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Abstract. We prove some basic results for a dynamical system given
by a piecewise linear and contractive map on the unit interval that
takes two possible values at a point of discontinuity. We prove that
there exists a universal limit cycle in the non-exceptional cases, and that
the exceptional parameter set is very tiny in terms of gauge functions.
The exceptional two-dimensional parameter is shown to have Hausdorff-
dimension one. We also study the invariant sets and the limit sets;
these are sometimes different and there are several cases to consider.
In addition, we give a thorough investigation of the dynamics; studying
the cases of rational and irrational rotation numbers separately, and
we show the existence of a unique invariant measure. We apply some
of our results to a combinatorial problem involving an election method
suggested by Phragmén and show that the proportion of elected seats
for each party converges to a limit, which is a rational number except
for a very small exceptional set of parameters. This is in contrast to
a related election method suggested by Thiele, which we study at the
end of this paper, for which the limit can be irrational also in typical
cases and hence there is no typical ultimate periodicity as in the case of
Phragmén’s method.
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1. Introduction

The purpose of this paper is to study the dynamical system f± : [0, 1]→ [0, 1]
given by the multi-valued function x 7→ {f−(x), f+(x)}, where

f−(x) = {ax+ b}, (1.1)

where a and b are given constants with 0 < a < 1 and 0 6 b < 1, {·} denotes
the usual fractional part taking values in [0, 1), and where f+(x) takes the
value 1 instead of 0 for x such that ax+ b is an integer, but otherwise equals
f−(x). We write f+(x) = {ax+ b}+.

The dynamical system given by f− : [0, 1)→ [0, 1) has been studied from
time to time and looks deceptively simple; it is locally contractive, but it
has (typically) a discontinuity which makes the behaviour non-trivial. It has
been studied in a variety of contexts, see, e.g., [34], [17], [5], [6], [3], and [9];
furthermore, it is a special case of more general locally contractive dynamical
systems in one or several dimensions studied in [4] and [8]. The recent works
by Nogueira and Pires [24], Nogueira, Pires and Rosales [25], and, especially,
that of Laurent and Nogueira [21], are close to our investigation.

We study the dynamical system given by the multi-valued function f±
instead of just f−, both in order to obtain complete (and symmetric) results
concerning the invariant set and the limit set, and because we need f± for our
application to an election method in Section 11. The study of the dynamics
given by f± becomes somewhat more complicated than for f−, for example
when studying the possible orbits, but we are rewarded by clear and useful
results; see for example the results in Sections 8 and 9.

Earlier studies of f−, show that (ignoring a few complications that dis-
appear when considering f±) the limit set may be either a periodic orbit
or a Cantor set, and that these cases correspond to rational and irrational
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rotation numbers. These results are easily extended to f±; much of the ex-
tension is straight-forward, but we also add some details and special features
for f± that make the picture more complete.

In Sections 2 and 3 we make a preliminary investigation of the invariant
set Λ± :=

⋂∞
n=0 f

n
±([0, 1]) and the limit set ωf±(x) of f± for x ∈ [0, 1]. (See

Section 2 for the definition of the limit set in this context.) We also show
that if there exists a periodic orbit, then it is a universal limit cycle in the
sense that every orbit converges to it. In particular, there is at most one
periodic orbit. We further give examples when ωf±(x) ( Λ± for all x ∈ [0, 1],
and show that even if f± has a universal limit cycle, the invariant set may
be different from it, in analogy with the higher dimensional case, see [8].

In Section 4 we study all possibilities for orbits of f±, with different cases
depending on whether a periodic orbit exists or not, and also on whether
the periodic orbit (if it exists) contains the point of discontinuity (the point
of two values) of f± or not.

Next, building on the work by Bugeaud [5], Bugeaud and Conze [6], and
Coutinho [9], we study in Sections 5 and 6 the rotation number of f±, with
special attention to whether the rotation number is rational or irrational.
Furthermore, we show in Section 5 that every orbit has a well-defined aver-
age, and that this is related to the rotation number. In Section 6 we identify
the set of parameters (a, b) that gives rise to a certain rotation number.

As shown by Bugeaud [5] and Bugeaud and Conze [6], the rotation num-
ber of this dynamical system is typically rational; the exceptional set of
parameters (a, b) such that the rotation number is irrational has Lebesgue
measure 0, and Laurent and Nogueira [21] showed, furthermore, that the set
of exceptional b for a fixed a has Hausdorff dimension 0. We improve this
result on Hausdorff dimension somewhat in Section 7, in that we specify a
gauge function, h(t) = 1/| log t|2, for which the Hausdorff measure of the
exceptional parameter set is finite. We also give a lower bound showing
that this exceptional set is not arbitrarily tiny, by showing that the Haus-
dorff measure is positive for the gauge function h(t) = 1/| log t|. We further
prove that the exceptional set of parameter pairs (a, b) (a subset of [0, 1)2)
has Hausdorff dimension 1. We prove in Section 7 also that the Hausdorff
dimension of the invariant set Λ± is zero and that its Hausdorff measure is
finite for the gauge function h(t) = 1/| log t|. We leave it as an open question
whether this gauge function is best possible in some sense.

In Section 8 we prove that the dynamical system given by f± has a rational
rotation number if and only if it has a universal limit cycle. In Section 9, we
study the case of an irrational rotation number and classify the limit sets
for f−, f+ and f±; we prove in particular that the limit set ωf±(x) (then a
Cantor set) is equal to the invariant set Λ± for all x ∈ [0, 1].

In Section 10, we show that the dynamical system F± has a unique invari-
ant measure with support in the invariant set. Furthermore, the empirical
measure of any orbit converges to this invariant measure.

The dynamical system we consider, or rather the one given by f−, has
been studied in several applications, of which we here only mention a couple
of interesting ones: the work by Feely and Chua [14] in signal theory, which
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inspired [5] and [6], and the paper by Coutinho et al. [10] studying genetic
regulatory networks.

Two election methods. We also have an application in mind, and this
was our original motivation for the present work. We wanted to understand
a curious behaviour recently found by Mora and Oliver [23] of an election
method that was suggested in 1894 by the Swedish mathematician Edvard
Phragmén [26].

As a background, consider election methods where a given number n > 1
of persons are to be elected from some list of candidates without any formal
parties, and each voter votes for set of candidates (without ranking), where
the set may be chosen arbitrarily (except that possibly its size is restricted).
One such method is simple plurality, where the n persons with the largest
number of votes are elected. (In this case, usually each voter is restricted
to vote for at most n candidates; this system is also called block vote. The
version where a voter may vote for any number of candidates is called appoval
voting.) This method has been widely used, and it is still widely used in e.g.
associations and societies without (formal or informal) parties. However, for
general elections with political parties, it will typically lead to the largest
party getting all seats; hence this method has for such purposes in most
places been replaced by other methods that tend to give representation also
to smaller parties, for example proportional methods based on parties with
separate lists such as D’Hondt’s method [11, 12] or Sainte-Laguë’s method
[31]. (Many different election methods are and have been used, or proposed;
see e.g. [1], [16] and [30] for discussions of several important ones, including
also practical and political aspects.)

Another way to achieve some kind of proportionality is to keep the sys-
tem above, where each voter votes with a ballot containing an arbitrary set
of candidates, but elect the n persons sequentially and reduce the voting
power of the ballots where some candidates already have been elected. Two
different such systems were proposed in 1894 and 1895 by the Swedish math-
ematican Edvard Phragmén (1863–1937) [26, 27] and the Danish astronomer
and mathematician Thorvald Nicolai Thiele (1838–1910) [33], respectively;
see also [28, 29] and [20]. Both methods can be seen as generalizations of
D’Hondt’s method to a situation without formal parties [27, 20]. (To be
precise, in a situation with organized parties, if every voter votes for a party
list, then both methods yield the same result as D’Hondt’s method. This is
easy to see from the descriptions in Sections 11.2 and 12.1.)

We describe Phragmén’s and Thiele’s methods in Sections 11 and 12; see
[20] for further discussion.

A party version. Mora and Oliver [23] recently considered an extension
of Phragmén’s method, where the individual candidates are replaced by
(disjoint) groups of candidates; these groups are called candidatures in [23],
but we shall call them parties. Mathematically, the difference is that a party
may get several members elected; the seats are allocated to the parties one
by one as in the original method, but we allow repetitions so a party may
be selected several times. We assume in this paper (unlike [23]) that the
parties are sufficiently large (with potentially infinite lists of candidates) so
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that they do not run out of persons to fill their seats. We also consider the
same extension of Thiele’s method.

Remark 1.1. We have presented the party version as an extension of the
original method, but it can also be considered as a special case. Consider the
original method with individual candidates and assume that there are parties
consisting of disjoint sets of candidates that are regarded as equivalent by
all voters (and by us), so that each voter votes for either all candidates from
a party or for none of them, for each party. In other words, each voter
votes for the union of some set of parties. It is then easy to see, for both
Phragmén’s and Thiele’s methods, that the result is the same for the party
version and for the original version (with the party representatives chosen
e.g. by lot, since all from the same party will tie each time).

We consider an election using the party version of either Phragmén’s or
Thiele’s method, with some set of parties and some set of votes (where each
vote thus is for one or several parties). We let n > 1 seats be distributed
in the election, and let ni be the number of seats given to a party i and
pin := ni/n the corresponding proportion of seats. Our main interest is
in the asymptotics of these proportions as the number n of elected seats
tends to infinity, for a fixed set of votes. (This makes sense for the party
version, but not for the original version.) In the case when each voter votes
for exactly one party, both methods reduce to D’Hondt’s method, as said
above, and it is well-known and easy to see that the proportion pin of elected
seats for a party then converges to the proportion of votes for that party.
(For more precise results, see [19].)

Mora and Oliver [23, Section 7.7] studied in particular the party version of
Phragmén’s method in the case with only two parties, A and B, and found
numerically that the proportions nA/n and nB/n = 1−nA/n of elected seats
for each party do converge; however, the limit has an unexpected singular
‘Devil’s staircase’ structure as a function of the proportions of votes for
different ballots: it seemed that the limit is always a rational number and
that each rational number in (0, 1) is the limit for some range of the vote
proportions. We show that this is indeed the case, with the modification
that irrational limits exist but only for a null set of the parameters, by
interpreting the party version of Phragmén’s method as a dynamical system,
which in the case of two parties can be transformed to a dynamical system
of the type considered in the present paper. This leads to the following
theorem, which is one of our main results. The proof is given in Section 11.
Recall that in the present context each vote is either for party A, party B
or the set {A,B}, which we denote by AB.

Theorem 1.2. Consider the party version of Phragmén’s election method,
with two parties A and B, and let the proportions of votes on A, B and AB
be α, β and ζ = 1− α− β, respectively, and assume that α+ β > 0. Let nA
and nB be the numbers of seats given to the two parties when n seats have
been distributed; then the fractions nA/n and nB/n of seats given to the two
parties converge to some limits pA and pB = 1−pA, respectively, as n→∞.
Furthermore, the following holds.

(i) nA = pAn+O(1) and nB = pBn+O(1).
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(ii) If α > β > 0, then

pB =
1

2 + b0 + ρ
, (1.2)

where ρ is the rotation number of the dynamical system

f±(x) = {{ax+ b}, {ax+ b}+} (1.3)

and we define

a :=
αβ

(α+ ζ)(β + ζ)
=

αβ

(1− α)(1− β)
∈ (0, 1], (1.4)

b∗ :=
α− β
β

+
α(1− α− β)

(1− α)(1− β)
, (1.5)

b := {b∗}, (1.6)

b0 := bb∗c. (1.7)

We have a < 1 ⇐⇒ ζ > 0.
(iii) If the rotation number ρ is rational, and furthermore ζ > 0, then the

sequence of awarded seats is eventually periodic.

Furthermore, (1.2) can be combined with Theorem 6.5 or Theorems 7.1–
7.2, which all imply that the rotation number, and thus pB, is rational for
almost all values of the parameters α, β, and that each rational number in
(0, 1) is attained for some set of (α, β) with a non-empty interior, verifying
the observed Devil’s staircase behaviour. The reader can compare [6, Figure
1] and [23, Figura 2], which show this phenomenon from two different points
of view, connected by our Theorem 1.2.

Remark 1.3. In particular, as shown by Laurent and Nogueira [21], see
Theorem 8.6 below, the rotation number is rational whenever a and b are
rational (or even algebraic) numbers; hence Theorem 1.2 shows that pB is
rational whenever α and β are rational (or algebraic), which explains why
only rational limits were observed in [23]. See further Theorem 11.5.

Problem 1.4. Consider the party version of Phragmén’s method in a case
with N > 3 parties, and given numbers of votes. Will the proportions of
seats ni/n given to the different parties converge as n→∞? What are the
limits?

In Section 12, we consider instead the party version of Thiele’s method
(with an arbitrary number of parties), and obtain very different results. We
show that, under weak hypoteses, the proportions of seats for each party
converge as n→∞ for Thiele’s method too, but now each limit is a smooth
function of the vote proportions; moreover, the limits can be irrational num-
bers also in simple cases with integer numbers of votes. We do not know
whether there is a quasi-periodic behaviour in this case. In any case, we find
this difference between the two election methods interesting.

Remark 1.5. Phragmén’s and Thiele’s methods were devised for a situa-
tion without a completely developed party system, and for small constituen-
cies. Here, in contrast, we study the methods in the opposite situation with
well-organized parties and a very large number of seats. The results are
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therefore not directly relevant for the original situation, and our investiga-
tion is mainly for mathematical curiosity; nevertheless, the results might
give insight into some aspects of the methods.

For small numbers of seats, Thiele’s method sometimes yields undesirable
results, while Phragmén’s method seems more robust, as discussed with
many examples in the 1913 report of the Swedish Royal Commission on the
Proportional Election Method [15], see also [20]. For very large numbers
of seats, our result indicate the opposite, with a smoother behaviour of
Theiele’s method.

Historical note. Thiele’s method was used in Swedish parliamentary elec-
tions 1909–1920 for the distribution of seats within parties (in combina-
tion with a special rule); it was in 1921 replaced by an ordered version of
Phragmén’s method. This version of Phragmén’s method is still formally
used but nowadays in combination with a system of personal votes and in
reality the method has a very minor role. See further [20, Appendix D].

Acknowledgements. First of all, we would like to thank Mark Pollicott
for helping us with this project. We are also grateful to Arnaldo Nogueira
and Jean-Pierre Conze for valuable guidance, and to Anders Johansson for
many valuable discussions. The first author was supported in part by the
Knut and Alice Wallenberg Foundation.

2. Notation and some basic properties

We assume throughout that a and b are given constants with 0 < a < 1 and
0 6 b < 1. (See Remark 2.2 for other parameter values.)

We let, as usual, bxc and {x} denote the integer and fractional parts of
a real number x; thus bxc ∈ Z and {x} := x − bxc ∈ [0, 1). Furthermore,
dxe := −b−xc is the smallest integer > x. We further define {x}+ as the left-
continuous version of {x}; thus, when x ∈ R \ Z, then {x}+ = {x} ∈ (0, 1),
but if x ∈ Z, then {x} = 0 and {x}+ = 1. (Equivalently, {x}+ := 1−{−x}.)

For a function f defined on (a subset of) R, let f(x−) := limy↗x f(y) and
f(x+) := limy↘x f(y), when the limits exist.

The Lebesgue measure of a set E ⊆ R is denoted |E|.

2.1. The basic functions. Let us first dismiss a trivial case.

Example 2.1. Suppose that a+ b < 1. Then (1.1) is f−(x) = ax+ b for all
x ∈ [0, 1]. This is a linear contraction, and trivially fn−(x) → p0 as n→∞
for every x, where p0 := b/(1− a) ∈ [0, 1) is the (unique) fixed point of f−.

If b > 0, then f+ = f−, and thus f±(x)n → p0 as n→∞, for every x. We
return to the case b = 0 in Example 2.5 below.

In the sequel we thus focus on the case a+ b > 1.
Let τ ∈ [0, 1] be the point of discontinuity of {ax + b} in [0,1], if any.

Thus, if a + b > 1 (our main case), then τ = (1 − b)/a is the solution of
ax+b = 1; note that in this case τ ∈ (0, 1]. In the exceptional case b = 0, we
have τ = 0, and in the trivial case a+ b < 1 with b > 0 (see Example 2.1),
τ does not exist.
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As said in the introduction, we allow an ambiguity at the discontinuity
point τ , and we thus define two versions of (1.1), both for x ∈ [0, 1]:

f−(x) := {ax+ b} = ax+ b− bax+ bc, (2.1)

f+(x) := {ax+ b}+ = ax+ b− (dax+ be − 1). (2.2)

Thus, explicitly, in the case a+ b > 1, when τ > 0,

f−(x) =

{
ax+ b, 0 6 x < τ ;

ax+ b− 1, τ 6 x 6 1;
(2.3)

f+(x) =

{
ax+ b, 0 6 x 6 τ ;

ax+ b− 1, τ < x 6 1.
(2.4)

If τ = b = 0, then (2.3)–(2.4) are modified by replacing b by 1. In the trivial
case when τ does not exist, f−(x) = f+(x) = ax+ b for all x ∈ [0, 1].

Note that f−(x) = f+(x) except at the discontinuity x = τ , where f−(τ) =
0 and f+(τ) = 1. Note also that f− is right-continuous on [0, 1] and f+ is
left-continuous. Furthermore, f− : [0, 1]→ [0, 1) and f+ : [0, 1]→ (0, 1].

Finally, let f±(x) denote the multi-valued function x 7→ {f−(x), f+(x)}.
Formally, this is a set-valued function, but we usually regard it as a function
[0, 1]→ [0, 1] that is indeterminate at τ , where we can choose freely between
f(τ) = 0 and f(τ) = 1; for x ∈ [0, 1] \ {τ}, f±(x) is a unique single value in
[0, 1].

Note that f± is injective but not surjective, and that it has a continuous
single-valued inverse f−1

± : [0, a+ b− 1] ∪ [b, 1]→ [0, 1] (when a+ b > 1).

Remark 2.2. We thus assume 0 < a < 1 and 0 6 b < 1. The assumption
0 6 b < 1 is without loss of generality, since only the fractional part of b
matters. However, it is also possible to consider other values of a. The main
reason for our assumption 0 < a < 1 is that we want the dynamical system
to be locally contractive, which rules out |a| > 1.

The case −1 < a < 0 is locally contractive but decreasing instead of
increasing; this seems to be another interesting case, and we expect results
similar to the ones in the present paper, but this case will not be studied
here.

Note also that the limiting cases a = 0 and a = 1 are trivial: when
a = 0, f is constant, and when a = 1, f−(x) = {x+ b} is just a translation
(rotation) on the circle group R/Z.

Remark 2.3. The reflection σ(x) := 1 − x maps the dynamical system to
another one of the same kind. More precisely, indicating the parameters
a, b by subscripts, if we reflect the left-continuous fa,b;+ we obtain the right-
continuous

σ ◦ fa,b,+ ◦ σ(x) = 1− fa,b;+(1− x) = 1− {a− ax+ b}+
= {−(a− ax+ b)} = {ax− (a+ b)} = fa,b̃;−(x), (2.5)

where

b̃ := {−(a+ b)}. (2.6)

Similarly, the reflection of fa,b,− is fa,b̃;+, and consequently the reflection of

fa,b,± is fa,b̃;±.
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If a+ b > 1 (the most interesting case), (2.6) yields b̃ = 2− a− b.
2.2. Orbits and periodic points. For the single-valued function f−, the
orbit of a point x ∈ [0, 1] is, as usual, the sequence (fn−(x))∞n=0, and similarly
for f+. For the multi-valued f±, we say that an orbit of x ∈ [0, 1] is any
sequence (xn)∞0 such that x0 = x and xn+1 ∈ f±(xn), n > 0. In other
words, an orbit is any possible sequence obtained by repeatedly applying
f±, making arbitrary choices each time there is a choice (i.e., when the orbit
visits τ).

A periodic orbit is an orbit (xn)∞0 with xn+q = xn for some q > 1 (the pe-
riod) and all n > 0; in this case we also write the orbit as {x0, . . . , xq−1}. If
furthermore x0, . . . , xq−1 are distinct, we say that this is a minimal periodic
orbit. Note that, also for a multi-valued function such as f±, a non-minimal
periodic orbit always can be seen as a combination of several minimal pe-
riodic orbits (identical or not, and possibly with different initial points and
inserted into each other).

A periodic orbit with period 1 is the same as a fixed point.
A periodic point is a point x that has a periodic orbit.
We consider a few simple examples with a periodic orbit (for example

a fixed point), but where the multi-valuedness of f± causes complications
because τ is in the periodic orbit. The general case is studied in Section 3.

Example 2.4. Suppose that a + b = 1. Then τ = 1, and 1 is both a fixed
point of ax+ b and a discontinuity point, since f±(1) = {0, 1}. If 0 6 x < 1,
then x has a unique orbit (xn)∞0 = (fn±(x))∞0 = (fn−(x))∞0 = (fn+(x))∞0 with,
by induction, xn = 1 − an(1 − x); the orbit converges to the fixed point 1,
but it never reaches 1 and thus there is never any choice.

However, if we start with x = 1, then there is one periodic orbit 1 with
period 1, but there are also infinitely many other orbits, starting with 1
repeated an arbitrary number of times followed by a jump to 0; from that
point the orbit follows the unique orbit starting at 0 and thus converges to
1 as said above.

Consequently, in this example, all possible orbits converge to the fixed
point 1. However, note that they do not converge uniformly, since an orbit
starting at 1 may reach 0 at any given later time.

Example 2.5. Suppose that b = 0. This is a special case of Example 2.1,
and f−(x) = ax which is a contraction with fixed point 0, so all orbits of f−
converge to 0.

However, in this case (unlike the case a+ b < 1 with b > 0), Example 2.1
does not give the full story for f±, since f+(0) = 1. Hence, the fixed point
0 is also the discontinuity point τ , and 0 has infinitely many orbits, the
periodic orbit 0 and orbits starting 0 repeated an arbitrary number of times
followed by 1 and then converging back to 0, without ever reaching it.

The situation is as in Example 2.4, with 0 and 1 interchanged; in fact, the
two examples are the mirror images of each other by the reflection discussed
in Remark 2.3.

Example 2.6. Consider a = 1/2 and b = 2/3, i.e., f−(x) = {1
2x+ 2

3}. Then

τ = 2/3. Furthermore, f±(0) = 2/3, and thus {0, 2
3} is a periodic orbit with

period 2. But 0 and 2/3 also have an infinite number of orbits that include
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f+(2/3) = 1, for example 2
3 , 1,

1
6 , . . . . Each such orbit continues from 1 along

the unique orbit of 1, which is 1, 1
6 ,

3
4 ,

1
24 ,

11
16 , . . . , where x2n = (2 + 2−2n)/3

and x2n+1 = 2−2n−1/3; hence each such orbit converges to the periodic orbit
{0, 2

3}.

2.3. The invariant set. If K ⊆ [0, 1], then

f±(K) = f+(K ∩ [0, τ ]) ∪ f−(K ∩ [τ, 1]). (2.7)

Since f+ is continuous on [0, τ ] and f− on [τ, 1], it follows that if K ⊆ [0, 1]
is compact, then f±(K) is compact.

Consequently (by induction), fn±([0, 1]), n > 0, is a decreasing sequence
of non-empty compact subsets of [0, 1], and thus

Λ± :=

∞⋂
n=0

fn±([0, 1]) (2.8)

is a non-empty compact set.
Note that f±(Λ±) = Λ± and (since f−1

± is single-valued) f−1
± (Λ±) = Λ±.

In particular, since f±(τ) = {0, 1},
0 ∈ Λ± ⇐⇒ τ ∈ Λ± ⇐⇒ 1 ∈ Λ±. (2.9)

Moreover, if 0, τ, 1 /∈ Λ±, then f± is single-valued on Λ±, and thus f± :
Λ± → Λ± then is a homeomorphism. (We shall see in Sections 8 and 9 that
this happens only when Λ± is finite, cf. the general [8, Theorem 3.1].)

We can also define the corresponding sets for f− and f+:

Λ− :=

∞⋂
n=0

fn−([0, 1]), Λ+ :=

∞⋂
n=0

fn+([0, 1]). (2.10)

However, these may be empty, as seen by the following example (and its
mirror image Example 2.5); furthermore, Λ− and Λ+ are not always closed
sets, see Theorem 9.2. Hence f± and (2.8) yield a more satisfactory defi-
nition. We describe the sets Λ±,Λ−,Λ+ completely in Theorems 8.2 and
9.2.

Example 2.7. Consider again Example 2.4 with a+b = 1. Clearly the fixed
point 1 ∈ Λ±, and thus every orbit of 1 is contained in Λ±; furthermore, by
applying f−1

± repeatedly, it is easily seen that no further points belong to
Λ±. Thus Λ± = {1 − an : n > 0} ∪ {1}. It is also easily seen that Λ− = ∅
and Λ+ = {1}.

Remark 2.8. The invariant set is sometimes called the attractor, see [8]
(where our definition corresponds not to Definition 2.2 but to the version
given immediately afterwards; these are not always equivalent). However,
in the present context, this name seems less appropriate. For example, in
Example 2.7, every orbit is attracted to 1, see Example 2.4.

2.4. The limit set. As in the higher-dimensional case (see [8]) the invariant
set Λ± for our multivalued f± can be quite large, and too large for some
purposes, see Example 2.7 and Remark 2.8. It is convenient to introduce
the notion of a limit set for f±. For single-valued functions, we define the
ω-limit set as in, e.g., [24] and [8]: for a single-valued function f , we say that
a point p is an ω-limit point of x if there is a strictly increasing sequence
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of positive integers {n`} such that lim`→∞ f
n`(x) = p. The collection of all

such limit points is the ω-limit set of x, denoted by ωf (x). Equivalently,

ωf (x) =
⋂
m≥0

⋃
k≥m
{fk(x)}. (2.11)

We adjust this definition for the multi-valued function f± with the conven-
tion that we follow a specific orbit. More precisely, for f±, we say that p is
an ω-limit point of x if there exists an orbit (xn)∞0 of x and a subsequence
{n`}∞`=1 of positive integers such that xn` → p as `→∞.

Remark 2.9. The function f− maps into [0, 1), so it may be regarded
as a dynamical system either fi : [0, 1) → [0, 1) or fi : [0, 1] → [0, 1]. (The
difference is of course trivial, and usually does not matter.) For definiteness,
we interpret (2.11) in [0, 1], so ωf−(x) is a closed subset of [0, 1], defined for
all x ∈ [0, 1]. The same applies to f+.

For a specific periodic orbit C = {y0, . . . , yk−1}, we say that an orbit
(xn)∞n=0 converges to C if there exists j such that xn − yj+n mod k → 0 as
n→∞. We further say that C is a limit cycle of x if every orbit starting
at x converges to C; in this case we also say that x is attracted to C. If C
is a limit cycle of x, then ωf±(x) = C. Conversely, using Lemma 3.1 below,
it is easy to see that if C is a periodic orbit of f±, and ωf±(x) = C, then C
is a limit cycle of x.

We say that C is a universal limit cycle if it is a limit cycle for every
x ∈ [0, 1], or, equivalently, that ωf±(x) = C for every x. In other words,
every orbit with any initial point is attracted to C.

A related notion is that f± is asymptotically periodic if ωf±(x) is a periodic
orbit of f± for every x ∈ [0, 1]. As shown in Section 3 below, f± has at most
one periodic orbit, and thus f± is asymptotically periodic if and only if f±
has a universal limit cycle. (Cf. [4] and [24], where this notion is studied in
situations where several periodic orbits may occur.)

It is easy to see that ωf±(x) ⊆ Λ±. We note that in Example 2.4 we
have ωf±(x) = {1} for every x, and thus, see Example 2.7, ωf±(x) ( Λ±
for every x. This is also the case in the following example, which illustrates
one possible situation when there is a periodic orbit, see Section 4. See
also Remarks 8.3 and 9.3 where the relation between the limit sets and the
invariant sets is studied further.

Example 2.10. Consider again Example 2.6 with a = 1/2 and b = 2/3.
Then the ω-limit set ωf±(x) = {0, 2

3} for every x ∈ [0, 1], and thus the

periodic orbit {0, 2
3} is a universal limit cycle with period 2. But τ = 2/3 is

mapped to 0 or 1 and this makes it impossible to get a uniform bound on
the rate of convergence to the limit cycle. This phenomenon will occur for
any f± as soon as τ ∈ Λ± and is in contrast to the uniform rates for f− and
f+ (see [3, Theorem 2.2(2)]).

Remark 2.11. Another related notion, is the non-wandering set of f±, as
defined in e.g. [8]. In our case, it can be shown, e.g. using Theorems 8.2
and 9.2, that the non-wandering set is equal to the ω-limit set ωf±(x) for all
x ∈ [0, 1]. We shall therefore not consider the non-wandering set further.
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2.5. The lifts. We define lifts F−, F+ : R→ R of f− and f+ by

F−(x) := a{x}+ b+ bxc = ax+ b+ (1− a)bxc, (2.12)

F+(x) := F−(x−) = ax+ b− (1− a)b1− xc. (2.13)

Note that F−(x) = F+(x) unless x is an integer.
We collect some standard properties that follow immediately from the

definition.

Lemma 2.12 (Cf. [9, p. 15]). Let F−, F+ : R → R be the lifts defined in
(2.12)–(2.13). Then

(i) F−(x+ 1) = F−(x) + 1, F+(x+ 1) = F+(x) + 1.
(ii) π− ◦ F− = f− ◦ π−, where π− : R → [0, 1) is given by π−(x) = {x};

π+ ◦ F+ = f+ ◦ π+, where π+ : R→ (0, 1] is given by π+(x) = {x}+.
(iii) F− and F+ are strictly increasing.
(iv) F− and F+ are continuous except at the integers; F− is right-continuous

and F+ is left-continuous.

Proof. Obvious. �

2.6. The rotation number. It is well-known that the dynamical system
f− has a well-defined rotation number, see e.g. [5], [6], [9], This is easily
extended to f± in the following sense. We give a proof in Section 5.

Lemma 2.13. There exists a number ρ = ρ(f±) ∈ [0, 1), called the rotation
number of f±, such that, for any x ∈ R, as n→∞,

Fn−(x)/n→ ρ, Fn+(x)/n→ ρ. (2.14)

In fact,

Fn−(x) = x+ ρn+O(1), Fn+(x) = x+ ρn+O(1), (2.15)

uniformly in x ∈ R and n > 0. We have

a+ b− 1 6 ρ 6 b. (2.16)

Furthermore, ρ = 0 ⇐⇒ a+ b 6 1.

We also use the notation ρ(a, b).
The rotation number will be important in the sequel. In particular, we

shall see (in Section 8) that there exists a periodic orbit if and only if the
rotation number is rational; moreover, in this case the periodic orbit is
unique and is a universal limit cycle, i.e., it attracts every orbit.

2.7. Symbolic dynamics. In the case a+ b > 1 (and thus τ > 0), we code
an orbit (xi)

∞
0 for f± by a symbolic sequence (εi)

∞
0 , where εi ∈ {0, 1} is

defined by

εi :=

{
0 xi ∈ [0, τ) or (xi = τ and xi+1 = 1),

1 xi ∈ (τ, 1] or (xi = τ and xi+1 = 0).
(2.17)

See e.g. [13], [14], [9] for equivalent versions (in the single-valued case); see
also [17] for deep study of symbolic dynamics in a more general situation.

By (2.3)–(2.4), we have

εi = axi + b− xi+1. (2.18)
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For completeness, we define εi by (2.18) also when a + b < 1, although
this case is not very interesting: if a+ b < 1 and b > 0, then εi = 0 for all i,
and if b = 0, then εi = 0 except possibly for one i, where we have εi = −1.

The proportion of 1’s in the symbolic sequence converges for any orbit, and
the limit equals the rotation number. This was shown for f− by Coutinho [9];
we extend this to f± in the next theorem; the proof is given in Section 5.2.

Theorem 2.14. For any orbit (xi)
∞
0 for f±, the corresponding symbolic

sequence (εi)
∞
0 satisfies

n∑
i=0

εi = ρn+O(1), (2.19)

where ρ is the rotation number of f±. In particular,
∑n−1

i=0 εi/n → ρ as
n→∞.

3. Periodic points

Recall the definition of periodic points in Section 2.2.

Lemma 3.1. 0 and 1 cannot both be periodic points of f±.

Proof. Suppose that 0 is a periodic point, and consider a minimal peri-
odic orbit x0, . . . , xk−1 with x0 = 0. Recall that f−1

± is single-valued,

and f−1
± (0) = τ . Thus xk−1 = τ . Furthermore, if xi = 1 for some

i 6 k − 1, then i > 0 and xi−1 = f−1
± (1) = τ = xk−1, which is impossi-

ble since this periodic orbit is minimal. Consequently, the backwards orbit
Q := {f−n± (τ) : n > 0} = {xj : 0 6 j < k} contains 0 but not 1.

Similarly, if 1 is a periodic point, then Q contains 1 but not 0.
Thus these two events exclude each other. �

Note that the proof is valid also when τ ∈ {0, 1}, which occurs precisely
in the simple cases in Examples 2.4 and 2.5, and when τ does not exist (then
0 and 1 are not in the image of f±, and thus certainly not periodic points).

Lemma 3.2. Suppose that p ∈ [0, 1] is a periodic point of f±. Then p is a
periodic point of f− or f+ (or both).

Proof. By assumption, there exists k > 1 and a periodic orbit C = {p0,
. . . , pk−1} with p0 = p. By Lemma 3.1, 0 and 1 cannot both appear in C.
If 0 /∈ C, then C is a periodic orbit of f+, and if 1 /∈ C, then C is a periodic
orbit of f−. �

Theorem 3.3. Suppose that f± has a periodic orbit C. Then f± is asymp-
totically periodic and C is the universal limit cycle for f±.

Proof. By assumption, there exists a periodic orbit C = {p0, . . . , pq−1} of
f±.

Suppose first that 1 is not a periodic point of f±. Then pi < 1 for every
i, and it follows, as in the proof of Lemma 3.2, that C is a periodic orbit of
f−. We may assume that the orbit is minimal, so p0, . . . , pq−1 are distinct.
We consider first only the action of f−.
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Let ξ0, . . . , ξq−1 be p0, . . . , pq−1 arranged in increasing order; thus 0 6
ξ0 < · · · < ξq−1 < 1. Extend this to a doubly infinite increasing sequence
Ξ = {ξn}∞−∞ by

ξmq+i := ξi +m, 0 6 i < q, m ∈ Z. (3.1)

It follows, using Lemma 2.12, that F− maps the set Ξ into itself. Moreover,
if 0 6 i < q, then π− ◦ F q−(pi) = f q− ◦ π−(pi) = f q−(pi) = pi and thus
F q−(pi) = pi + ri for some ri ∈ Z. It follows, using Lemma 2.12 again, that
F q−(Ξ) = Ξ, and thus F− : Ξ→ Ξ is onto. Since F− is strictly increasing, it
follows that there exists an integer r such that

F−(ξn) = ξn+r, n ∈ Z. (3.2)

In particular, this implies that, recalling (3.1),

F q−(ξn) = ξn+qr = ξn + r, n ∈ Z. (3.3)

Let Ii := (ξi, ξi+1] and Īi := [ξi, ξi+1], for i ∈ Z. Since F− is strictly
increasing, (3.2) implies that F−(Īi) ⊆ Īi+r. Moreover, if Ii ∩ Z = ∅, then
F− is linear (and thus continuous) on Īi, and F−(Īi) = Īi+r; since F− has
contraction factor a, this implies |Īi+r| = a|Īi|.

Suppose that none of the q intervals Ii, Ii+r, . . . , Ii+(q−1)r contains an in-

teger. Then F− is a linear contraction Īi+jr → Īi+(j+1)r for each j, and in

particular |Īi+(j+1)r| = a|Īi+jr|. Hence, |Īi+qr| = aq|Īi|, which is a contra-

diction, since Īi+qr = Īi + r by (3.1).
Consequently, for each i, at least one of the q intervals Ii, Ii+r, . . . , Ii+(q−1)r

contains an integer. Taking i = i0, . . . , i0 + r − 1 for some i0, we see that
the rq disjoint intervals Ij , i0 6 j < i0 + rq, contain at least r integers. On
the other hand, the union of these intervals is (ξi0 , ξi0+rq] = (ξi0 , ξi0 + r],
which contains exactly r integers. It follows that for every i ∈ Z, exactly
one of the q intervals Ii, Ii+r, . . . , Ii+(q−1)r contains an integer. (Also, no Ii
contains two integers.)

Suppose that j ∈ Z is such that Ij contains an integer `j . Then F− is
linear on I ′j := [ξj , `j) and on I ′′j := [`j , ξj+1], and maps both intervals into

Īj+r. Since there is no integer in any of Ij+r, . . . , Ij+(q−1)r by the argument
above, we can apply F− repeatedly and see that Fm− is linear on I ′j and I ′′j
for 1 6 m 6 q. In particular, F q− is linear on I ′j and I ′′j . Since F q−(ξj) = ξj+r

and F q−(ξj+1) = ξj+1 + r by (3.3), and F q− has contraction factor aq < 1, it
follows that F q− : I ′j → I ′j + r and F q− : I ′′j → I ′′j + r, and we can thus iterate

further. Consequently, if x ∈ I ′j then, for every n > 0,

Fn−(x)− Fn−(ξj) = an(x− ξj). (3.4)

It follows also, for example by (2.12) and (3.4) for n and n+1, that bFn−(x)c =
bFn−(ξj)c, and thus, using (3.4) again and Lemma 2.12(ii),

fn−({x})− fn−({ξj}) = {Fn−(x)} − {Fn−(ξj)} = an(x− ξj). (3.5)

Hence, fn−({x}) − fn−({ξj}) → 0 as n→∞, and since {ξj} = ξj mod q ∈ C,
{x} is attracted to the periodic orbit C by f−. Similarly, if x ∈ I ′′j , then

fn−({ξj+1})− fn−({x})→ 0 as n→∞, and again {x} is attracted to C. We
have shown that if x ∈ Īj and Ij ∩ Z 6= ∅, then {x} ∈ [0, 1) is attraced to C
by f−.
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Now let x ∈ Īj with j arbitrary. Then there exists m with 0 6 m < q such
that Ij+mr ∩ Z 6= ∅. Furthermore, Fm− (x) ∈ Īj+mr, and thus the argument
above applies to Fm− (x), and shows that {Fm− (x)} = fm− ({x}) is attracted to
C by f−; consequently also {x} is attracted to C.

This shows that every x ∈ [0, 1) is attracted to the periodic orbit C by
f−. Moreover, f−(1) ∈ [0, 1), and thus it follows that 1 too is attracted to
C by f−.

It remains to show that every point is attracted to C also by f±, i.e.,
even when we allow τ → f+(τ) = 1 instead of τ → f−(τ) = 0. If {xn} is an
orbit that makes the transition τ 7→ 1 only once, then the development after
this is by f−, and thus the sequence is attracted to C. The only possible
problem is thus when we make the transition τ 7→ 1 at least twice, but then
1 appears at least twice in the orbit {xn}, and thus there is a periodic orbit
containing 1, contradicting our assumption.

This completes the proof that if 1 is not a periodic point, then every orbit
is attracted to C.

If 0 is not a periodic point, the same conclusion holds by mirror symmetry,
see Remark 2.3, or by repeating the proof above with F+ instead of F−,
mutatis mutandis.

Since either 0 or 1 is not a periodic point by Lemma 3.1, this completes
the proof. �

Corollary 3.4. The dynamical system f± has at most one periodic orbit.
�

It follows from (3.3) in the proof above that if f± has a periodic orbit,
then the rotation number is rational (r/q in the notation above). In fact,
the converse holds too; we return to this in Theorem 8.1.

4. A classification of orbits

We now clarify what the possibilities are for orbits of f±.
If x ∈ [0, 1] has an orbit for f± that does not contain τ , then there is

never any choice, and this orbit is simultaneously the orbit of x for both
f− and f+, and the unique orbit for f±. Hence, our consideration of the
multi-valued f± lead to complications only when x has an orbit containing
τ , i.e., when x is in the countable (or finite) set A− := {f−n± (τ) : n > 0}.

Consider first the case when τ does not belong to any periodic orbit. Then
no orbit can contain τ more than once; hence if x has an orbit containing τ ,
then τ will not appear again, which means that there are no further choices.
Consequently, if x ∈ A−, then x has exactly two orbits for f±, one is its
orbit for f− and the other is its orbit for f+; furthermore, both orbits agree
until they reach τ , and then they follow the unique orbits of 0 and 1 (for
f−, f+ or f±). Hence, for the asymptotical behaviour of the orbits, it does
not matter whether we consider f−, f+ or f±.

On the other hand, if τ belongs to a periodic orbit C, and x ∈ A−, then
x has an infinite number of orbits for f±: the orbit is unique until we reach
τ , but then we can either continue along the periodic orbit C repeatedly
for ever, or we can go around C N times, where N = 0, 1, 2, . . . , and then
make the other choice at τ ; this brings us to either 0 or 1 /∈ C, and then
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we cannot come back to τ , by Lemma 3.1, so the orbit continues with the
unique orbit of 0 or 1.

This leads to the following possibilities for the orbits of an arbitrary x ∈
[0, 1].

Case 1. There exists a periodic orbit C. By Theorem 3.3 (and Corol-
lary 3.4), C is the only periodic orbit, and every orbit is asymptotic to C.
We distinguish two subcases.

Case 1a. τ /∈ C. Then τ does not belong to any periodic orbit, and thus
no orbit can contain τ more than once. Hence, starting at an arbitrary
x ∈ [0, 1], either there is a unique orbit for f± (x /∈ A−), or there are two
orbits (x ∈ A−), one (the orbit for f−) containing 0 and one (the orbit for f+)
containing 1. All orbits are asymptotic to C. Hence, ωf±(x) = C for every
x ∈ [0, 1]. Furthermore, it follows from the proof of Theorem 3.3 (see (3.5))
that the orbits converge uniformly to C, and thus Λ± = Λ− = Λ+ = C.

Case 1b. τ ∈ C. Then either 0 ∈ C or 1 ∈ C, but not both (Lemma 3.1).
Suppose that 0 ∈ C. (The case 1 ∈ C is symmetric, with 0 and 1 and the
indices + and − interchanged below.)

If x /∈ A−, then x has a unique orbit, which by Theorem 3.3 is asymptotic
to C. If x ∈ A−, then x has an infinite number of orbits, as described above;
one follows eventually C for ever (this is the orbit for f−), while all others
eventually follow the unique orbit of 1. Each orbit is asymptotic to C, and
ωf±(x) = C for every x ∈ [0, 1]. However, for x ∈ A−, the orbits do not
converge to C uniformly. It follows easily that if O1 is the (unique) orbit of
1, then Λ± = C ∪O1, Λ− = C and Λ+ = ∅.
Case 2. There is no periodic orbit of f±. As in Case 1a, any x ∈ [0, 1] has
either one or two orbits. Λ± is infinite, and we shall see in Section 9 that
ωf±(x) = Λ± for every x ∈ [0, 1]. Furthermore, the orbits converge to Λ±
uniformly.

5. The rotation number

For completeness, we supply a simple proof of the existence of a rotation
number in our context (Lemma 2.13), based on earlier proofs for f−, see
e.g. [6], [9]. We also, again for completeness, prove the simple consequence
Theorem 2.14, that the proportion of 1’s in the symbolic sequence converges
to the rotation number; see again [9] for f−. Finally, we use this to show
that every orbit has an asymptotic average, which is independent of the
orbit.

5.1. Existence of the rotation number.

Proof of Lemma 2.13. We first observe that for any x ∈ R and any n > 0,∣∣Fn−(x)− x− Fn−(0)
∣∣ < 1. (5.1)

In fact, Fn−(x)−x has period 1, so it suffices to consider x ∈ [0, 1), and then

Fn−(x)− x 6 Fn−(x) < Fn−(1) = Fn−(0) + 1 (5.2)

and
Fn−(x)− x > Fn−(x)− 1 > Fn−(0)− 1, (5.3)

which verifies (5.1).
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Taking x = Fm− (0) in (5.1) we obtain, for m,n > 0,∣∣Fm+n
− (0)− Fm− (0)− Fn−(0)

∣∣ < 1. (5.4)

Consequently,

Fm+n
− (0) + 1 6

(
Fm− (0) + 1

)
+
(
Fn−(0) + 1

)
, (5.5)

i.e., the sequence Fn−(0) + 1 is subadditive. As is well-known, this implies
the existence of the limit

ρ = lim
n→∞

Fn−(0) + 1

n
= inf

n>1

Fn−(0) + 1

n
> −∞. (5.6)

We thus have Fn−(0)/n → ρ as n→∞, and it follows from (5.1) that
Fn−(x)/n→ ρ for any x ∈ R.

The corresponding result for F+ then holds too since, if x′ < x < x′′,
then, by Lemma 2.12(iii) and F+(x) = F−(x−), F−(x′) < F+(x) < F−(x′′),
and thus by induction Fn−(x′) < Fn+(x) < Fn−(x′′). Hence, (2.14) holds.

Furthermore, (5.4) implies similarly that sequence Fn−(0)− 1 is superad-
ditive, and thus also

ρ = lim
n→∞

Fn−(0)− 1

n
= sup

n>1

Fn−(0)− 1

n
. (5.7)

By (5.6) and (5.7), nρ 6 Fn−(0) + 1 and nρ > Fn−(0)− 1. Consequently,

ρn− 1 6 Fn−(0) 6 ρn+ 1, n > 0. (5.8)

It follows from (5.8) and (5.1) that for any real x,

ρn+ x− 2 < Fn−(x) < ρn+ x+ 2, n > 0, (5.9)

showing (2.15).
If x > 0, then by (2.12), F−(x) > F−(0) = b > 0, and thus by induction

Fn−(0) > 0 for all n > 1; hence ρ > 0. Similarly, (2.12) implies F−(x)− x =
b−(1−a){x} ∈ [b+a−1, b], and hence by induction n(a+b−1) 6 Fn−(0) 6 nb.
Consequently, a+ b− 1 6 ρ 6 b < 1, showing both (2.16) and ρ ∈ [0, 1).

Finally, if a + b 6 1, then x ∈ [0, 1) implies by (2.12) F−(x) = ax +
b < a + b 6 1 and thus F−(x) ∈ [0, 1); hence Fn−(0) ∈ [0, 1), and ρ =
limn→∞ F

n(0)/n = 0. The converse follows by (2.16). �

5.2. Proof of Theorem 2.14. Suppose first that the orbit does not contain
1; then xn+1 = f−(xn) = {axn+ b} for n > 0, and it follows from (2.12) and
(2.18) by induction that

Fn−(x0) = xn +

n−1∑
i=0

εi. (5.10)

Hence,
∑n−1

i=0 εi = Fn−(x0) + O(1) = nρ + O(1) by (2.15), and the result
follows.

If the orbit contains only a finite number of 1’s, then the result follows by
considering the part of the orbit after the last 1.

Similarly, if the orbit does not contain 0, then

Fn+(x0) = xn +
n−1∑
i=0

εi, (5.11)
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and the conclusion follows by (2.15). Again, this extends to any orbit with
a finite number of 0’s.

The only remaining case is thus an orbit that contains an infinite number
of 0’s and an infinite number of 1’s. However, no such orbit can exist; in fact,
if there were an orbit with both 0 and 1 ocurring more than once, then both
0 and 1 would be periodic points, but that is impossible by Lemma 3.1. �

5.3. The average of an orbit. The following theorem shows that every
orbit has an average, in the sense of the limit of the average of the n first
points; furthermore, this limit is independent of the orbit, and we provide
an explicit formula.

Theorem 5.1. Let (xn)∞0 be any orbit of f±, with any initial point x0 ∈
[0, 1]. Then, as n→∞,

1

n

n−1∑
i=0

xi → χ :=
b− ρ
1− a

. (5.12)

Proof. Let Sn :=
∑n−1

i=0 xi. Then, using (2.18) and Theorem 2.14,

aSn + nb =

n−1∑
i=0

(axi + b) =

n−1∑
i=0

(xi+1 + εi) =

n∑
i=1

xi +

n−1∑
i=0

εi

= Sn + xn − x0 + ρn+O(1) = Sn + nρ+O(1). (5.13)

Consequently,

Sn = n
b− ρ
1− a

+O(1). (5.14)

This implies (5.12). �

In particular, if there exists a periodic orbit (xn)k−1
0 , then the average of

the points in the orbit is χ. For an example, see Example 2.6, where ρ = 1/2
and χ = 1/3.

For a more trivial example, suppose that there is a fixed point p0. Then
ρ = 0, and (5.12) implies that p0 = χ = b/(1 − a), as is immediately seen
directly.

6. Location of the rotation number

The dependency of the rotation number ρ(a, b) on a and b was investi-
gated by Ding and Hemmer [13], Bugeaud [5], Bugeaud and Conze [6] and
Coutinho [9]. We use and combine some of their ideas and develop them
further. There are large overlaps with the results of the references just
mentioned; we nevertheless give full proofs.

In this section, ρ denotes an arbitrary real number. We do not assume
that ρ equals the rotation number ρ(a, b) = ρ(f±) unless explicitly said so;
on the contrary, our aim is to let ρ vary freely in order to eventually derive
conditions for the equality ρ = ρ(f±).

We define, following Coutinho [9], for ρ ∈ R and x ∈ R,

φρ(x) = φρ,a,b(x) :=
b

1− a
+ (1− a)

∞∑
j=0

ajbx− (j + 1)ρc. (6.1)
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The sum obviously converges absolutely, so each φρ is a function R→ R.
It follows from (6.1) that

φρ(x+ 1) = φρ(x) + 1, x ∈ R. (6.2)

We state some further simple properties of the function φρ.

Lemma 6.1. For any ρ ∈ R, φρ : R→ R has the following properties.

(i) φρ is weakly increasing: if x 6 y, then φρ(x) 6 φρ(y).
(ii) If ρ is irrational, then φρ is strictly increasing, while if ρ is rational,

with denominator q, then φρ is constant on each interval [kq ,
k+1
q ).

(iii) The set of discontinuity points of φρ is

Dρ := {n+mρ : m ∈ Z>0, n ∈ Z}, (6.3)

and φρ has a jump discontinuity at each x ∈ Dρ. In particular, if ρ is
irrational, then the set of discontinuity points is dense in R.

(iv) φρ(x) is right-continuous.

Proof. (i): This is clear from (6.1), because each bx − (j + 1)ρc is weakly
increasing and the coefficients in (6.1) are positive.

(iii): First, note that each discontinuity is a jump discontinuity by (i).
Let y ∈ Dρ, so y = n + mρ with m > 1. Then, in the sum in (6.1), the

term with j = m − 1 has a positive jump at x = y. The sum of all other
terms is a weakly increasing function of x, since each term is; hence, the
sum in (6.1) has a positive jump at y, and φρ(y) > φρ(y−).

Conversely, if y /∈ Dρ, then every term in the sum in (6.1) is continuous
at x = y. Since the sum converges uniformly on bounded sets, it follows
that φρ(x) is continuous at y.

Finally, it is well known that if ρ is irrational, then the sequence ({mρ})m>1

is dense in [0, 1), and thus Dρ is dense in R.

(ii): If ρ = p/q, and x ∈ [kq ,
k+1
q ), then bx− (j + 1)ρc = bkq − (j + 1)ρc for

every j and thus φρ(x) = φρ(
k
q ).

On the other hand, if ρ is irrational and x < y, then there exists by (iii)
a discontinuity point z ∈ (x, y). Hence φρ(x) 6 φρ(z−) < φρ(z+) 6 φρ(y).

(iv): This follows because each bx− (j+ 1)ρc is right-continuous, and the
sum in (6.1) converges uniformly on compact intervals. �

In particular, it follows from (6.3) that 0 ∈ Dρ if and only if ρ is rational,
and hence {

φρ(0) > φρ(0−), if ρ ∈ Q,
φρ(0) = φρ(0−), if ρ /∈ Q.

(6.4)

Lemma 6.2. Suppose that

φρ(0−) 6 0 6 φρ(0). (6.5)

Then

(i) If ρ is irrational, or φρ(0−) < 0, then, for all x ∈ R,

bφρ(x)c = bxc, (6.6)

{φρ(x)} = φρ({x}), (6.7)
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and

F−(φρ(x)) = φρ(x+ ρ), (6.8)

f−({φρ(x)}) = {φρ(x+ ρ)} = φρ({x+ ρ}). (6.9)

(ii) If ρ is irrational, or φρ(0) > 0, then, for all x ∈ R,

dφρ(x−)e = dxe, (6.10)

and

F+(φρ(x−)) = φρ((x+ ρ)−), (6.11)

f+({φρ(x−)}+) = {φρ((x+ ρ)−)}+. (6.12)

Note that (6.4) shows that if (6.5) holds, then at least one of (i) and
(ii) applies. Furthermore, if ρ is irrational, then (6.5) holds if and only if
φρ(0) = 0.

Proof. (i): By monotonicity and (6.5), if x > 0, then φρ(x) > φρ(0) > 0.
Similarly, if x < 0 and φρ(0−) < 0, then φρ(x) 6 φρ(0−) < 0. Furthermore,
if x < 0 and ρ /∈ Q, then φρ(x) < φρ(x/2) 6 φρ(0−) 6 0 by Lemma 6.1(ii)
and (6.5). Hence, in both cases, x < 0 =⇒ φρ(x) < 0, and it follows from
(6.2) that x < 1 =⇒ φρ(x) < 1. Consequently, x ∈ [0, 1) =⇒ φρ(x) ∈
[0, 1), which yields (6.6) and (6.7) by (6.2).

Moreover, by (2.12), (6.6) and (6.1),

F−(φρ(x)) = aφρ(x) + b+ (1− a)bφρ(x)c = aφρ(x) + b+ (1− a)bxc

=
ab

1− a
+ (1− a)

∞∑
j=0

aj+1bx− (j + 1)ρc+ b+ (1− a)bxc

=
b

1− a
+ (1− a)

∞∑
k=0

akbx− kρc = φρ(x+ ρ). (6.13)

Finally, (6.9) follows from (6.13) by Lemma 2.12 and (6.7).
(ii): In this case we similarly see that x ∈ (0, 1] =⇒ φρ(x−) ∈ (0, 1],

and (6.10) follows by (6.2). Then, (6.11) follows as in (6.13). (By (6.2), it
suffices to consider x ∈ (0, 1].) Finally, Lemma 2.12 yields (6.12). �

Let, for ρ ∈ R,

ψ(ρ) := φρ(0) =
b

1− a
+ (1− a)

∞∑
j=0

ajb−(j + 1)ρc

=
b

1− a
− (1− a)

∞∑
j=0

ajd(j + 1)ρe. (6.14)

Lemma 6.3. (i) ψ(ρ) is left-continuous and strictly decreasing.
(ii) ψ(ρ) is continuous at every irrational ρ and has a jump at every

rational ρ.
(iii) The right limits are given by

ψ(ρ+) = φρ(0−) =
b

1− a
− 1− (1− a)

∞∑
j=0

ajb(j + 1)ρc. (6.15)
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(iv) ψ(0) > 0 and ψ(1) < 0. Furthermore, ψ(0+) > 0 ⇐⇒ a+ b > 1.

Proof. (i): The left-continuity follows from (6.14), since each d(j + 1)ρe is
left-continuous, and the sum converges uniformly on bounded domains.

That ψ(ρ) is weakly decreasing follows also from (6.14). Furthermore,
if ρ1 < ρ2, then there exist j such that (j + 1)(ρ2 − ρ1) > 1 and then
d(j+1)ρ1e < d(j+1)ρ2e; hence ψ(ρ1) > ψ(ρ2). Thus ψ is strictly decreasing.

(ii): If ρ is irrational, then every d(j + 1)ρe is continuous at ρ, and thus
(6.14) implies that ψ is continuous at ρ, again using the fact that the sum
converges uniformly on bounded domains.

Conversely, if ρ is rational, then (j+1)ρ ∈ Z for some j, and then d(j+1)ρe
has a jump at ρ. (There will be infinitely many such j, but all jumps are in
the same direction, so there is no cancellation.)

(iii): For any x, ρ ∈ R and j > 0,

lim
ρ′↘ρ
bx− (j + 1)ρ′c = lim

x′↗x
bx′ − (j + 1)ρc. (6.16)

Hence, (6.1) yields, using local uniform convergence of the sums again,

φρ+(x) := lim
ρ′↘ρ

φρ′(x) = lim
x′↗x

φρ(x
′) = φρ(x−). (6.17)

Now take x = 0 to obtain ψ(ρ+) = φρ+(0) = φρ(0−). Finally, use (6.14)
and dy+e = byc+ 1.

(iv): Simple calculations using (6.14) and (6.15) yield

ψ(0) =
b

1− a
, (6.18)

ψ(1) =
b

1− a
− 1

1− a
= − 1− b

1− a
, (6.19)

ψ(0+) =
b

1− a
− 1 =

a+ b− 1

1− a
. (6.20)

�

By (6.14) and (6.15), (6.5) is equivalent to

ψ(ρ+) 6 0 6 ψ(ρ). (6.21)

Lemma 6.4. Let ρ ∈ R. Then ρ equals the rotation number ρ(f±) = ρ(a, b)
of f± if and only if (6.21) holds (or, equivalently, (6.5) holds).

Proof. Suppose first that (6.21) holds, and thus also (6.5). As noted above,
then Lemma 6.2(i) or (ii) applies. If Lemma 6.2(i) applies, then (6.6) implies
|φρ(x)− x| < 1, and thus by iterating (6.8),

Fn−(φρ(0)) = φρ(nρ) = nρ+O(1), n > 0; (6.22)

hence Fn−(φρ(0))/n→ ρ as n→∞, and thus the rotation number ρ(f±) = ρ.
A similar argument works if Lemma 6.2(ii) applies.
For the converse, let

ρ̄ := sup{ρ : ψ(ρ) > 0}. (6.23)

Lemma 6.3 implies that ρ̄ is well-defined, with 0 6 ρ̄ 6 1; furthermore, the
left-continuity of ψ implies ψ(ρ̄) > 0, so the supremum in (6.23) is attained
(and is thus a maximum). Furthermore, by (6.23), ψ(ρ) < 0 for ρ > ρ̄, and
thus ψ(ρ̄+) 6 0.



22 SVANTE JANSON AND ANDERS ÖBERG

Hence, ψ(ρ̄+) 6 0 6 ψ(ρ̄), i.e. (6.21) holds for ρ = ρ̄; as shown above
this implies that ρ̄ equals the rotation number ρ(f±). Consequently, (6.21)
holds when ρ = ρ(f±). �

The rotation number ρ(f±) = ρ(a, b) depends on a and b in a rather
complicated way. Similarly, the function ψ(ρ) depends on a and ρ in rather
complicated ways, but its dependency on b is simple.

We define

b−(a, ρ) = (1− a)2
∞∑
j=0

ajd(j + 1)ρe, (6.24)

b+(a, ρ) = 1− a+ (1− a)2
∞∑
j=0

ajb(j + 1)ρc. (6.25)

Then, by (6.14) and (6.15),

(1− a)ψ(ρ) = b− b−(a, ρ), (6.26)

(1− a)ψ(ρ+) = b− b+(a, ρ). (6.27)

Note that b−(a, ρ) 6 b+(a, ρ), with equality if and only if ρ is irrational, as is
easily seen directly from (6.24)–(6.25), or by (6.26)–(6.27) and Lemma 6.3(ii).
Furthermore, b−(a, ρ) and b+(a, ρ) are strictly increasing functions of ρ, and
b+(a, ρ) = b−(a, ρ+).

By (6.26) and (6.27),

ψ(ρ) > 0 ⇐⇒ b > b−(a, ρ), (6.28)

ψ(ρ+) 6 0 ⇐⇒ b 6 b+(a, ρ), (6.29)

We can now rephrase and expand Lemma 6.4, regarding a and ρ as given
and b as varying. This yields the following theorem, essentially due to
Bugeaud [5] (in a different form, see Remark 6.6 below), see also Bugeaud
and Conze [6] and Ding and Hemmer [13].

Theorem 6.5. Fix a ∈ (0, 1) and ρ ∈ [0, 1). Then 0 6 b−(a, ρ) 6 b+(a, ρ) <
1. Moreover, the rotation number ρ(a, b) of f± equals ρ if and only if

b−(a, ρ) 6 b 6 b+(a, ρ). (6.30)

Furthermore,

(i) If ρ /∈ Q, then b−(a, ρ) = b+(a, ρ). Hence there is a unique value of b
such that the rotation number ρ(a, b) equals ρ.

(ii) If ρ ∈ Q, then b−(a, ρ) < b+(a, ρ). Hence, there is an interval Ia,ρ :=
[b−(a, ρ), b+(a, ρ)] of b that give the same rotation number ρ of f±. If
ρ has denominator q (in lowest terms), then Ia,ρ has length

|Ia,ρ| = b+(a, ρ)− b−(a, ρ) = aq−1(1− a)2/(1− aq). (6.31)

Proof. First, by (6.24), b−(a, 0) = 0 and b−(a, 1) = 1. Hence, 0 6 ρ < 1
implies b−(a, ρ) > 0 and b+(a, ρ) = b−(a, ρ+) < 1.

By Lemma 6.4, ρ = ρ(f±) if and only if (6.21) holds, which by (6.28)–
(6.29) is equivalent to (6.30).
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We have already remarked that b−(a, ρ) = b+(a, ρ) if and only if ρ /∈ Q.
Hence it only remains to calculate |Ia,ρ|. We have, by (6.24)–(6.25),

b+(a, ρ)− b−(a, ρ) = (1− a)2
∞∑
j=0

aj
(

1 + b(j + 1)ρc − d(j + 1)ρe
)
. (6.32)

The big bracket in this sum is 0 or 1, and 1 if and only if (j + 1)ρ ∈ Z. If
ρ = p/q, this happens when j = kq − 1 with k > 1; hence

b+(a, ρ)− b−(a, ρ) = (1− a)2
∞∑
k=1

akq−1 = (1− a)2 aq−1

1− aq
. (6.33)

�

As remarked by Ding and Hemmer [13] and Bugeaud and Conze [6], it
follows from [18, Theorem 309] that for any a ∈ (0, 1), the sum of the lengths
|Ia,ρ| for all rational ρ ∈ [0, 1) is, considering only p/q in lowest terms and
letting ϕ be the Euler totient function,∣∣∣∣ ⋃

ρ∈Q∩[0,1)

Ia,ρ

∣∣∣∣ =
∑

ρ∈Q∩[0,1)

|Ia,ρ| = (1− a)2
∑

p/q∈Q∩[0,1)

aq−1

1− aq

= (1− a)2
∞∑
q=1

ϕ(q)
aq−1

1− aq
= 1 (6.34)

and hence for any fixed a, the rotation number is rational for almost every
b ∈ [0, 1). Furthermore, the exceptional set of b has Hausdorff dimension 0,
see [21] and Theorem 7.1 below.

Remark 6.6. As simple consequences of (6.24)–(6.25), we also have

b−(a, ρ) = (1− a)
∞∑
j=0

aj
(
d(j + 1)ρe − djρe

)
(6.35)

b+(a, ρ) = (1− a)
(

1 +
∞∑
j=0

aj
(
b(j + 1)ρc − bjρc

))
. (6.36)

This shows that b−(a, ρ) and b+(a, ρ) coincide with the functions defined (for
the same purpose) by Bugeaud [5] and Bugeaud and Conze [6, 7]. In their
notation, our b−(a, ρ) is written τa(ρ) when ρ is irrational, and P pq (a)/(1 +
a + · · · + aq−1) when ρ = p/q is rational; P pq (a) is a polynomial, and these
polynomials are studied further in [5, 6, 7].

Example 6.7. For ρ = 1/2, (6.24) yields

b−(a, 1
2) = (1− a)2

∞∑
k=0

(
a2k + a2k+1

)(
k + 1

)
= (1− a)2 1 + a

(1− a2)2
=

1

1 + a

(6.37)
and then (6.31) yields

b+(a, 1
2) = b−(a, 1

2) +
a(1− a)2

1− a2
=

1 + a− a2

1 + a
. (6.38)
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Consequently,

ρ(f±) =
1

2
⇐⇒ 1

1 + a
6 b 6

1 + a− a2

1 + a
. (6.39)

7. Hausdorff dimension

We use the results above to prove three theorems about the Hausdorff di-
mension of important sets. The first two concern the exceptional set of
parameters for which the rotation number is irrational, and thus the invari-
ant set of f± is a Cantor set; in the third theorem we study the invariant
set itself.

As said after Theorem 6.5, Bugeaud and Conze [6] showed that for any
fixed a, the exceptional set of b that yield an irrational rotation number
ρ(a, b) has Lebesgue measure 0; moreover, Laurent and Nogueira [21, The-
orem 2] show the sharper result that this exceptional set has Hausdorff
dimension 0. See also [13]. We supply gauge functions that provide even
finer information, including both an upper and a lower bound on the ‘size’ of
the exceptional set. Furthermore, we consider in Theorem 7.2 the Hausdorff
dimension of the two-dimensional parameter set (a, b) that yield irrational
rotation numbers.

Let E be the exceptional set of all (a, b) ∈ (0, 1) × [0, 1) such that f±,a,b
has irrational rotation number; furthermore, for a ∈ (0, 1), let Ea be the set
of b ∈ [0, 1) such that (a, b) ∈ E .

Theorem 7.1. For every a ∈ (0, 1), the Hausdorff dimension of Ea is 0.
Moreover, the Hausdorff measure Hh(Ea) <∞ for the gauge function h(t) =
1/| log t|2, but Hh(Ea) > 0 for the gauge function h(t) = 1/| log t|,

Proof. Fix N > 1. There are less that N2 intervals Ia,p/q with q 6 N . (Here
and throughout the proof we consider only Ia,p/q with p/q ∈ [0, 1) and p/q
in lowest terms.) Hence, their complement AN := (0, 1) \

⋃
q6N Ia,p/q is a

union of at most N2 (open) intervals. Each of these intervals has length at
most, recalling (6.34),

|AN | = 1−
∑
q6N

∑
p

∣∣Ia,p/q∣∣ =
∑
q>N

∑
p

∣∣Ia,p/q∣∣ 6∑
q>N

q(1− a)2 aq−1

1− an

6 (1− a)
∑
q>N

qaq−1 =
(
N + (1− a)−1

)
aN . (7.1)

Since Ea ⊂ AN , it follows that, for any gauge function h

Hh(Ea) 6 lim inf
N→∞

(
N2h(2NaN )

)
. (7.2)

Taking h(t) = tα, we findHα(Ea) = 0 for every α > 0, and thus the Hausdorff
dimension is 0.

Furthermore, taking h(t) = 1/| log t|2 in (7.15) we obtain Hh(Λ±) <∞.
For the lower bound for the gauge function h(t) = 1/| log t|, suppose that

we have a covering

Ea ⊆
∞⋃
k=1

Ik, (7.3)

where Ik = [b′k, b
′′
k] ⊆ [0, 1].
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Let Jk := [ρ(a, b′k), ρ(a, b′′k)]. Then, every irrational ρ ∈ (0, 1) equals ρ(a, b)
for some b ∈ Ea; thus b ∈ Ik for some k and then ρ ∈ Jk. Consequently,⋃
k Jk ⊇ (0, 1) \Q, and taking the Lebesgue measure we obtain∑

k

|Jk| > 1. (7.4)

We shrink each Jk to [ρ′k, ρ
′′
k] ⊆ Jk with ρ′k, ρ

′′
k irrational and ρ′′k−ρ′k >

1
2 |Jk|.

(Ignore Jk with |Jk| = 0, if any.) Then b−(a, ρ′k), b−(a, ρ′′k) ∈ Ik.
Let jk := b(ρ′′k − ρ′k)−1c 6 2|Jk|−1. Then (jk + 1)ρ′′k > (jk + 1)ρ′k + 1, and

thus d(jk + 1)ρ′′ke > d(jk + 1)ρ′ke+ 1. Hence, (6.24) implies

|Ik| > b−(a, ρ′′k)− b−(a, ρ′k) > (1− a)2ajk . (7.5)

If |Ik| > (1− a)4, then (7.5) implies ajk 6 (1− a)2, and thus by (7.5) again,
|Ik| > a2jk and

1

log(1/|Ik|)
>

1

2jk log(1/a)
>

|Jk|
4 log(1/a)

. (7.6)

Hence, for any covering (7.3) with sup |Ik| 6 (1− a)4, using (7.4),∑
k

1

log(1/|Ik|)
>
∑
k

|Jk|
4 log(1/a)

>
1

4 log(1/a)
. (7.7)

Consequently, with the gauge function h(t) = 1/| log t| we have

Hh(Ea) > 1/(4 log(1/a)). (7.8)

�

For each fixed ρ ∈ [0, 1], the functions b−(a, ρ) and b+(a, ρ) defined in
(6.24)–(6.25) are analytic functions of a ∈ (0, 1), and by Theorem 6.5, for
every irrational ρ ∈ (0, 1), the set (a, b) ∈ (0, 1)× [0, 1) such that f±,a,b has
rotation number ρ is the smooth curve Γρ := {(a, b−(a, ρ)) : a ∈ (0, 1)}.
Hence E =

⋃
ρ∈(0,1)\Q Γρ is an uncountable union of these smooth curves.

Each curve Γρ obviously has Hausdorff dimension 1. We show that the same
holds for their union E .

Theorem 7.2. The Hausdorff dimension of E is 1.

Proof. We develop the argument in the proof of Theorem 7.1 further, taking
into account the dependence on a.

Let a∗ ∈ (0, 1) and consider only a ∈ (0, a∗]; let E6a∗ := E ∩
(
(0, a∗] ×

[0, 1)
)
. We let C denote unspecified constants that may depend on a∗ (but

not on N below).
Let N > 1, and let QN := {pq ∈ Q ∩ [0, 1] : 1 6 q 6 N}. Order the

elements of QN as 0 = r1 < · · · < rM = 1, where M := |QN | 6 N2. (This
is the well-known Farey series [18].)

By Theorem 6.5, if b−(a, rj) 6 b 6 b+(a, rj), then ρ(a, b) = rj ∈ Q.
Hence, recalling that b−(a, 0) = 0 and b−(a, 1) = 1,

E ⊂
M−1⋃
j=1

{
(a, b) ∈ (0, 1)× [0, 1) : b+(a, rj) < b < b−(a, rj+1)

}
. (7.9)
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For any a 6 a∗, and any i < M , (7.1) shows that

0 < b−(a, rj+1)− b+(a, rj) 6
(
N + (1− a)−1

)
aN 6 (N + C)aN∗ . (7.10)

Let δN := NaN∗ , M ′ := da∗/δNe, and ai := ia∗/M
′, i = 0, . . . ,M ′; thus

ai − ai−1 = a∗/M
′ 6 δN . Let

Ei,j :=
{

(a, b) ∈ (ai−1, ai]× [0, 1) : b+(a, rj) < b < b−(a, rj+1)
}
. (7.11)

Then, by (7.9),

E6a∗ ⊆
⋃

16i6M ′
16j<M

Ei,j . (7.12)

It follows from (6.24)–(6.25) that∣∣∣∣ ∂∂ab−(a, ρ)

∣∣∣∣ , ∣∣∣∣ ∂∂ab+(a, ρ)

∣∣∣∣ 6 C, (7.13)

uniformly for all a ∈ [0, a∗] and ρ ∈ [0, 1]. Consequently, if a ∈ (ai−1, ai],
then |b−(a, ρ)− b−(ai, ρ)| 6 CδN and |b+(a, ρ)− b+(ai, ρ)| 6 CδN for every
ρ ∈ [0, 1], and it follows from (7.11) and (7.10) that every set Ei,j has
diameter at most (N + C)aN∗ + CδN 6 CNaN∗ . By (7.12), E6a∗ is covered
by less than MM ′ 6 CN2/δN = CNa−N∗ such sets. Consequently, for any
α > 1,

Hα(E6a∗) 6 lim inf
N→∞

CNa−N∗
(
CNaN∗

)α
= 0. (7.14)

Finally, E =
⋃
n E61−1/n, and thus Hα(E) = 0 for every α > 1. �

Our final theorem on Hausdorff dimension concerns the invariant set Λ±
(or, equivalently, the ω-limit set ωf±(x) for any x ∈ [0, 1], see Theorem 9.2).
In the case of a rational rotation number, this set is finite or countably
infinite, see Theorem 8.2 below, so it has trivially Hausdorff dimension 0.
We prove that the same holds also in the irrational case, and prove a sharper
result using the gauge function h(t) = 1/| log t|.

Theorem 7.3. The set Λ± has Hausdorff dimension 0. Moreover, the Haus-
dorff measure Hh(Λ±) is finite for the gauge function h(t) = 1/| log t|.

Proof. We claim that for each n > 0, fn±([0, 1]) is the union of at most n+ 1
disjoint closed intervals (possibly of length 0) of total length an. In fact, this

is true for n = 0. Suppose that it holds for some n, with fn±([0, 1]) =
⋃n+1
j=1 Ij ,

where some of the intervals Ij may be empty. Then τ belongs to at most

one interval Ik = [xk, yk], and then fn+1
± (Ik) = f+([xk, τ ]) ∪ f−([τ, yk]) is

the union of two disjoint closed intervals; all other intervals are mapped to
single intervals. Since furthermore, f± is injective, and contracts measures
by a, the claim follows by induction.

Hence, Λ± can for each n be covered by n+ 1 intervals of lengths an, and
thus, since an → 0, for any gauge function h

Hh(Λ±) 6 lim inf
n→∞

(
(n+ 1)h(an)

)
. (7.15)

Taking h(t) = tα, we find Hα(Λ±) = 0 for every α > 0, and thus the
Hausdorff dimension is 0.

Furthermore, taking h(t) = 1/| log t| in (7.15) we obtain Hh(Λ±) 6
1/| log(a)| <∞. �
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Alternatively, we can argue as in the proof Theorem 7.1, using (9.4) below.

Unlike in Theorem 7.1, we do not know any lower bound in Theorem 7.3,
in the sense of a certain Hausdorff measure being positive. We state this as
an open problem.

Problem 7.4. Find a gauge function h(t) such that Hh(Λ±) > 0, at least
for some (a, b).

In particular, we do not know whether the gauge function 1/| log t| is best
possible in Theorem 7.3. We suspect that the answer might depend on the
parameters; it seems possible that 1/| log t| is best possible in Theorem 7.3
if, for example, ρ = 1/

√
2 or (

√
5− 1)/2, but not if ρ is a Liouville number.

Similarly, we do not know whether the gauge functions in Theorem 7.1
are best possible.

Problem 7.5. Improve, if possible, one or both of the gauge functions
1/| log t|2 and 1/| log t| in Theorem 7.1.

Again, it seems possible that the answer depends on a.

8. Rational rotation number

We return to the study of orbits. We first use the results of Section 6 to show
that f± has a periodic orbit if and only if the rotation number is rational,
as claimed at the end of Section 3.

Theorem 8.1. (i) Suppose that the rotation number ρ = ρ(f±) of f± is
rational, say ρ = p/q (in lowest terms). Then f± has a periodic orbit C
of length exactly q. Furthermore, C = {φρ(k/q) : k = 0, . . . , q − 1}. In
particular,

minC = φρ(0) = ψ(ρ), (8.1)

maxC = φρ((q − 1)/q) = φρ(1−) = 1 + ψ(ρ+). (8.2)

(ii) Conversely, if f± has a periodic orbit, then the rotation number is
rational. Moreover, if the periodic orbit is minimal and has length q, then
ρ(f±) has denominator q in lowest terms.

Proof. (i): By Lemma 6.4 and (6.21), ψ(ρ+) 6 0 6 ψ(ρ). Define xk :=
φρ(k/q), k ∈ Z, and note that, by (6.2),

xk+q = φρ(k/q + 1) = xk + 1. (8.3)

By Lemma 6.1(iii), xk < xk+1. Furthermore,

x0 = φρ(0) = ψ(ρ) > 0, (8.4)

and, recalling Lemma 6.1(ii),

xq−1 = φρ((q − 1)/q) = φρ(1−) = 1 + φρ(0−) = 1 + ψ(ρ+) 6 1. (8.5)

Suppose first that ψ(ρ+) < 0. Then, recalling (6.15), Lemma 6.2(i) ap-
plies, and (6.8) holds. Consequently, for any k ∈ Z,

F−(xk) = F−

(
φρ

(k
q

))
= φρ

(k
q

+ ρ
)

= φρ

(k
q

+
p

q

)
= xk+p. (8.6)

This implies, by Lemma 2.12(ii), f−({xk}) = {F−(xk)} = {xk+p}, and thus
by iteration fn−({xk}) = {xk+np} for any n > 0. Taking n = q we find, using
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(8.3), f q−({xk}) = {xk + p} = {xk}, so {xk} lies in a periodic orbit C of f−.
Moreover, it is easy to see that

C =
{
{xk}

}
k∈Z =

{
{xk}

}q−1

k=0
= {xk}q−1

k=0, (8.7)

using the fact that xk ∈ [0, 1) for 0 6 k 6 q − 1 by (8.4)–(8.5). We thus
have minC = x0 and maxC = xq−1; hence (8.4)–(8.5) yield (8.1)–(8.2).

If ψ(ρ+) = 0, then necessarily ψ(ρ) = φρ(0) > 0, see (6.4). In this case,
Lemma 6.2(ii) applies, and (6.11) holds. By Lemma 6.1, φρ is constant on

the interval [kq ,
k+1
q ), and thus, using (6.11),

F+(xk) = F+

(
φρ

(k
q

))
= F+

(
φρ

(k + 1

q
−
))

= φρ

((k + 1

q
+ ρ
)
−
)

= φρ

(k + 1 + p

q
−
)

= φρ

(k + p

q

)
= xk+p. (8.8)

We can now repeat the arguments above, using f+, F+ and {·}+ instead of

f−, F− and {·}; this shows that C = {xk}q−1
k=0 now is a periodic orbit for f+.

Note that in the present case, C ⊂ (0, 1].
(ii): Suppose that f± has a periodic orbit. By Lemma 3.2, either f− or f+

has a periodic orbit; let us assume that f− has one. Then, for some x ∈ [0, 1)
and some q > 1, f q−(x) = x, which by Lemma 2.12 implies F q−(x) = x+p for
some integer p. Consequently, Fnq− (x) = x + np for every n > 0, and thus
Fnq− (x)/n→ p/q; hence the rotation number is p/q.

If q is minimal, then p and q are coprime, as a consequence of (i) and
Corollary 3.4 (or by a simple direct argument which we omit). �

By Theorem 3.3, f± has a universal limit cycle. Combining these results,
we obtain the following.

Theorem 8.2. Suppose that a ∈ (0, 1) and ρ ∈ [0, 1) with ρ rational. Then
f± has rotation number ρ(f±) = ρ if and only if one of the following three
cases holds.

(i) b = b−(a, ρ). Then f± has a unique periodic orbit C, with 0 ∈ C but
1 /∈ C. C is also a periodic orbit of f−, but f+ has no periodic orbit.

Furthermore, Λ− = C, while Λ+ = ∅ and Λ± = C ∪ O1, where O1

is the orbit of 1.
(ii) b−(a, ρ) < b < b+(a, ρ). Then f± has a unique periodic orbit C, with

0, 1 /∈ C. Furthermore, Λ± = Λ+ = Λ− = C.
(iii) b = b+(a, ρ). As in (i), interchanging 0 and 1 and indices + and −.

In all three cases, every orbit of f± converges to C, so ωf±(x) = ωf−(x) =
ωf+(x) = C for every x ∈ [0, 1].

Proof. The rotation number ρ(f±) equals ρ if and only if b−(a, ρ) 6 b 6
b+(a, ρ) by Theorem 6.5. In this case, f± has a periodic orbit C by The-
orem 8.1. Furthermore, C is unique by Corollary 3.4, and by (8.1)–(8.2)
and (6.26)–(6.27), 0 ∈ C ⇐⇒ ψ(ρ) = 0 ⇐⇒ b = b−(a, ρ) and
1 ∈ C ⇐⇒ ψ(ρ+) = 0 ⇐⇒ b = b+(a, ρ). Hence, τ ∈ C if and only
if b = b−(a, ρ) or b = b+(a, ρ). In other words, we are in Case 1a in Sec-
tion 4 in (ii), and in Case 1b in (i) and (iii). �
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Remark 8.3. Theorem 8.2 shows that if ρ(f±) is rational, then ωf±(x) ⊆
Λ± for all x, with equality in Case (ii), but strict inclusion in (i) and (iii).

In contrast, we have ωf−(x) ⊇ Λ− for all x, with equality in Cases (i) and
(ii), but strict inclusion in (iii), when Λ− = ∅, and similarly for f+.

Theorem 8.4. If the dynamical system f± has a rational rotation number,
then f± has a universal limit cycle C. Thus every orbit of f± converges to
C. Furthermore, the symbolic sequence of every orbit is eventually periodic.

Proof. The first statement follows from Theorem 8.2, and it implies the
second by definition. Thus, again by the definitions, if (xn)∞0 is any orbit,
there exists a periodic orbit (yn)∞0 (started at a suitable point y0 ∈ C)
such that xn − yn → 0 as n→∞. By (2.18) this implies, with obvious
notation, εxn − ε

y
n → 0, and thus εxn = εyn for all large n since εxn, ε

y
n ∈ {0, 1}.

Consequently, the symbolic sequence for the orbit (xn)∞0 equals from some
point on the symbolic sequence for (yn)∞0 , which is periodic. �

Example 8.5. By Theorem 6.5, or Lemma 6.4 and (6.18)–(6.20), the rota-
tion number is 0 if and only if 0 6 b 6 1 − a, i.e., if and only if a + b 6 1.
This is the simple case studied already in Examples 2.1, 2.4 and 2.5. We
see from Theorems 8.1 and 8.2, or directly as in these examples, that in this
case (and only in this case) there is a fixed point, i.e., a periodic cycle of
length 1, and that every orbit converges to the fixed point. The cases b = 0
and b = 1 − a discussed in Examples 2.5 and 2.4 are the cases (i) and (iii)
in Theorem 8.2.

Theorem 2.14 shows that when ρ = 0, at most a finite number of the
symbols εi are non-zero. In fact, it is easy to see that there can be at most
one non-zero symbol.

8.1. A sufficient condition for a rational rotation number. By The-
orems 7.1 and 7.2, or by the earlier results by Bugeaud and Conze [6] and
Laurent and Nogueira [21] discussed in Section 7, the rotation number is
rational for ‘most’ values of the parameters (a, b). Explicit examples with
a rational rotation number can easily be produced using Theorem 6.5. An-
other large class of parameter values with a rational rotation number is given
by the following theorem by Laurent and Nogueira [21, Theorem 3], which
we quote for later reference; their proof is based on a number theoretic result
by Loxton and van der Poorten [22, Theorem 7], combined with results by
[6] (our (6.24)–(6.25) and Theorem 6.5).

Theorem 8.6 (Laurent and Nogueira [21]). If a and b are algebraic num-
bers, then the dynamical system f± has a rational rotation number. �

9. Irrational rotation number

We now consider the case when f± has an irrational rotation number ρ =
ρ(f±). By Theorem 8.1(ii), f± has no periodic orbit. Hence, this is Case 2
in Section 4; we proceed to verify the claims there.

By Lemma 6.4 and (6.4), φρ(0) = ψ(ρ) = 0, and thus, see (6.2), φρ(1) =
1. Moreover, φρ is strictly increasing, by Lemma 6.1, and thus φρ gives a
bijection of [0, 1) onto Λ0 := φρ([0, 1)) ⊂ [0, 1).
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It follows from (6.9) that f−(Λ0) = Λ0, and that f− restricted to Λ0 is a
bijection, which is conjugated by φρ to the rotation x 7→ {x+ ρ} on [0, 1).

By Lemma 6.1(iii), the set of discontinuities of φρ in [0, 1] is

Dρ ∩ [0, 1] =
{
{mρ} : m > 1

}
. (9.1)

This set is countably infinite, and dense in [0,1]; note also that 0, 1 /∈ Dρ. Let
xi := {iρ}, so Dρ ∩ [0, 1] = {xi}∞1 , and let ξi := φρ(xi−) and ηi := φρ(xi).
Since φρ is strictly increasing and right-continuous (Lemma 6.1), it follows
that

Λ0 = φρ([0, 1)) = [0, 1) \
∞⋃
i=1

[ξi, ηi) (9.2)

and

Λ0 = [0, 1] \
∞⋃
i=1

(ξi, ηi) = {φρ(x), φρ(x−) : x ∈ [0, 1]}. (9.3)

It follows from (6.1) that the gap (ξi, ηi) has length

ηi − ξi = (1− a)ai−1, i = 1, 2, . . . (9.4)

Hence, the sum of the lengths of the gaps is 1, so Λ0 has Lebesgue measure
0. In fact, it has Hausdorff dimension 0, see Theorem 7.3.

Note also that (6.9) implies f−(φρ(1 − ρ)) = 0, and thus τ = φρ(1 − ρ).
In particular, τ ∈ Λ0; furthermore, τ 6= ηi for i > 1, and consequently,
τ /∈ [ξi, ηi]. Since f−(ηi) = ηi+1, by (6.9) again, it follows that for every
i > 1, f− maps [ξi, ηi] linearly onto [ξi+1, ηi+1]; furthermore, f± = f+ = f−
on each such interval. Finally, (6.9) and (6.12) (with x = 0) imply

f±(0) = η1 and f±(1) = ξ1. (9.5)

This describes the dynamics of f± on [0, 1]\Λ0 completely. It follows easily,
by induction, that

fn−([0, 1)) = [0, 1) \
n⋃
i=1

[ξi, ηi), (9.6)

fn+((0, 1]) = (0, 1] \
n⋃
i=1

(ξi, ηi], (9.7)

fn±([0, 1]) = [0, 1] \
n⋃
i=1

(ξi, ηi). (9.8)

Remark 9.1. As shown above, τ ∈ Λ±, and thus also 0, 1 ∈ Λ± whenever
ρ(f±) is irrational, see (2.9).

Theorem 9.2. Suppose that f± has an irrational rotation number ρ =
ρ(f±). Then

Λ± = Λ0 = {φρ(x), φρ(x−) : x ∈ [0, 1]}, (9.9)

Λ− = Λ0 = {φρ(x) : x ∈ [0, 1)}, (9.10)

Λ+ = Λ1 := {φρ(x−) : x ∈ (0, 1]} = Λ0 \ {0, η1, η2, . . . }. (9.11)

Furthermore, the limit sets ωf±(x) = ωf−(x) = ωf+(x) = Λ± for every
x ∈ [0, 1].
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For any orbit (xn)∞0 , the distance d(xn,Λ±) 6 an for every n > 0; hence
the orbits converge to Λ± uniformly (and geometrically).

Proof. First, (9.9)–(9.11) follow from (9.6)–(9.8) and (9.2)–(9.3).
For the limit sets, consider first f−. Suppose first that x ∈ Λ0. Then

x = φρ(t) for some t ∈ [0, 1), and thus fn−(x) = fn−(φρ(t)) = φρ({t+ nρ}) ∈
Λ0. Hence, ωf−(x) ⊆ Λ0. On the other hand, for any y = φρ(u) ∈ Λ0, there
exists a subsequence (nk) such that tnk := {t+nkρ} → u with tnk > u; since
φρ is right-continuous, this implies fnk− (x) → φρ(u) = y. Hence, ωf−(x) ⊇
Λ0. Since ωf−(x) is closed by (2.11), this implies ωf−(x) ⊇ Λ0, and thus

ωf−(x) = Λ0 = Λ±.
On the other hand, if x ∈ [0, 1) \Λ0, then x ∈ [ξi, ηi) for some i. Since f−

is a linear contraction on each interval [ξi, ηi], it follows that

fn−(ηi)− fn−(x) = an(ηi − x)→ 0 (9.12)

as n→∞; hence the orbit of x is asymptotic to the orbit of ηi ∈ Λ0, and
thus ωf−(x) = ωf−(ηi) = Λ0 = Λ± in this case too.

Finally, for x = 1, recall from (9.5) that f−(1) = ξ1 ∈ [0, 1). Thus
ωf−(1) = ωf−(ξ1) = Λ±. Hence ωf−(x) = Λ± for every x ∈ [0, 1].

By symmetry (Remark 2.3), also ωf+(x) = Λ± for every x ∈ [0, 1].
The description of the orbits in the beginning of Section 4 shows that

every orbit for f± is an orbit for f− or for f+. Hence, for any x ∈ [0, 1],
ωf±(x) = ωf−(x) ∪ ωf+(x) = Λ±.

Now, let (xn)∞0 be an arbitrary orbit. If x0 ∈ Λ±, then xn ∈ Λ± for every
n, and thus d(xn,Λ±) = 0. On the other hand, if x0 ∈ [0, 1]\Λ± ⊂ [0, 1)\Λ0,
then for every n > 1, (9.12) implies d(xn,Λ±) 6 d(xn, f

n
−(ηi)) 6 an. �

Remark 9.3. In particular, if ρ(f±) is irrational, then, for any x, ωf±(x) =
Λ±, while ωf−(x) ) Λ− and ωf+(x) ) Λ+. Cf. the case of a rational rotation
number in Remark 8.3.

Remark 9.4. It is easy to see that when ρ(f±) is irrational, Λ± is a Cantor
set, i.e., a totally disconnected perfect compact set (and thus homeomorphic
to the Cantor cube {0, 1}∞). In fact, Λ± is compact and non-empty, and
totally disconnected since it has measure 0 and thus does not contain any
open interval. Finally, if x ∈ Λ±, then x ∈ ωf±(x) by Theorem 9.2, so there
exists an orbit (xn) with x0 = x and a subsequence xnk → x. Then each
xn ∈ Λ± since Λ± is invariant, and xn 6= x for n > 1 since there is no
periodic orbit; hence x is not isolated in Λ±.

Remark 9.5. When ρ is irrational, as shown above, 0, 1, τ ∈ Λ± = ωf±(x)
for any x. Hence, since each x has at most two orbits, any orbit comes
arbitrarily close to the discontinuity point τ (on both sides), as well as to 0
and 1, infinitely often.

10. The invariant measure

If ρ(f±) is rational, so there exists a periodic orbit C by Theorem 8.1, then
there is an obvious invariant probability measure µ on C, viz. the uniform
measure with mass 1/|C| at each point. This measure µ is invariant under
f± in the sense that if 1 /∈ C it is invariant under f− and if 0 /∈ C then
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it is invariant under f+; recall that at least one of these cases occurs, see
Theorem 8.2.

Suppose now that ρ(f±) is irrational. Then we construct an invariant
probability measure µ as the image measure of the Lebesgue measure on
[0, 1] under the map φρ, where ρ := ρ(f±). Then φρ : [0, 1]→ Λ±, see (9.9),
and thus µ is a probability measure on Λ±. Since φρ is strictly increasing
by Lemma 6.1, µ is in this case a continuous measure, i.e., each point has
measure 0. Moreover, (6.5) holds by Lemma 6.4, so Lemma 6.2 applies, and
it follows from (6.9) that µ is invariant under f−; µ is invariant under f+

too since µ has no point mass at τ .

Theorem 10.1. Let (xi)
∞
0 be an arbitrary orbit of f±. Then the empirical

measure 1
n

∑n−1
i=0 δxi converges weakly to the invariant µ as n→∞.

Proof. If ρ = ρ(f±) is rational, this follows from the fact that the orbit
converges to the limit cycle C, see Theorem 8.4.

Thus suppose that ρ is irrational. Then the orbit visits 1 at most once,
and if it does, it suffices to consider the part of the orbit after 1. Hence, we
may assume that x0 ∈ [0, 1) and that xn = fn−(x0).

If x0 ∈ Λ0, so x0 = φρ(t) for some t ∈ [0, 1) (see (9.10)), then (6.9) implies

xi = φρ({t+ iρ}), and hence µn := 1
n

∑n−1
0 δxi is the image under φρ of the

measure νn := 1
n

∑n−1
0 δ{t+iρ}. As n→∞, the measures νn converge weakly

to the uniform measure λ on [0, 1), and since φρ is measurable and λ-a.e.
continuous (by Lemma 6.1), it follows that µn → µ weakly, see [2, Theorem
5.1].

If x0 ∈ [0, 1) \ Λ0, then there exists as in the proof of Theorem 9.2 an
ηi ∈ Λ0 such that (9.12) holds. We have just shown that the theorem holds
for the orbit starting at ηi, and then (9.12) implies that the same holds for
the orbit starting at x0. �

Corollary 10.2. The invariant measure µ has center of mass
∫ 1

0 x dµ =
χ := (b− ρ(f±))/(1− a).

Proof. With µn as in the proof of Theorem 10.1,
∫ 1

0 x dµn →
∫ 1

0 x dµ by

Theorem 10.1, and
∫ 1

0 x dµn → χ by Theorem 5.1. �

Theorem 10.3. The measure µ is the only probability measure on [0, 1] that
is invariant under f− or f+.

Proof. Suppose that ν is such a probability measure, invariant under, say,
f−. Let X0 be a random point in [0, 1] with the distribution ν, and let
Xn := fn−(X0). Then Xn is a sequence of random variables, each having the
same distribution ν.

Let h ∈ C[0, 1] be an arbitrary continuous function on [0, 1]. Then Theo-
rem 10.1 shows that

1

n

n−1∑
i=0

h(Xi)→
∫
hdµ. (10.1)
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The random variables on the left-hand side are uniformly bounded, so by
dominated convergence,

1

n

n−1∑
i=0

Eh(Xi) = E
( 1

n

n−1∑
i=0

h(Xi)
)
→
∫
hdµ. (10.2)

On the other hand, each Xi has distribution ν, so Eh(Xi) =
∫
hdν. Con-

sequently,
∫
hdν =

∫
hdµ, which, since h is arbitrary, means ν = µ. �

11. Phragmén’s election method

11.1. Definition of Phragmén’s method. Phragmén’s election method
can be described in several different, but equivalent, ways. For our purposes
it is convenient to use the following, which is based on Phragmén’s original
formulation (in French) in [26]; see also [27, 28, 29], [20] and Section 11.2
below for different formulations and motivations.

Phragmén’s election method. Assume that each ballot has some voting
power t; this number is the same for all ballots and will be determined later.
A candidate needs total voting power 1 in order to be elected. The voting
power of a ballot may be used by the candidates on that ballot, and it may be
divided among several of the candidates on the ballot. During the procedure
described below, some of the voting power of a ballot may be already assigned
to already elected candidates; the remaining voting power of the ballot is free.

The seats are distributed one by one.
For each seat, each remaining candidate may use all the free voting power

of each ballot that includes the candidate. (I.e., the full voting power t
except for the voting power already assigned from that ballot to candidates
already elected.) The ballot voting power t that would give the candidate
voting power 1 is computed, and the candidate requiring the smallest voting
power t is elected. All free (i.e., unassigned) voting power on the ballots
that contain the elected candidate is assigned to that candidate, and these
assignments remain fixed throughout the election.

The computations are then repeated for the next seat for the remaining
candidates (resulting in a new voting power t), and so on.

Ties are broken by lot or by some other method. The required voting
power t increases for each seat, except in some cases of a tie where t may
remain the same.

11.2. An algorithmic version of Phragmén’s method. For any set σ
of candidates (parties in the party version), let vσ be the number of votes
for the set σ. Hence the total number of votes for candidate (party) i is

W 0
i :=

∑
σ3i

vσ. (11.1)

Phragmén’s method is often formulated in the following algoritmical form,
where W 0

i is reduced to a reduced vote Wi when some candidates on ballots
containing i already have been elected:

For each set σ with vσ > 0 (i.e., each group of identical ballots), we
assign dynamically a place number qσ, which is a real non-negative number
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that can be interpreted as the (fractional) number of seats elected so far by
these ballot; the sum of the place numbers is always equal to the number of
seats already allocated. The place numbers are assigned and the seats are
allocated recursively by the following rules.

(i) Initially all place numbers qi = 0.
(ii) The reduced vote for candidate i is defined as

Wi :=

∑
σ3i vσ

1 +
∑

σ3i qσ
, (11.2)

i.e., the total number of votes for the candidate divided by 1 + their
total place number.

(iii) The candidate i with the largest Wi is elected to the next seat, break-
ing ties by lot or some other method. (In the original version, only
unelected candidates are considered. In the party version, repetitions
are allowed.)

(iv) If i is elected, then qσ is updated for every σ 3 i (i.e., for the ballots
that contributed to the election of i); the new value is

q′σ :=
vσ
Wi

. (11.3)

qσ remains unchanged when σ 63 i.
Repeat from (ii).

It is easily verified from (11.2) that (iv) increases
∑

σ qσ by 1, so by induction,∑
σ qσ equals the number of elected, as claimed above.
For a proof that this really yields the same result as the definition in

Section 11.1, see e.g. [20]; we remark here only that the connection is that
the voting power t required to elect candidate i in the previous version equals
1/Wi with Wi given by (11.2), and that qσ is the total voting power already
assigned to previously elected on the ballots of type σ.

11.3. Phragmén’s method as a dynamical system. Phragmén’s method
(in the party version) can be regarded as a dynamical system as follows.

Let P be the set of parties (or candidates, in the original version), and
let as above vσ be the number of votes for the set σ of parties. (We regard
these numbers as fixed.) Define W 0

i by (11.1). We may ignore parties that
do not appear on any ballot, and thus we assume that W 0

i > 0 for every
i ∈ P. Let

Π := {σ ⊆ P : vσ > 0 and σ 6= ∅}, (11.4)

the family of all nonempty sets of parties with at least one vote for the set.
(I.e., the different types of ballots that occur. We ignore blank votes, i.e.,
σ = ∅, since they do not affect the outcome.)

We use the formulation of Phragmén’s method in Section 11.1, and let
xσ = xσ(n) be the free voting power of each ballot σ when n candidates have
been elected. Let x = x(n) = (xσ)σ∈Π be the vector of free voting powers.
Let 1 := (1)σ∈Π be the vector with all components 1. The description in
Section 11.1 now can be formalized as follows:

(i) Initialize all xσ := 0.
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(ii) A party (candidate) i can use a voting power

Vi(x) = Vi((xσ)σ) :=
∑
σ3i

vσxσ. (11.5)

For each i ∈ P, find ∆i := ∆i(x) such that Vi(x + ∆i1) = 1, i.e.,∑
σ3i

vσ(xσ + ∆i) = 1. (11.6)

(iii) Find i∗ such that ∆i∗ is minimal, i.e., ∆i∗ = mini∈P ∆i.
Output i∗ as the next elected.

(iv) Update x to

x′σ :=

{
xσ + ∆i∗ , i∗ /∈ σ,
0, i∗ ∈ σ.

(11.7)

Repeat from (ii).

In the original version, candidates that are elected are not considered
further, but in the party version there is no such restriction.

We can regard (ii)–(iv) as a function f , taking a vector x to a new vector
f(x) = (x′σ)σ; a natural state space is

K :=
{
x = (xσ)σ ∈ [0,∞)Π : Vi(x) 6 1 ∀i ∈ P

}
. (11.8)

If x ∈ K and σ ∈ Π, take any i ∈ σ; then Vi(x) 6 1 and thus xσ 6 1/vσ <∞
by (11.5). Consequently, K is closed and bounded, i.e., K is a compact
subset of RΠ. Note that the equation (11.6) is a linear equation in ∆i,
with positive coefficient W 0

i ; thus the equation has a unique solution ∆i(x).
Moreover, ∆i(x) > 0 for x ∈ K.

Ties are possible in (iii); in that case we choose i∗ by lot or by some other
method. We regard the method as indeterminate in that case. We formalize
this by defining, for i ∈ P,

Ki :=
{
x ∈ K : ∆i(x) 6 ∆j(x) ∀j ∈ P

}
, (11.9)

i.e., the set of free voting powers where i can be chosen as i∗. Then (iv)
(with i∗ = i) defines a function fi : Ki → K, and f is the union of these
functions. Note that K =

⋃
iKi, so f is defined everywhere on K, but f is

multivalued at points in the intersection Ki ∩Kj of two (or more) domains.
(Cf. [8], where multivalued functions of this type are studied in the case
when each fi is a contraction.)

Note that the result is the same if all vote numbers vσ are multiplied by
the same positive constant. We may thus divide by the total number of
votes and thus replace the numbers of votes by their proportions; we keep
the notation vσ but may thus without loss of generality assume

∑
σ vσ = 1.

Moreover, we allow vσ to be arbitrary real numbers in [0, 1] (with sum 1). (In
a real election, the proportions are of course rational numbers, but we may
imagine that we have weighted votes, where voters have different weigths
that are arbitrary positive real numbers.)

The general case seems quite difficult to analyse, so we consider in the
sequel the case of only two parties.

Remark 11.1. The dynamical system just described is in general not locally
contractive for the standard Euclidean metric on K ⊂ [0,∞)Π (or for the
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`1 or `∞ metric, say), not even for two parties; see (11.25) below for a
counterexample.

11.4. Phragmén’s method for two parties. With two parties A and B,
the possible votes are A, B and AB (and blank votes, but they may be
ignored as said above). For convenience, we may assume as above that vσ
is the proportion of votes on σ, and thus that they sum to 1; furthermore
we change notation and denote these proportions by α := vA, β := vB and
ζ := vAB = 1− α− β.

By symmetry, we may assume α > β > 0. The cases β = 0 and α = β
are simple, see Examples 11.2 and 11.3. We may thus assume α > β > 0.
We shall show that it then is possible to transform the dynamical system in
Section 11.3 into the system f± = {{ax+ b}, {ax+ b}+} studied above, for
some a and b.

We do the transformation in several steps. First, note that we do not use
all of the set K in (11.8). In fact, when A is elected we put xA = xAB = 0,
and when B is elected we put xB = xAB = 0. Hence, both fA and fB map
K into the subset, with x = (xA, xB, xAB),

K ′ := K ∩
({

(x, 0, 0) : x > 0
}
∪
{

(0, y, 0) : y > 0
})

(11.10)

and thus it suffices to consider the action of fA and fB on K ′.
There are thus two cases:

(i) Suppose that x = (x, 0, 0). If the voting power of each ballot is increased
by ∆, then A has available voting power, cf. (11.5)–(11.6),

VA(x+∆1) = vA(x+∆)+vAB∆ = (α+ζ)∆+αx = (1−β)∆+αx, (11.11)

and thus A requires additional voting power

∆A =
1− αx
1− β

. (11.12)

On the other hand, B has available voting power

VB(x + ∆1) = vB∆ + vAB∆ = (β + ζ)∆ = (1− α)∆, (11.13)

so B requires voting power

∆B =
1

1− α
. (11.14)

Since α > β by assumption, ∆B > 1/(1 − β) > ∆A; hence the next seat
goes to A, updating (x, 0, 0) to (x′, y′, z′) with x′ = z′ = 0 and

y′ = ∆A =
1− αx
1− β

. (11.15)

(ii) Suppose that x = (0, y, 0). Arguing as above, we find that the additional
voting power required for the two parties are

∆A =
1

α+ ζ
=

1

1− β
, (11.16)

∆B =
1− βy
β + ζ

=
1− βy
1− α

. (11.17)

Thus, there are two subcases: (In case of equality in (11.18) and (11.21), we
are in the indeterminate case when both alternatives are possible; the same
applies to all transformations below.)
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(a) A is elected if
1

1− β
6

1− βy
1− α

, (11.18)

or, equivalently,

βy 6 1− 1− α
1− β

=
α− β
1− β

. (11.19)

The free voting powers are updated to (0, y′, 0) where

y′ := y + ∆A = y +
1

1− β
. (11.20)

(b) B is elected if
1

1− β
>

1− βy
1− α

, (11.21)

or, equivalently,

βy > 1− 1− α
1− β

=
α− β
1− β

. (11.22)

The free voting powers are updated to (x′, 0, 0) with

x′ := ∆B =
1− βy
1− α

. (11.23)

11.4.1. First dynamical system. Since xAB = 0 on K ′, we may ignore xAB
and write the elements of K ′ as (xA, xB). Phragmén’s method can thus be
formulated as a dynamical system, operating on vectors (x, y) ∈ ([0,∞) ×
{0}) ∪ ({0} × [0,∞)) by the function (x, y) 7→ f1(x, y) given by

(i) If y = 0, then output A and let

f1(x, 0) :=
(

0,
1− αx
1− β

)
. (11.24)

(iia) If x = 0 and βy 6 α−β
1−β , then output A and let

f1(0, y) :=
(

0, y +
1

1− β

)
. (11.25)

(iib) If x = 0 and βy > α−β
1−β , then output B and let

f1(0, y) :=
(1− βy

1− α
, 0
)
. (11.26)

The system starts in (0, 0), and thus begins with (i) or (iia) which both give
the same result when x = y = 0.

11.4.2. Second dynamical system. We can simplify the analysis by noting
that an election of B, by (11.26) always gives case (i) and thus election of A
for the next seat. Let us consider these two seat assignments as a combined
move. The combination thus start as in (iib) above with x = (0, y), where
βy > (α − β)/(1 − β). First B is elected, leaving by (11.26) each ballot
A with a free voting power x′ = (1 − βy)/(1 − α). Secondly, A is elected,
leaving by (11.24) each ballot B with a free voting power

y′′ =
1− αx′

1− β
=

1− α− α(1− βy)

(1− α)(1− β)
=

1− 2α+ αβy

(1− α)(1− β)
. (11.27)
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Using this combination instead of (iib) above, each case yields a vector of
the form (0, y). We can thus simplify the dynamical system to the following,
acting on a single variable y > 0 (starting with y = 0) by the function f2

given by

(i) If βy > α−β
1−β , then output BA and let

f2(y) :=
1− 2α+ αβy

(1− α)(1− β)
. (11.28)

(ii) If βy 6 α−β
1−β , then output A and let

f2(y) := y +
1

1− β
. (11.29)

11.4.3. Third dynamical system. We simplify further by replacing y by z :=
(1− β)y, noting that

βy >
α− β
1− β

⇐⇒ βz > α− β ⇐⇒ z >
α

β
− 1.

This yields an equivalent dynamical system acting on a variable z > 0
(starting with z = 0) by the function f3 given by

(i) If z > α
β − 1, then output BA and let

f3(z) :=
1− 2α

1− α
+

αβ

(1− α)(1− β)
z. (11.30)

(ii) If z 6 α
β − 1, then output A and let

f3(z) := z + 1. (11.31)

11.4.4. Fourth dynamical system. We replace z by w := α/β− z and obtain
the dynamical system (starting with w = α/β) given by the function f4

defined by:

(i) If w 6 1, then output BA and let

f4(w) :=
α

β
− 1− 2α

1− α
− αβ

(1− α)(1− β)

(α
β
− w

)
=
α

β
+

α

1− α
− 1− α2

(1− α)(1− β)
+

αβ

(1− α)(1− β)
w. (11.32)

(ii) If w > 1, then output A and let

f4(w) := w − 1. (11.33)

In other words,

f4(w) =

{
aw + b∗, w 6 1, (11.34a)

w − 1, w > 1, (11.34b)

where

a =
αβ

(1− α)(1− β)
=

αβ

(α+ ζ)(β + ζ)
∈ (0, 1], (11.35)

b∗ =
α

β
+

α

1− α
− 1− α2

(1− α)(1− β)
=
α− β
β

+
α(1− α− β)

(1− α)(1− β)
> 0.

(11.36)
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Note that a < 1 unless ζ = 0 (in which case Phragmén’s method reduces
to D’Hondt’s, as said above). On the other hand, b∗ can be arbitrarily large;
we define b := {b∗} ∈ [0, 1) and b0 := bb∗c.

Note also that 0 < f4(0) = b∗ < f4(1−) = a+ b∗ and that

a+ b∗ =
α− β
β

+
α(1− α− β) + αβ

(1− α)(1− β)
=

α

β(1− β)
− 1. (11.37)

11.4.5. Final (fifth) dynamical system. We can reformulate the dynamical
system once more by combining each BA move (11.34a) with all following
A moves (11.34b). This yield the dynamical system acting on w ∈ [0, 1] by
the function f5 : [0, 1]→ [0, 1] given by

f5(w) := {f4(w)} = {aw + b∗} = {aw + b} (11.38)

with the output BAk where

k := 1 + bf4(w)c = 1 + baw + b∗c = 1 + b0 + baw + bc, (11.39)

except that in the indeterminate case when aw + b∗ is an integer, we also
allow f5(w) = {aw + b}+ = 1 with k := aw + b∗.

Thus f5(w) = f±(w), the multi-valued function studied in the present
paper, with a and b := {b∗} given by (11.35)–(11.36). Furthermore, (11.39)
can be written, using (11.38) and defining the symbol ε ∈ {0, 1} as in (2.18),

k := 1 + b0 + aw + b− f5(w) = 1 + b0 + ε. (11.40)

Note that this includes both possibilities in the indeterminate case.
The dynamical system really starts with w = α/β, which outputs A bα/βc

times before the first B (or possibly one less, if α/β is an integer), so in the
version using f5, we start with an initial output A` with ` := bα/βc and
then run the dynamical system f± starting with w = w0 := {α/β} (possibly
modified if α/β is an integer); the output is by (11.40) given by BA1+b0+εi

for each symbol εi in the symbolic sequence. In other words, after the initial
A’s, the output is obtain from the symbolic sequence by the substitutions

0→ BAb0+1, 1→ BAb0+2. (11.41)

Example 11.2. The case α > β = 0 was excluded above. In this case, it is
easily seen that every seat goes to A. Thus nA = n for any n. In particular,
nA/n→ pA = 1. (This can be seen as (1.2) with b0 =∞.)

Example 11.3. The case α = β was also excluded above. In this case, if
α = β > 0 and ζ > 0, it is easily seen that the first seat goes to either
A or B, and all following seats alternate between the two parties; hence
|nA − nB| 6 1. In particular, nA/n→ pA = 1/2.

In the extreme case α = β = 1/2 and ζ = 0, there is a tie at every second
seat; the first two seats go to either AB or BA, and the same holds for
each following pair of seats; however, the order within each pair is arbitrary.
Hence Theorem 1.2(iii) does not hold if, for example, ties are resolved by
lot. (However, it holds if ties always are resolved in favour of, say, A.)
Nevertheless, in any case we still have |nA − nB| 6 1.

In the opposite extreme case α = β = 0, so all votes are for AB (and thus
ζ = 1), every seat is a tie. If the ties are resolved by lot, then almost surely
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the proportion nA/n → pA = 1/2, but other resolution rules may give e.g.
all seats to A (or B).

Example 11.4. The case ζ = 0 is not excluded above; if α > β > 0
and ζ = 0, then Phragmén’s method is still described by the dynamical
system f5 and (11.41). However, in this case (11.35) yields a = 1, and thus
f±(x) = {x+b} (or {x+b}+), which is the limiting case of a rotation on the
circle mentioned in Remark 2.2. Our results in the preceding sections do not
include this (simple) case, but it is easy to see from (2.18) that Theorem 2.14
still holds, with the rotation number ρ = b.

Furthermore, since now α+ β = 1, (1.5) yields

b∗ =
α− β
β

+
α(1− α− β)

βα
=

1− 2β

β
=

1

β
− 2. (11.42)

and thus b = {b∗} = {1/β}. Since the dynamical system starts with w =
{α/β} = {(1 − β)/β} = {1/β}, it follows that fn±(w) = {(n + 1)/β} or
{(n + 1)/β}+; hence, if β = p/q is rational, then there is a choice at each
p:th iteration. Hence, if e.g. the choices are made by lot, the orbit is a.s. not
periodic. (We are in an orbit that is periodic except that each p:th term is
either 0 or 1, but these may be chosen arbitrarily.) This is in stark contrast
to the case a < 1 studied in the present paper, see for example Lemma 3.1
and Theorem 8.4, and we see that Theorem 1.2(iii) does not hold when
ζ = 0. (Note that in this case, ρ = b ∈ Q ⇐⇒ β ∈ Q by (11.42).)

Note that the same behaviour was found for ζ = 0 and α = β in Exam-
ple 11.3.

11.5. Proof of Theorem 1.2. We consider several cases, and begin with
the main case. By symmetry, it suffices to consider α > β.

Case 1: α > β > 0 and ζ > 0. In this case, Phragmén’s election method is
described by the dynamical system f5 = f± as described above. Note that
a < 1 by (11.35). Let Sm :=

∑m−1
i=0 εi, where εi is the symbolic sequence

defined in Section 2.7. Let m > 0 and suppose that at some stage of the
election, nB = m. This means that we are in the mth iteration of the
dynamical system; in other words, we have so far made m substitutions
(11.41), except that the last may be incomplete. Taking into account also
the initial string of A’s, we obtain

nA =

m−1∑
i=0

(b0 + 1 + εi) +O(1) = (b0 + 1)m+ Sm +O(1). (11.43)

Consequently, letting ρ = ρ(f±) be the rotation number of (1.3), Theo-
rem 2.14 yields

nA = (b0 + 1)m+ ρm+O(1), (11.44)

which together with our assumption nB = m yields

n = nA + nB = (2 + b0 + ρ)m+O(1) (11.45)

and thus

nB = m =
n

2 + b0 + ρ
+O(1). (11.46)
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Consequently,
nB
n

=
1

2 + b0 + ρ
+O

( 1

n

)
, (11.47)

which shows both the existence of the limit pB as n→∞, and its value (1.2)
in (ii). Furthermore, obviously nA/n→ pA := 1− pB,

(i) follows from (11.46).
Finally, if ρ is rational, then the symbolic sequence is eventually periodic

by Theorem 8.4, and thus so is the sequence of awarded seats by (11.41),
showing (iii).

This completes the proof in Case 1.

Case 2: α > β > 0 and ζ = 0. As said in Example 11.4, we can use the
dynamical system f5 above in this case too; the only difference from the
preceding case is that now (1.4) yields a = 1, but Theorem 2.14 still holds
and (i) and (ii) follow as above. However, as noted in Example 11.4, (iii)
does not always hold.

In this case, all votes are for A or B, and Phragmén’s method reduces to
D’Hondt’s. The results can also easily be shown directly, see e.g. [19]. Note
that in this case, ρ = b and thus, by (1.6)–(1.7) and (11.42), 2 + b0 + ρ =
2 + b∗ = β−1; hence (1.2) yields pB = β. In other words, when ζ = 0, the
proportion of seats for a party converges to its proportion of the votes, as
said earlier.

Case 3: α > β = 0. Trivial by Example 11.2, with pA = 1 and pB = 0.

Case 4: α = β > 0. By Example 11.3, (i) holds, with pA = pB = 1/2, and
if ζ > 0, then also (iii) holds. Furthermore, (11.37) yields

a+ b∗ =
1

1− β
− 1 =

β

1− β
=

α

α+ ζ
6 1. (11.48)

In particular, b∗ < 1 and thus b0 = 0. Furthermore, a+ b 6 1, and thus the
rotation number ρ = 0, see Example 8.5. Consequently, (1.2) holds too. �

11.6. Further results. We combine Theorem 1.2 with the result by Lau-
rent and Nogueira [21] on rational rotation numbers quoted above as Theo-
rem 8.6, and obtain the following.

Theorem 11.5. Consider the party version of Phragmén’s election method
with two parties. If, with notation as in Theorem 1.2, the proportions α, β, ζ
are algebraic numbers (in particular, if they are rational), and 0 < ζ < 1,
then the sequence of awarded seats is eventually periodic. In particular, the
proportions nA/n and nB/n of seats given to each party converge to rational
numbers.

Proof. By symmetry, we may assume α > β. The case β = 0 is trivial by
Example 11.2 (all seats go to A); hence we may assume α > β > 0, so
Theorem 1.2(ii) applies. The numbers a and b∗ in (1.4)–(1.5) are algebraic,
and thus so is b by (1.6). Furthermore, 0 < a < 1 since ζ > 0. Hence,
Theorem 8.6 applies and shows that ρ is rational. The proof is completed
by Theorem 1.2(iii). �

Remark 11.6. Of course, in a real election, with integer numbers of votes,
the proportions of votes are always rational. (Unless votes are weighted,
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and even then the proportions are rational or algebraic unless some weight
is transcendental.) However, we are studying an idealized mathematical
situation (where we may let n→∞), and then it is natural to allow arbitrary
real numbers α and β (with α, β > 0 and α+ β 6 1).

Example 11.7. When is pA = pB = 1/2? By symmetry we may assume
α > β. Then β > 0 is necessary by Example 11.2, and thus (1.2) shows that
pB = 1/2 if and only if b0 + ρ = 0, i.e., if and only if b0 = 0 and ρ = 0. By
Example 8.5, ρ = 0 ⇐⇒ a + b 6 1, and thus, using also (1.6)–(1.7) and
(11.37),

pB =
1

2
⇐⇒ b0 = 0 and a+ b 6 1 ⇐⇒ a+ b∗ 6 1 ⇐⇒ α 6 2β(1− β).

(11.49)
By symmetry, if α 6 β, then pB = 1/2 ⇐⇒ β 6 2α(1− α).

We may note that if α > β, then either α 6 1
2 and then β 6 α 6 2α(1−α),

or α > 1
2 and then β 6 1− α 6 2α(1− α); thus β 6 2α(1− α) always holds

when α 6 β. Hence, using symmetry again, we see that

pB =
1

2
⇐⇒ α 6 2β(1− β) and β 6 2α(1− α), (11.50)

as always excluding the case α = β = 0.
Given ζ with 0 6 ζ < 1, a simple calculation using (11.49) shows that

pB =
1

2
⇐⇒ 3−

√
1 + 8ζ

4
6 α 6

1− 4ζ +
√

1 + 8ζ

4
. (11.51)

If pB = 1
2 and ζ > 0, then the sequence of awarded seats is eventually

periodic by Theorem 1.2; furthermore, (11.41) shows that the sequence is
eventually alternating between the two parties. In fact, in this simple special
case, the sequence alternates from the beginning.

Theorem 11.8. Consider the party version of Phragmén’s election method
with two parties, with the notations in Theorem 1.2. If the conditions in
(11.50) hold and 0 < ζ < 1, then the seats are awarded alternatingly to A
and B (starting with A if α > β, and with B if β > α).

Proof. The assumptions imply α, β > 0, and the case α = β follows by
Example 11.3; hence we may, again using symmetry, assume α > β > 0.
Then Phragmén’s method is described by the dynamical system f5 = f±
above, starting at w0 := {α/β}, after an initial Abα/βc. We have, using
(11.50), β < α 6 2β(1− β) < 2β and thus 1 < α/β < 2. Hence bα/βc = 1,
and 0 < w0 < 1. Thus the first seat goes to A, and then we run f5 starting
at w0. We have 0 < a < 1, and a + b 6 1 since ρ = 0 (see Example 8.5 or
11.7). In the case, at most one symbol εi 6= 0, see Examples 2.1, 2.4, 2.5
and Section 2.7; furthermore, it is easy to see that a non-zero εi can occur
only in an orbit starting at 1 (if a+ b = 1) or 0 (if b = 0), but this is not the
case here since 0 < w0 < 1. Thus, εi = 0 for all i, and thus (11.41) shows
that the output sequence is A(BA)∞. �

If pB = 1/2 and ζ = 0, then (11.50) (or Example 11.4) implies that
α = β = 1/2; this case is treated in Example 11.3. As shown there, the
sequence of elected seats is not necessarily periodic in this case, because of
ties. Hence, Theorem 11.8 does not extend to ζ = 0.
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Remark 11.9. The result in Theorem 11.8 is both surprising and unsatis-
factory from the point of view of applications. For example, if 40% of the
votes are for A, 30% for B and 30% for AB, then Theorem 11.8 applies and
shows that the seats are awarded ABAB . . . ; hence, for any even number of
seats, A and B get equally many, in spite of the fact that A has substantially
more votes than B.

Example 11.10. When is pB = 1/3? This cannot happen if β > α or
if β = 0; thus α > β > 0. Hence, (1.2) yields b0 + ρ = 1, and thus
(recalling that b0 is an integer), b0 = 1 and ρ = 0. Again, by Example 8.5,
ρ = 0 ⇐⇒ a + b 6 1. Furthermore, by (1.6)–(1.7), b∗ = b0 + b, and thus,
using (1.5) and (11.37), for α > β,

pB =
1

3
⇐⇒ b0 = 1 and a+ b 6 1 ⇐⇒ b∗ > 1 and a+ b∗ 6 2

⇐⇒ α− 2β − α2 + 2αβ + 2β2 − 3αβ2 > 0 and α 6 3β(1− β).
(11.52)

Example 11.11. When is pB = 2/5? We need α > β > 0. Furthermore,
(1.2) yields b0 + ρ = 1/2, i.e., b0 = 0 and ρ = 1/2. Assume ζ > 0, so
0 < a < 1. Using (6.39) in Example 6.7, we obtain, assuming α > β,

ρ =
2

5
⇐⇒ 1

1 + a
6 b∗ 6

1 + a− a2

1 + a
⇐⇒ 1 6 (1 + a)b∗ 6 1 + a− a2,

(11.53)
with a and b∗ given by (1.4) and (1.5). This can be expressed as two poly-
nomial inequalities in α and β, with one polynomial of degree 5 and one of
degree 4; we omit the details.

Similarly, for any given rational p ∈ (0, 1
2), one can see that pB = p is

equivalent to a few polynomial inequalities in α and β, but it seems that the
degrees of the polynomials increase with the denominator of p.

12. Thiele’s method

12.1. Definition of Thiele’s method. Thiele’s election method has a sim-
ple (and rather intuitive) formulation:

Thiele’s election method. Seats are awarded sequentially, and in each
round, each ballot is counted as 1/(n̄ + 1) for each name on it, where n̄ is
the number of candidates on that ballot that already have been elected.

As with Phragmén’s method, we consider the party version, where each
ballot contains a set of parties, and each party may get an arbitrary number
of seats; then n̄ is counted with repetitions, i.e., n̄ is the number of seats
that so far have been awarded to the parties on the ballot.

We can rephrase Thiele’s method in the following form, similar to the
formulation of Phragmén’s method in Section 11.2. As above, let vσ be
the number of votes for the set σ of candidates (parties). The numbers nσ
defined below will be the numbers of already elected on the different ballots
(denoted n̄ in the description above).

(i) Initially all nσ = 0.
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(ii) The reduced vote for candidate i is defined as

Wi :=
∑
σ3i

vσ
1 + nσ

. (12.1)

(iii) The candidate i with the largest Wi is elected to the next seat, break-
ing ties by lot or some other method. (In the original version, only
unelected candidates are considered. In the party version, repetitions
are allowed.)

(iv) If i is elected, then nσ is updated for every σ 3 i (i.e., for the ballots
that contributed to the election of i); the new value is

n′σ := nσ + 1. (12.2)

nσ remains unchanged when σ 63 i.
Repeat from (ii).

The difference from Phragmén’s method is thus that the reduction of
votes in (12.1) is done in a different way.

Remark 12.1. A ballot voting for all parties will give the same contribution
to everyone, and thus does not influence the result. In other words, with
Thiele’s method, ballots containing all parties can be ignored, just as blank
votes.

12.2. Main results for Thiele’s method. We assume as in Section 11.3
that we are given a set P of parties, and some numbers vσ of votes on the
sets σ ⊆ P. We let n > 1 seats by distributed by Thiele’s method, and let
ni be the number of seats received by party i ∈ P. We also let pi := ni/n,
the fraction of the seats received by i, and we define for a set σ ⊆ P the
sums

nσ :=
∑
i∈σ

ni, pσ :=
∑
i∈σ

pi = nσ/n. (12.3)

(These quantities all depend on n, but we do not show this in the notation.)
We let N = |P|, the number of parties, and assume for notational conve-

nience that P = {1, . . . , N}. We let p = pn := (p1, . . . , pN ), the vector of
proportions of seats given to the different parties. Note that p belongs to
the simplex

S = SN :=
{

(x1, . . . , xN ) : xi > 0 and

N∑
i=1

xi = 1
}
. (12.4)

Let S◦ :=
{

(x1, . . . , xN ) ∈ S : xi > 0 for all i
}

, the corresponding open
simplex.

The following two theorems give conditions that guarantee that the vector
p converges, and provide a method to find the limit by solving a system of
(non-linear) equations. Theorem 12.2 is more general, but its condition
may be less easy to verify; Theorem 12.3 has a simple condition that still
covers most cases of interest. Furthermore, we give the even more general
Theorem 12.5 below, with a different characterization of the limit. The
proofs of the results below are given in the next subsection.
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Theorem 12.2. Consider Thiele’s method for a set P = {1, . . . , N} of N
parties with some given numbers of votes {vσ}σ⊆P . For a vector (x1, . . . , xN ),
define

xσ :=
∑
i∈σ

xi, σ ⊆ P. (12.5)

If, using (12.5), the system of N − 1 equations∑
σ31

vσ
xσ

=
∑
σ32

vσ
xσ

= · · · =
∑
σ3N

vσ
xσ

(12.6)

has a unique solution x0 in the open simplex S◦, then pn → x0 as n→∞.

Note that if x ∈ S◦, or more generally x ∈ S, then

N∑
i=1

xi = 1, (12.7)

which together with (12.6) yields a system of N non-linear equations in the
N unknowns xi.

Theorem 12.3. Consider Thiele’s method for a set P of N parties with
some given numbers of votes {vσ}σ⊆P . Suppose that every party gets some
individual vote, i.e.,

v{i} > 0 for every i ∈ P. (12.8)

Then the system (12.6) has a unique solution x0 in S◦, and pn → x0 as
n→∞. Moreover, x0 is a smooth function of the vote numbers vσ as long
as (12.8) holds.

The limit x0 in these theorems can also be characterized as the solution to
an optimization problem, which futhermore allows for a more general result.

Using the notations (12.5) and (11.4), and the standard convention 00 = 1,
define the function, for x1, . . . , xN > 0,

Ψ(x1, . . . , xN ) :=
∏
σ 6=∅

xvσσ =
∏
σ∈Π

xvσσ . (12.9)

It is immediate that Ψ is a continuous function [0,∞)N → [0,∞). Let M
be the maximum of ψ on the compact set S, and let

M := {x ∈ S : Ψ(x) = M} (12.10)

be the set where the maximum is attained.

Lemma 12.4. (i) M is a non-empty compact convex subset of S.
(ii) If x ∈ S◦, then

x ∈M ⇐⇒ (12.6) holds. (12.11)

(iii) If (12.6) has a unique solution x0 in S◦, then M = {x0}, i.e., x0

is the only point in S where the maximum of Ψ is attained.

The limit x0 in Theorems 12.2–12.3 is thus the unique maximum point of
Ψ on S. The following, more general, theorem gives a (weaker) result also
in the case when the maximum point is not unique.
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Theorem 12.5. Consider Thiele’s method for N parties 1, . . . , N , with
some given numbers of votes vσ, for σ ⊆ P = {1, . . . , N}. Then, as n→∞,
pn → M, in the sense that the (Euclidean) distance d(pn,M) → 0. In
particular, if M consists of a single point, i.e., M = {x0} for some x0 ∈ S,
then pn → x0.

12.3. Proofs. We consider the votes {vσ} as fixed. Explicit and implicit
constants below generally depend on {vσ}.

We define for x1, . . . , xN > 0, recalling (12.9) and with the convention
0 · ∞ = 0,

ψ(x1, . . . , xN ) := log Ψ(x1, . . . , xN ) =
∑
σ∈Π

vσ log xσ. (12.12)

Note that ψ may take the value −∞. Since Ψ is a continuous function
[0,∞)N → [0,∞), ψ = log Ψ is a continuous function [0,∞)N → [−∞,∞)
(with the standard topology); furthermore, ψ is concave.

The partial derivatives of ψ are

∂iψ :=
∂ψ

∂xi
=
∑
σ3i

vσ
xσ
. (12.13)

(If ψ(x) = −∞, we regard the sum in (12.13) as a definition of ∂iψ(x).)
These derivatives are finite (and smooth) in (0,∞)N , but may be infinite on
the boundary; more precisely, ∂iψ = +∞ when xσ = 0 for some σ ∈ Π with
i ∈ σ.

We are mainly interested in the behaviour of ψ on the simplex S. How-
ever, the partial derivatives ∂i are along directions poining out of S; we thus
also consider directional derivatives in S. Let ei, i = 1, . . . , N , be the unit
vectors and define, for x = (x1, . . . , xN ) ∈ S,

e∗i = e∗i (x) := ei −
N∑
j=1

xjej (12.14)

which is parallel to S and can be seen as a projection of ei to the hyperplane
H of vectors tangent to S, and the corresponding directional derivative

∂∗i := ∂e∗i = ∂i −
N∑
j=1

xj∂j . (12.15)

Equivalently, for any differentiable function f on (0,∞)N and x ∈ S,

∂∗i f(x) = ∂if(x)− df(tx)

dt

∣∣∣
t=1

. (12.16)

Note that the vectors e∗i span the hyperplane H, and thus the operators ∂∗i
span the (N − 1)-dimensional space of directional derivatives parallel to S;
moreover, they satsfy the linear relation

N∑
i=1

xi∂
∗
i = 0. (12.17)

As said above, ∂iψ(x) may be +∞ (but not −∞). Furthermore, it follows
from (12.13) that xi∂iψ(x) = O(1). Hence ∂∗i ψ(x) is well-defined by (12.15)
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for every x ∈ S, with

∂∗i ψ(x) = ∂iψ(x) +O(1) ∈ (−∞,∞]. (12.18)

Moreover, if v∗ :=
∑

σ vσ, then by (12.12), for any t > 0,

ψ(tx) = ψ(x) + v∗ log t. (12.19)

Hence, by (12.16), for x ∈ S◦,

∂∗i ψ(x) = ∂iψ(x)− v∗. (12.20)

(More generally, (12.20) holds for all x ∈ S with ψ(x) > −∞, but not
necessarily everywhere on the boundary of S.)

Let m := logM = maxS ψ. Then (12.10) can be written

M = {x ∈ S : ψ(x) = m}. (12.21)

Since the function ψ is concave (and the set S convex), if x ∈ S◦, then

x ∈M ⇐⇒ ∂∗i ψ(x) = 0 for every i. (12.22)

For x on the boundary ∂S, we still have an implication ⇐, but not neces-
sarily in the opposite direction, see Example 12.14 below.

Proof of Lemma 12.4. (i): M is non-empty and compact by the definition
(12.10) because Ψ is continuous and S is compact. Furthermore, M is
convex by (12.21) because ψ is a concave function.

(ii): If (12.6) holds, then by (12.13), ∂1ψ(x) = · · · = ∂Nψ(x). If also
x ∈ S◦, so (12.7) holds, then (12.15) yields ∂∗i ψ(x) = 0 for every i, and thus
x ∈M by (12.22).

Conversely, if x ∈ M ∩ S◦, then (12.22) and (12.20) yield ∂iψ(x) = v∗

for all i, and thus (12.13) shows that (12.6) holds.
(iii): If (12.6) has a unique solution x0 in S◦, then (ii) shows that M∩

S◦ = {x0}. Since M is convex by (i), it follows that M = {x0}. �

An important link between the seat assignments by Thiele’s method and
the function ψ is given by the following lemma. We define

n∗ := min
σ∈Π

nσ, (12.23)

p∗ := min
σ∈Π

pσ = n∗/n. (12.24)

Lemma 12.6. For every party i,

Wi =
1

n
∂iψ(p) +O

( 1

n2
∗

)
. (12.25)

Moreover

ψ(pn+1)− ψ(pn) =
1

n
max
i
∂∗i ψ(pn) +O

( 1

n2
∗

)
. (12.26)

Proof. First, for any i, (12.1) yields

Wi =
∑
σ3i

( vσ
nσ

+O
( vσ
n2
σ

))
=
∑
σ3i

vσ
npσ

+O
( 1

n2
∗

)
, (12.27)

which by (12.13) shows (12.25).
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Suppose that the (n+1):th seat goes to party `. Let, with n := (n1, . . . , nN ),

∆p := pn+1 − pn =
n + e`
n+ 1

− n

n
=
e` − pn
n+ 1

(12.28)

and note that |∆p| = O(1/n).
It follows from (12.13) that

∂iψ(x) = O

(
1

minσ∈Π xσ

)
, (12.29)

∂2
i ψ(x) = O

(
1

(minσ∈Π xσ)2

)
. (12.30)

Thus, for x on the line segment between pn and pn+1, since pn+1 > n
n+1pn,

∂2
i ψ(x) = O

(
1

p2
∗

)
= O

(
n2

n2
∗

)
. (12.31)

Hence, a Taylor expansion yields, using (12.28) and (12.15),

ψ(pn+1)− ψ(pn) = ψ(p + ∆p)− ψ(p) = ∆p · ∇ψ(p) +O

(
n2

n2
∗
|∆p|2

)
=
∂`ψ(p)−

∑N
j=1 pj∂jψ(p)

n+ 1
+O

(
1

n2
∗

)
=
∂∗`ψ(p)

n+ 1
+O

(
1

n2
∗

)
. (12.32)

Furthermore, by (12.29),

∂∗`ψ(p)

n+ 1
−
∂∗`ψ(p)

n
= −

∂∗`ψ(p)

n(n+ 1)
= O

(
1

n2p∗

)
= O

(
1

n2
∗

)
. (12.33)

Consequently, (12.32) yields

ψ(pn+1)− ψ(pn) =
1

n
∂∗`ψ(p) +O

(
1

n2
∗

)
. (12.34)

Furthermore, by the definition of Thiele’s method, W` = maxiWi, and thus
(12.25) yields

1

n
∂∗`ψ(p) = max

i
Wi +O

( 1

n2
∗

)
= max

i

1

n
∂∗i ψ(p) +O

( 1

n2
∗

)
, (12.35)

which yields (12.26) by (12.34). �

Lemma 12.7. Let U ⊂ S be an open neighbourhood of M. Then there
exists c1 > 0 such that for every x ∈ S \U , there exists i with ∂∗i ψ(x) > c1.

Proof. Let

g(x) := max
16i6N

∂∗i ψ(x). (12.36)

The assertion is equivalent to g(x) > c1 for x /∈ U . We first show g(x) > 0.
Suppose that x ∈ S with g(x) 6 0. Then ∂∗i ψ(x) 6 0 for every i. It

follows from (12.17) that then xi∂
∗
i ψ(x) = 0 for every i, so ∂∗i ψ(x) = 0 for

every i such that xi > 0.
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Let y := (y1, . . . , yN ) be any point in S, and let h(t) := ψ(x + t(y− x)).
Then h is a concave function on [0, 1], and, using (12.15) and

∑
i(yi− xi) =

1− 1 = 0,

h′(0) =

N∑
i=1

(yi − xi)∂iψ(x) =

N∑
i=1

(yi − xi)∂∗i ψ(x). (12.37)

If xi > 0, then ∂∗i ψ(x) = 0 as just seen. Furthermore, if xi = 0, then
yi − xi > 0 and ∂∗i ψ(x) 6 0. It follows that every term in the final sum
in (12.37) is 6 0, and thus h′(0) 6 0. Since h is concave, this implies
ψ(y) = h(1) 6 h(0) = ψ(x).

We have shown that if x ∈ S and g(x) 6 0, then ψ(x) > ψ(y) for every
y ∈ S, and thus x ∈M. Equivalently, if x /∈M, then g(x) > 0.

To complete the proof, it suffices to show that g is continuous on S (with
values in [0,∞]). This is not quite trivial, since the individual ∂∗i ψ in general
are not, because xj∂jψ(x) by (12.13) is discontinuous at xj = 0 if v{j} > 0.
We let x ∈ S and consider two cases.

(i) If ∂iψ(x) <∞ for every i, then by (12.13) and (12.15), this holds in a
neighbourhood V of x, and in V furthermore every ∂iψ and every ∂∗i ψ
is continuous. Hence, g is continuous at x.

(ii) If ∂iψ(x) = ∞ for some i, suppose that y → x with y ∈ S. Then
∂iψ(y)→∞ and thus, using (12.18),

g(y) > ∂∗i ψ(y) = ∂iψ(y) +O(1)→∞ = g(x). (12.38)

Hence, g is continuous at x in this case too.

Consequently, g is continuous everywhere in S, and since we have shown
that g > 0 on the compact set S \ U ⊆ S \M, the result follows. �

Lemma 12.8. As n→∞, n∗ →∞.

Proof. Suppose not. Then, since each nσ is non-decreasing, there exists
σ ∈ Π such that nσ = O(1). Let

Π0 := {σ ∈ Π : nσ = O(1)}, (12.39)

E :=
⋃
σ∈Π0

σ =
{
i : ∃σ ∈ Π0 with i ∈ σ

}
. (12.40)

Then E is a non-empty set of parties, and if i ∈ E , then there exists σ with
i ∈ σ ∈ Π0 and thus ni 6 nσ = O(1). In other words, after some time, no
further seat goes to any party in E .

On the other hand, if i ∈ E , take again σ ∈ Π0 with i ∈ σ. Then by
(12.1),

Wi >
vσ

1 + nσ
> c, (12.41)

for some c > 0. On the other hand, if i /∈ E , then nσ →∞ for every σ ∈ Π
such that i ∈ σ, and thus (12.1) yields Wi → 0. This implies that if n is
large enough, then Wi < c for every i /∈ E , so by (12.41), the party i with
the largest Wi is a party in E , and thus every seat, for large n, goes to a
party in E . This contradiction proves the lemma. �
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Lemma 12.9. Let U ⊂ S be an open neighbourhood of M. Then there
exists n0 and c2 > 0 such that for all n > n0, either pn ∈ U or

ψ(pn+1)− ψ(pn) > c2/n. (12.42)

Proof. Let c1 be as in Lemma 12.7 and let c2 := c1/2. We assume p = pn /∈
U and use (12.26). We consider two cases.

Case 1: n∗ > n3/4. By (12.26) and Lemma 12.7,

ψ(pn+1)− ψ(pn) >
c1

n
+O(n−2

∗ ) =
c1

n
+O

(
n−3/2

)
, (12.43)

which is larger than c2/n for large n.

Case 2: n∗ < n3/4. Let σ ∈ Π with nσ = n∗. By (12.13), for any i ∈ σ,

∂iψ(p) >
vσ
pσ

= n
vσ
nσ

(12.44)

and thus by (12.26) and (12.18), using also Lemma 12.8,

ψ(pn+1)− ψ(pn) >
1

n
∂∗i ψ(p) +O

(
n−2
∗
)

=
1

n
∂iψ(p) +O

(
n−1

)
+O

(
n−2
∗
)

>
vσ
nσ

+O
(
n−1

)
+O

(
n−2
∗
)

=
vσ
n∗

+ o
(
n−1
∗
)
. (12.45)

For large n, the right-hand side is at least vσ/(2n∗) > c2/n. �

We can now prove the theorems showing convergence of the proportions
pn for Thiele’s method.

Proof of Theorem 12.5. Let ε > 0, and let U := {x ∈ S : d(x,M) < ε}.
If x /∈ U , then x /∈ M and thus ψ(x) < m; hence, by compactness, there
exists δ > 0 such that ψ(x) 6 m− δ for x ∈ S \ U .

Let U1 := {x ∈ S : ψ(x) > m− δ} and U2 := {x ∈ S : ψ(x) > m− δ/2}.
Then U1 and U2 are open in S and

M⊂ U2 ⊂ U2 ⊂ U1 ⊆ U. (12.46)

In particular, the two compact sets U2 and S\U1 are disjoint, and thus have
a positive distance η. In other words, η > 0 and if x ∈ S with d(x, U2) < η,
then x ∈ U1. We apply Lemma 12.9 to U2.

First, we claim that pn ∈ U2 for infinitely many n. In fact, if this is false,
then by Lemma 12.9, (12.42) holds for all large n. Since

∑
n c2/n =∞, this

would imply ψ(pn) → ∞, which is a contradiction because ψ(x) 6 0 when
x ∈ S.

Next, suppose that n > n0 and that pn ∈ U1. There are two cases.

(i) If pn /∈ U2, then (12.42) holds, and thus

ψ(pn+1) > ψ(pn) > m− δ; (12.47)

hence pn+1 ∈ U1.
(ii) If pn ∈ U2, then we use (12.28) which implies |∆p| → 0. Hence,

provided n is large enough, |∆p| < η, which together with pn ∈ U2

and the definition of η implies pn+1 = pn + ∆p ∈ U1.

We have thus shown that, in any case, if n is large enough and pn ∈ U1,
then pn+1 ∈ U1. Since we also have shown that pn ∈ U2 ⊂ U1 for arbitrarily
large n, it follows that for all sufficiently large n, pn ∈ U1 ⊂ U , and thus
d(pn,M) < ε. �
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Proof of Theorem 12.2. The assumption that x0 is a unique solution of (12.6)
in S◦ impliesM = {x0} by Lemma 12.4(iii). Hence, the result follows from
Theorem 12.5. �

Proof of Theorem 12.3. When (12.8) holds, Ψ(x) = 0 as soon as some xi =
0; hence the maximum M of Ψ can not be attained on the boundary of S so
M⊂ S◦. Furthermore, along any straight line in S◦, each term in the sum
(12.12) is smooth and concave, and at least one of the terms has a strictly
negative second derivative. (For example the term with σ = {i} for any i
such that xi varies along the line.) It follows that ψ is strictly concave in S◦,
and thus the maximum set M cannot contain more than one point. Hence
M = {x0} for some point xo ∈ S◦. It follows by Lemma 12.4(ii) that x0 is
the unique solution of (12.6) in S◦, and pn → x0 follows by Theorem 12.5
(or Theorem 12.2).

Finally, use x1, . . . , xN−1 as coordinates on S◦ and write ψ̄(x1, . . . , xN−1) :=
ψ(x1, . . . , xN−1, 1−x1− · · ·−xN ). Then the maximum point x0 is given by

Dψ̄ :=
( ∂ψ̄
∂xi

)N−1

i=1
= 0. (12.48)

Moreover, the function ψ̄ is concave in S◦, with a strictly negative second
derivative along any line as shown above; in other words, the Hessian matrix( ∂2ψ̄
∂xi∂xj

)N−1

i,j=1
is negative definite, and thus non-singular at every point. It

follows from the implicit function theorem that the solution x0 of (12.48) is
a smooth function of the parameters vσ. �

12.4. Examples and further results.

Example 12.10 (Two parties). Suppose that there are two parties, A and
B, and assume vA, vB > 0. The equation (12.6) is

vA
xA

+
vAB
xAB

=
vB
xB

+
vAB
xAB

, (12.49)

which simplifies to vA/xA = vB/xB, so the system (12.6)–(12.7) has the
unique solution xA = vA/(vA + vB), xB = vA/(vA + vB). Theorem 12.2
applies and thus nA/n→ xA = vA/(vA + vB); see also Theorem 12.3. This
also follows from Remark 12.1, which for two parties says that we can ignore
the ballots AB, leaving only ballots A and B, and then Thiele’s method
reduces to D’Hondt’s for which the result is well known.

We continue with some examples with three parties.

Example 12.11. Supose that there are three parties A,B,C, and 5 votes:
1 A, 1 B, 1 C, 1 AB, 1 AC. Then (12.6) is

1

xA
+

1

xA + xB
+

1

xA + xC
=

1

xB
+

1

xA + xB
=

1

xC
+

1

xA + xC
. (12.50)

Theorem 12.3 applies, and thus (12.6)–(12.7) has a unique solution in S◦,
which by symmetry has to satisfy xB = xC . Hence (12.6) simplifies to

1

xA
+

1

xA + xB
=

1

xB
. (12.51)
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Furthermore, xB = xC = (1− xA)/2, and we obtain

1

xA
+

2

1 + xA
=

2

1− xA
(12.52)

which yields the quadratic equation 5x2
A−1 = 0. Hence the maximum point

x0 is given by xA = 1/
√

5, xB = xC = 1
2(1 − 1/

√
5). Theorem 12.2 yields

p→ x0 = 1
2
√

5
(2,
√

5− 1,
√

5− 1).

The fact that the proportions converge to irrational numbers shows that
even in this simple example, there is no ultimate periodicity in the seat
assignment.

Problem 12.12. Is the sequence of seats assigned to A quasiperiodic in
some sense? Can it be described explicitly?

More generally, a similar calculation shows that if the number of votes for
A is changed to an arbitrary vA > 0 (with the other votes kept the same),

then nA/n→ xA =
√
vA/(vA + 4).

In the general (non-symmetric) case with 3 parties, (12.6)–(12.7) lead
(using Maple) to a quartic equation for xA, where the coefficients are poly-
nomials of degree 3 in the vote numbers vσ. We spare the reader the general
formula, and give a numerical example.

Example 12.13. Supose that there are three parties A,B,C, and 9 votes:
1 A, 2 B, 3 C, 1 AB, 1 AC, 1 BC. Theorem 12.3 applies and shows p→ x0

for some solution x0 = (xA, xB, xC) to (12.6)–(12.7). Maple yields that xA
is a root of

135x4
A − 161x3

A − 22x2
A + 64xA − 10 = 0. (12.53)

Numerically, xA = 0.1797714258, xB = 0.341215728, xC = 0.4790128462.

Example 12.14 (An exceptional case). Supose that there are three parties
A,B,C, and 6 votes: 2 A, 2 B, 1 AC, 1 BC. Then (12.6) is

2

xA
+

1

xA + xC
=

2

xB
+

1

xB + xC
=

1

xA + xC
+

1

xB + xC
(12.54)

and it is easily found that the unique solution that also satisfies (12.7) is
(2

3 ,
2
3 ,−

1
3). This solution lies outside S, so Theorem 12.2 does not apply.

However, Theorem 12.5 still applies, and it is easily verified that the max-
imum set M consist of the single point (1

2 ,
1
2 , 0); thus pAn → 1

2 , pBn → 1
2

and pCn → 0.
In fact, it is easily seen from (12.1) that C will never get any seat, since

always at least one of WA and WB is larger than WC . Furthermore, each
pair of sets goes to either A,B or B,A, and thus for any even number of
seats n, pAn = pBn = 1

2 and pCn = 0 exactly.

Example 12.15 (Another exceptional case). Suppose that there are three
parties A,B,C and two votes: 1 A and 1 BC. In this case, Ψ(xA, xB, xC) =
xA(xB +xC) = xA(1−xA), and it is easy to see thatM = {(1

2 , xB,
1
2 −xB) :

xB ∈ [0, 1
2 ]}, a line segment.

Indeed, in this case, of each pair of seats, one goes to A and the other
to either B or C. If ties are resolved by lot, almost surely pn → (1

2 ,
1
4 ,

1
4),

but for other tie-breaking rules, other limits inM are possible, and pn may
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even oscillate without a limit, for example if a tie for seat n is resolved in
favour of B when blog2 nc is even, and in favour of C otherwise.

Example 12.16. Supose that there are three parties A,B,C, and only
votes for combinations of two parties, with vAB, vAC , vBC > 0 and vAB +
vAC + vBC = 1. Then (12.6) is

vAB
xA + xB

+
vAC

xA + xC
=

vAB
xA + xB

+
vBC

xB + xC
=

vAC
xA + xC

+
vBC

xB + xC
(12.55)

which yields
vAB

xA + xB
=

vAC
xA + xC

=
vBC

xB + xC
. (12.56)

The equations (12.56) and (12.7) have the unique solution

(xA, xB, xC) =
(
vAB + vAC − vBC , vAB + vBC − vAC , vAC + vBC − vAB

)
.

(12.57)
If the three numbers on the right-hand side of (12.57) are positive, then
x0 := (xA, xB, xC) ∈ S◦, so Theorem 12.2 applies and shows that p → x0

given by (12.57). Note that Theorem 12.3 does not apply, but nevertheless
we have the same conclusions, with a limit x0 that is a smooth function of
the vote numbers by (12.57). Hence the condition (12.8) is not necessary
for good behaviour.

Suppose now that, say, vAB = vAC + vBC . Then x0 given by (12.57) has
one coordinate 0 and lies thus on the boundary ∂S; nevertheless ∂∗i ψ(x0) =
0 for every i, e.g. by (12.20), and as remarked after (12.22), this implies
x0 ∈ M. Furthermore, ψ is strictly concave on S, and thus M = {x0}.
Thus Theorem 12.5 applies and yields p→ x0 in this case too.

Finally, suppose that vAB > vAC+vBC . Then (12.57) would yield xC < 0,
so (12.6) has no solution in S. It is easy too see that the maximum of ψ
on S is attained on the part of the boundary with xC = 0, and then we
have Ψ(xA, xB, 0) = xvACA xvBCB (xA + xB)vAB = xvACA xvBCB , leading to the
same equation as in Example 12.10 (with some changes in notation) and
M = {x0} with

x0 =
( vAC
vAC + vBC

,
vBC

vAC + vBC
, 0
)
. (12.58)

Again, Theorem 12.5 applies and yields p→ x0.
In fact, it is easy to see that if vAB > vAC + vBC , then party C will never

get any seat by Thiele’s method (we omit the details). Hence, we may in
this case ignore C and the result follws by Example 12.10. (Note that in the
case vAB = vAC + vBC , (12.57) and (12.58) yield the same result.)

Example 12.17. Supose that there are three parties A,B,C, and no votes
AC or BC. Then (12.6) becomes

vA
xA

=
vB
xB

,
vA
xA

+
vAB

xA + xB
=
vC
xC

(12.59)

which leads to
vA + vB + vAB

xA + xB
=
vC
xC

(12.60)

and thus to xC = vC/v
∗ and, e.g., xA = vA

vA+vB
(1− xC). This is generalized

in Theorem 12.18.
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Theorem 12.18. Suppose that the N parties are partitioned into a num-
ber of blocks P1,P2, . . . , and that each voter votes for a subset of one of
the blocks. Assume also, for simplicity, assume that (12.8) holds. Then p
converges to a limit x = (x1, . . . , xN ) such that if Pj is one of the blocks,
qj =

∑
σ⊆Pj vσ/v

∗ is the proportion of votes for this block, and x′i is the

asymptotic proportion of seats assigned to party i if the election is restricted
to the parties in Pj only (with the same votes for them), then xi = qx′i for
every party i ∈ Pj.

Proof. It suffices to consider the case of two blocks, P1 and P2. For j = 1, 2,
let Nj := |Pj |, the number of parties in block Pj , let v∗j :=

∑
σ⊆Pj vσ, the

number of votes for block Pj , let zj :=
∑

i∈Pj xi and, for i ∈ Pj , yi :=

xi/zj . If σ ⊆ Pj , then thus xσ =
∑

i∈σ zjyi = zjyσ. Consequently, if

yj := (yi)i∈Pj ∈ SNj , and ψj denotes ψ defined as in (12.12) but for the
votes σ ⊆ Pj only, then

ψ(x) =
∑
j

∑
σ⊆Pj

vσ(log zj + log yi) =
∑
j

v∗j log zj +
∑
j

ψj(yj). (12.61)

Evidently, this is maximized by maximizing each ψj(yj) separately, and
maximizing v∗1 log z1 + v∗2 log z2 subject to z1 + z2 = 1; the latter leads to
zj = v∗j /v

∗, and the result follows. �

Remark 12.19. Theorem 12.18 is very natural and satisfying. It means
for example that a party cannot influence its shares of seats by tactically
splitting into several parts and distributing votes among combinations of
them in some clever way.

However, this asymptotic result does not hold for small numbers of seats.
In fact, one of the main problems with Thiele’s method when used in Sweden
in the 1910’s (see the Historical note in Section 1) was the possibility of such
manoeuvres. An example by [32] (see also [20]) is 3 seats and the votes 37
ABC, 13 KLM ; in this case Thiele’s method reduces to D’Hondt’s, and
gives two seats to ABC and one to KLM . However, if the ABC voters split
their votes as 1 A, 9 AB, 9 AC, 9 B, 9 C then all three seats go to ABC.
(Of course, Tenow considers individual candidates and not parties, but for
this example the result is the same.)

It thus seems that Thiele’s method behaves better asymptotically than
for a finite number of seats.
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