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Abstract. We consider linear preferential attachment trees, and show
that they can be regarded as random split trees in the sense of Devroye
(1999), although with infinite potential branching. In particular, this
applies to the random recursive tree and the standard preferential at-
tachment tree. An application is given to the sum over all pairs of nodes
of the common number of ancestors.

1. Introduction

The purpose of this paper is to show that the linear preferential attach-
ment trees, a class of random trees that includes and generalises both the
random recursive tree and the standard preferential attachment tree, can be
regarded as random split trees in the sense of Devroye [11], although with
infinite (potential) branching.

Recall that the random recursive tree is an unordered rooted tree that is
constructed by adding nodes one by one, with each node attached as the
child of an existing node chosen uniformly at random; see e.g. [12, Section
1.3.1]. The general preferential attachment tree is constructed in a similar
way, but for each new node, its parent is chosen among the existing nodes
with the probability of choosing a node v proportional to wd(v), where d(v)
is the outdegree (number of existing children) of v, and w0, w1, . . . is a given
sequence of weights. The constant choice wk = 1 thus gives the random
recursive tree. The preferential attachment tree made popular by Barabási
and Albert [3] (as a special case of more general preferential attachment
graphs) is given by the choice wk = k + 1; this coincides with the plane
oriented recursive tree earlier introduced by Szymański [31]. We shall here
consider the more general linear case

wk = χk + ρ (1.1)

for some real parameters χ and ρ > 0, which was introduced (at least for
χ > 0) by Pittel [29]. Thus the random recursive tree is obtained for χ = 0
and ρ = 1, while the standard preferential attachment tree is the case χ =
ρ = 1. We allow χ < 0, but in that case we have to assume that ρ/|χ| is an
integer, say m, in order to avoid negative weights. (We then have wm = 0
so a node never gets more than m children, and wk for k > m are irrelevant;
see further Section 6.) See also [16, Section 6] and the further references
given there. We denote the random linear preferential attachment tree with
n nodes and weights (1.1) by Tχ,ρn .
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Remark 1.1. Note that multiplying all wk by the same positive constant
will not change the trees, so only the ratio χ/ρ is important. Hence we may
normalize the parameters in some way when convenient; however, different
normalizations are convenient in different situations, and therefore we keep
the general and more flexible assumptions above unless we say otherwise.

Note also that our assumptions imply w1 = χ+ ρ > 0 except in the case
χ = −ρ, when w1 = 0 and Tχ,ρn deterministically is a path. We usually
ignore that trivial case in the sequel, and assume χ+ ρ > 0.

Remark 1.2. The three cases χ > 0, χ = 0 and χ < 0 give the three classes
of very simple increasing trees defined and characterized by Panholzer and
Prodinger [27], see also [4] and [12, Section 1.3.3]. In fact, it suffices to
consider χ = 1, χ = 0 and χ = −1, see Remark 1.1. Then, χ = 0 yields
the random recursive tree, as said above; χ = 1 yields the generalised plane
oriented recursive tree; χ = −1 (and ρ = m ∈ N) yields the m-ary increasing
tree, see further Section 6.

Random split trees were defined by Devroye [11] as rooted trees generated
by a certain recursive procedure using a stream of balls added to the root.
We only need a simple but important special case (the case s = 1, s0 = 1,
s1 = 0 in the notation of [11]), in which case the general definition simplifies
to the following (we use P and Pi instead of V and Vi in [11]):

Let b > 2 be fixed and let P = (Pi)
b
1 be a random vector of probabilities:

in other words, Pi > 0 and
∑b

i=1 Pi = 1. Let Tb be the infinite rooted
tree where each node has b children, labelled 1, . . . , b, and give each node

v ∈ Tb an independent copy P(v) = (P
(v)
i )b1 of P. (These vectors are thus

random, but chosen only once and fixed during the construction.) Each node
in Tb may hold one ball; if it does, we say that the node is full. Initially
all nodes are empty. Balls arrive, one by one, to the root of Tb, and move
(instantaneously) according to the following rules.

(i) A ball arriving at an empty node stays there, making the node full.
(ii) A ball arriving at a node v that already is full continues to a child of

v; the child is chosen at random, with child i chosen with probability

P
(v)
i . Given the vectors P(v), all these choices are made independently

of each other.

The random split tree Tn = TPn is the subtree of Tb consisting of the nodes
that contain the first n balls. Note that the parameters apart from n in (this
version of) the construction are b and the random b-dimensional probability
vector P (or rather its distribution); P is called the split vector.

Devroye [11] gives several examples of this construction (and also of other
instances of his general definition). One of them is the random binary search
tree, which is obtained with b = 2 and P = (U, 1−U), with U ∼ U(0, 1), the
uniform distribution on [0, 1]. The main purpose of the definition of random
split trees is that they encompass many different examples of random trees
that have been studied separately; the introduction of split trees made it
possible to treat them together. Some general results were proved in [11],
and further results and examples have been added by other authors, see for
example [10; 15].
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Devroye [11] considers only finite b, yielding trees Tn where each node has
at most b children, but the definition above of random split trees extends
to b =∞, when each node can have an unlimited number of children. This
is the case that we shall use. (Note that random recursive trees and linear
preferential attachment trees with χ > 0 do not have bounded degrees;
see Section 6 for the case χ < 0.) Our purpose is to show that with this
extension, also linear preferential attachment trees are random split trees.

Remark 1.3. The general preferential attachment tree is usually considered
as an unordered tree. However, it is often convenient to label the children
of each node by 1, 2, 3, . . . in the order that they appear; hence we can also
regard the tree as a ordered tree. Thus both the preferential attachment
trees and the split trees considered in the present paper can be regarded as
subtrees of the infinite Ulam–Harris(–Neveu) tree T∞, which is the infinite
rooted ordered tree where every node has a countably infinite set of children,
labelled 1, 2, 3, . . . . (The nodes of T∞ are all finite strings ι1 . . . ιm ∈ N∗ :=⋃∞

0 Nm, with the empty string as the root.)
One advantage of this is that it makes it possible to talk unambiguously

about inclusions among the trees. We note that both constructions above
yield random sequences of trees (Tχ,ρn )∞n=1 and (TPn )∞n=1 that are increasing:
Tχ,ρn ⊂ Tχ,ρn+1 and TPn ⊂ TPn+1.

Remark 1.4. The random split tree, on the other hand, is defined as an
ordered tree, with the potential children of a node labelled 1, 2, . . . . Note
that these do not have to appear in order; child 2 may appear before child
1, for example.

We can always consider the random split tree as unordered by ignoring
the labels. If we do so, any (possibly random) permutation of the random
probabilities Pi yields the same unordered split tree. (In particular, if b is
finite, then it is natural to permute (Pi)

b
1 uniformly at random, thus making

all Pi having the same (marginal) distribution [11]. However, we cannot do
that when b =∞.)

Using the GEM and Poisson–Dirichlet distributions defined in Section 2,
we can state our main result as follows. The proof is given in Section 3,
using Kingman’s paintbox representation of exchangeable partitions. (Ap-
pendix A.2 gives an alternative, but related, argument using exchangeable
sequences instead.) In fact, the result can be said to be implicit in [28] and
[5], see e.g. [5, Corollary 2.6].

Theorem 1.5. Let (χ, ρ) be as above, and assume χ+ρ > 0. Then, provided
the trees are regarded as unordered trees, the linear preferential attachment
tree Tχ,ρn has, for every n, the same distribution as the random split tree TPn
with b =∞ and P ∼ GEM

(
χ/(χ+ ρ), ρ/(χ+ ρ)

)
,

Moreover, (re)labelling the children of each node in order of appearance,
the sequences (Tχ,ρn )∞1 and (TPn )∞1 of random trees have the same distribu-
tion.

The same results hold also if we instead let P have the Poisson–Dirichlet
distribution PD

(
χ/(χ+ ρ), ρ/(χ+ ρ)

)
.

The result extends to the trivial case χ + ρ = 0, with P ∼ GEM(0, 0) =
PD(0, 0), i.e., P1 = 1; in this case Tn is a path.
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Corollary 1.6. The sequence of random recursive trees (Tn)∞1 = (T 0,1
n )∞1

has the same distribution as the sequence of random split trees (TPn )∞1 with
P ∼ GEM(0, 1) or P ∼ PD(0, 1) (as unordered trees).

Recall that the split vector PD(0, 1) appearing here also appears as, for
example, the asymptotic distribution of the (scaled) sizes of the cycles in a
random permutation; see e.g. [28, Section 3.1].

Corollary 1.7. The sequence of standard preferential attachment trees (Tn)∞1
= (T 1,1

n )∞1 has the same distribution as the sequence of random split trees
(TPn )∞1 with P ∼ GEM(12 ,

1
2) or P ∼ PD(12 ,

1
2) (as unordered trees).

Note that in Theorem 1.5 and its corollaries above, it is important that
we ignore the original labels, and either regard the trees as unordered, or
(re)label the children of each node in order of appearance (see Remark 1.3);
random split trees with the original labelling are different (see Remark 1.4).
In the case χ < 0, there is also a version for labelled trees, see Theorem 6.3.

We give an application of Theorem 1.5 in Section 5.

2. Notation

If T is a rooted tree, and v is a node in T , then T v denotes the subtree
of T consisting of v and all its descendants. (Thus T v is rooted at v.)

A principal subtree (also called branch) of T is a subtree T v where v is
a child of the root o of T . Thus the node set V (T ) of T is partitioned into
{o} and the node sets V (T vi) of the principal subtrees.

For a (general) preferential attachment tree, with a given weight sequence
(wk)k, the weight of a node v is wd(v), where d(v) is the outdegree of v. The
(total) weight w(S) of a set S of nodes is the sum of the weights of the nodes
in S; if T ′ is a tree, we write w(T ′) for w(V (T ′)).

The Beta distribution B(α, β) is for α, β > 0, as usual, the distribution on
[0, 1] with density function cxα−1(1 − x)β−1, with the normalization factor
c = Γ(α + β)/

(
Γ(α)Γ(β)

)
. We allow also the limiting cases B(0, β) := δ0

(β > 0) and B(α, 0) := δ1 (α > 0), i.e., the distributions of the deterministic
variables 0 and 1, respectively.

The GEM distribution GEM(α, θ) is the distribution of a random infinite
vector of probabilities (Pi)

∞
1 that can be represented as

Pi = Zi

i−1∏
j=1

(1− Zj), j > 1, (2.1)

where the Zj are independent random variables with Beta distributions

Zj ∼ B(1− α, θ + jα). (2.2)

Note that (2.1) has the interpretation that P1 = Z1, P2 is a fraction Z2

of the remaining probability 1 − P1, P3 is a fraction Z3 of the remainder
1−P1−P2 = (1−Z1)(1−Z2), and so on. Here the parameters α and θ are
assumed to satisfy −∞ < α < 1 and θ + α > 0; furthermore, if α < 0, then
θ/|α| has to be an integer. (If α < 0 and θ = m|α|, then Zm = 1, and thus
(2.1) yields Pi = 0 for all i > m; hence it does not matter that Zj really is
defined only for j 6 m in this case.) See further e.g. [28, Section 3.2].
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The Poisson–Dirichlet distribution PD(α, θ) is the distribution of the ran-

dom infinite vector (P̂i)
∞
1 obtained by reordering (Pi)

∞
1 ∼ GEM(α, θ) in

decreasing order.

3. Proof of Theorem 1.5

Lemma 3.1. With the linear weights (1.1), a tree T with m nodes has total
weight w(T ) = (m− 1)χ+mρ = m(χ+ ρ)− χ.

Proof. Let the nodes have outdegrees d1, . . . , dm. Then
∑m

i=1 di = m − 1,
and the weight of the tree is thus

w(T ) =
m∑
i=1

(χdi + ρ) = χ
m∑
i=1

di +mρ = (m− 1)χ+mρ. �

Lemma 3.2. Consider the sequence of linear preferential attachment trees
(Tn)∞1 = (Tχ,ρn )∞1 , with the children of the root labelled in order of ap-

pearence. Let Nj(n) := |T jn|, the size of the j-th principal subtree of Tn.
Then Nj(n)/n → Pj a.s. as n→∞, for every j > 1 and some random
variables Pj with the distribution GEM

(
χ/(χ+ρ), ρ/(χ+ρ)

)
. (In the trivial

case χ+ ρ = 0, interpret this as GEM(0, 0).)

Proof. The case χ+ ρ = 0 is trivial, with N1(n) = n− 1 and P1 = 1. Hence
we may assume that χ+ ρ > 0. Furthermore, see Remark 1.1, we may and
shall, for convenience, assume that

χ+ ρ = 1. (3.1)

The lemma now follows from Pitman [28, Theorem 3.2], which is stated
for “the Chinese restaurant with the (α, θ) seating plan”, since we may
regard the principal subtrees as tables in a Chinese restaurant (ignoring
the root), and then the preferential attachment model with (1.1) translates
into the (χ, ρ) seating plan as defined in [28]. (Cf. the bijection between
recursive trees and permutations in [12, Section 6.1.1], which yields this
correspondence; the uniform case treated there is the case (χ, ρ) = (0, 1),
which yields the usual Chinese restaurant process.)

For completeness, we give a direct proof using Pólya urns in Appendix A.1.
�

Proof of Theorem 1.5. Recall that in the (general) preferential attachment
tree, the parent u of a new node is chosen to be a node v with probability
proportional to the current weight wd(v) of the node. We can make this
random choice in several steps, by first deciding randomly whether u is the
root or not, and if not, which principal subtree it belongs to, making this
choice with probabilities proportional to the total weights of these sets of
nodes. If u is chosen to be in a subtree Tw, we then continue recursively
inside this tree, by deciding randomly whether u is the root of Tw or not, and
if not, which principal subtree of Tw it belongs to, again with probabilities
proportional to the total weights, and so on.

Consequently, the general preferential attachment tree can be constructed
recursively using a stream of new nodes (or balls) similarly to the random
split tree, with the rules:

(i′) A ball arriving at an empty node stays there, making the node full.
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(ii′) A ball arriving at a node v that already is full continues to a child of v.
The child is chosen at random; if v has d children v1, . . . , vd, then the
ball is passed to child i with probability cw(T vi) for each i = 1, . . . ,m,
and to the new child m+ 1 with probability cw(v) = c(χd+ ρ), where
c = 1/w(T v) is a positive normalization factor.

Thus both the random split trees and the linear preferential attachment
trees can be constructed recursively, and in order to show Theorem 1.5, it
suffices to show that the two constructions yield the same result at the root,
i.e., that balls after the first are passed on to the children of the root in
the same way in both random trees. (Provided we ignore the order of the
children, or (re)label the children in order of appearance.)

Consider the linear preferential attachment tree with the construction
above. As in the proof of Lemma 3.2, we may assume that (3.1) holds.

Label the children of the root in order of appearance, see Remark 1.3.
The first ball stays at the root, while all others are passed on; we label each
ball after the first by the label of the child of the root that it is passed to.
This gives a random sequence (Xi)

∞
i=1 of labels in N, (where Xi is the label

of ball i + 1, the ith ball that is passed on). By construction, the random
sequence (Xi)i is such that the first 1 appears before the first 2, which comes
before the first 3, and so on; we call a finite or infinite sequence (xi)i of labels
in N acceptable if it has this property.

Let (xi)
n
1 be a finite acceptable sequence of length n > 0, and let nk be

the number of times k appears in the sequence; further, let dn be the largest
label in the sequence, so nk > 1 if 1 6 k 6 dn, but nk = 0 if k > d. If
(Xi)

n
1 = (xi)

n
1 , then the subtree T k with label k has nk nodes, and thus by

Lemma 3.1 and our assumption (3.1) weight nk(χ+ρ)−χ = nk−χ, provided
k 6 dn, while the root has weight χdn + ρ. Hence, by the construction
above, noting that the tree has n+ 1 nodes and thus by Lemma 3.1 weight
(n+ 1)− χ = n+ ρ,

P
(
Xn+1 = k | (Xi)

n
1 = (xi)

n
1

)
=

{
(nk − χ)/(n+ ρ), 1 6 k 6 dn,

(dnχ+ ρ)/(n+ ρ), k = dn + 1.
(3.2)

It follows by multiplying these probabilities for n = 0 to N − 1 and rear-
ranging factors in the numerator (or by induction) that, letting d := dN and
Nk := nk for n = N ,

P
(
(Xi)

N
1 = (xi)

N
1

)
=

∏d−1
j=0(jχ+ ρ)

∏d
k=1

∏Nk−1
nk=1 (nk − χ)∏N−1

n=0 (n+ ρ)
. (3.3)

In particular, note that this probability depends on the sequence (xi)
N
1 only

through the numbers Nk. Consequently, if (x′i)
N
1 is another acceptable se-

quence that is a permutation of (xi)
N
1 , then

P
(
(Xi)

N
1 = (xi)

N
1

)
= P

(
(Xi)

N
1 = (x′i)

N
1

)
. (3.4)

Return to the infinite sequence (Xi)
∞
1 . This sequence encodes a partition

of N into the sets Aj := {k ∈ N : Xk = j}, and interpreted in this way,
(3.4) says that the random partition {Aj}j of N is an exchangeable random
partition; see e.g. [5, Section 2.3.2] or [28, Chapter 2]. (See Appendix A.2
for a version of the argument without using the theory of exchangeable
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partitions.) By Kingman’s paintbox representation theorem [22; 23; 28; 5],
any exchangeable random partition of N can be constructed as follows from
some random subprobability vector (Pi)

∞
1 , i.e., a random vector with Pi > 0

and
∑

i Pi 6 1: Let P∞ := 1 −
∑

i<∞ Pi > 0. Let Yi ∈ N ∪ {∞} be i.i.d.
random variables with the distribution (Pi)

∞
1 . Then the equivalemce classes

are {i : Yi = k} for each k < ∞, and the singletons {i} for each i with
Yi =∞.

In the present case, Lemma 3.2 shows that every principal subtree T j

satisfies either |T j(n)| → ∞ as n→∞, or T j(n) is empty for all n (when
χ < 0 and ρ = m|χ| with m < j). Hence, the equivalence classes defined
by (Xi)

∞
1 are either empty or infinite, so there are no singletons. Thus

P∞ = 0, and (Pi)
∞
1 is a random probability vector. Moreover, the paintbox

construction is precisely what the split tree construction (i)–(ii) does at the
root, provided we ignore the labels on the children.

Consequently, the sequence of random split trees TPn with this random
split vector P = (Pi)

∞
1 has the same distribution as the sequence (Tχ,ρn )∞1 ,

provided that we ignore the labels of the children, or (equivalently) relabel
the children of a node in the split trees by their order of appearance. It
remains to identify the split vector P.

Let T jn be the principal subtree of the split tree TPn whose root is labelled

j, and let Nj(n) := |T jn|. Then, by the law of large numbers, as n→∞,

Nj(n)/n
a.s.−→ Pj , j > 1. (3.5)

Recall that we may permute the probabilities Pi arbitrarily, see Remark 1.4.
Let us relabel the children of the root in their order of appearance, and per-
mute the Pi correspondingly; thus (3.5) still holds. Moreover, we have shown
that the tree also can be regarded as a linear preferential attachment tree,
and with this labelling of the children, Lemma 3.2 applies. Consequently,
(3.5) and Lemma 3.2 yield (Pi)

∞
1 ∼ GEM(χ, ρ).

Finally, PD(χ, ρ) is by definition a permutation of GEM(χ, ρ), and thus
these two split vectors define random split trees with the same distribution
(as unordered trees). �

4. An auxiliary result

In the theory of random split trees, an important role is played by the
random variable W defined as a size-biased sample from the split vector P;
in other words, we first sample P = (Pi)

∞
1 , then sample I ∈ N with the

distribution P(I = i) = Pi, and finally let W := PI . Consequently, for any
r > 0,

EW r = E
∑
i

PiP
t
i =

∑
i

EP t+1
i . (4.1)

We have a simple result for the distribution of W in our case.

Lemma 4.1. For the random split tree in Theorem 1.5, W ∼ B
(
ρ/(χ +

ρ), 1
)
. Thus W has density function γxγ−1 on (0, 1), where γ = ρ/(χ+ ρ).

Proof. Let Xn be the number of nodes in Tn that are descendants of the
first node added after the root. In the split tree TPn , let I be the label of
the subtree containing the first node added after the root. Conditioned on



8 SVANTE JANSON

the split vector P at the root, by definition P(I = i | P) = Pi. Furthermore,
still conditioned on P, the law of large numbers yields that if I = i, then

Xn/n
a.s.−→ Pi. Hence, Xn/n

a.s.−→ PI = W .
On the other hand, in the preferential attachment tree Tχ,ρn with children

labelled in order of appearance, the first node after the root always gets
label 1 and thus in the notation of Lemma 3.2, Xn = N1(n). Consequently,

Lemma 3.2 implies Xn/n
a.s.−→ P1. Since Theorem 1.5 implies that Xn has the

same distribution in the two cases, W
d
= P1. Furthermore, by (2.1)–(2.2),

assuming again for simplicity (3.1), P1 = Z1 ∼ B(1−χ, χ+ρ) = B(ρ, 1). �

Thus W
d
= P1 for our GEM distribution. This is only a special case

of the general result that rearranging the Pi in size-biased order preserves
GEM(α, θ) for any pair of parameters, see [28, Section 3.2].

Example 4.2. By Lemma 4.1 we have EW = γ/(γ + 1), and thus by (4.1)

∞∑
i=1

EP 2
i = EW =

ρ

χ+ 2ρ
. (4.2)

It is possible to calculate the sum in (4.2) directly, using the definitions
(2.1)–(2.2), but the calculation is rather complicated:

∞∑
i=1

EP 2
i =

∞∑
i=1

EZ2
i

∏
j<i

E(1− Zj)2

=
∞∑
i=1

(1− α)(2− α)
∏i−1

1 (θ + jα)(θ + 1 + jα)∏i
1(θ + 1 + (j − 1)α)(θ + 2 + (j − 1)α)

=
(1− α)(2− α)

(θ + 1)(θ + 2)

∞∑
i=1

i−1∏
1

θ + jα

θ + 2 + jα
. (4.3)

The last sum can be summed, for example by writing it as a hypergeomet-
ric function F (θ/α + 1, 1; (θ + 2)/α + 1; 1) and using Gauss’s formula [26,
(15.4.20)], leading to (4.2). The proof above seems simpler.

5. An application

Devroye [11] showed general results on the height and insertion depth
for split trees, and used them to give results for various examples. The
theorems in [11] assume that the split vectors are finite, so the trees have
bounded degrees, but they may be extended to the present case, using e.g.
(for the height) results on branching random walks [6; 7] and methods of
[8], [9]. However, for the linear preferential attachment trees, the height and
insertion depth are well known by other methods, see e.g. [29], [16]; hence
we give instead another application.

For a rooted tree T , let h(v) denote the depth of a node v, i.e., its distance
to the root. Furthermore, for two nodes v and w, let v ∧w denote their last
common ancestor. We define

Y = Y (T ) :=
∑
v 6=w

h(v ∧ w), (5.1)
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summing over all pairs of distinct nodes. (For definiteness, we sum over
ordered pairs; summing over unordered pairs is the same except for a factor
1
2 . We may modify the definition by including the case v = w; this adds the
total pathlength which a.s. is of order O(n log n), see (5.17) below, and thus
does not affect our asymptotic result.)

The parameter Y (T ) occurs in various contexts. For example, if Ŵ (T )

denotes the Wiener index and P̂ (T ) the total pathlength of T , then Y (T ) =

Ŵ (T ) − (n − 1)P̂ (T ), see [17]. Hence, for the random recursive tree and
binary search tree considered in [25], the theorems there imply convergence
of Yn/n

2 in distribution. We extend this to convergence a.s., and to all linear
preferential attachment trees, with characterizations of the limit distribution
Q that are different from the one given in [25].

Theorem 5.1. Consider random split trees TPn of the type defined in the
introduction for some random split vector P = (Pi)

∞
1 , and let Yn := Y (TPn )

be given by (5.1). Assume that with positive probability, 0 < Pi < 1 for some

i. Then there exists a random variable Q such that Yn/n
2 a.s.−→ Q as n→∞.

Furthermore, Q has the representation in (5.8) below and satisfies

EQ =
1

1− E
∑

i P
2
i

− 1 <∞, (5.2)

and the distributional fixed point equation

Q
d
=
∞∑
i=1

P 2
i (1 +Q(i)), (5.3)

with all Q(i) independent of each other and of (Pi)
∞
1 , and with Q(i) d

= Q.
If W is the size-biased splitting variable defined in Section 4, then also

EQ =
EW

1− EW
. (5.4)

Higher moments may be calculated from (5.3) or (5.8), with some effort.

Proof. We modify the definition of split trees by never placing a ball in an
node; we use rule (ii) for all nodes, and thus each ball travels along an
infinite path, chosen randomly with probabilities determined by the split
vectors at the visited nodes. Let Xk,i be the number of the child chosen by
ball k at the ith node it visits, and let Xk := (Xk,i)

∞
i=1. Label the nodes of

T∞ by strings in N∗ as in Remark 1.3. Then the path of ball k is ∅, Xk,1,
Xk,1Xk,2, . . . , visiting the nodes labelled by initial segments of Xk. Note

that conditioned on the split vectors V(v) for all v ∈ T∞, the sequences Xk

are i.i.d. random infinite sequences with the distribution

P(Xk,j = ij , 1 6 j 6 m) =

m∏
j=1

P
(i1···ij−1)
ij

. (5.5)

For two sequences X,X′ ∈ N∞, let

f(X,X′) := min{i : Xi 6= X ′i} − 1, (5.6)

i.e., the length of the longest common initial segment. Let vk be the node
in Tn that contains ball k, and note that if neither vk nor v` is an ancestor
of the other, then h(vk ∧ v`) = f(Xk,X`).
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We define, as an approximation of Yn,

Ŷn :=
∑

k,`6n, k 6=`
f(Xk,X`) = 2

∑
`<k6n

f(Xk,X`). (5.7)

Condition on all split vectors P(v). Then, using (5.5),

E
(
f(X1,X2) | {P(v), v ∈ T∞}

)
= E

∞∑
m=1

∑
i1,...,im∈N

1{X1,j = X2,j = ij for j = 1, . . . ,m}

=

∞∑
m=1

∑
i1,...,im∈N

( m∏
j=1

P
(i1···ij−1)
ij

)2
=: Q. (5.8)

Hence, since the split vectors are i.i.d.,

E f(X1,X2) = EQ =
∞∑
m=1

∑
i1,...,im∈N

m∏
j=1

EP 2
ij =

∞∑
m=1

(∑
i

EP 2
i

)m
=

1

1−
∑

i EP 2
i

− 1. (5.9)

Since
∑

i P
2
i 6

∑
i Pi = 1, with strict inequlity with positive probability,

E
∑

i P
2
i < 1, and thus (5.9) shows that E f(X1,X2) < ∞. Consequently,

a.s.,

Q = E
(
f(X1,X2) | {P(v), v ∈ T∞}

)
<∞. (5.10)

Condition again on all split vectors P(v). Then the random sequences Xk

are i.i.d., and thus (5.7) is a U -statistic. Hence, we can apply the strong law
of large numbers for U -statistics by Hoeffding [14], which shows that a.s.

Ŷn
n(n− 1)

→ E
(
f(X1,X2) | {P(v), v ∈ T∞}

)
= Q. (5.11)

Consequently, also unconditionally,

Ŷn
n(n− 1)

a.s.−→ Q. (5.12)

It remains only to prove that (Ŷn − Yn)/n2
a.s.−→ 0, since we already have

shown (5.2), which implies (5.4) by (4.1), and (5.3) follows from the repre-
sentation (5.8).

As noted above, if ` < k, then h(vk ∧ v`) = f(Xk,X`) except possibly
when v` is an ancestor of vk; furthermore, in the latter case

0 6 h(vk ∧ v`) 6 f(Xk,X`). (5.13)

Let Hn := max{h(v) : v ∈ Tn} be the height of Tn = TPn , and let H∗n :=
max{f(Xk,X`) : ` < k 6 n}. Since a node vk has at most Hn ancestors, it
follows from (5.13) that, writing v ≺ w when v is ancestor of w,

0 6 Ŷn − Yn = 2
n∑
k=1

∑
vl≺vk

(
f(Xk,X`)− h(vk ∧ v`)

)
6 2nHnH

∗
n. (5.14)

Furthermore, there is some node vk with h(vk) = Hn, and if v` is its parent,
then f(Xk,X`) > Hn − 1; hence, Hn 6 H∗n + 1.
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Let m = mn := dc log ne, where c > 0 is a constant chosen later. Then,
arguing similarly to (5.8)–(5.9),

P
(
f(X1,X2) > m | {P(v), v ∈ T∞}

)
= E

∑
i1,...,im∈N

1{X1,j = X2,j = ij for j = 1, . . . ,m}

=
∑

i1,...,im∈N

( m∏
j=1

P
(i1···ij−1)
ij

)2
(5.15)

and thus, letting a :=
∑

i EP 2
i < 1,

P
(
f(X1,X2) > m

)
=

∑
i1,...,im∈N

m∏
j=1

EP 2
ij = am. (5.16)

By symmetry, we thus have

P(H∗n > m) 6
∑
`<k6n

P
(
f(Xk,X`) > m

)
6 n2am 6 n2ac logn 6 n−2,

provided we choose c > 4/| log a|. Consequently, by the Borel–Cantelli
lemma, a.s. H∗n 6 m− 1 6 c log n for all large n. Hence, a.s. for all large n,

Hn 6 H
∗ + 1 6 c log n+ 1, (5.17)

and (5.14) shows that a.s. Ŷn − Yn = O(n log2 n). In particular, (Ŷn −
Yn)/n2

a.s.−→ 0, which as said above together with (5.12) completes the proof.
�

Corollary 5.2. Let Yn := Y (Tχ,ρn ) be given by (5.1) for the linear prefer-

ential attachment tree Tχ,ρn , and assume χ+ ρ > 0. Then Yn/n
2 a.s.−→ Q for

some random variable Q with

EQ =
ρ

χ+ ρ
. (5.18)

Proof. Immediate by Theorems 1.5 and 5.1, using (5.4) and (4.2) to obtain
(5.18). �

6. The case χ < 0: m-ary increasing trees

In this section we consider the case χ < 0 of linear preferential attach-
ment trees further; as noted above, this case has some special features. By
Remark 1.1, we may assume χ = −1, and then by our assumptions, ρ > 0 is
necessarily an integer, say ρ = m ∈ N. As said in Remark 1.1, the casem = 1
is trivial, with T−1,1n a path, so we are mainly interested in m ∈ {2, 3, . . . }.

By (1.1), wm = 0, and thus no node in T−1,mn will get more that m
children. In other words, the trees will all have outdegrees bounded by
m. It follows from Lemma 3.2, or directly from (2.1)–(2.2), that if, as
in Theorem 1.5, (Pi)

∞
1 ∼ GEM

(
− 1
m−1 ,

m
m−1

)
, then Pj = 0 for j > m.

Consequently, in this case, the split tree can be defined using a finite split
vector (Pj)

b
1 as in Devroye’s original definition (with b = m).

Recall than an m-ary tree is a rooted tree where each node has at most
m children, and the children are labelled by distinct numbers in {1, . . . ,m};
in other words, a node has m potential children, labelled 1, . . . ,m, although



12 SVANTE JANSON

not all of these have to be present. (Potential children that are not nodes
are known as external nodes.) The m-ary trees can also be defined as the
subtrees of the infinite m-ary tree Tm that contain the root. Note that m-
ary trees are ordered, but that the labelling includes more information than
just the order of children (for vertices of degree less than m).

It is natural to regard the trees T−1,mn as m-ary trees by labelling the
children of a node by 1, . . . ,m in (uniformly) random order. It is then easy
to see that the construction above, with wk = m− k by (1.1), is equivalent
to adding each new node at random uniformly over all positions where it
may be placed in the infinite tree Tm, i.e., by converting a uniformly chosen
random external node to a node; see [12, Section 1.3.3]. Regarded in this

way, the trees T−1,mn are called m-ary increasing trees (or m-ary recursive
trees) See also [4, Example 1].

Example 6.1. The case χ = −1, m = 2 gives, using the construction above
with m-ary (binary) trees and external nodes, the random binary search
tree. As mentioned in the introduction, the binary search tree was one of
the original examples of random split trees in [11], with the split vector
(U, 1− U) where U ∼ U(0, 1).

Our Theorem 1.5 also exhibits the binary search tree as a random split
tree, but with split vector (P1, 1 − P1) ∼ GEM(−1, 2) and thus, by (2.2),
P1 = Z1 ∼ B(2, 1). There is no contradiction, since we consider the trees
as unordered in Theorem 1.5, and thus any (possibly random) permutation
of the split vector yields the same trees; in this case, it is easily seen that
reordering (P1, P2) uniformly at random yields (U, 1−U). (P1 ∼ B(2, 1) has
density 2x, and P2 = 1−P1 thus density 2(1−x), leading to a density 1 for
a uniformly random choice of one of them.)

There are many other split vectors yielding the same unordered trees.
For example, Theorem 1.5 gives PD(−1, 2) as one of them. By definition,
PD(−1, 2) is obtained by ordering GEM(−1, 2) in decreasing order; by the
discussion above, this is equivalent to ordering (U, 1−U) in decreasing order,

and it follows that the split vector (P̂1, P̂2) ∼ PD(−1, 2) has P̂1 ∼ U(12 , 1)

and P̂2 = 1− P̂1.
For the binary search tree, Devroye’s original symmetric choice (U, 1−U)

for the split vector has the advantage that, by symmetry, the random split
tree then coincides with the binary search tree also as binary trees.

Remark 6.2. For m > 2, the m-ary increasing tree considered here is not
the same as the m-ary search tree; the latter is also a random split tree [11],
but not of the simple type studied here.

Example 6.1 shows that when m = 2, we may see the m-ary increasing
tree as a random split tree also when regarded as an m-ary tree, and not
only as an unordered tree as in Theorem 1.5. We show next that this
extends to m > 2. Recall that the Dirichlet distribution Dir(α1, . . . , αm)
is a distribution of probability vectors (X1, . . . , Xm), i.e. random vectors
with Xi > 0 and

∑m
1 Xi = 1; the distribution has the density function

cxα1−1
1 · · ·xαm−1

m dx1 · · · dxm−1 with the normalization factor c = Γ(α1 +
· · ·+ αm)/

∏m
1 Γ(αi).
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Theorem 6.3. Let m > 2. The sequence of m-ary increasing trees (Tn)∞1 =

(T−1,mn )∞1 , considered as m-ary trees, has the same distribution as the se-
quence of random split trees (TPn )∞1 with the split vector P = (Pi)

m
1 ∼

Dir( 1
m−1 , . . . ,

1
m−1).

Proof. By Theorem 1.5, the sequence of m-ary increasing trees (T−1,mn )n has,

as unordered trees, the same distribution as the random split trees (TP
′

n )n,
where P ′ = (P ′i )

∞
1 ∼ GEM

(
− 1
m−1 ,

m
m−1

)
. As noted above, P ′j = 0 for j > m,

so we may as well use the finite split vector (P ′i )
m
1 . Let P = (Pi)

m
1 be a

uniformly random permutation of (P ′i )
m
1 . Then, as sequences of unordered

trees, (TPn )n
d
= (TP

′
n )n

d
= (T−1,mn )n. Moreover, regarded as m-ary trees, both

(TPn )n and (T−1,mn )n are, by symmetry, invariant under random relabellings

of the children of each node. Consequently, (TPn )n
d
= (T−1,mn )n also as m-ary

trees, as claimed.
It remains to identify the split vector P. The definition as a random

permutation of (P ′i )
m
1 does not seem very convenient; instead we use a vari-

ation of the argument in Appendix A.1 for Lemma 3.2. We may assume
that Tn = T−1,mn = TPn , as m-ary trees, for all n > 1. Let Nj(n) be the
number of nodes and N e

j (n) the number of external nodes in the principal

subtree T jn (now using the given labelling of the children of the root). It is
easy to see that N e

j (n) = (m− 1)Nj(n) + 1.

Consider first Tn as the random split tree TPn ; then the law of large
numbers yields, by conditioning on the split vector P at the root,

Nj(n)/n
a.s.−→ Pj , j = 1, . . . ,m. (6.1)

Next, consider Tn as the m-ary increasing tree T−1,mn , and regard the exter-

nal nodes in T jn as balls with colour j. Then the external nodes evolve as a
Pólya urn with m colours, starting with one ball of each colour and at each
round adding m−1 balls of the same colour as the drawn one. Then, see e.g.
[2] or [20, Section 4.7.1], the vector of proportions

(
N e
j (n)/((m−1)n+1)

)m
j=1

of the different colours converges a.s. to a random vector with a symmet-
ric Dirichlet distribution Dir( 1

m−1 , . . . ,
1

m−1). Hence the vector
(
Nj(n)/n

)
j

converges to the same limit. This combined with (6.1) shows that P ∼
Dir( 1

m−1 , . . . ,
1

m−1). �

Remark 6.4. If we modify the proof above by considering one Nj at a
time, using a sequence of two-colour Pólya urns as in Appendix A.1, we
obtain a representation (2.1) of the Dirichlet distributed split vector with

Zj ∼ B
(

1
m−1 ,

m−j
m−1

)
, j = 1, . . . ,m; cf. the similar but different (2.2). (This

representation can also be seen directly.)

Remark 6.5. Broutin et al. [9] study a general model of random trees that
generalizes split trees (with bounded outdegrees) by allowing more general
mechanisms to split the nodes (or balls) than the ones considered in the
present paper. (The main difference is that the splits only asymptotically
are given by a single split vector V.) Their examples include the m-ary
increasing tree, and also increasing trees as defined by Bergeron, Flajolet and
Salvy [4] with much more general weights, assuming only a finite maximum
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outdegree m; they show that some properties of such trees asymptotically
depend only on m, and in particular that the distribution of subtree sizes(
Nj(n)/n

)d
1

converges to the Dirichlet distribution Dir( 1
m−1 , . . . ,

1
m−1) seen

also in Theorem 6.3 above. (Recall that Theorem 6.3, while for a special
case only, is an exact representation for all n and not only an asymptotic
result.)

There is no analogue of Theorem 6.3 for χ > 0, since then the split vector
is infinite, and symmetrization is not possible.
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Appendix A. Two alternative proofs

We give here two alternative arguments, a direct proof of Lemma 3.2
and an alternative version of part of the proof of Theorem 1.5 without
using Kingman’s theory of exchangeable partitions. We do this both for
completeness and because we find the alternative and more direct arguments
interesting. (For the proof of Theorem 1.5, it should be noted that the two
arguments, although stated using different concepts, are closely related, see
the proof of Kingman’s paintbox theorem by Aldous [1, §11].)

A.1. A direct proof of Lemma 3.2. We often write Nk for Nk(n).
Consider first the evolution of the first principal subtree T 1

n . Let us colour
all nodes in T 1

n red and all other nodes white. If at some stage there are
r = N1 > 1 red nodes and w white nodes, and thus n = r + w nodes in
total, then the total weight R of the red nodes is, using Lemma 3.1,

R = w(T 1
n) = r − χ = N1 − χ, (A.1)

while the total weight of all nodes is w(Tn) = n − χ, and thus the total
weight W of the white nodes is

W = w(Tn)− w(T 1
n) = (n− χ)− (r − χ) = n− r = w. (A.2)

By (A.1)–(A.2), adding a new red node increases R by 1, but does not
change W , while adding a new white node increases W by 1 but does not
change R. Moreover, by definition, the probabilities that the next new node
is red or white are proportional to R and W . In other words, the total
red and white weights R and W evolve as a Pólya urn with balls of two
colours, where a ball is draw at random and replaced together with a new
ball of the same colour. (See e.g. [13; 30] and, even earlier, [24].) Note that
while the classical description of Pólya urns considers the numbers of balls
of different colours, and thus implicitly assumes that these are integers, the
weights considered here may be arbitrary positive real numbers; however,
it has been noted many times that this extension of the original definition
does not change the results, see e.g. [18, Remark 4.2] and cf. [19] for the
related case of branching processes.

In our case, the first node is the root, which is white, and the second node
is its first child, which is the root of the principal subtree T 1 and thus is
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red. Hence, the Pólya urn just described starts (at n = 2) with r = w = 1,
and thus by (A.1)–(A.2) R = 1− χ and W = 1.

It is well-known that for a Pólya urn of the type just described (adding
one new ball each time, of the same colour as the drawn one), with initial
(non-random) values R0 and W0 of the weights, the red proportion in the
urn, i.e., R/(R + W ), converges a.s. to a random variable Z ∼ B(R0,W0).
(Convergence in distribution follows easily from the simple exact formula for
the distribution of the sequence of the first N draws [24]; convergence a.s.
follows by the martingale convergence theorem, or by exchangeability and
de Finetti’s theorem. See also [20, Sections 4.2 and 6.3.3].) Consequently,

in our case, R/(R + W )
a.s.−→ Z1 ∼ B(1 − χ, 1), and thus by (A.1)–(A.2)

N1(n)/n
a.s.−→ Z1 ∼ B(1− χ, 1). Note that this is consistent with (2.2), with

(α, θ) = (χ, ρ), since we assume (3.1). Furthermore, by the definition (2.1),

we have P1 = Z1, and thus N1(n)/n
a.s.−→ P1.

We next consider N2, then N3, and so on. In general, for the kth principal

subtree, we suppose by induction that Ni(n)/n
a.s.−→ Pi for 1 6 i < k, with

Pi given by (2.1) for some independent random variables Zi satisfying (2.2),
i < k. We now colour all nodes in the principal subtree T kn red, all nodes in
T 1
n , . . . , T

k−1
n black, and the remaining ones white. We then ignore all black

nodes, and consider only the (random) times that a new node is added and
becomes red or white. Arguing as above, we see that if there are r = Nk > 1
red and w white nodes, then the red and white total weights R and W are
given by

R = w(T kn ) = r − χ = Nk − χ, (A.3)

W = w(Tn)−
k∑
i=1

w(T in) = (n− χ)−
k∑
i=1

(Ni − χ) = w + (k − 1)χ. (A.4)

Moreover, (R,W ) evolve as a Pólya urn as soon as there is a red node. When
the first red node appears, there is only one white node (the root), since then
T j is empty for j > k. Consequently, then r = w = 1, and (A.3)–(A.4) show
that the Pólya urn now starts with R = 1−χ and W = 1+(k−1)χ = kχ+ρ.
Since the total number of non-black nodes is n −

∑
i<kNi, it follows that,

as n→∞,

Nk(n)

n−
∑

i<kNi(n)

a.s.−→ Zk, (A.5)

for some random variable Zk ∼ B(1−χ, kχ+ρ), again consistent with (2.2).
Moreover, this Pólya urn is independent of what happens inside the black
subtrees, and thus Zk is independent of Z1, . . . , Zk−1. We have, by (A.5),
the inductive hypothesis and (2.1),

Nk(n)

n
=

Nk(n)

n−
∑

i<kNi(n)
·
n−

∑
i<kNi(n)

n

a.s.−→ Zk

(
1−

∑
i<k

Pi

)
= Zk

∏
i<k

(1− Zi) = Pk. (A.6)

This completes the proof. �
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A.2. An alternative argument in the proof of Theorem 1.5. The
equality (3.4) shows a kind of limited exchangeability for the infinite se-
quence (Xi)

∞
1 ; limited because we only consider acceptable sequences, i.e.,

the first appearance of each label is in the natural order. We eliminate this
restriction by a random relabelling of the principal subtrees; let (Ui)

∞
1 be an

i.i.d. sequence of U(0, 1) random variables, independent of everything else,
and relabel the balls passed to subtree i by Ui. Then the sequence of new
labels is (UXi)

∞
1 , and it follows from (3.4) and symmetry that this sequence

is exchangeable, i.e., its distribution is invariant under arbitrary permuta-
tions. Hence, by de Finetti’s theorem [21, Theorem 11.10], there exists a
random probability measure P on [0, 1] such that the conditional distribu-
tion of (UXi)

∞
1 given P a.s. equals the distribution of an i.i.d. sequence of

random variables with the distribution P.
As in the proof in Section 3, every principal subtree T j satisfies by

Lemma 3.2 either |T j(n)| → ∞ as n→∞, or T j(n) = ∅ for all n. Hence,
a.s. there exists some (random) index ` such that X` = X1, and thus
UX`

= UX1 . It follows that the random measure P a.s. has no continuous
part, so P =

∑∞
i=1 Piδξi , for some random variables Pi > 0 and (distinct)

random points ξi ∈ [0, 1], with
∑

i Pi = 1. (We allow Pi = 0, and can thus
write P as an infinite sum even if its support happens to be finite.)

The labels ξi serve only to distinguish the subtrees, and we may now re-
label again, replacing ξi by i. After this relabelling, the sequence (Xi) has
become a sequence which conditioned on P := (Pi)

∞
1 is an i.i.d. sequence

with each variable having the distribution P. In other words, up to a (ran-
dom) permutation of the children, the rules (i′)–(ii′) yield the same result as
the split tree rules (i)–(ii) given in the introduction, using the split vector
P = (Pi)

∞
1 .

It remains to identify this split vector, which is done as in Section 3, using
(3.5) and Lemma 3.2. �

References

[1] David J. Aldous. Exchangeability and related topics. École d’Été de
Probabilités de Saint-Flour XIII – 1983, 1–198, Lecture Notes in Math.
1117, Springer, Berlin, 1985.

[2] Krishna B. Athreya. On a characteristic property of Polya’s urn. Studia
Sci. Math. Hungar. 4 (1969), 31–35.
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Vorgänge. Zeitschrift Angew. Math. Mech. 3 (1923), 279–289.

[14] Wassily Hoeffding. The strong law of large numbers for U -statistics.
Institute of Statistics, Univ. of North Carolina, Mimeograph series 302
(1961). https://repository.lib.ncsu.edu/handle/1840.4/2128

[15] Cecilia Holmgren. Novel characteristic of split trees by use of renewal
theory. Electron. J. Probab. 17 (2012), no. 5, 27 pp.

[16] Cecilia Holmgren and Svante Janson. Fringe trees, Crump–Mode–
Jagers branching processes and m-ary search trees. Probability Surveys
14 (2017), 53–154.

[17] Svante Janson, The Wiener index of simply generated random trees.
Random Structures Algorithms 22 (2003), no. 4, 337–358.

[18] Svante Janson. Functional limit theorems for multitype branching pro-
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