
PATTERNS IN RANDOM PERMUTATIONS AVOIDING

THE PATTERN 321

SVANTE JANSON

Abstract. We consider a random permutation drawn from the set of
321-avoiding permutations of length n and show that the number of
occurrences of another pattern σ has a limit distribution, after scaling
by nm+` where m is the length of σ and ` is the number of blocks in
it. The limit is not normal, and can be expressed as a functional of a
Brownian excursion.

1. Introduction

Let Sn be the set of permutations of [n] := {1, . . . , n}, and S∗ :=⋃
n>1Sn. If σ = σ1 · · ·σm ∈ Sm and π = π1 · · ·πn ∈ Sn, then an occurrence

of σ in π is a sequence (i1, . . . , im) with 1 6 i1 < · · · < im 6 n, such that the
subsequence πi1 · · ·πim has the same order as σ, i.e., πij < πik ⇐⇒ σj < σk
for all j, k ∈ [m]. We let nσ(π) be the number of occurrences of σ in π, and
note that ∑

σ∈Sm

nσ(π) =

(
n

m

)
, (1.1)

for every π ∈ Sn. For example, an inversion is an occurrence of 21, and
thus n21(π) is the number of inversions in π.

Remark 1.1. It is often natural to think of an occurence as the subsequence
πi1 · · ·πim rather than the corresponding sequence of indices i1, · · · , im.
However, in the present paper we use in formal arguments the definition
above with indices.

We say that π avoids another permutation τ if nτ (π) = 0; otherwise, π
contains τ . Let

Sn(τ) := {π ∈ Sn : nτ (π) = 0}, (1.2)

the set of permutations of length n that avoid τ . We also let S∗(τ) :=⋃∞
n=1Sn(τ) be the set of τ -avoiding permutations of arbitrary length.
The classes S∗(τ) of τ -avoiding permutations have been studied for a long

time, see e.g. Knuth [35, Exercise 2.2.1-5], Simion and Schmidt [46], Billey,
Jockusch and Stanley [8]. One classical problem is to enumerate the sets
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Sn(τ), either exactly or asymptotically, see Bóna [9, Chapters 4–5]. We
note here only the fact that for any τ with |τ | = 3, Sn(τ) has the same size

|Sn(τ)| = Cn :=
1

n+ 1

(
2n

n

)
, (1.3)

the n-th Catalan number, see e.g. [35, Exercises 2.2.1-4,5], [46], [47, Exercise
6.19ee,ff], [9, Corollary 4.7]. (The situation for |τ | > 4 is more complicated.)

The general problem that concerns us is to take a fixed permutation τ
and let πτ,n be a uniformly random τ -avoiding permutation, i.e., a uniformly
random element of Sn(τ), and then study the distribution of the random
variable nσ(πτ,n) for some other fixed permutation σ. (Only σ that are
τ -avoiding are interesting, since otherwise nσ(πτ,n) = 0.) One instance of
this problem was studied already by Robertson, Wilf and Zeilberger [45],
who gave a generating function for n123(π132,n). The exact distribution of
nσ(πτ,n) for a given n was studied numerically in [32], where higher moments
and mixed moments are calculated for small n for several cases (τ = 132,
123 and 1234; several σ with |σ| = 3).

We are mainly interested in asymptotics of the distribution of nσ(πτ,n).
and of its moments, as n→∞, for some fixed τ and σ. The case τ = 132
and arbitrary σ were studied in detail in [30]. In the present paper we study
the case τ = 321. Together with obvious symmetries, these two cases cover
all cases where τ has length |τ | = 3. (Note that the cases with |τ | = 2 are
trivial.) The cases with |τ | > 4 seem much more difficult, and are left as
challenging open problems to the readers.

The expectation Enσ(πτ,n), or equivalently, the total number of oc-
curences of σ in all τ -avoiding permutations, has been treated in a number
of papers for various cases, beginning with Bóna [11; 13] (with τ = 132). In
particular, for the 321-avoiding permutations studied in the present paper,
Cheng, Eu and Fu [17] gave an exact formula for the total number of inver-
sions (occurences of 21), and Homberger [27] gave generating functions for
the total number of occurences of σ in Sn(321) for all σ with |σ| 6 3 and
as a consequence asymptotic formulas as n→∞ for these numbers. (The
results in [27] are really stated for Sn(123), which is equivalent.) These
results in [17] and [27] imply (after correcting some typos in [27]), in our
notation,

En21(π321,n) ∼
√
π

4
n3/2, (1.4)

En231(π321,n) = En312(π321,n) ∼ 1

4
n2, (1.5)

En132(π321,n) = En213(π321,n) ∼
√
π

8
n5/2, (1.6)

En123(π321,n) ∼
(
n

3

)
∼ 1

6
n3. (1.7)
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Moreover, the equivalence given by Cheng, Eu and Fu [17] between n21(π321,n)
and the number of certain squares under a Catalan path implies by standard
results for the area under the equivalent Dyck paths that, as n→∞,

n−3/2n21(π321,n)
d−→ 2−1/2

∫ 1

0
e(x) dx, (1.8)

where the limit random variable is, up to a constant factor, the area under
a Brownian excursion e (see e.g. [29] for many other results on this random
area). See also the related expressions for the distribution of n21(π321,n) in
Chen, Mei and Wang [16].

Apart from (1.8), we do not know any previous result on asymptotic
distributions of nσ(π321,n) beyond the expectations in (1.4)–(1.7).

Our main result is the following, using the notion of blocks defined in
Subsection 2.1 below. The proof is given in Section 4 below, and is based
on results for 321-avoiding permutations by Hoffman, Rizzolo and Slivken
[24; 25].

Theorem 1.2. Let σ be a fixed 321-avoiding permutation. Let m := |σ|,
suppose that σ has ` blocks of lengths m1, . . . ,m`, and let wσ be the positive
constant defined in (3.3). Then, as n→∞,

nσ(π321,n)/n(m+`)/2 d−→Wσ (1.9)

for a positive random variable Wσ that can be represented as

Wσ = wσ

∫
0<t1<···<t`<1

e(t1)
m1−1 · · · e(t`)

m`−1 dt1 · · · dt`, (1.10)

where the random function e(t) is a Brownian excursion.
Moreover, the convergence (1.9) holds jointly for any set of σ, with Wσ

given by (1.10) with the same e for all σ.
All moments of Wσ are finite, and all moments (including mixed mo-

ments) converge in (1.9). In particular,

E[nσ(π321,n)] ∼ E[Wσ]n(m+`)/2, (1.11)

Var[nσ(π321,n)] ∼ Var[Wσ]nm+`. (1.12)

Example 1.3. Let σ = 21. Then w21 = 2−1/2 by Example 3.3; hence
(1.9)–(1.10), with ` = 1 and m1 = m = 2, yield a new proof of (1.8).

We note two special cases when the multiple integral in (1.10) reduces to
a single integral.

Example 1.4. If σ is indecomposable, i.e., has only one block (see Subsec-
tion 2.1), (1.10) yields

Wσ = wσ

∫ 1

0
e(t)m−1 dt. (1.13)



4 SVANTE JANSON

The special case m = 2 (i.e., σ = 21) yields, as said in Example 1.3, the
Brownian excursion area in (1.8), which has been intensely studied, see e.g.
[29] and the references there.

The case m = 3 (i.e., 231 or 312) yields the random variable
∫ 1
0 e(t)2 dt,

which has been studied before by Nguyen The [40]; among other results he
found a simple formula for the Laplace transform, which as noted in [30,
Example 7.17] shows that the limit Wσ in this case, ignoring the constant
factor wσ, has the distribution denoted S3/2 by Biane, Pitman and Yor [7].

The integral in (1.13) for a general m has been studied by Richard [43].

Example 1.5. If all blocks have the same size m1 = · · · = m`, then, by
symmetry, (1.10) yields

Wσ =
wσ
`!

(∫ 1

0
e(t)m1−1 dt

)`
. (1.14)

Cf. Example 1.4 (the special case ` = 1), and see again [29; 40; 43]. In
particular, if all blocks have size 2, then Wσ is a constant times a power of
the Brownian excursion area.

Theorem 1.2 should be compared to the similar result for 132-avoiding
permutations in [30, Theorem 2.1], where also the limiting distributions can
be expressed using a Brownian excursion, but in general in a much more
complicated way, see [30, Section 7]. (At least, we do not know any simpler
descriptions of those limit variables, although it is conceivable that such
might exist.) In particular, the limits in (1.13) appear also as limits for
132-avoiding permutations, see [30, Examples 7.6–7.8].

Remark 1.6. The results obtained here for random 321-avoiding permuta-
tions, and in [30] for random 132-avoiding permutations, are very different
from the non-restricted case of uniformly random permutations in Sn: it is
well-known that if π is a uniformly random permutation in Sn, then nσ(π)
has an asymptotic normal distribution as n→∞ for every fixed permuta-
tion σ, and that (as a consequence) nσ(π) is concentrated around its mean

in the sense that nσ(π)/E[nσ(π)]
p−→ 1 as n→∞. See Bóna [10; 12] and

Janson, Nakamura and Zeilberger [32].

The moment convergence in Theorem 1.2 yields the asymptotic formula
(1.11) for the expectation, involving the constant

EWσ = wσ

∫
0<t1<···<t`<1

E
[
e(t1)

m1−1 · · · e(t`)
m`−1

]
dt1 · · · dt`. (1.15)

We do not know any general formula for this integral, but it can be computed
in many cases, and often higher moments too, see Section 5. In particular,
we obtain the following:

Corollary 1.7. If σ ∈ Sm(321) is an indecomposable 321-avoiding per-
mutation, then, as n→∞, with wσ given by (3.3),

E[nσ(π321,n)] ∼ (EWσ)n(m+`)/2 = wσ2−(m−1)/2Γ
(
m+1
2

)
n(m+1)/2. (1.16)
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Similarly, (1.12) holds with

VarWσ = w2
σ21−m

(
2(m− 1)!

m

(
1− m!2

(2m)!

)
− Γ

(m+ 1

2

)2)
. (1.17)

Corollary 1.8. If σ has two blocks, of lengths m1 and m2, then (1.11) holds
with ` = 2 and

EWσ = wσ2−m/2
m

m1m2

(
1− m1!m2!

m!

)
Γ
(m

2

)
, (1.18)

where m = |σ| = m1 +m2 and wσ is given by (3.3).

In particular, in the cases σ = 21, 231, 312, Corollary 1.7 yields, using
the values of wσ in Example 3.3, the asymptotics in (1.4)–(1.5) obtained
from [17] and [27]. Similarly, (1.6) follows from Corollary 1.8 (or by the
method in Example 5.3), and (1.7) follows trivially from (1.11) since (1.10)
yields W123 = 1/6.

Remark 1.9. The general problem can be generalized to permutations
avoiding a given set of permutations. Define, extending (1.2), Sn(τ1, . . . , τk) :=⋂k
i=1Sn(τi), and let πτ1,...,τk;n be a uniformly random permutation in the set

Sn(τ1, . . . , τk). The size |Sn(τ1, . . . , τk)| was found for all cases with k > 2
and all |τi| = 3 by Simion and Schmidt [46]; we give some simple results on
the asymptotic distribution of nσ(πτ1,...,τk;n) for these cases in [31]. Some-
what surprisingly, there are cases with an asymptotic normal distribution
similar to the one for random unrestricted permutations (see Remark 1.6),
and thus quite different from the limiting distributions for nσ(πτ,n) for a
single τ with |τ | = 3 in the present paper and [30].

In the present paper we study only the numbers nσ of occurences of some
pattern in πτ,n. There is also a number of papers studing other properties
of random τ -avoiding permutations. Some examples, in addition to those
mentioned above, are consecutive patterns [6]; descents and the major index
[5]; number of fixed points [44; 21; 22; 39; 26]; position of fixed points [39;
26]; exceedances [21; 22]; longest increasing subsequence [19]; shape and
distribution of individual values πi [37; 38; 24].

2. Preliminaries

2.1. Compositions and decompositions of permutations. If σ ∈ Sm

and τ ∈ Sn, their composition σ ∗ τ ∈ Sm+n is defined by letting τ act on
[m+ 1,m+ n] in the natural way; more formally, σ ∗ τ = π ∈ Sm+n where
πi = σi for 1 6 i 6 m, and πj+m = τj + m for 1 6 j 6 n. It is easily seen
that ∗ is an associative operation that makes S∗ into a semigroup (without
unit, since we only consider permutations of length > 1). We say that a
permutation π ∈ S∗ is decomposable if π = σ ∗ τ for some σ, τ ∈ S∗, and
indecomposable otherwise; we also call an indecomposable permutation a
block. Equivalently, π ∈ Sn is decomposable if and only if π : [m]→ [m] for
some 1 6 m < n. See e.g. [18, Exercise VI.14].
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It is easy to see that any permutation π ∈ S∗ has a unique decomposition
π = π1 ∗ · · · ∗ π` into indecomposable permutations (blocks) π1, . . . , π` (for
some, unique, ` > 1); we call these the blocks of π.

An inversion in a permutation π is an occurence (i, j) of the pattern 21.
Given a permutation π ∈ Sn, its inversion graph Γπ is the graph with vertex
set [n], and an edge ij for every inversion (i, j) in π. (This is the same as
the intersection graph of the set of line segments [(i, 0), (πi, 1)] ⊂ R2. The
graphs isomorphic to Γπ for some permutation π are known as permutation
graphs, see e.g. [14].)

It is easy to see that the connected components of the inversion graph Γπ
are precisely the blocks of π; in particular, π is indecomposable if and only
if Γπ is connected, see [36].

2.2. 321-avoiding permutations. Given any permutation π ∈ Sn, let

E+ = E+(π) := {i ∈ [n] : πi > i}, (2.1)

E− = E−(π) := [n] \ E+(π) = {i ∈ [n] : πi 6 i}. (2.2)

Thus E+ and E− form a partition of [n]. E+ is known as the set of ex-
ceedances of π.

It is well-known that a permutation π is 321-avoiding if and only if π is the
union of two increasing subsequences, and in particular, if π ∈ S∗(321), then
the subsequences with indices in E+ and E− are increasing. (This is easy
to see directly; it also follows from the BJS bijection in Subsection 2.3.) In
other words, if i < j and i, j ∈ E+ or i, j ∈ E−, then πi < πj . Furthermore,
if i < j and i ∈ E−, j ∈ E+, then πi 6 i < j < πj . Consequently:

If (i, j) is an inversion in π ∈ S∗(321), then i ∈ E+(π) and j ∈ E−(π).
(2.3)

2.3. Dyck paths and the BJS bijection. A Dyck path of length 2n > 0
is a mapping γ : {0, . . . , 2n} → Z such that γ(0) = γ(2n) = 0, γ(x) > 0 for
every x, and |γ(x + 1) − γ(x)| = 1 for all x ∈ {0, . . . , 2n − 1}. We identify
a Dyck path with the corresponding continuous function γ : [0, 2n] → R
obtained by linear interpolation. Let D2n be the set of Dyck paths of length
2n. It is well-known that |D2n| = Cn, the n-th Catalan number in (1.3), see
e.g. [47, Exercise 6.19(i)].

We use, as [24; 25], a bijection between D2n and Sn(321), i.e., between
Dyck paths of length 2n and 321-avoiding permutations of length n; the
bijection is known as the BJS bijection after Billey, Jockusch and Stanley
[8] and can be described as follows. (See also [15] for more on this and on
other bijections between D2n and Sn(321).)

Fix a Dyck path γ ∈ D2n, and let m be the number of increases (or
decreases) in γ. Let ai > 1 be the length of the i-th run of increases,
and let di > 1 be the length of the i-th run of decreases in γ. Let, for
0 6 i 6 m, Ai :=

∑i
j=1 aj and Di :=

∑i
j=1 dj ; let A := {Ai : 1 6 i 6 m−1},

A1 := {Ai + 1 : 1 6 i 6 m− 1}, D := {Di : 1 6 i 6 m− 1}, Ac
1 := [n] \ A1,
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and Dc := [n] \ D. Finally, define the permutation πγ ∈ Sn as the unique
permutation with π : D → A1, and therefore π : Dc → Ac

1, such that π is
increasing onD and onDc. (In particular, πγ(Di) = Ai+1 for 1 6 i 6 m−1.)

Then, γ → πγ is a bijection of Dn onto Sn(321), see e.g. [8; 15]. Moreover
[24, Lemma 2.1],

E+(πγ) = D(γ), E−(πγ) = Dc(γ). (2.4)

We define also, as in [24],

yi := Ai −Di = γ(Ai +Di). (2.5)

2.4. Brownian excursion. A (normalized) Brownian excursion e(t) is a
random continuous function on [0, 1] that can be defined as a Brownian
motion B(t) conditioned on B(1) = B(0) = 0 and B(t) > 0, t ∈ [0, 1]; since
this means conditioning on an event of probability zero, the conditioning
has to be interpreted with some care, e.g. as a suitable limit. See also [42,
Chapter XII] for an alternative definition.

The distribution of the Brownian excursion e has also several other de-
scriptions; for example, e has the same distribution as a Bessel bridge of
dimension 3 over [0, 1], see e.g. [42, Theorem XII.(4.2)] and thus also as the
absolute value of a 3-dimensional Brownian bridge, i.e.,

e(t)
d
=
√
b1(t)2 + b2(t)2 + b3(t)2, t ∈ [0, 1], (2.6)

where b1, . . .b3 are independent Brownian bridges.

2.5. Some notation. λd denotes d-dimensional Lebesgue measure.
For typographical reasons, we sometimes write π(i) for πi.
We say that an event En (depending on n, e.g. through π321,n) holds with

high probability if P(En) → 1 as n→∞, and with very high probability if
P(En) = 1 − O(e−n

c
) for some c > 0; note that the latter implies P(En) =

1−O(n−C) for any C > 0.
We let c and C, possibly with subscripts, denote unspecified positive con-

stants that may depend on σ; they may vary between different occurrences.

3. The parameter wσ

Let σ be a 321-avoiding permutation.
First, assume that σ is a block with m = |σ| > 1. In this case, let Πσ be

the set of all vectors (x2, . . . , xm) ∈ [0,∞)m−1 such that, with x1 = 0,

(i) 0 = x1 6 x2 6 . . . 6 xm;
(ii) If i < j, i ∈ E+(σ) and j ∈ E−(σ), then

(a) if σi < σj , then xj > xi + 1;
(b) if σi > σj , then xj 6 xi + 1.

By (2.3), (ii)(b) applies whenever (i, j) is an inversion in σ. Hence, |xi−xj | 6
1 whenever ij is an edge in the inversion graph Γσ, and since the inversion
graph is connected (because σ is assumed to be a block), it follows that

|xi| = |xi − x1| 6 m− 1 (3.1)
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for every i 6 m. Consequently, the set Πσ is bounded, and since it is defined
as an intersection of closed half-planes, Πσ is compact and a polytope. It
is also easy to see that Πσ has a nonempty interior Π◦σ, obtained by taking
strict inequalities in (i)–(ii). Let vσ := λm−1(Πσ), the volume of the polytope
Πσ; thus 0 < vσ <∞.

Next, for a 321-avoiding block σ, let

wσ :=

{
2(|σ|−3)/2vσ, σ is a block with |σ| > 1,

1, |σ| = 1.
(3.2)

Finally, for an arbitrary 321-avoiding permutation σ with blocks σ1, . . . , σ`,
define

wσ :=
∏̀
i=1

wσi . (3.3)

Example 3.1. For σ = 21, we only have to consider the case i = 1, j = 2
for (ii) in the definition of Πσ; in this case (ii)(b) applies, and yields x2 6 1.
Together with (i) we obtain 0 6 x2 6 1, so Π21 = [0, 1], and

v21 = 1. (3.4)

For both σ = 231 and σ = 312, we similarly obtain Πσ : {(x2, x3) : 0 6
x2 6 x3 6 1}. Thus

v231 = v312 = 1
2 . (3.5)

Similarly, elementary calculations show that for the 5 blocks in S4(321),

v2341 = v2413 = v3142 = v3412 = v4123 = 1
6 . (3.6)

However, for longer blocks, vσ depends not only on the length |σ|. For
example, omitting the calculations,

v23451 = v51234 = 1
24 , v24153 = 2

24 , (3.7)

v234561 = v612345 = 1
120 , v315264 = 5

120 . (3.8)

Problem 3.2. Based on these and other similar examples, we conjecture
that for every block σ ∈ S∗(321), vσ = νσ/(|σ|−1)! for some integer νσ > 1.
Prove this! Moreover, if this holds, find a combinatorial interpretation of
νσ.

Example 3.3. The values for vσ in Example 3.1 yield by (3.2)–(3.3)

w21 = 2−1/2v21 = 1/
√

2, (3.9)

w231 = w312 = 1/2, (3.10)

w132 = w213 = w1w21 = 1/
√

2, (3.11)

w123 = w1w1w1 = 1. (3.12)

As said above, (3.9)–(3.12) combine with Corollary 1.7 and (1.15) to yield
(1.4)–(1.7); furthermore, (3.9) and Theorem 1.2 yield (1.8).
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4. Proof of Theorem 1.2

The proof of Theorem 1.2 is rather long, and will be interspersed with
several lemmas.

Suppose that σ ∈ S∗(321) is fixed and that π ∈ Sn(321) (for a large n)
Consider first the case when σ is a block.

Lemma 4.1. Suppose that σ ∈ Sm(321) is a block with m = |σ| > 1. If
π ∈ Sn(321) and 1 6 k1 < · · · < km 6 n, then k := (k1, . . . , km) is an
occurrence of σ in π if and only if:

(i) ki ∈ E+(π) for i ∈ E+(σ);
(ii) ki ∈ E−(π) for i ∈ E−(σ);
(iii) if i < j with i ∈ E+(σ) and j ∈ E−(σ), then

πki > πkj ⇐⇒ σi > σj . (4.1)

Proof. Note first that by definition, k is an occurrence of σ if and only if
(4.1) holds for every pair (i, j) with 1 6 i < j 6 m; the point of (iii) is that
we only have to check this for certain pairs (i, j).

=⇒: Suppose that k is an occurrence of σ.
Let i ∈ E+(σ). Since σ is a block, its inversion graph Γσ is connected.

Hence there is an inversion (i, j) for some j > i or an inversion (j, i) for
some j < i, but the latter is impossible when i ∈ E+ by (2.3). Consequently
there is an inversion (i, j) in σ, and then (ki, kj) must be an inversion in π;
in particular, ki ∈ E+(π) by (2.3). Hence (i) holds.

The proof of (ii) is similar.
Finally, (4.1) holds, as noted above, for all pairs (i, j) with i < j.
⇐=: Conversely, suppose that (i)–(iii) hold, and let i < j. If i, j ∈ E+(σ),

then ki, kj ∈ E+(π) by (i), and thus (2.3) implies that both σi < σj and
πki < πkj ; hence (4.1) holds in this case. Similarly, (4.1) holds if i, j ∈ E−(σ),
or if i ∈ E−(σ) and j ∈ E+(σ). Finally, in the remaining case i ∈ E+(σ)
and j ∈ E−(σ), (iii) applies. Hence, (4.1) holds for every pair (i, j) with
1 6 i < j 6 m, and thus k is an occurrence of σ. �

Let

∆i = ∆i(π) := πi − i, i ∈ [n], (4.2)

and note that ∆i > 0 if i ∈ E+(π) and ∆i 6 0 if i ∈ E−(π).

Lemma 4.2. Lemma 4.1 holds also if (4.1) in (iii) is replaced by

σi > σj ⇐⇒ kj − ki < |∆ki |+ |∆kj |. (4.3)

Proof. Suppose that (i)–(ii) hold, and that i < j with i ∈ E+(σ) and j ∈
E−(σ). Then ki ∈ E+(π) and kj ∈ E−(π), and thus

πki − πkj = ki − kj + ∆ki −∆kj = ki − kj + |∆ki |+ |∆kj |. (4.4)

Consequently, (4.1) holds if and only if (4.3) does. �



10 SVANTE JANSON

Before proceeding, we use Lemma 4.2 to give a useful upper bound for
nσ(π). Let

∆̄ = ∆̄(π) := max
16i6n

|∆i|. (4.5)

Then, (4.3) implies that 0 6 kj − ki 6 2∆̄ when (i, j) is an inversion in σ.
Since the inversion graph Γσ is connected, this implies

0 < ki − k1 6 2m∆̄, i = 2, . . . ,m. (4.6)

Hence, the number of occurrences k of σ with a given choice of k1 is at most
(2m∆̄)m−1, and thus

nσ(π) 6 (2m)m−1n∆̄m−1 = O(n∆̄m−1). (4.7)

Now let π = π321,n be random. By the BJS bijection, the uniformly
random π321,n corresponds to a uniformly random Dyck path γ ∈ D2n by
π321,n = πγ . We use the notation in Subsection 2.3; we sometimes write γ,
π = πγ , or σ as arguments of various sets or quantities for clarity, but often
we omit them.

It is well-known that a random Dyck path converges in distribution to a
Brownian excursion after suitable normalization as n→∞. To be precise,

γ(2nt)√
2n

d−→ e(t) (4.8)

as random elements of C[0, 1], see [33]. We use the Skorohod coupling
theorem [34, Theorem 4.30], and may thus assume in the remainder of the
proof that the Dyck paths, and thus the permutations π321,n, are coupled
for different n such that (4.8) holds a.s. In other words,

γ(i) =
√

2n
(
e
( i

2n

)
+ o(1)

)
, (4.9)

where, as throughout this proof, o(1) → 0 as n→∞, uniformly in i ∈ [n]
(and in other similar variables later). However, the o(1) may depend on the
random π321,n, γ and e. O(. . . ) below is interpreted similarly.

Hoffman, Rizzolo and Slivken [24, Section 2] show that a random Dyck
path with very high probability satisfies some regularity properties there
called ‘Petrov conditions’, moreover, they show some deterministic conse-
quences of these properties (at least for large n). By the Borel–Cantelli
lemma, the ‘Petrov conditions’ thus a.s. hold for all large n, so we may
assume that these conditions and their consequences hold for γ.

In particular, by [24, Lemma 2.7], if j ∈ D, then |πγ(j) − j − γ(2j)| <
10n0.4, while if j /∈ D, then |πγ(j) − j + γ(2j)| < 10n0.4. Hence, recalling
the notation (4.2) (with π = πγ) and using (4.9) and (2.4),

∆j =

{
γ(2j) +O(n0.4) =

√
2n e(j/n) + o

(
n1/2

)
, j ∈ D = E+(πγ).

−γ(2j) +O(n0.4) = −
√

2n e(j/n) + o
(
n1/2

)
, j ∈ Dc = E−(πγ),

(4.10)
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and consequently, for all j ∈ [n],

|∆j | =
√

2n e(j/n) + o
(
n1/2

)
. (4.11)

Note that (4.11) implies, by the definition (4.5),

∆̄ = O
(
n1/2

)
. (4.12)

Let, for k ∈ [n], Ak be the set of all occurrences k = (k1, . . . , km) of σ in
πγ such that k1 = k. Thus nσ(πγ) =

∑n
k=1 |Ak|.

We have shown above that if k ∈ Ak, then (4.6) holds, and thus, using
(4.12),

|ki − k| = O(∆̄) = O
(
n1/2

)
= o(n). (4.13)

Since e(t) is continuous, it thus follows from (4.11) that

|∆ki | =
√

2n e(ki/n) + o
(
n1/2

)
=
√

2n e(k/n) + o
(
n1/2

)
. (4.14)

Hence, in (4.3), we have

|∆ki |+ |∆kj | = 23/2n1/2e(k/n) + o
(
n1/2

)
. (4.15)

Motivated by (4.15), let A′k be the set of m-tuples k = (k1, . . . , km) with
k = k1 < · · · < km such that Lemma 4.1(i)–(ii) hold, and, furthermore, for
every i ∈ E+(σ) and j ∈ E−(σ) with i < j,

σi > σj ⇐⇒ kj − ki < 23/2n1/2e(k/n). (4.16)

Note that this agrees with the characterization of Ak implied by Lemma 4.2
except that the bound |∆ki | + |∆kj | in (4.3) is replaced by 23/2n1/2e(k/n).
Consequently, if k ∈ Ak∆A′k, then for some pair (i, j) either

|∆ki |+ |∆kj | 6 kj − ki 6 23/2n1/2e(k/n) (4.17)

or conversely.
Furthermore, if k ∈ A′k, then (4.16) shows that

0 6 kj − ki 6 23/2n1/2 max
t

e(t) = O
(
n1/2

)
(4.18)

for every inversion (i, j) of σ, and thus, by the argument used above for

(4.6), ki − k = O
(
n1/2

)
for every i 6 m; as a consequence, (4.14) holds for

k ∈ A′k too.

It follows that if k ∈ Ak∆A′k, then |ki − k| = O
(
n1/2

)
for i = 2, . . . ,m,

and furthermore, for some pair (i, j) with 1 6 i < j 6 m,∣∣kj − ki − 23/2n1/2e(k/n)
∣∣ = o

(
n1/2

)
. (4.19)

It follows that ∣∣Ak∆A′k∣∣ = o
(
n(m−1)/2

)
. (4.20)

Hence, we may in the sequel consider A′k instead of Ak.
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Next, let A0 be the set of m-tuples k = (k1, . . . , km) ∈ [1, n]m such that
Lemma 4.1(i)–(ii) hold (with π = πγ); i.e.,

A0 =
m∏
i=1

Eεi(πγ), (4.21)

where εi ∈ {+,−} is such that i ∈ Eεi(σ). Note also that σ1 > 1 since σ is
a block of length > 1, and thus 1 ∈ E+(σ), i.e., ε1 = +.

Furthermore, let Bk be the set of m-tuples k = (k1, . . . , km) ∈ [1, n]m such
that k1 = k and

(k2 − k, . . . , km − k) ∈ Pk := 23/2n1/2e(k/n)Πσ, (4.22)

where Πσ is the polytope defined in Section 3; note that this means that
k = k1 6 k2 . . . 6 km and that the equivalences (4.16) hold (for pairs (i, j) as
above), except in some cases of equality. Consequently, A′k equals A0 ∩ Bk,
except possibly for some points on the boundary, and thus, recalling (4.20).

|Ak| = |A′k|+ o
(
n(m−1)/2

)
= |A0 ∩ Bk|+ o

(
n(m−1)/2

)
. (4.23)

Furthermore, (4.22) implies that, recalling λm−1(Πσ) = vσ,

|Bk| = λm−1
(
Pk
)

+O
(
n(m−2)/2

)
=
(
23/2n1/2e(k/n)

)m−1
vσ +O

(
n(m−2)/2

)
. (4.24)

The idea is now that roughly each second point belongs to E+(πγ) and each

second to E−(πγ), and thus |A0 ∩ Bk| ≈ 2−(m−1)|Bk|. We make this precise
in the following lemma.

Lemma 4.3. If the ‘Petrov conditions’ hold for γ, and 1 6 a 6 b 6 n, then

|[a, b] ∩ D| = 1
2(b− a) +O

(
(b− a)0.6 + n0.18

)
. (4.25)

Here, the O(. . . ) is uniform in all such γ, a and b.

Proof. Since (4.25) is trivial for small n, we may assume that n is large
enough when needed below.

The ‘Petrov conditions’ [24, Definition 2.3] include that if |j − i| > n0.3,
then

|Dj −Di − 2(j − i)| < 0.1|i− j|0.6. (4.26)

If |j − i| < n0.3, let ` = min(i, j) − dn0.3e or ` = max(i, j) + dn0.3e, chosen
such that ` ∈ [1, n]. Then, by (4.26) for the pairs (i, `) and (j, `) and the
triangle inequality,

|Dj −Di − 2(j − i)| < 0.2
(
|j − i|+ dn0.3e

)0.6
= O

(
|j − i|0.6 + n0.18

)
. (4.27)

Now, let i and j be such that Di−1 < a 6 Di and Dj−1 < b 6 Dj . Then
[a, b) ∩ D = {Di, . . . , Dj−1} and thus |[a, b) ∩ D| = j − i. Furthermore, by
[24, Lemma 2.5],

|a−Di| 6 |Di −Di−1| 6 n0.18, |b−Dj | 6 |Dj −Dj−1| 6 n0.18. (4.28)
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Consequently, using (4.28) together with (4.26) or (4.27),

b− a = Dj −Di +O
(
n0.18

)
= 2(j − i) +O

(
|j − i|0.6 + n0.18

)
. (4.29)

This yields (4.25), since (for the error term) either j − i = 0 or j − i 6
1 +Dj−1 −Di 6 b− a. �

Let N := bn0.6c and iν := bin/Nc, 0 6 ν 6 N . Partition (0, n] into N
intervals Iν = (iν−1, iν ], 1 6 ν 6 N , of lengths |Iν | = n0.4 +O(1).

For ν2 . . . νm ∈ [N ], let Qk;ν2,...,νm := {k} ×
∏m
j=2 Iνj , and let

Nk := {(ν2, . . . , νm) : ν2 < · · · < νm and Qk;ν2,...,νm ⊆ Bk} (4.30)

B′′k :=
⋃

(ν2,...,νm)∈Nk

Qk;ν2,...,νm . (4.31)

Thus, B′′k ⊆ Bk. Furthermore, if k = (k1, . . . , km) ∈ Bk \ B′′k , then k ∈
Qk:ν2,...,νm for some ν2, . . . , νm such that either νj = νj+1 for some j, or
Qk:ν2,...,νm 6⊆ Bk; in both cases, the point in Pk corresponding to k by (4.22)
has distance O

(
n0.4

)
to the boundary of Pk, and it follows that

|Bk \ B′′k | = O
(
n(m−2)/2+0.4

)
= o
(
n(m−1)/2

)
. (4.32)

Let

A′′k := A0 ∩ B′′k =
⋃

(ν2,...,νm)∈Nk

A0 ∩Qk;ν2,...,νm . (4.33)

Then A′′k ⊆ A0 ∩ Bk = A′k, and

|A′k \ A′′k| 6 |Bk \ B′′k | = o
(
n(m−1)/2

)
. (4.34)

Furthermore, for each (i2, . . . , im) ∈ Nk, (4.21) shows that if k ∈ E+(πγ) =
Eε1(πγ), then

A0 ∩Qk;ν2,...,νm = {k} ×
m∏
j=2

(
Iνj ∩ Eεj (πγ)

)
. (4.35)

Furthermore, E+(πγ) = D and E−(πγ) = [n]\D by (2.4), and thus Lemma 4.3
shows that |Iνj ∩ Eεj | = 1

2 |Iνj |
(
1 + o(1)

)
for every j, regardless of the value

of εj . Hence we obtain, using (4.33), (4.35), and the fact that |B′′k | 6 |Bk| =
O(n(m−1)/2) by (4.24), provided k ∈ E+(πγ),

|A′′k| =
∑

(ν2,...,νm)∈Nk

|A0 ∩Qk;ν2,...,νm |

=
∑

(ν2,...,νm)∈Nk

(
2−(m−1) + o(1)

)
|Qk;ν2,...,νm |

=
(
2−(m−1) + o(1)

)
|B′′k | = 2−(m−1)|B′′k |+ o

(
n(m−1)/2

)
. (4.36)
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Consequently, by (4.23), (4.34), (4.36), (4.32), (4.24),

|Ak| = |A′k|+ o
(
n(m−1)/2

)
= |A′′k|+ o

(
n(m−1)/2

)
= 2−(m−1)|B′′k |+ o

(
n(m−1)/2

)
= 2−(m−1)|Bk|+ o

(
n(m−1)/2

)
= 2(m−1)/2n(m−1)/2e(k/n)m−1vσ + o

(
n(m−1)/2

)
, (4.37)

provided k ∈ E+(πγ); otherwise Ak = ∅.
Finally,

nσ(πγ) =
n∑
k=1

|Ak|

= 2(m−1)/2vσn
(m−1)/2

∑
k∈E+(πγ)

e(k/n)m−1 + o
(
n(m+1)/2

)
. (4.38)

For each interval Iν , using the continuity of e and Lemma 4.3,∑
k∈E+(πγ)∩Iν

e(k/n)m−1 =
∑

k∈E+(πγ)∩Iν

(
e(iν/n)m−1 + o(1)

)
= |E+(πγ) ∩ Iν |

(
e(iν/n)m−1 + o(1)

)
= 1

2 |Iν |e(iν/n)m−1 + o
(
|Iν |
)

= 1
2

∫
Iν

e(x/n)m−1 dx+ o
(
|Iν |
)
. (4.39)

Summing over all Iν , we thus obtain by (4.38), recalling (and justifying)
(3.2),

nσ(πγ) = 2(m−3)/2vσn
(m−1)/2

∫ n

0
e(x/n)m−1 dx+ o

(
n(m+1)/2

)
= wσn

(m+1)/2

∫ 1

0
e(t)m−1 dt+ o

(
n(m+1)/2

)
. (4.40)

This proves (1.9)–(1.10) in the case ` = 1, i.e., σ is a block, and m > 1.
(The case m = 1 is trivial.)

Consider now the general case when σ has ` > 1 blocks σ1, . . . , σ`. We
continue with the assumptions above; in particular π = πγ , (4.8) holds a.s.,
and the ‘Petrov conditions’ hold for γ.

Let j1, . . . , j` be the positions in σ where the blocks start; thus j1 = 1
and jp+1 = jp + mp, 1 6 p < `. Then k = (k1, . . . , km) is an occurrence of
σ in π if and only if each (kjp , . . . , kjp+mp−1) is an occurrence of σp in π,
and furthermore ki < kj whenever i < kp 6 j for some p. In particular, this
implies, with the obvious definition of Ak(σp),

kj1 < kj2 < · · · < kj` and (kjp , . . . , kjp+mp−1) ∈ Akjp (σp) for all p.

(4.41)
On the other hand, if (4.41) holds and furthermore kjp+1 > kjp + n0.6, say,
for each p < `, then (4.13) implies that, assuming n is large enough, k is an
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occurrence of σ in π. Consequently, with qp := kjp ,

nσ(πγ) =
∑

16q1<···<q`6n

∏̀
p=1

|Aqp(σp)|+ o
(
n(m+`)/2

)
. (4.42)

We use again the intervals Iν above, and obtain

nσ(πγ) =
∑

ν1<···<ν`

∏̀
p=1

( ∑
qp∈Iνp

|Aqp(σp)|
)

+ o
(
n(m+`)/2

)
. (4.43)

For each p with mp > 1, we argue as in (4.38)–(4.39) and obtain∑
qp∈Iν

|Aqp(σp)| = wσpn
(mp−1)/2

∫
Iν

e(x/n)mp−1 dx+ o
(
n(mp−1)/2|Iν |

)
.

(4.44)

Furthermore, if mp = 1, then Ak(σp) = {k} and |Ak(σp)| = 1 for every
k ∈ [n], and thus (4.44) holds trivially, with wσ = 1 as given by (3.2).

Finally, (4.43)–(4.44) together with (3.3) yield, with Wσ given by (1.10),

nσ(πγ) = wσn
(m−`)/2

∑
ν1<···<ν`

∏̀
p=1

∫
Iνp

e(xp/n)mp−1 dxp + o
(
n(m+`)/2

)
= wσn

(m−`)/2
∫
0<x1<···<x`<n

e(x1/n)m1−1 · · · e(x`/n)m`−1 dx1 · · · dx`

+ o
(
n(m+`)/2

)
= n(m+`)/2Wσ + o

(
n(m+`)/2

)
.

This completes the proof of (1.9)–(1.10).
Since the proof shows a.s. convergence (under the coupling assumption in

the proof), joint convergence for several σ follows immediately.
In order to show moment convergence, we first prove another lemma.
For a Dyck path γ ∈ D2n, let

M(γ) := max
06i62n

γ(i). (4.45)

Lemma 4.4. (i) Let Mn := M(γ), where γ is a uniformly random Dyck
path of length 2n. Then, for every fixed r < ∞, the random variables
(Mn/n

1/2)r, n > 1, are uniformly integrable.
(ii) Let ∆̄n := ∆̄(π321,n). Then, for every fixed r < ∞, the random

variables (∆̄n/n
1/2)r, n > 1, are uniformly integrable.

Proof. (i): We use the well-known bijection between Dyck paths γ ∈ D2n

and ordered rooted trees Tγ with n+ 1 vertices, where γ encodes the depth-
first walk on Tγ , see e.g. [4; 20]. Then Mn = max γ = H(Tγ), the height of
the tree Tγ . Furthermore, Tγ is a uniformly random ordered rooted tree with
n+ 1 vertices, and can thus be represented as a conditioned Galton–Watson
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tree with a Geometric offspring distribution, see e.g. [2; 20]; hence we can
apply [1, Theorem 1.2], and conclude that for all n > 1 and x > 0,

P
(
Mn/
√
n > x

)
= P

(
H(Tγ) > x

√
n
)
6 Ce−c(x

√
n)2/(n+1) 6 Ce−c1x

2
.

(4.46)
Consequently, for any fixed r > 0,

E
(
Mn/
√
n
)r+1

= (r + 1)

∫ ∞
0

xr P
(
Mn/
√
n > x

)
6 C (4.47)

and the conclusion follows, see [23, Theorem 5.4.2].
(ii): By the BJS bijection, the uniformly random π321,n corresponds to a

uniformly random Dyck path γ ∈ D2n by π321,n = πγ . We use the notation
in Subsection 2.3.

If j ∈ D = D(γ), then j = Di for some i, and thus, using (2.5),

0 6 πγ(j)− j = (Ai + 1)−Di = 1 + γ(Ai +Di) 6 1 +M(γ). (4.48)

On the other hand, if j /∈ D, then Di < j < Di+1 for some i, and by [24,
Lemmas 2.4 and 2.6], with very high probability 1−O(n−r−1), |πγ(j)− j +
yi| < 7n0.4 and thus (for large n)

|πγ(j)− j| 6 7n0.4 + yi 6 n
0.5 +M(γ). (4.49)

It follows from (4.48) and (4.49) that with very high probability,

∆̄n = ∆̄(πγ) = max
j
|πγ(j)− j| 6 n0.5 +Mn. (4.50)

Let En be the event that (4.50) holds. Then the exceptional event Ecn has
probability O(n−r−1), say. Consequently, using (4.50) on En and the trivial
bound ∆̄n 6 n on Ecn, and applying (i),

E
(
∆̄n/
√
n
)r+1

6 E
(
1 +Mn/

√
n
)r+1

+O
(
n(r+1)/2 · n−r−1

)
= O(1). (4.51)

The conclusion follows, see again [23, Theorem 5.4.2]. �

Competion of the proof of Theorem 1.2. We have proved (1.9)–(1.10) above.
Furthermore, (4.7) applied to each block σp shows that

nσ(πγ) 6
∏̀
p=1

nσp(πγ) = O
(
n`∆̄m−`). (4.52)

Hence, for any fixed r > 0,(
nσ(πγ)/n(m+`)/2

)r
6 Cnr`−r(m+`)/2∆̄r(m−`) = C

(
∆̄/n1/2

)r(m−`)
, (4.53)

which is uniformly integrable by Lemma 4.4. Consequently, the left-hand
side of (4.53) is uniformly integrable, for any fixed r > 0, and the conver-
gence in distribution (1.9) implies convergence of moments too. Convergence
of mixed moments follows by the same argument. �
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5. Moment calculations

Moments of the limiting random variable Wσ in (1.10), and thus asymp-
totics of the moments of nσ(π321,n), can often be calculated explicitly. We
do not know a single method that covers all cases, so we present here some
different methods, with overlapping applicability. We give some example
which illustrate the methods, and leave further cases to the reader.

5.1. Using known results. In the special cases in Examples 1.4 and 1.5,

Wσ is (up to the constant wσ) given by an integral
∫ 1
0 e(t)k, or by a power of

this integral. Hence moments of Wσ are given by moments of this integral,
and these moments can be found by recursion formulas, see [29] and the
references there for k = 1, [40] for k = 2 and [43] for the general case.

Example 5.1. For σ = 231 and 312 we have by Theorem 1.2 and (3.10)
the same limit in distribution

W231 = W312 =
1

2

∫ 1

0
e(t)2 dt. (5.1)

(In fact, n231(π321,n) and n312(π321,n) have the same distribution for any n,
as is easily seen because, in general, nσ−1(π−1) = nσ(π).) By [40, Table 2],
(5.1) yields e.g. EW231 = 1/4, EW 2

231 = 19/240 and EW 3
231 = 631/20160.

Example 5.2. Let σ = 214365. Thus σ consists of ` = 3 blocks, which all
are 21. Hence, (3.9) yields wσ = w3

21 = 2−3/2, and (1.14) yields

W214365 =
2−3/2

6

(∫ 1

0
e(t) dt

)3

. (5.2)

Hence, using e.g. [29, Table 1], EW214365 = 5
√
π/512.

5.2. The joint density function. First, for any 0 < t1 < · · · < t`, the
joint distribution of

(
e(t1), . . . , e(t`)

)
has an explicit density, see [42, Section

11.3, page 464] (using the characterization of e(t) as a three-dimensional
Bessel bridge). Thus, using (1.15), EWσ can always be expressed as a 2`-
dimensional multiple integral; furthermore, higher moments can similarly
be expressed using multiple integrals of higher dimensions. However, we do
not know how to calculate these integrals, except in the simplest cases.

In particular, this method works well for the expectation in the special
case when there is only one non-trivial block (i.e., a block of length > 1).
A special case of the joint density given in [42, Section XI.3] is that for any
fixed t ∈ (0, 1), e(t) is a positive random variable with the density

√
2√

πt3(1− t)3
x2e−x

2/(2t(1−t)), x > 0. (5.3)

(This also follows easily from (2.6).) Furthermore, (5.3) implies by a stan-
dard calculation which we omit that if t ∈ (0, 1) and r > −3, then

E[e(t)r] = 2r/2+1π−1/2
(
t(1− t)

)r/2
Γ
(r + 3

2

)
. (5.4)
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We can now calculate EWσ for any σ that only has one non-trivial block.

Example 5.3. Let σ = 1243, with blocks 1, 1, 21. Thus w1243 = w2
1w21 =

w21 = 2−1/2 by (3.9). Furthermore, by (1.10),

W1243 = w1243

∫
0<t1<t2<t3<1

e(t3) dt1 dt2 dt3 = 2−3/2
∫ 1

0
t2e(t) dt. (5.5)

By (5.4), this yields

EW1243 = 2−3/2
∫ 1

0
t2 E e(t) dt = π−1/2

∫ 1

0
t5/2(1− t)1/2 dt

= π−1/2
Γ(7/2)Γ(3/2)

Γ(5)
=

5

128

√
π. (5.6)

5.3. Continuum random tree. Our next method uses a (minor) part
of Aldous’s theory of the Brownian continuum random tree [2; 3; 4], in
particular [4, Corollary 22 and Lemma 21], which among other things yield
a simple description (in terms of binary trees with random edge lengths) of
the distribution of the random vector

(
e(U1), . . . , e(U`)

)
, where ` > 1 and

U1, . . . , U` ∼ U(0, 1) are i.i.d. and independent of e.
In particular, this leads to the following. (One can obtain (5.7) also by

integrating (5.4), but the proof below requires less computations.)

Lemma 5.4. (i) If r > −2, then

E
∫ 1

0
e(t)r dt = 2−r/2Γ

(r
2

+ 1
)
. (5.7)

(ii) If r, s > −1, then

E
∫ 1

0

∫ 1

0
e(t)re(u)s dtdu

= 2−(r+s)/2
( r + s+ 2

(r + 1)(s+ 1)
− Γ(r + 1)Γ(s+ 1)

Γ(r + s+ 2)

)
Γ
(r + s

2
+ 1
)
. (5.8)

Proof. (i): For ` = 1, the description of Aldous [4] simply says that 2e(U1)

has a Rayleigh distribution with density xe−x
2/2, x > 0. Hence, for any

r > 0,

2r E
∫ 1

0
e(t)r dt = 2r E

[
e(U1)

r
]

=

∫ ∞
0

xr+1e−x
2/2 dx = 2r/2Γ

(r
2

+ 1
)
,

where the final integral is evaluated using a standard change of variables,
see e.g. [41, (5.9.1)]. This yields (5.7).

(ii): For ` = 2, the description of Aldous [4] says that(
2e(U1), 2e(U2)

) d
= (L1 + L2, L1 + L3), (5.9)

where (L1, L2, L3) has the density (x1 +x2 +x3)e
−(x1+x2+x3)2/2, x1, x2, x3 >

0. Consequently, for any r, s > −1, using the change of variables z =
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x1 + x2 + x3, x = x2/z, y = (x1 + x2)/z,

2r+s E
∫ 1

0

∫ 1

0
e(x)re(y)s dx dy = 2r+s E

[
e(U1)

re(U2)
s
]

= E
(
(L1 + L2)

r(L1 + L3)
s
)

=

∫
x1,x2,x3>0

(x1 + x2)
r(x1 + x3)

s(x1 + x2 + x3)e
−(x1+x2+x3)2/2 dx1 dx2 dx3

=

∫ ∞
z=0

∫∫
0<x<y<1

yr(1− x)szr+s+3e−z
2/2 dx dy dz

=
1

r + 1

∫ 1

0

(
1− xr+1

)
(1− x)s dx ·

∫ ∞
0

zr+s+3e−z
2/2 dz

=
( 1

(r + 1)(s+ 1)
− Γ(r + 2)Γ(s+ 1)

(r + 1)Γ(r + s+ 3)

)
2(r+s+2)/2Γ

(r + s

2
+ 2
)
.

Simple manipulations of the Gamma functions yield (5.8). �

Proof of Corollary 1.7. Since σ is assumed to be indecomposable, (1.15)
holds with ` = 1 and m1 = m, and thus, using Lemma 5.4,

EWσ = wσ

∫ 1

0
E[e(t)m−1] dt = wσ2−(m−1)/2Γ

(
m+1
2

)
. (5.10)

Thus (1.16) follows from (1.15).
Similarly,

E[W 2
σ ] = w2

σ E
∫ 1

0

∫ 1

0
e(t)m−1e(u)m−1 dtdu (5.11)

is given by (5.8), and (1.17) follows. �

Note that in (1.10), we integrate only over t1 < · · · < t`, while the method
based on [4] used here yields the integral over [0, 1]`, without restriction on
the order of the variables. This was not a problem in Corollary 1.7, when
σ is indecomposable so ` = 1. The method also applies when ` > 1 in
the special case when all blocks have the same lengths m1 = · · · = m`; see
Example 1.5. In these cases, higher moments of Wσ can be calculated by the
same method, although the calculations become more and more involved;
the method in Subsection 5.1 seems simpler in these cases.

The method applies when ` = 2 for the expectation (but not for the
variance or higher moments) also when m1 6= m2, as consequence of the
following lemma.

Lemma 5.5. If r, s > −1, then

E
∫
0<t1<t2<1

e(t1)
re(t2)

s dt1 dt2 =
1

2
E
∫ 1

0

∫ 1

0
e(t1)

re(t2)
s dt1 dt2. (5.12)
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Proof. Since the distribution of e is invariant under reflection, e(t)
d
= e(1−t)

(as random functions),

E
∫
0<t1<t2<1

e(t1)
re(t2)

s dt1 dt2 = E
∫
1>t1>t2>0

e(t1)
re(t2)

s dt1 dt2 (5.13)

and (5.12) follows. �

Proof of Corollary 1.8. Lemmas 5.5 and Lemma 5.4(i) yield (1.18). �

As mentioned in Section 1, Corollaries 1.7 and 1.8 proved here imply
(1.4)–(1.6).

5.4. Brownian bridge. If all blocks of σ have odd length, then the expo-
nents in (1.10) are even, and thus we can use the representation (2.6) and
write E

[
e(t1)

m1−1 · · · e(t`)
m`−1

]
as the expectation of a polynomial in the

jointly Gaussian variables bk(ti). This expectation is a polynomial in the
covariances Cov

(
bk(ti),bκ(tj)

)
= δkκti(1 − tj) (for ti < tj), see e.g. [28,

Thorem 1.28], so (1.15) reduces to the integral of a polynomial over the
given simplex, which is calculated by elementary calculus. Higher moments
can be calculated similarly.

Example 5.6. Let σ = 2314675, with the blocks 231, 1, 231. Then
wσ = w2

231 = 1/4 by (3.10), and

W2314675 =
1

4

∫
0<t1<t2<t3<1

e(t1)
2e(t3)

2 dt1 dt2 dt3. (5.14)

Furthermore, using (2.6) and symmetry,

E
[
e(t1)

2e(t3)
2
]

= 3E
[
b1(t1)

2b1(t3)
2
]

+ 6E
[
b1(t1)

2b2(t3)
2
]

= 3
(
t1(1− t1)t3(1− t3) + 2t21(1− t3)2

)
+ 6t1(1− t1)t3(1− t3). (5.15)

Hence,

EW2314675

=
1

4

∫
0<t1<t3<1

(
9t1(1− t1)t3(1− t3) + 6t21(1− t3)2

)
(t3 − t1) dt1 dt3

=
31

3360
. (5.16)
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