,) < 1+ 6 for n > ny. This,

and the fact that W (t) is increasing, implies that if ¢ > ¢,,,, and we choose
n = ng such that t, <t < t,41, then

W(t) < W(tn1) < (146)a™ ™ = (14+6)?EW (t,) < (1+8)*EW(t), (6.13)

. 1‘ > 5) < (6.12)

and similarly
W(t) > W(tn) > (1 - 8)a" > (1 - 0)*EW(ts1) > (1 6’ EW(t). (6.14)

Consequently, a.s.

... (1) W (t)
_52 < <
(=0 < inf gy iy < HmSUP gy

Since 0 is arbitrarily small, (6.9) follows.
(v): By (i), EW(t) is increasing, and furthermore it is concave with
EW(0) =0, and thus EW (t)/t is decreasing on (0, cc). Hence,

min{1, ¢, /t,} <KEW(t,)/EW(t,) < max{1,t,/t,} (6.16)
and the result follows. O

< (1+96)2 (6.15)

In order to extend this to the dependent sum (6.4), we use a lemma.

Lemma 6.2. Let (Iij)f?[j:l be a finite or infinite symmetric array of random
indicator variables, with {I;;}i<; independent. Let I; := max; I;;, and W :=
> Li. Then

VarWW < 2EW. (6.17)

Proof. Assume first that N < co. Let fij :=1—1;; and Ii=1-1;= Hj LJ
Let Qij = Efzj =1- ELJ
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Fix i and j with i # j, and let I/ : Hk;é [;. and I = ks Ijj,. Then

I; = I;;Il and I; = IZ]I], with I;;, I! and I’ 1ndependent and thus

Cov(1;, I;) = Cov(I;, I;) = B(I; I1}) — E(Ij;1;) E(1;;1})
= qij ]EI’I’ (qij EIi) (qZ]I') = qi; (1 — gij) EI’I’ (6.18)
In particular,
Cov(I;, I;) < (1 — qij) EL; =P(Ijj = 1, Iy = 0 for k # j). (6.19)

Summing over j, we obtain for every i, since the events &; := {I;; = 1, Ijy =
0 for k # j} in (6.19) are disjoint and with union {>_; I;; = 1} = {I; = 1},

Y Cov(liI) <Y (1 —ay)EL = (ZLJ =1) <P(li=1) =EL
i i
Furthermore, Cov(I;, I;) = EI; — (EI;)?> < EI;. Consequently, for every 4,

> Cov(l;, I;) < 2E T, (6.20)

and (6.17) follows by summing over 1. O

Lemma 6.3. Let (Z;;);; be a symmetric array of exponential random vari-
ables with {Z;j}i<; independent and Z;; ~ Exp(\;j), where Aij > 0 and
0 < XyNij < oo. Let Z; := infj Zy; and W(t) = >, 1(z,<y- Then
Z; ~ Exp(N\;) with \; := Zj Aij. Moreover, all results of Lemma 6.1 hold
except (iii), which is replaced by

Var(W(t)) <2EW(¢). (6.21)

Proof. 1t is well-known and elementary that Z; ~ Exp(J);), since (Z;;); are
independent for every i. Parts (i), (ii) and (v) of Lemma 6.1 deal only with
the expectation, and their proofs do not need Z; to be independent.
Lemma 6.2 yields (6.21).
Finally, the proof of (iv) holds as before, now using (6.21). O

We return to the random graphs. We define, for a given measure (matrix)
i, using Lemmas 6.1 and 6.3 together with (6.2)—(6.5), the functions

v(t) =v(tp) =Eo(G) =Y (1—e ) <Y (1A (ut)), (6.22)
i=1 i=1
e(t) =e(t;p) :==Ee(Gy) =D (1—e ") <Y (LA (mijt)).  (6.23)
i<j i3]
Since Gy has no isolated vertices, e(Gy) > $v(Gy), and thus, cf. (6.1),
e(t) = sv(t). (6.24)
Theorem 6.4. Assume that p = (Mij)io,?‘:l 18 a symmelric non-negative
matriz with pr; =0 and 0 < ||p|| == 32, pij < oo.
(i) Ast — oo,
v(Gy) Jo(t) 251, (6.25)

e(Gy)/e(t) 25 1. (6.26)
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Moreover, if p;; > 0 for infinitely many pairs (i,7), then as t — oo,
v(t) = 00, e(t) = oo and v(Gy),e(Gy) 2 co.
(ii) Asm — oo,

0(Gan) /o ([lpll~tm) =5 1, (6.27)
(G e (1] ) 25 1. (6.28)
In particular, a.s.
V(Gm) =< Y (1A (), (6.29)
i=1
e(Gnm) =< Z(l A (pim)). (6.30)

Consequently, if j1;; > 0 for infinitely many pairs (i, j), then asm — oo,
a.s. v(Gm,), e(Gn) — o0.

Proof. (i): This is an immediate consequence of Lemma 6.1(iv) and Lemma
6.3.

(ii): Part (i) and Propositions 4.9 and 4.13 show that v(G.,)/v(7m) =
v(Gr ) /o(Tm) 23 1. Furthermore, 7, ~ |lul|~'m by (4.9), and thus
v(Tm) ~ v(||p]|7'm) by Lemmas 6.1(v) and 6.3. Hence (6.27) follows. The
proof of (6.28) is the same.

Finally (6.29)-(6.30) follow by (6.22)—(6.23), and the final sentence follows
by monotone convergence (or by Lemma 6.1(iv)). O

Hence, to find asymptotics of the numbers of vertices and edges in our
random graphs, it suffices to study the expectations in (6.22)—(6.23). In
particular, we note the following consequences.

Corollary 6.5. Assume that p = (Mij)?,?:l is a symmetric non-negative
matriz with p; =0 and 0 < [|u|| == 32, ; pij < co. Then:

(i) G is a.s. dense if and only if e(t) < v(t)? as t — oo.

(ii) Gy, is a.s. sparse if and only if e(t) = o(v(t)?) as t — oo.

(iii) Gy, is a.s. extremely sparse if and only if e(t) < v(t) as t — oco.

Proof. By Theorem 6.4(ii). O

Corollary 6.6. Assume that p = (Mij)?,?:l is a symmetric non-negative
matriz with p; =0 and 0 < [|p|| == 3, ; pij < oo. Then, a.s.,

(i) v(Gm) = o(m) and e(Gp,) = o(m) as m — oo;
(il) v(Gy) = o(t) and e(Gy) = o(t) as t — .

Proof. By Theorem 6.4, since e(t)/t — 0 and v(t)/t — 0 as t — oo by
Lemma 6.1(i) and Lemma 6.3. O

Remark 6.7. If we consider the random multigraph G}, we have (at least
in the loop-less case, and in general with a minor modification) v(G},) =
v(Gp) = o(m) by Corollary 6.6, while by definition there are m edges.
Hence, the average degree 2¢(Gr,)/v(G},) — oo a.s. as m — oo. Similarly,
the average number of copies of each edge e(G},)/e(Gm) — o0 a.s.
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For future use we note also that since v(t) is concave with v(0) = 0, for
any C > 1,

v(t) < v(Ct) < Co(t). (6.31)

Hence v(Ct) < v(t) for any constant C' > 0.

We have so far considered only simple first order properties of v(Gy,) and
e(Gy,). For the number of edges, much more follows from the central limit
results in the references mentioned above. In particular, the local and global
central limit theorems in [19] apply and yield the following. (Although the
estimates (6.32) and (6.35) are uniform in all z, the main interest is for z
constant, or perhaps tending to infinity very slowly.)

Theorem 6.8. Let o be as in Theorem 6.4. The following hold with O(1)
bounded by an absolute constant C uniformly for all m > 1, x € R, and

matrices [.
Let 02, := Var(e(Gy,)). Then

P(e(Gm) = |Ee(Gn) + zom]) = \G/;Zi - Oa(gi)' (6.32)
Moreover, assuming for simplicity ||p| = 1,
Ee(Gm) = Ee(G) +O(1), (6.33)
Var(e(Gp)) = Var(e(Gym)) + O(1), (6.34)
and, recalling (6.23) and defining 57 = Var(e(Gy)),
P(e(Gm) = le(m) + 26y ]) = \6/2;:; + O%). (6.35)

In particular, if m — oo and G2, — oo, then (e(Gp) — Ee(Gm))/om N

N(0,1) and (e(Gp) — e(m))/Fm — N(0,1).
The O(1) in (6.33)—(6.34) can be replaced by o(1) as m — oo for a fized
i

Proof. By [19, Theorems 2.1, 2.3, 2.4 and Corollary 2.5, together with Sec-
tion 9. O

Note that e(m) = Ee(G,,) and 62, = Vare(G,,) are given by (6.23) and
(6.8); they are usually simpler and more convenient to handle than Ee(G,,)
and o2, = Var(e(G,)).

We conjecture that similar results holds for v(Gy,), the number of vertices.
However, we cannot obtain this directly from results on the occupancy prob-
lem in the same way as Theorem 6.8, again because the variables V;(t) are
dependent. (The number of vertices corresponds to an occupancy problem
where balls are thrown in pairs, with a dependency inside each pair.)

Problem 6.9. Show asymptotic normality for v(G,,) when Var(v(G,,)) —
0.
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6.1. The case with dust or attached stars. We consider briefly the case
when the model contains dust (other than loops) or attached stars. In this
case, the results are quite different. We may for simplicity assume that there
are no loops at all, since loops are deleted in any case. Thus u; = 0 for
i >0 and pg; > 0 for some i € NU {—1}.

The number of edges in the dust and attached stars of Gy is Po(ct) with
c:=Y.22 | po; > 0, and thus this number is a.s. ~ ¢t <t as t — oo, by the
law of large numbers for the Poisson process. (Recall that all edges in the
dust and attached stars of C;’,*; are simple, so the number of them is the same
in Gy and in @Z‘) It follows by Proposition 4.9 that the number of edges in
the dust and attached stars of G, a.s. is < m. Moreover, since each edge in
the dust or an attached star has at least one endpoint that is not shared by
any other edge, the same estimates hold for the number of vertices in the
dust and attached stars. This leads to the following theorem, which shows
that if there is any dust or attached star all, then those parts will dominate
the random graphs.

Theorem 6.10. Assume that po; > 0 for some i € NU{—1}. Then, a.s.,
(i) v(Gm) < m and e(Gy) < m as m — 0o;
(i) v(Gy) <t and e(Gy) <t ast — oco.
Moreover, a.s., all but a fraction o(1) of the edges and vertices are in the
dust or attached stars.

Consequently, the random graphs G,,, are a.s. extremely sparse, but in a
rather trivial way.

Proof. The argument before the theorem shows (i) and (ii).

Moreover, Corollary 6.6 applies to the central part of Gy and shows that
the number of edges and vertices there a.s. are o(t), and thus only a fraction
o(1) of all edges and vertices. By Proposition 4.9, the same holds for G,,,. O

7. RANK 1 MULTIGRAPHS

We turn to considering specific examples of the construction. One inter-
esting class of examples are constructed as follows.

Example 7.1 (Rank 1). Let (¢;)7° be a probability distribution on N, and
construct a sequence of i.i.d. edges ey, es, ..., each obtained by selecting the
two endpoints as independent random vertices with the distribution (g;);.
(Thus loops are possible.) Define the random multigraph G, by taking
the m edges eq,...,en, letting the vertex set be the set of their endpoints.
(Equivalently: start with the vertex set N and then remove all isolated
vertices.)

In other words, let Vi, Va,... be an i.i.d. sequence of vertices with the
distribution (g;);, and let the edges of G, be ViVa, VaVy, ... Va1 Vop,.

This is clearly a random multigraph of the type constructed in Section 5,
with

2qiq5, 1 F# 7,
q; s L=].
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We thus have, by (5.2),

wi = 2qiq; + ¢ = 2q; — ¢} (7.2)
J#i
In particular, p; < g;.
The corresponding Poisson model é,f is by Proposition 4.9 obtained by
taking a Poisson number of edges e, ..., en), with N(t) ~ Po(t).
As usual, we obtain the corresponding simple graphs by omitting all re-
peated edges and deleting all loops.

We call a random multigraph constructed as in Example 7.1, or equiva-
lently by (7.1), for some (possibly random) probability distribution (¢;)$°, a
rank 1 edge exchangeable multigraph, for the reason that the matrix (7.1) is
a rank 1 matrix except for the diagonal entries.

Remark 7.2. The diagonal entries, creating loops, are less important to us.
In the multigraph examples below, it is natural, and simplifies the results,
to allow loops. However, when we consider the simple graphs Gy and Gy,
we ignore loops and, see Remark 5.1, it is then simpler to modify (7.1) by
taking pi; = 0; we still say that the resulting random graphs are rank 1.

Remark 7.3. Note that the rank 1 random graphs in [2] are different;
they are simple graphs, and they are vertex exchangeable or modifications
of vertex exchangeable random graphs, cf. Section 5.1. Nevertheless, both
types of “rank 1” random graphs can be seen as based on the same idea:
each vertex is given an “activity” (¢; in our case), and the probability of an
edge between two vertices is proportional to the product of their activities.
(See the references in [2] for various versions of this idea.)

Recall that the configuration model is an important model for construct-
ing random multigraphs with a given degree sequence, which is defined as
follows, see e.g. Bollobés [1].

Definition 7.4 (Configuration model). Given a sequence (d;)"_; of non-
negative integers with 3, d; even, the random multigraph G*(n, (d;)1,) is
defined by considering a set of ), d; half-edges (or stubs), of which d; are
labelled i for each i € [n], and taking a uniformly random matching of the
half-edges; each pair of half-edges is interpreted as an edge between the
corresponding vertices.

By construction, the multigraph G*(n, (d;)?_,) has degree sequence (d;)I"_;.
(With a loop counted as 2 edges at its only endpoint.) Note that the distri-
bution of G*(n, (d;)?_,) is not uniform over all multigraphs with this degree
sequence. (As is well-known, and easy to see, the probability distribution
has a factor (weight) 1/2 for each loop and 1/¢! for each edge of multiplicity
¢ > 1; in particular, conditioned on being a simple graph, G*(n, (d;)?_,) has
a uniform distribution.) Nevertheless, G*(n, (d;)?_,) has the right distribu-
tion for our purposes.

Theorem 7.5. The random multigraph G}, constructed in Example 7.1
has, conditioned on its degree sequence (d;)?_,, the same distribution as the
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random multigraph G*(n, (di)?—,) constructed by the configuration model for
that degree sequence.

The same holds for G.

Proof. In the construction of G}, above, the sequence Vi, ..., Vo, is i.i.d.,
and thus exchangeable; hence its distribution is unchanged if we replace each
Vi by V() for a uniformly random permutation 7 of [2m], independent of
everything else. Consequently, the distribution of G7, is the same if we mod-
ify the definition above and let the edges be Vi (1)Vr(2),- -+, Vaem—1)Vrm);
but this is the same as saying that the edges are obtained by taking a ran-
dom matching of the multiset {Vi,..., Va,,}, which is precisely what the
configuration model does. (Note that the vertex degree d; is the number of
times ¢ appears in Vi,..., Vap,.)

The result for é;‘ follows, since the degree sequence tells how many edges
there are, so conditioning on the degree sequence implies conditioning on
e(G¥) = N(t), which reduces to the case of G, just proved, see Remark 4.10.

O

Remark 7.6. In statistical language, the theorem implies that the degree
distribution is a sufficient statistic for the family of distributions of multi-
graphs G}, (or G}) given by Example 7.1 with different distributions (¢;)$°.

Example 7.7. A trivial example of the construction in Example 7.1 is ob-
tained by fixing n > 1 and letting ¢; = 1/n, 1 < i < n, ie., the uniform
distribution on [n]. This means that we consider a sequence of i.i.d. edges,
each obtained by taking the two endpoints uniformly at random, and inde-
pendently, from [n]. In other words, the endpoints of the edges are obtained
by drawing with replacement from [n]. This gives the random multigraph
process studied in e.g. [25], which is a natural multigraph version of the
(simple) random graph process studied by Erdés and Rényi [16].

The rank 1 random multigraphs in Example 7.1 appear also hidden in
some other examples.

Example 7.8 (The Hollywood model). The Hollywood model of a random
hypergraph was defined in Crane and Dempsey [11] using the language of
actors participating in the same movie, see [11] for details. We repeat their
definition in somewhat different words.

The model can be defined by starting with the two-parameter version
of the Chinese restaurant process, see e.g. [35, Section 3.2] and [10], which
starts with a single table with one customer. New customers arrive, one
by one; if a new customer arrives when there are n customers seated at k
tables, with n; > 1 customers at table ¢, then the new customer is placed:

{ at table i (1 < i < k) with probability (n; — a)/(n + 6),

7.3
at a new table k + 1 with probability (6 4+ ka)/(n + 6). (7:3)

Here o and 6 are parameters, and either

(i)0<a<1land > —aq,or

(ii) @« < 0 and # = N|a| > 0 for some N € N.
In case (ii), there are never more than N tables; in case (i), the number of
tables grows a.s. to co.
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In the construction of the Hollywood model hypergraph, the vertices are
the tables in the Chinese restaurant process. We furthermore draw the sizes
of the edges as i.i.d. random variables X; with some distribution v on the
non-negative integers N. The first edge is then defined by (the set of tables
of) the first X7 customers, the second edge by the next Xs customers, and
so on. The random hypergraph G,, with m edges is thus described by the
first X7 4+ --- 4+ X, customers.

A standard calculation shows that the sequence of table numbers is ex-
changeable, except that the numbers occur for the first time in the natural
order; to be precise, the probability of any finite sequence of table numbers,
such that the first 1 appears before the first 2, and so on, depends only
on the number of occurences of each number. Consequently, as noted in
[11], since we ignore vertex labels, and the sequence X, X»,... is i.i.d. and
independent of the Chinese restaurant process, the random hypergraph é;o
is exchangeable, and by the representation theorem by Crane and Dempsey
[11, 12], see Remark 4.4, the Hollywood model can be constructed as in
Definition 4.2 for some random measure y on N.

We can see this more concretely by replacing the table labels ¢ € N by
i.i.d. random labels U; ~ U(0,1); then the sequence of table labels of the
customers is exchangeable. Hence, by de Finetti’s theorem, there exists a
random probability measure P on [0, 1] such that conditioned on ]5, the se-
quence of (new) table labels is an i.i.d. sequence with distribution P. Clearly,
the random measure P = > fN’i(SUi for some random sequence ISZ of num-
bers with ), 151 = 1. Furthermore, by the law of large numbers, for every

1 € N, P; equals a.s. the asymptotic frequency of customers sitting at the
table originally labelled 7 in the Chinese restaurant process. Hence, the ran-
dom probability measure P = (P;)7° on N has the distribution GEM(«, ),
see [35, Theorem 3.2 and Definition 3.3]. (An alternative version of this
argument uses Kingman’s paintbox representation for exchangeable random
partitions [35, Theorem 2.2] instead of the random lables U; above; we leave
the details to the interested reader.) Consequently, the Hollywood model
hypergraph can be constructed as follows: Let the random probability mea-
sure P on N have the distribution GEM(«, #); conditionally given P take an
infinite i.i.d. sequence of vertices with distribution ﬁ; construct the edges
by taking the first X; vertices, the next Xs vertices, ...; finally, ignore the
vertex labels.

We specialize to the graph case and assume from now on that X; = 2
(deterministically). Thus edges are constructed by taking the customers
pairwise as they arrive. We then see by comparing the constructions above
and in Example 7.1 that the Hollywood model yields the same result as the
rank 1 model in Example 7.1, based on a random probability distribution
with distribution GEM(«, 0).

Since the order of the probabilities ¢; does not matter in Example 7.1,
we obtain the same result if we reorder the probabilities P in decreasing
order; this gives the Poisson-Dirichlet distribution PD(«, €) [35, Definition
3.3], and thus the Hollywood model is also given by the rank 1 model based
on PD(«, 0).
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Theorem 7.5 shows that yet another way to define the Hollywood model
multigraph G, is to take the configuration model where the degree sequence
(d;)7" is the (random) sequence of numbers of customers at each table in the
Chinese restaurant process when there are 2m customers.

Example 7.9. Pittel [36] considers the random multigraph process with a
fixed vertex set [IN], where edges are added one by one (starting with no
edges) such that the probability that a new edge joins two distinct vertices
i and j is proportional to 2(d; + a)(d; + «), and the probabiity that the
new edge is a loop at i is proportional to (d; + a)(d; + 1 4+ «); here d; is the
current degree of vertex ¢ and a > 0 is a fixed parameter. ([36] considers
also the corresponding process for simple graphs; we do not consider that
process here.)

It is easily seen that this multigraph process can be obtained as above,
with a minor modification of the Chinese restaurant process. Consider now
a restaurant with a fixed number N of tables, initially empty, and seat each
new customer at table ¢ with probability

(n;i +a)/(n+ Na), (7.4)

where n; > 0 is the number of customers at table 7 and n is their total
number. Then construct edges by taking the customers pairwise, as above;
this yields the multigraph process just described.

Furthermore, although this construction uses a modification of the Chi-
nese restaurant process, we can relabel the tables in the random order that
they are occupied. It is then easily seen that we obtain the Chinese restau-
rant process (7.3) with parameters (—a, Na). Since the vertex labels are
ignored, this means that Pittel’s multigraph process is the same as the Hol-
lywood model with parameters (—a, Na). Consequently, it can be defined
by the rank 1 model in Example 7.1 with the random probability distribu-
tion GEM(—a, Na) on [N] C N, or, equivalently, the random probability
distribution PD(—a, N«).

Moreover, the restaurant process (7.4) can be seen as a Pdlya urn process,
with balls of NV different colours and initially « balls in each colour, where
n; is the number of additional balls of color ¢ in the urn; balls are drawn
uniformly at random from the urn, and each drawn ball is replaced together
with a new ball of the same colour. Note that then n; is the number of
times colour i has been drawn. (It does not matter whether « is an integer
or not; the extension to non-integer o causes no mathematical problem,
see e.g. [20, Remark 4.2], [21] or [28].) The sequence of vertex labels is
thus given by the sequence of colours of the balls drawn from this urn.
It is well-known, by an explicit calculation, see e.g. [33] (where N = 2),
that this sequence is exchangeable. By de Finetti’s theorem it can thus
can be seen as an i.i.d. sequence of colours with a random distribution ]5,
which equals the asymptotic colour distribution. Moreover, it is well-known
[29] (see also [33] and [37] for N = 2) that this asymptotic distribution
is a symmetric Dirichlet distribution Dir(a/N,...,a/N), with the density
function cHa:?/Nfl on the (N — 1)-dimensional simplex {(z1,...,zn) €
Rﬁ : >, ; = 1}. Consequently, the multigraph process é}*\, can be obtained
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by the rank 1 model in Example 7.1 with the random probability distribution
Dir(a/N,...,a/N).

Alternatively, by Theorem 7.5, G}, may be obtained by the configuration
model, with vertex degrees given by the first 2m draws in the Pdlya urn
process described above.

See further [27].

7.1. Rank 1 simple graphs. We will in the following sections study several
examples of the simple random graphs G,,, in the rank 1 case. We note here
a few general formulas. We ignore the trivial case when the probability
distribution {g;} is supported on one point. (Then G, and G,, have only a
single vertex and no edges. In fact, the interesting case is when the support
of {¢;} is infinite.) We thus assume maxg; < 1.

Since we ignore loops when constructing the simple graphs Gy and G,
we modify (7.1) by taking p; = 0, see Remark 7.2; this changes (7.2) to
wi = 2q; — 2¢7, but we still have y; < g;. Thus (6.22) and (6.23) yield

o(t) = 3 (1A (tar)), (7.5)

2

e(t) < Z(l A (tgigj))- (7.6)

i)
Moreover, adding the diagonal terms to the sum in (7.6) does not affect this
estimate, since if we assume as we may that q1,q2 > 0, then q? = O(q1q;)

ia_Ind e :1 O(q1¢2), and thus -, (1A (tg?)) = O(X ;o1 (1A (tqrai))) = O(e(t)).

e(t) < Z(l A (tgigj)) = Zv(tqi). (7.7)
ij i
Note that although we are interested in large ¢, the argument t¢; in (7.7) is
small for large i, so (7.7) requires that we consider v(t) for both large and
small . )
Similarly, the expected degree of vertex ¢ in Gy is
ED; = Z(l — e_2tqiqﬂ') = Z(l A (tqiqj)) = Z(l A (tqiqj)) = v(tg;).
J# J#i J
(7.8)

8. DENSE EXAMPLES

We may obtain examples where G,,, and G; are dense by letting fij de-
crease very rapidly.
We begin with an extreme case, which gives complete graphs.

Example 8.1 (Complete graphs). Let p = (u;;) be such that for every
k>2
0 < sup pryie < k=t min fu, ;. (8.1)
0>1 i<k
For example, we may take p;; = ((iVj)!)™%, or the rank 1 example ;; = g;q;
with ¢; = exp(—3i).

We will show that a.s., for all large n, G( ) is the complete graphs K.

n
2
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Define a; := sup; p;;. Then (8.1) implies, for every k > 2,
apt1 <k <k ag. (8.2)

In particular, for k > 2, a1 < %ak. Moreover, (k — 1)%ax > ap > k*apy1;
hence the sequence k4ak+1 is decreasing for k > 1.

Define t,, := (n3an41)~!. Let Y, be the number of edges in (N;;fn with at
least one endpoint outside [n]. Then, since (8.2) implies that (k+ 1)ag41 <
%kak when k > 2,

2(n+1
EYn= Y > tapri <tn Y kag < 2tn(n+1an;s = (ns) (8.3)

k>n+1 i<k k>n+1

Consequently, by Markov’s inequality and the Borel-Cantelli lemma, a.s.
Y, = 0 for all large n.

On the other hand, if Z,, is the number of pairs (4, j) with ¢ < 7 < n such
that ij is not an edge of éfn, i.e., Njj(ty,) =0, then

EZy= Y P(Nj(ta) =0)= Y _ e ', (8.4)

i<j<n 1<j<n

Moreover, if i < j < n, then by (8.1) and (8.2), wij > j%aj11 > ntay4: and
thus t,p;; > tanta,y1 = n. Hence, (8.4) yields E Z, < (g)e_”, and we see,
by the Borel-Cantelli lemma again, that a.s. also Z, = 0 for all large n.
We have shown that a.s. for all large n, é;‘n contains at least one edge ¢
whenever i < 7 < n, but no other edges; in other words, the simple graph
étn is the complete graph K,,. Since K,, has (72”) edges, this also means that

G(n) = K,,, as asserted above.
2

We have shown that a.s., for all large m, G,, is the complete graph K,
if m = (g), since (G, is an increasing sequence of graphs, it follows that
for intermediate values m = (g) +4,1 <t <n, Gy consist of K, plus an
additional vertex joined to £ of the other vertices. We thus have a complete
description of the process (G,,) for large m. (And thus also of the process
Gy.)

In particular, for all large m, G,, differs from the complete graph K, with
n = v(Gy,) by less than n edges, and thus, see Section 3, 00(Gpm, Kp) <
IWe,, — Wk, llor < 2/n = o(1). It follows that in the sense of graph limit
theory, G,, — I'1 a.s., where I'1 is the graph limit defined as the limit of the
complete graphs, which is the graph limit defined by the constant graphon
Wi(z,y) =1 (on any probability space ).

The assumption (8.1) in Example 8.1 is is not best possible, and may easily
be improved somewhat, but we only wanted to give a class of examples.

Problem 8.2. Find necessary and sufficient conditions on u for Gy, to be
complete for all large m of the form m = (3).

Here is another example, where the limit is less trivial.

Example 8.3. Consider a rank 1 example j;; = ¢;qj, © # j, where ¢; has a
geometric decay ¢; < b~ for some b > 1.
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Let n > 1 and suppose b" < t < bt Then the expected number of
edges ij in Gy with i+ 7 > n is at most, with C' := sup, b'q; < oo and letting
(=i+j,

3 tggy <t > C I <o Y 10l = 0(n), (8.5)

i+i>n i+i>n >2n+1

Similarly, the expected number of edges ¢j with i +j < n not in G, is at
most, for ¢ := inf; b'q; > 0,

Z exp(—2tgiq;) < Z Zexp —t?b~* Z exp(—c2bn4)

i+j<n 2<Uh<n i=1 2<U<n

= O(n). (8.6)

Moreover, the same argument shows that the expected number of edges j
in Gy with i 4+ j > n + n%! and the number of non-edges ij with i + j <
n — n%! both are O(nb~ n® 1), hence the Borel-Cantelli lemma shows that
a.s. for every large n and every t € [b", b"!], G; contains every edge with
i+ 7 < n—n" and no edge with i +j > n + n%!; a consequence, we
also have [n — n®! — 1] C V(Gy) C [n + n%Y. Tt follows that if H,, is
the graph with vertex set {1,...,n} and edge set {ij : i + j < n}, then
a.s. the cutdistance dp(Gy, H,) = o(1), when b" < t < 0"t As n — oo,
Hy — Thar, the graph limit defined by the graphon W(z,y) = 14 4<1)
n [0,1] (known as the “half-graphon”). Consequently, G; — Thai a.s. as
t — oo. By Proposition 4.9, G,, — Ipaf a.s. as m — oo.

Example 8.4. Example 8.3 can be generalized without difficulty. Consider,
for example, a rank 1 case p;; = ¢;q; with

i = exp(—ci + O(il_s)) (8.7)

for some constants ¢ > 0 and € > 0. Arguing as in Lemma 8.3 we see that
a.s., for every large n and all t € [e®, e("+1)], G, contains all edges ij with
i+j <n—n'"%2 and no edges ij with i + j > n 4+ n'~¢/2. Consequently,
a.s., 6D(C~¥t,Hn) = o(1) and thus Gy = Thar as t — 0o and Gy, — Thair as
m — 00.

Example 8.5. Consider the simple graphs G; and G, given by the Holly-
wood model in Example 7.8 in the case & = 0. As shown there, the resulting
random graphs are the same as the ones given by the rank 1 model with
a random probability distribution (g;)7° having the distribution GEM(0, 9),
where 0 € (0,00) is a parameter.

By a well-known characterization of the GEM distribution, see [35, The-
orem 3.2], this means that

(q1,q2,---) = (1 = X1), X1 (1 — X2), X1 Xp(1 — X3),...), (8.8)

where X; ~ Beta(f,1) are i.i.d. In other words, ¢; = (1 — )Hl ! X;, and
thus

log(g;) = log(1 — X;) + Zlog (8.9)
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Hence, by the law of iterated logarithm, a.s.

log(q;) = —ci + O(\/iloglogi) = —ci + O(i"%), (8.10)

where ¢ := —Elog(X;) = 1/6. Hence, by conditioning on (¢;)7°, Exam-
ple 8.4 applies. Consequently, G, — I'haif a.s. as m — oo for the Hollywood
model with a = 0 and any 6 > 0.

Example 8.6. For another generalization of Example 8.3, consider the rank
1 case with ¢; < exp(—ci”) for some ¢ > 0 and v > 0. It follows by a similar
argument that a.s. G, — W, where W is the graphon 1;,+,v<1) on [0,1].

In Examples 8.1-8.6, GG,,, converges a.s. to some graph limit. There are
also many examples, see e.g. Sections 9-10, for which G, are sparse, which
is equivalent to G,, — I'g, the zero graph limit defined by the graphon
W(z,y) = 0. In fact, any graph limit can occur as a limit of G,,, at least
along a subsequence. Moreover, the following result shows that there exists
a “chameleon” example where every graph limit occurs as the limit of some
subsequence. (Note that this includes that there is a subsequence converging
to the zero graph limit I'g, which means that e(G,,) = o(v(G;,)?) along this
subsequences; hence this example is neither dense nor sparse.)

Theorem 8.7. There exists a matriz p = (u;5) such that a.s. the graphs
Gy are dense in the space of graph limits, in the sense that for every graph
limit T', there exists a subsequence G, that converges to I'.

Proof. Let Fj, k > 1, be an enumeration of all finite (unlabelled) simple
graphs without isolated vertices, each repeated an infinite number of times.
Let vy := v(F)) and let fi(i,7) be the adjacency matrix of F.

Let Ny := 1 and, inductively, Ny := kv Ni_1 for k > 1. Let also

k
ar =[] N;*. (8.11)
j=1
Clearly, Ni > k!, N > Ni_1 and ap < ap_1. Finally let, for ¢ # j,
= i J D N Vi< N 8.12
Hij akfk(’Vka—l—"[ka—l ; k-1 <tV j< Ng. (8.12)

Let Ij, := [1, Ni] and divide I}, into the vy, subintervals Iy, o := [({—1)kNy_1+
1,lkNy_1], € = 1,...v. Note that (8.12) says that if ¢ € I, and j € Ij 4
and not both ¢,j € Iy, then p;; = ax fr(p, ).

Let t;, := Nkalzl. If n > k, then the expected number of edges 75 in Gfk
with iV j € I, \ I,,—1 is at most, using (8.11),
Ap—1 Ap—1 Nk 1 1

_ <— <. (813
N? ap N2 N, " nl (8.13)

te > i < tanNZ <ty
ivjeln\ln—l

Hence the probability that é;‘k contains some edge with endpoint not in

I x I; is at most
1 1
> — < (8.14)

n>k
and by the Borel-Cantelli lemma, a.s. this happens for only finitely many
k.



28 SVANTE JANSON

Similarly, if (¢,7) € I? \ I?_,, then u;; € {0,ax}, and the probability that

there exists some such pair (i, j) with p;; = ai but Nj;(t;) = 0 is at most

Npe e = NZe™™r = O(N 1) = O(K17). (8.15)
Consequently, again by the Borel-Cantelli lemma, a.s. for every large k,
there exists no such pair (i, j).

We have shown that a.s. for every large k, the simple graph étk contains
no edge with an endpoint outside Iy, and for (i, j) € I?\I7_,, recalling (8.12),
ifi € I, p and j € I} 4, then there is an edge ij if and only if fi(p,q) = 1. In
particular, since F} has no isolated vertices, every i € I} is the endpoint of
some edge in Gtk and thus a vertex, but no i ¢ I}, is; in other words, a.s. for
every large k, V(G’tk) = I;. It follows that if F}; is the blow-up of F} with
every vertex repeated kNj_1 times, then a.s. for every large k, the graphs
étk and H; have the same vertex set I}, and their adjacency matrices can
differ only for (4,7) € I?_,. Consequently, using Remark 3.1,

60(G, , Fi) = 060(Gyy, FY) < IWe, —Wr;
Neoy 1

o< [We, —Wrlln

< —— =
SONE o (ku)?
a.s. for all large k.

Now, let I" be a graph limit, and let £ > 1. By graph limit theory (or
definition), there exists a sequence of graphs H; with v(H;) — oo and
0o(H;,T') — 0 as j — oo; hence we may take j so large that H := H;
satisfies v(H) > ¢ and do(H,T") < 1/¢. H may have isolated vertices, so
we define H' by choosing a vertex v € H and adding an edge from v to
any other vertex in H. Then at most v(H) — 1 edges are added, and thus,
similarly to (8.16),

< k72, (8.16)

20(H) 2

< -. 8.17
v(H)?2 ¢ (8.17)
Moreover, H' has no isolated vertices, and thus H' occurs infinitely often in
the sequence (Fj) above. Consequently, a.s., there exists k& > ¢ such that

. olds and Fj, = H'. en, by (8. an A7),
8.16) hold d F; H'. Then, by (8.16 d (8.17

So(H' H) < Wiy — Whlo < Wi — Wi <

~ ~ 1 2 1 4
5D(Gtk,F) < (5[](Gtk,Fk)+5|:|(H/,H)—|—5D(H, F) < ?—I_Z—i_z < z (818)
By Proposition 4.9, this means that if my := N(tx), then og(Gp,,T") <
4/¢. Since ¢ is arbitrary, this completes the proof. (We may choose my
inductively, and choose k above so large that my > my_q.) O

The chameleon example in Theorem 8.7 is theoretically very interesting,
but it is hardly useful as a model in applications; since the behaviour of G,,
changes so completely with m, it is a model of nothing rather than a model
of everything.

If we want convergence of the full sequence G, and not just subsequence
convergence as in Theorem 8.7, we do not know whether every graph limit
can occur as a limit.

Problem 8.8. For which graph limits I" does there exist a matrix (u;;) such
that for the corresponding simple random graphs, G,, — I'?



ON EDGE EXCHANGEABLE RANDOM GRAPHS 29

9. SPARSE EXAMPLES

We gave in the preceding section some dense examples. It seems to be
more typical, however, that the graph G, contains many vertices of small
degree (maybe even degree 1), and that the graph is sparse. We give here a
few, related, rank 1 examples; see also the following section.

Example 9.1. Consider a rank 1 example with ¢; =< =7 for some v > 1.
Then (7.5) yields

1/
v(t) <Y (LAET)) = Y 1+t Y Wx{i K ii (9.1)

izl i<t/ i>tl/v
This yields by (7.7), for ¢t > 2,

e(t) < Zv(tqi) = Zv(tiiV) = Z it 4 Z 7 =< /7 log t.

i>1 i>1 i<t/ >t/

(9.2)

Hence, using Theorem 6.4, a.s. v(Gy) = tY/7 and e(G;) < t'/7logt as t — oo,
and v(G,,) < m'/7 and e(G,,) < m'/7logm as m — oco. It follows that the
average degree in G, is < log m.

In this example we may also show that the degree distribution has a
power-law; we state this as a theorem. There is no standard precise def-
inition of what is meant by a power-law degree distribution; we may say
that a random variable X has a power-law distribution with exponent 7
if P(X > z) < =Y as 2 — oo, but this does not make sense for the
degree distribution of a finite graph, so we must either consider the asymp-
totic degree distribution, provided one exists, or give uniform estimates for
a suitable range of . (See e.g. [18, Sections 1.4.1 and 1.7] for a discussion of
power-laws for degree distributions.) We follow here the second possibility.

For a (finite) graph G, let v>;(G) be the number of vertices of degree
at least k, and let 724 (G) := vk (G)/v(G), the probability that a random
vertex has degree > k.

Theorem 9.2. In Ezample 9.1, the random graphs G,, have a power-law
distribution with exponent 2 in the following sense. There exist positive
constants ¢ and C such that a.s. for every large m,

m>k(Gm) < C/k, 1<k < o0, (9.3)
m>k(Gm) = c/k, 1<k <ev(Gp). (9.4)

As usual, the same result holds for ét. Note that the restriction k <
cv(Gy,) in (9.4) is necessary, and best possible (up to the value of the con-
stants); we necessarily have m>;(G) = 0 when k > v(G). Note also that we
have the same exponent 7 = 2 for every v > 1.

Proof. As usual, we prove the results for Gy; the results for Gy, follow by
Proposition 4.9. We then can write (9.3)-(9.4) as v=x(Gy) < Cuv(Gy)/k,
k> 1, and vsx(Gy) > cv(Gy)/k, 1 < k < cv(Gy), and by Theorem 6.4 and
(9.1), it suffices (and is equivalent) to prove that a.s.

vsi(Gy) < Ot/ 1<k< oo, (9.5)
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vsk(Gr) = et k, 1<k < et (9.6)
for every large t.

Let I;; be the indicator of an edge ij in G’t; thus I;; ~ Be(l — e_%qiqﬂ').

Let D; := Z#i I;; be the degree of ¢ in the simple graph Gy. (The degree
is defined as 0 if 7 is not a vertex.)
(i) The upper bound (9.5): We fix t > 1 and an integer k£ > 1; for convenience
we often omit them from the notation, but note that many variables below
depend on them, while all explicit and implicit constant are independent of
t and k. B

Let JZ = 1{D¢>k} and N := Zz JZ = U}k(Gt).

Let A be a large constant, chosen later, and assume that & > A, let
io := AtY7 [k and let N* := Y, Ji. Thus N < N* + .

If i > i, then using (7.8), (6.31) and (9.1),

ED; < v(tg) < v(ti™") <v(AEY) < k/A. (9.7)
Thus E D; < Cak/A for some Cy > 0, and choosing A = max(14C5,4), we
find that ED; < k/14 < (k—1)/7. Since D; is a sum ), I;; of independent
Bernoulli variables, a Chernoff bound (see e.g. [26, (2.11) and Theorem 2.8])
yields
EJ,=P(D; > k) <e ™  i>i, (9.8)
and also, for later use,
P(D; >k—1)<e ™%
For i > t!/7 we also have, by (9.7) and (9.1),
ED; <ov(ti™7) < ti". (9.10)

WV

0. (9.9)

Let (z); :=x(z—1)--- (x —r+1), the falling factorial. Since D; is a sum of
independent indicators, it is easily seen that for any positive integer r, the
factorial moment can be bounded by E(D;), < (ED;)". Hence, by (9.10)
and Markov’s inequality, since we assume k > A > 4,

E(D;)s _ (ED;)* (ti=7)* ti=7 1y
< < < O3—, >t

B S e SO SO
9.11)
(This also follows from [26, (2.10) and Theorem 2.8].) Summing (9.8) and

(9.11), we obtain
EN*=YEJi< Y "+ Y CstiV/k*<Cut'/kt (9.12)

1>1%0 to<i<tl/v >t/

EJi =P(D; 2 k) <

For the variance of N*, we note that the indicators .J; are not quite
independent, since an edge ¢j influences both J; and J;, but conditioned on
I;;, J; and J; are independent. Hence, for any distinct ¢ and j,

E(JiJj) =P(L = DE(JiJ; | Iij = 1) + P(L; = 0)E(JiJ; | Iij = 0)
=P(I;; = VE(J; | i = 1) E(J; | I;; = 1)
+P(Iij = 0)E(J; | Iij =0)E(J; | I;; =0)
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and thus
Cov(J;, J;) <P(Li; =1)P(D; > k—1)P(D; > k —1). (9.13)
By (9.13) and (9.9), for i,j > ig with ¢ # j,

Cov(J;, J;) < 2tgiqse 20K < Cgti™j Ve 2k, (9.14)
Consequently, using also (9.12),
VarN* = 3 Cov(J;, J;) SEN" + Cste 2 Y~ i
i,j>i0 i,j>i0
< Oyt Tk 4 Cgte 22 < Cptt g4, (9.15)
Hence, by Chebyshev’s inequality,
Var N*
e OtV 9.16
@k < (210
We have so far kept ¢ and k fixed. We now sum (9.16) over all £k > A and
t = 2% for £ € N, and find by the Borel-Cantelli lemma that a.s. for every

large t of this form and every k > A, N*—E N* < tl/w/k, and consequently,
using also (9.12),

N < N*4ig SEN* +tY7/k 4 ig < Cst'/7 /. (9.17)

This is (9.5) for k > A and t € {2}; since N increases with ¢, (9.5) follows
in general (with a different constant), a.s. for large ¢ and all & > A.

For k < A, (9.3) and (9.5) follow trivially from vs;(Gy) < v(Gy).

(ii) The lower bound (9.6): Fix again ¢ > 1 and k > 1, let B be a large
constant chosen later, and assume that k < t'/7/B.

Let L be the set of odd integers ¢ with 1 < i < 41 := Biltl/'y/k:, and let R
be the set of even integers j with 1 < j < 6k. By our assumptionon k, iy > 1,
and thus [L| = [(i1 + 1)/2] > i1/3. Note that the indicators {I;;}icr, jer
are independent. For i € L, let Dj := 3. plij and J} = 1(p;>ky- Thus the
indicators {.J; }scr are independent. Also, let N':= %", ; J;. Since J; < J;,
we have N' <3y Ji < 3oy Ji = N = vy, (Gy).

If i € L and j € R, then ij < 6ki; = 6B~1t/7, and thus

<
tqiq; = cati” 7577 = ey B (9.18)

P(N* —EN* > t/7/k) <

Choose B := C4M then by (9.18), when ¢ € L and ] € R, tq;q; > 1 and thus
P(I;; = 0) = e 2199 L 72, (9.19)

Since |R| = 3k, it follows that if i € L, then E D} > 3(1 —e~2)k > 2.5k, and
moreover, by a Chernoff bound (e.g. [26, (2.12)]),

P(J;=0)=P(D; <k)<e*F<e. (9.20)

Since the indicators J/ are independent for ¢ € L, another Chernoff bound
shows that

P(N' < |L|/2) < e~s1Hl L emcoin, (9.21)
Alternatively, (9.20) and a union bound yield
P(N' < |L|/2) < P(N' < |L]) < Y P(J] = 0) <ie ™. (9.22)

€L
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If 1 < k < tY?, then 4, > B~'tY/?7, and thus (9.21) yields P(N' <
IL|/2) < e=""*" I $1/27 < k < t1/7/B, then (9.22) vields P(N’ < |L|/2) <
ile*CStl/%’ < C’gefcﬁl/%. Consequently, for every k < tl/V/B,

t1/2vy

P(N < |L|/2) < (N < |L|/2) < Croe=c10 (9.23)

We have kept k and t fixed, but we now sum (9.23) over all k < t'/7/B
and ¢t = 2¢ for some ¢ € Ny. It follows by the Borel-Cantelli lemma that a.s.
for every large ¢ of this form and every k < t'/7/B, N > |L|/2 > i1/6 >
c11t*/7/k. This proves (9.6) for t of the form 2¢, and again the general case
follows since NN is monotone in . O

Furthermore, assuming ¢; ~ ct~7 in Example 9.1, we can show that Gy
and G,, converge a.s. to a graphon of the type defined by Veitch and Roy
[39] and mentioned in Section 5.1; these graphons are measurable functions
W :R2 — [0,1], such that the random graphs G(t, W) defined in (5.5) are
a.s. finite. (See [39] for precise conditions; see also [9] and [3] for related
versions.) Recall that the standard graphons discussed in Section 3 are
useful for dense graphs, but not for sparse graphs as here; the more general
graphons in [39] are intended for sparse graphs.

Veitch and Roy [40] defined two notions —gp and —gs of convergence
for such general graphons on R (and the even more general graphexes de-
fined in [39]) based on convergence in distribution of the corresponding ran-

dom graphs G(¢t,W). We can define W,, —gp W as meaning G(r, W,,) N
G(r,W) for each fixed r < 0o, see further [40] and [24].

Furthermore, the random graphs G(r, W) are naturally coupled for dif-
ferent r and form an increasing graph process (G(r, W)),>o0. Let (G- (W))k
be the sequence of different graphs that occur among G(r, W) for r > 0.

Then W), —gs W if (G-, (Wy,))k N (G7, (W))k; again see further [40] and
[24].

Recall that for a finite graph G, we defined a corresponding graphon Wg
in Section 3. In the context of graphons on R, Veitch and Roy [40] define
for every s > 0 a modification Wg g, called the dilated empirical graphon,
as follows. We may assume that G has vertices labelled 1,...,v(G); then
Wal(i, j) = 1gngy for 4,5 < v(G); we extend this by Wg(7,j) := 0 when
iV j > v(G). Then, for every s > 0, let the dilated graphon W¢ s be the
function R? — {0,1} given by Wq s(z,y) := W ([sz], [sy]). Hence, every
vertex in G corresponds to an interval of length 1/s in the domain of W, ;.

If G, is a sequence of graphs and W a graphon, then G,, —cs W means
that Wg, —cs W; furthermore, the convergence —gs is insensitive to di-
lations, so G,, —gs W is equivalent to Wg, s, —gs W for any sequence
sp > 0.

Remark 9.3. We have in Section 5.1 given the version of G(r, W) without
loops; more generally, one can allow ¢ = j in (5.4) and thus allow loops.
The loopless case considered here then is obtained by imposing W (x,z) =0
for x > 0. Hence, for the version with loops, Theorem 9.4 below still holds,
provided we redefine W to be 0 on the diagonal.
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Theorem 9.4. In Example 9.1, assume that q; ~ ci™7 as i — oo, with
¢ > 0. Then the dilated empirical graphon Wét7t]_/2’y —cp W a.s. ast — o0,
where W is the graphon W (z,y) =1 — exp(—202x_7y_“f) on R?.

As a consequence, Gy —gs W a.s. as t — .

Note that W (z,y) > 1 —exp(—2¢c?) > 0 when zy < 1, and thus [ W = occ.
We prove first two lemmas.

Lemma 9.5. Let (Zy)r, be an array of i.i.d. random variables. Further-
more, let x1,...,z, > 0 be distinct and let X be a random variable, in-
dependent of the array (Zy)k,, with X ~ U(a,b) where 0 < a < b < oo.
Then,

L((Zpwpex )iz | (Zidea) == L((Zins1)izn) (9.24)

ast — oo.

In other words, conditionally on (Zy)r,; and for a.e. every realization
of (Zki)k,, the random vector (Z[y,) [¢x7)ie; converges in distribution to

(Z] 1)1, where (Z;;)x; is an independent copy of (Z)r.i-

Proof. 1t suffices to prove that for every fixed rational z1,..., z,,
P(Zizg iix) < 20 1 << | (Zi)ia) —> 7= P(Zin1 < 2,1 < i <),
(9.25)
where
n n
i=1 i=1

Let further Ir;; := 147, <.,) and J; := I, Itz Then, with the error
term coming from edge effects,

P = P<Z[tm,[tx1 <z, 1<i<n] (Zkl)k,l> = E(H Iree,)rex7,i | (Zkl)k,l>

i=1

= E(JHXW ‘ (Zkl)k,l) = (b—la)t Z Ji +0(1).

ta<i<tb (9.27)
If ¢ is sufficiently large, then [tz1],...,[tz,] are distinct, and then, see
(9.26),
EJi = [[E i = [[P(Zreana < 1) =7 (9.28)
=1 i=1

Furthermore, then the variables J; ~ Be(r) are i.i.d., so their sum in (9.27)
has a binomial distribution, and a Chernoff bound shows that for every
e > 0, there is a ¢ = ¢(e) > 0 such that for large ¢,

P(|P,—n| >¢) <e . (9.29)

This shows that P, converges to 7 in probability as ¢ — co. In order to show
convergence a.s., we note that if 0 < ¢t < u, and t(b—a) > 1, then (for fixed
a and b) P([tX] # [uX]) = O(u — t), and consequently, for some C > 0,

|Py — P,| < P([tX] # [uX]) < C(u—1). (9.30)

Let € > 0, let N := [C/e] and let t, := n/N. By (9.29) and the Borel-
Cantelli lemma, a.s. |P;, — 7| < € for all large n. Furthermore, if n is large
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and t, <t < tyy1, then (9.30) implies |P; — P, | < ¢, and thus | P, — 7| < 2e.
Consequently, a.s., |P, — 7| < 2¢ for every large t. Slnce ¢ is arbitrary, this
proves (9.25) and thus the lemma. O
Lemma 9.6. Let (Zy)r,; be an array of i.i.d. random variables, and let
(X1,...,X5n) be a random vector in R} with an absolutely continuous dis-
tribution, independent of the array (Z)k,1. Then,

E((Z(txi],[txﬂ)lgiqgn | (Zkl)k,l) 2% ﬁ((ZiJ‘)ng(jgn) (9.31)
ast — oo.

Proof. Step 1. Assume first that Xi,...,X,, are independent with X; ~
U(I;) for some intervals I,. .., I,. In this case we prove (9.31) by induction
on n, o we may assume that

L((Zrex,rex,)h<ici<n— | (Zekg) == L((Zigh<icjn—1)- (9.32)

Furthermore, by Lemma 9.5 and conditioning on X1,..., X, _1,

L((Zpxrexn)1<i<n—1 | (Ze)iss X1, - Xne1) = L((Zin)1<i<n—1)-
(9.33)

The result (9.31) follows by (9.32) and (9.33), which shows the induction
step and completes the proof of this step.
Step 2. Suppose that there exists a finite family of disjoint intervals I}
such that the density function f(z1,...,x,) of (X1,...,X,) is supported on
(Uk Ik)n and constant on each H?:l Ij,. Then Step 1 shows that for each
sequence ki, ..., ky, of indices, (9.31) holds conditioned on (X1,...,X,) €
[T Ir,- Hence (9.31) holds unconditioned too.
Step 3. The general case. Let f(x1,...,2,) be the density function of
(X1,...,X,),and let ¢ > 0. Then there exists a density function fo(z1,...,zy)
of the type in Step 2 such that [ |f — fo|dz; ... dz, < e. We can interpret
fo as the density function of a random vector X° = (X¥,..., XY), and we
can couple this vector with X = (X1,..., X,) such that P(X # X°) <e.

Since Step 2 applies to X, it follows that

P(the convergence in (9.31) holds) > P((X,Y) = (Xo,Yp)) > 1—e. (9.34)
Since ¢ > 0 is arbitrary, (9.31) follows. O

Proof of Theorem 9.4. Let wy := c‘lqmaﬂ =14o0(1), as z — 0.

We can construct Gy for all ¢ > 0 by taking i.i.d. random variables Zj; ~
Exp(1) and letting there be an edge kl in Gy if 2tqpq > Zi, for every pair
(k, 1) with k& < [.

Let Wt = WG /2 be the dilated empirical graphon in the statement.
Fix r > 0, and consider the random graph G(r, W;); this is by (5.4)(5.5)
obtained by taking a Poisson process {n; }; on R4 with intensity r (where we
assume 71 < 72 < ... ), and then taking an edge i J if and only if Wt(m, n;) =
1. By the deﬁn1t1on of Wt, this is equivalent to Gy having an edge between
[t1/277;] and [t'/?7n;], and thus by the construction of Gy to (assuming that
t is large so that [t1/27n;] # [t1/?7n,])

2tq|‘t1/2'y,,7 "qHuzyn 1 Z Z|'t1/2777‘\ |'151/2777 1 (9.35)
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or, equivalently,

2¢° n; 77] = wt1/2777 tl}Z-yn Z[tl/Q'ym],[tl/Qvnﬂ- (9.36)
Fix n < oo and consider the edge indicators I; j; in G(r, Wt) for 1 <
i < j < n. Furthermore, fix a large integer N and condition (11, ...,7,)
n [Nml,...,[Nn,]. By Lemma 9.6, and recalling w, = 1+ o(1), the
distribution of the right-hand side of (9.36) converges a.s. to independent
Exp(1) variables, jointly for 1 <4 < j < n. Since I; j; equals the indicator
of (9.36), it follows by first replacing the left-hand side of (9.36) by upper
and lower bounds obtained by rounding each 7; down or up to the nearest

multiple of 1/N, applying Lemma 9.6 and then letting N — oo, that

L((Lijansicjen | Ge) = L2007 2 Zig}) 1 cocien)- (9:37)

Here, conditioned on 7y, ...,7n,, the indicators in the right-hand side are
independent, and have (conditional) expectations

P(2c*n; "n; " = Zij | misng) =1 —exp(=2¢%n; "n; ") = W(ni,n;). (9.38)

This equals the (conditional) probability of an edge ij in G(r, W). Conse-
quently, if I; ; is the indicator of an edge ij in G(r, W), (9.37) shows that
a.s., as t — oo,

=~ d
((Lijih<i<i<n | Gt) — (TIijhi<i<j<n (9.39)

This shows the desired convergence G(r, W;) Ny (r, W), provided we re-
strict the graphs to a fixed finite set of vertices.

To extend this to the infinite number of potential vertices, we need a
tightness argument. (Unfortunately, we did not find a really simple argu-
ment.) Let a,b > 0, and let V;;; denote the number of edges in G(r, Wt)
with endpoints labelled 7;,7; with n; € (a,2a] and n; € (b,2b]. Then, cf.
(9.35),

[2at/27]  [2bt1/27]

E(Va,b,t ‘ (Zkl)k,l) < Z Z 2t 1/71{2tqkql Zkl} (940)
k=[at/27] I=[bt1/27]

For k, [ in the ranges in (9.40), qx < Cra™ 7t~ 12 and ¢; < C1677¢7 /2. Define

Jp = 1{2012a71b77 = Zk,l}, Sm,n = Zkgm,lgn Jrl, Sm,n = myn/mn and

S* := sup,;, ,>1 Sm,n- Then (9.40) implies, assuming t > ¢, := max{a~27, b= 2},
[2at1/27]  [2bt1/27]

(Zi)ky) < Z Z P g < 7“27571/75[2@1/%1,[gbtl/m
k=[at1/27] I=[bt1/27]

< P2t [2at /2 1261 /27) 8% < 9r2abS*. (9.41)

Fix p > 1 with p < 7. Then by the multi-dimensional version of Doob’s L?
inequality, see [38, Lemma 3], (9.41) implies, for fixed r,

E sup E(Vaps | (Zi)ry) < C2abES* < Coab(E(S*)P)YP < C3ab(E I11)"/?

Zla,b

E(Vay,

< Cuat=/Ppt/p, (9.42)
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Let € > 0, and use (9.42) with a = 2™¢ and b = 2"¢. Then summing over
all (m,n) € Z4 with m vV n > N implies, using Markov’s inequality,

E sup P(Wt has an edge labelled (z,y) € [¢,00)? \ [e,2Ve]? | (Z)k,)

12le e

< G52~ (/PN 2(0-7/p) (9.43)

Choosing N large enough, this is less than €. Furthermore, the probability
that WW; has a vertex labelled < ¢ is at most P(n; < €) < &, and we can
choose n such that P(n, < 2Ve¢) < e.

It now follows from (9.39) that for any finite graph H,

IP(G(r,W:) = H | Gy) — P(G(r,W) = H)| < 3¢ + o(1) (9.44)

a.s. as t — oo. Since € > 0 is arbitrary, this shows (G(r, AN Gt) 4,

G(r,W) a.s. as t — oo, for every fixed r < oo, which is the same as W; —¢p
w.

Finally, we note that W, —gp W implies W; —gs W, see [40; 24], and that
—¢s is not affected by dilations of the graphons; hence a.s. also Wea, —6es W,

ie., G —as W. O

Example 9.7. Consider the simple graphs Gy and G,, given by the Hol-
lywood model in Example 7.8 in the case 0 < a < 1. As shown there,
the resulting random graphs are the same as the ones given by the rank 1
model with a random probability distribution (¢;)7® having the distribution
PD(a, 0), where § > —a is the second parameter. This implies that a.s.
¢ ~ Zi~'/® for some (random) Z > 0, see [35, Theorem 3.13]. Conse-
quently, Example 9.1 applies with v = 1/« (after conditioning on (¢;)). In
particular, a.s. v(Gy,) < m® and e(G,,) < m®logm as m — oo.

Moreover, G,, has a.s. a power-law degree distribution with exponent
7 = 2 in the sense of Theorem 9.2.

Furthermore, Theorem 9.4 shows that G,, —gs W a.s. as m — oo and
that the dilated empirical graphon converges a.s. in the sense Wém (/2 —PGP
W, where W is the random graphon W(z,y) =1 — exp(—QZmel/o‘yfl/a)
on Ry.

Problem 9.8. In the simple graph Hollywood model with 0 < o < 1 as in
Example 9.7, does the degree distribution of G, converge (a.s., or at least
in probability) as m — oco? If so, what is the asymptotic distribution? Is it
random or deterministic?

10. EXTREMELY SPARSE EXAMPLES

We can obtain extremely sparse examples in several ways.

First, Theorem 6.10 shows that any example including dust or attached
stars is extremely sparse.

Another way to obtain extremely sparse graphs is to force the degrees to
be bounded, as follows.

Example 10.1. Let p = (u;;)75-; be a symmetric non-negative matrix
with 0 < ||u|| < oo and assume that each row contains at most d non-zero
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entries, for some d < co. (For example, let 11 be a band matrix, with p;; =0
unless 0 < |i — j| < d/2.)

Since an edge ij can exist only when p;; > 0, it follows that every vertex
in G, has degree at most d. Hence the sequence G, has bounded degree,
and in particular G,, is sparse; to be more precise we have

V(Gp) < 2e(Gy) < dv(Gry). (10.1)

Less obviously, it is also possible to obtain extremely sparse graphs in the
rank 1 case, with a sequence ¢; that decreases very slowly (remember that
>.; @ = 1 by assumption). We give one such example.

Example 10.2. Consider the rank 1 case (Section 7.1) with ¢; = ¢/(i log® )
for ¢ > 2, where ¢ is the appropriate normalization constant. (Any (¢;)
with ¢; < 1/(ilog?4) would yield the same results below.) Recall that, by
comparison with an integral, > -, 1/(i log®i) ~ 1/logk as k — oo.

We will see that (in a sense made precise below) almost all edges belong to
stars, and that, moreover, most edges and vertices belong to a small (finite)
number of stars; in particular, most vertices have degree 1.

For large t, let £(t) := [t/log?t|. Then £(t)log?{(t) ~ t, and thus, using
(7.5),

v(t) < Z((q’ IAL Z 1+ Z =/ )+logt€(t) = lotgt' (10.2)

i=1 i<ty i) log i

The expected number of edges is by (7.6),

e(t) = ((@git) A1) <) - - . Al (10.3)

2 2
vy 7 tlog™(i+1)jlog”(j + 1)

We split the sum in (10.3) into three (overlapping) parts. The case j > t04

yields at most

t t
> <Cp—. (10.4)
ilog?(i + 1) jlog?(j + 1) logt

i1 ]>t0 4

The case i > t* yields the same, and finally the case 4,j < t04

most
> 3 et =o(g) (103)

i<t0-4 j<t0-4

By (10.3)—(10.5), and the lower bound (6.24), we find
t

) X ——

e(t) logt

Thus Theorem 6.4 yields e(G;) < v(Gy) and e(Gy,) < v(Gp) a.s. In other
words, G, is extremely sparse.

We can be more precise. Recall that N;(t) is the degree of vertex i in G;
by (6.3) N;(t) ~ Po(ut). Consequently, using also (7.2),

E(Ni()1 (v, >13) < E(N:()(Ni(t) — 1)) = (pit)® < 4g7t%. (10.7)

yields at

= u(t). (10.6)
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Summing over i > t/log?t we obtain

2
> EMileen) <G Y o =0(p ). (108)

2
i>t/log?t i>t/log? t *loghi log™t
Hence the expected number of edges that have one endpoint in (¢/log?t, 00)

and that endpoint is not isolated is O(t/log®t). Moreover, the expected
number of edges with both endpoints in [1,¢/log?#] is at most

Z 2((tqiqj) A\ 1) < 98 4 Z Z tQZQJ /\ 1 (10'9)

i<j<t/log?t t0-4< i<t/ log? t 1<J

where the last sum is at most a constant times, cf. (10.2),

t/§2t t t/f t t/ig?t 1/ log2t
QJ ’
=104 o 10g tq +2) Pt log(t/j log2 t+2)

t/log?t t/log?t dz 1/ log? t t/log’t dy
- /x:tm log(t/xlog?t + 2) ER /y:l log(y+2) y

- O(lot2

It follows by (10.8), (10.9) and (10.10) that, in G} and thus in Gy, all but
op(t/ logt) edges have one endpoint isolated. If the number of such edges
in Gy is €/(Gy), then thus the total number of edges is e(Gy) = ¢/ (Gy) +
Op(t/ log?t), and since each edge has at most two endpoints, the number
of vertices is at least ¢/(Gy) and at most 2¢/(Gy) + Op(t/log?t). Moreover,
it is easily seen that the expected number of edges with both endpoints in
(t/log?t,00) is O(t/log?t), and it follows that, in fact, v(Gy) = €/ (Gy) +
O,(t/log?t); we omit the details. Consequently, using also (6.26) and (10.6),
it follows that e(G;)/v(Gy) —= 1 as t — co. Moreover, we see also that
almost all edges belong to stars. (These are not attached stars in the sense
of Section 5, since our example contains no attached stars, but they have a
similar effect on the graph.) As a consequence, at least in probability, most
vertices have degree 1, so the asymptotic degree distribution is concentrated
at 1.

Furthermore, a large fraction of the edges (and thus vertices) belong to
a finite number of such stars. To be precise, let ¢ > 0; then there exists an
integer K = K () < oo such that summing over ¢ > K only in (10.4) yields
< et/logt, which together with (10.5) and (10.8)—(10.10) shows that the
expected number of edges that are not in a star with centre at ¢ for some
i < K is O(et/logt) = O(ee(t)).

Since a.s. Gy C Gop for all large m, the same results follow also for G,

Unfortunately, these properties make the random graphs in this example
rather uninteresting for applications.

. log log t) = O(lotgt>' (10.10)
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11. CONCLUSIONS

For the multigraph version, the examples in Section 7 seem very interest-
ing, but perhaps a bit special. We do not know whether they are typical for
a large class of interesting examples or not.

For the simple graph version, the examples above show a great variety of
different behaviour. Nevertheless, the results are somewhat disappoining for
applications; the relations between the intensity matrix (y;;) and properties
of the random graphs G, such as edge density and degree distribution are
far from obvious, and it is not clear how one can choose the intensity matrix
to obtain desired properties; for example, we do not know any example of a
power-law degree distribution with an exponent 7 # 2.

Consequently, for both versions, it seems desirable to study more exam-
ples, as well as to find more general theorems.

The present paper is only a first step (or rather second step, after [7;
8; 11; 12]), of the investigation of these random graphs, and it seems too
early to tell whether they will be useful as random graph models for various
applications or not.
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