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Abstract. Consider a supercritical Crump–Mode–Jagers process such
that all births are at integer times (the lattice case). We show that under
a certain condition on the intensity of the offspring process, the second-
order fluctuations of the age distribution are asymptotically normal;
the condition is essential and not just a technicality. This extends to
populations counted by a random characteristic.

1. Introduction

Consider a Crump–Mode–Jagers branching process, starting with a single
individual born at time 0, where an individual has N 6 ∞ children born
at the times when the parent has age ξ1 6 ξ2 6 . . . . Here N and (ξi)i are
random, and different individuals have independent copies of these random
variables. Technically, it is convenient to regard {ξi}N1 as a point process
Ξ on [0,∞), and give each individual x an independent copy Ξx of Ξ. For
further details, see e.g. Jagers [5].

We consider the supercritical case, when the population grows to infin-
ity (at least with positive probability). As is well-known, under weak as-
sumptions, the population grows exponentially, like eαt for some constant
α > 0 known as the Malthusian parameter, see e.g. [5, Theorems (6.3.3) and
(6.8.1)]; in particular, the population size properly normalized converges
to some positive random variable, and the age distribution stabilizes. Our
purpose is to study the second-order fluctuations of the age distribution, or
more generally, of the population counted with a random characteristic.

We consider in this paper the lattice case; we thus assume that the ξi are
integer-valued and thus all births occur at integer times a.s., but there is no
d > 1 such that all birth times a.s. are divisible by d.

Our setting can, for example, be considered as a model for the (female)
population of some animal that is fertile several years and gets one or several
children once every year, with the numbers of children different years random
and dependent.
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Our main result (Theorem 2.1) shows that under the condition (A7) be-
low on the intensity measure EΞ of the offspring process, fluctuations are
asymptotically normal, and with only a short-range dependence between
different times. In a companion paper [8], we show that if (A7) does not
hold, then the fluctuations behave differently.

Similar results are proved for multi-type Markov branching processes by
Asmussen and Hering [1, Section VIII.3]. Their setting includes the single-
type non-Markov case studied here, by taking the type of an individual to
be its entire life history until present. However, the assumptions of [1] will
in general not be satisfied by our processes.

Remark 1.1. Our setup includes the Galton–Watson case, where all births
occur when the mother has age 1 (Example 2.3), but this case is much
simpler than the general case and can be treated by simpler methods; see
Jagers [5, Section 2.10], where results closely related to the ones below are
given.

2. Assumptions and main result

Let µ := EΞ be the intensity measure of the offspring process; thus µ :=∑∞
k=0 µkδk, where µk is the expected number of children that an individual

bears at age k (and δk is the Dirac delta, i.e., a point mass at k). Let
Nk := Ξ{k} be the number of children born to an individual at age k. Thus
N =

∑∞
k=1Nk and µk = ENk.

We make the following standing assumptions, valid throughout the paper.
The first assumption (supercriticality) is essential; otherwise there is no as-
ymptotic behaviour to analyse. The assumptions (A2)–(A4) are simplifying
and convenient but presumably not essential. ((A4) can be eliminated by
using Theorem 6.1 to count only the living.)

(A1) The process is supercritical, i.e., µ([0,∞]) =
∑∞

k=0 µi = EN > 1.
(A2) No children are born instantaneously, i.e., µ0 = 0.
(A3) N > 1 a.s. Thus the process a.s. survives.
(A4) There are no deaths.

Define, for all complex z such that either z > 0 or the sums or expectations
below converge absolutely,

µ̂(z) :=

∞∑
k=0

µkz
k =

∞∑
k=0

E[Nk]z
k = E

N∑
i=1

zξi (2.1)

and the complex-valued random variable

Ξ̂(z) :=

∫ ∞
0

zx dΞ(x) =

N∑
i=1

zξi =

∞∑
k=0

Nkz
k. (2.2)

Thus µ̂(z) = E Ξ̂(z).
We make two other standing assumptions:

(A5) µ̂
(
m−1

)
= 1 for some m > 1.
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Thus α := logm satisfies
∑∞

k=1 µke
−kα = µ̂(e−α) = 1, so α is the Malthu-

sian parameter, and the population grows roughly with a factor eα = m for
each generation.

(A6) E[Ξ̂(r)2] <∞ for some r > m−1/2.

We fix in the sequel some r > m−1/2 satisfying (A6). We assume for
convenience r 6 1. Note that (A6) implies

µ̂(r) = E Ξ̂(r) <∞. (2.3)

Hence µ̂(z) and Ξ̂(z) are defined, and analytic, at least for |z| 6 r. Since
µ̂(z) is a strictly increasing function on [0,∞), m−1 in (A5) is the unique
positive root of µ̂(z) = 1. However, µ̂(z) = 1 may have other complex roots.
The crucial condition in the present paper is:

(A7) µ̂(z) 6= 1 for every complex z 6= m−1 with |z| 6 m−1/2.
Let Zn be the total number of individuals at time n. We define Zn for

all integers n by letting Zn := 0 for n < 0. By assumption, Z0 = 1. It is
well-known that the number of individuals Zn grows asymptotically like mn

as n→∞. For example, see e.g. [5, Theorem (6.3.3)] (and remember that
we here consider the lattice case),

EZn ∼ c1mn, as n→∞, (2.4)

with some c1 > 0. Moreover, since (A6) implies E[Ξ̂(m−1)2] <∞,

Zn/m
n a.s.−→ Z, as n→∞, (2.5)

for some random variable Z > 0, see e.g. Nerman [9]. In particular, it follows
that for any fixed k > 1

Zn−k/Zn
a.s.−→ m−k. (2.6)

The number of individuals of age > k at time n is Zn−k. For large n, we
expect this to be roughly m−kZn, see (2.6), and to study the fluctuations,
we define

Xn,k := Zn−k −m−kZn, k = 0, 1, . . . (2.7)

Note that Xn,0 = 0. Our main result (Theorem 2.1) yields asymptotic nor-
mality of Xn,k when (A7) holds; this is extended to random characteristics
in Theorem 6.1. For the case when (A7) does not hold, the asymptotic
behaviour is different, see [8].

By the assumption (A6) and (2.2), EN2
k < ∞ for every k > 1. Define,

for j, k > 1,

σjk := Cov(Nj , Nk) (2.8)

and, at least for |z| < r,

Σ(z) :=
∑
i,j

σijz
iz̄j = Cov

(∑
i

Niz
i,
∑
j

Nj z̄
j
)

= E
∣∣Ξ̂(z)− µ̂(z)

∣∣2. (2.9)
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Let, for R > 0, `2R be the Hilbert space of infinite vectors

`2R :=
{

(ak)
∞
k=0 : ‖(ak)∞0 ‖2`2R :=

∞∑
k=0

R2k|ak|2 <∞
}
. (2.10)

Then the following holds. The proof is given in Section 5.

Theorem 2.1. Assume (A1)–(A7). Then, as n→∞,

Xn,k/
√
Zn

d−→ ζk, (2.11)

jointly for all k > 0, for some jointly normal random variables ζk with mean
ζk = 0 and covariance matrix given by, for any finite sequence a0, . . . , aK of
real numbers,

Var
(∑

k

akζk

)
=

m− 1

m

∮
|z|=m−1/2

∣∣∑
k akz

k −
∑

k akm
−k∣∣2

|1− z|2 |1− µ̂(z)|2
Σ(z)

|dz|
2πm−1/2

. (2.12)

The convergence (2.11) holds also in the stronger sense that (Z
−1/2
n Xn,k)k

d−→
(ζk)k in the Hilbert space `2R, for any R < m1/2. The limit variables ζk are
non-degenerate unless Ξ is deterministic, i.e., Nk = µk a.s. for each k > 0.

Recall that joint convergence of an infinite number of variables means
joint convergence of any finite set. (This is convergence in the product
space R∞, see [2].) Note that trivially ζ0 = 0 (included for completeness).

Remark 2.2. We consider above Xn,k for k > 0, i.e., the age distribution
of the population at time n. We can define Xn,k by (2.7) also for k < 0;
this means looking into the future and can be interpreted as predicting the
future population. As shown in [8], Theorem 2.1 implies its own extension:
(2.11)–(2.12) hold for all k ∈ Z (still jointly). This enables us, for example,
to obtain (by standard linear algebra) the best linear predictor of Zn+1 based
on the observed Zn, . . . , Zn−K for any fixed K.

Example 2.3 (Galton–Watson). The simplest example is a Galton–Watson
process, where all children are born in a single litter at age 1 of the parent,
so Nk = 0 for k > 2. (But all individuals live for ever in our setting. In
the traditional setting, only the newborns are counted, i.e., Zn − Zn−1; the
results are easily transferred to this version.) Then N = N1, m = µ1 and
µ̂(z) = mz. Hence Assumption (A7) holds. We assume EN2 < ∞; then
(A6) holds for any r; we also assume N > 1 a.s. and P(N > 1) > 0; then
(A1)–(A7) hold.

Thus Theorem 2.1 applies. The integral in (2.12) can easily be evaluated,
and we obtain, for example, Var

(
ζ1
)

= σ211m
−3. This can, of course, be

shown in a much simpler and more straightforward way; see [5, Theorem
(2.10.1)], which is essentially equivalent to our Theorem 2.1 in the Galton–
Watson case (without assuming (A3)).
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Example 2.4. Suppose that all children are born when the mother has age
one or two, i.e., Nk = 0 for k > 2. Then µ̂(z) = µ1z + µ2z

2, where by
assumption µ1 + µ2 > 1 and µ1 > 0. (A5) yields m2 = µ1m+ µ2, and thus

m =
µ1 +

√
µ21 + 4µ2
2

. (2.13)

The equation µ̂(z) = 1 has one other root, viz. γ1 with

γ−11 = −
√
µ21 + 4µ2 − µ1

2
. (2.14)

The condition (A7) is thus equivalent to |γ1| > m−1/2, or γ−21 < m, which
after some elementary algebra is equivalent to, for example,

u31 + 3u1u2 + u2 − u22 > 0. (2.15)

Thus, Theorem 2.1 applies when (2.15) holds. See further [8].

2.1. More notation. For a random variable X in a Banach space B, we
define ‖X‖L2(B) := (E ‖X‖2B)1/2, when B = R or C abbreviated to ‖X‖2.

For infinite vectors ~x = (xj)
∞
j=0 and ~y = (yj)

∞
j=0, let 〈~x, ~y〉 :=

∑∞
j=0 xjyj ,

assuming that the sum converges absolutely.
C denotes different constants that may depend on the distribution of the

branching process (i.e., on the distribution of N and (ξi)), but not on n and
similar parameters; the constant may change from one occurrence to the
next.

All unspecified limits are as n→∞.

3. Preliminaries

Let
Bn := Zn − Zn−1 (3.1)

be the number of individuals born at time n (with B0 = Z0). Thus,

Zn = Zn−1 +Bn =
n∑
i=0

Bi, n > 0. (3.2)

Let Bn,k be the number of individuals born at time n+ k by parents that
are themselves born at time n, and thus are of age k. Thus, recalling (A2),

Bn =

n∑
k=1

Bn−k,k, n > 1. (3.3)

Let Fn be the σ-field generated by the life histories of all individuals born
up to time n. (With F−1 trivial.) Then Bn,k is Fn-measurable, and Bn is
Fn−1-measurable by (3.3). Furthermore,

E
(
Bn,k | Fn−1

)
= µkBn, n > 0. (3.4)

For k > 1, let

Wn,k := Bn,k − E
(
Bn,k | Fn−1

)
= Bn,k − µkBn. (3.5)
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(Thus Wn,k = 0 if n < 0.) Then Wn,k is Fn-measurable with

E
(
Wn,k | Fn−1

)
= 0. (3.6)

Let further

Wn := Bn −
n∑
k=1

µkBn−k = Bn −
∞∑
k=1

µkBn−k. (3.7)

Thus W0 = B0 = Z0, and for n > 1, by (3.7), (3.3) and (3.5),

Wn =
n∑
k=1

Wn−k,k. (3.8)

Lemma 3.1. Assume (A1)–(A6). Then, for all n > 1 and k > 1, E[W 2
n,k] 6

Cr−2kmn and E[W 2
n ] 6 Cmn.

Proof. Recall that Nk is the number of children born at age k of an in-

dividual, and that ENk = µk. Furthermore, by (2.2), Ξ̂(r) > Nkr
k and

thus

VarNk 6 EN2
k 6 r

−2k E[Ξ̂(r)2] = Cr−2k. (3.9)

Let n > 0 and k > 1. Given Fn−1, Bn,k is the sum of Bn independent
copies of Nk, and thus, see (3.5), (3.4) and (3.9),

E
(
W 2
n,k | Fn−1

)
= Bn Var(Nk) 6 Cr

−2kBn. (3.10)

Taking the expectation and using (2.4) we find

E[W 2
n,k] 6 Cr

−2k EBn 6 Cr−2k EZn 6 Cr−2kmn, (3.11)

as asserted. Consequently ‖Wn,k‖2 6 Cr−kmn/2 and, by (3.8) and Minkowski’s

inequality, using rm1/2 > 1,

‖Wn‖2 6
n∑
k=1

‖Wn−k,k‖2 6 Cmn/2
∞∑
k=1

(rm1/2)−k 6 Cmn/2. (3.12)

�

For n > 0 and k > 1, by (2.7),

Xn+1,k = Zn+1−k −m−kZn+1 = Xn,k−1 +m1−kZn −m−kZn+1

= Xn,k−1 +m−k(mZn − Zn+1). (3.13)

Furthermore, by (3.1) and (2.7), we have, for k > 0,

Bn−k = Zn−k − Zn−k−1 = Xn,k −Xn,k+1 + (m− 1)m−k−1Zn. (3.14)
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By (3.2), (3.7) and (3.14), recalling that Xn,0 = 0 by (2.7) and µ̂(m−1) = 1
by (A5), for n > 0,

mZn − Zn+1 = (m− 1)Zn −Bn+1 = (m− 1)Zn −
∞∑
k=1

µkBn+1−k −Wn+1

= (m− 1)Zn −
∞∑
k=1

µk
(
Xn,k−1 −Xn,k + (m− 1)m−kZn

)
−Wn+1

= (m− 1)Zn −
∞∑
k=1

µk
(
Xn,k−1 −Xn,k

)
− (m− 1)µ̂(m−1)Zn −Wn+1

=

∞∑
k=1

µk
(
Xn,k −Xn,k−1

)
−Wn+1. (3.15)

Consequently, (3.13) yields, for n > 0 and k > 1,

Xn+1,k = Xn,k−1 +m−k
( ∞∑
k=1

µk
(
Xn,k −Xn,k−1

)
−Wn+1

)
. (3.16)

We write this in vector form. Let ~Xn := (Xn,k)
∞
k=0. Furthermore, let

~v := (0,m−1,m−2, . . . ) =
(
m−k1{k > 0}

)∞
k=0

(3.17)

and let

Ψ
(
(yk)

∞
0

)
:=

∞∑
k=1

µk(yk − yk−1), (3.18)

for vectors (yk)
∞
0 such that the sum converges; finally, let S be the shift

operator S
(
(yk)

∞
0

)
:= (yk−1)

∞
0 with y−1 := 0.

Then (3.16) can be written, again recalling Xn,0 = 0,

~Xn+1 = S( ~Xn) +
(
Ψ( ~Xn)−Wn+1

)
~v = T ( ~Xn)−Wn+1~v, (3.19)

where T is the linear operator

T (~y) := S(~y) + Ψ(~y)~v. (3.20)

The recursion (3.19) leads to the following formula.

Lemma 3.2. For every n > 0,

~Xn = −
n∑
k=0

Wn−kT
k(~v). (3.21)

Proof. For the initial value ~X0, we have by (2.7) X0,k = −m−kZ0 for k >
1, and thus by (3.17) ~X0 = −Z0~v = −W0~v, recalling that W0 = B0 =
Z0. This verifies (3.21) for n = 0. The general case follows by (3.19) and
induction. �
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We shall consider T defined in (3.20) as an operator on the complex
Hilbert space `2R defined in (2.10) for a suitable R > 0. Recall that the
spectrum σ(T ) of a linear operator in a complex Hilbert (or Banach) space
is the set of complex numbers λ such that λ − T is not invertible; see e.g.
[3, Section VII.3].

Lemma 3.3. Suppose that 1 6 R < m and that µ̂(R−1) <∞. Then ~v ∈ `2R,
Ψ is a bounded linear functional on `2R and T is a bounded linear operator
on `2R. Furthermore, if λ ∈ C with |λ| > R, then λ ∈ σ(T ) if and only if
λ 6= m and µ̂(λ−1) = 1.

Proof. We have, by (3.17) and (2.10),

‖~v‖2`2R =

∞∑
k=1

R2km−2k <∞, (3.22)

because R < m. Next, it is clear from (2.10) that the shift operator S is
bounded on `2R (with norm R). Furthermore, by (2.1) and assumption,

∞∑
k=1

R−2kµ2k 6 µ̂(R−1)2 <∞ (3.23)

and it follows by the Cauchy–Schwarz inequality that Ψ1

(
(ak)

∞
0

)
:=
∑∞

k=1 µkak
defines a bounded linear functional Ψ1 on `2R. Since Ψ can be written
Ψ = Ψ1 − Ψ1S, Ψ too is bounded. It now follows from (3.20) that T is
a bounded linear operator on `2R.

For the final statement we note that the mapping (ak)
∞
0 7→

∑∞
k=0 akz

k

is an isometry of `2R onto the Hardy space H2
R consisting of all analytic

functions f(z) in the disc {z : |z| < R} such that

‖f‖2H2
R

:= sup
r<R

1

2π

∫ 2π

0
|f
(
reiθ

)
|2 dθ <∞. (3.24)

(See e.g. [4].) In particular, ~v corresponds to the function

v(z) :=

∞∑
k=1

m−kzk =
z/m

1− z/m
=

z

m− z
. (3.25)

We use the same notations Ψ, S and T for the corresponding linear functional
and operators on H2

R, and note that the shift operator S on `2R corresponds
to the multiplication operator Sf(z) = zf(z) on H2

R. The definition (3.20)
thus translates to

Tf(z) = zf(z) + Ψ(f)v(z). (3.26)

Consequently, for any h ∈ H2
R, the equation (λ− T )f = h is equivalent to

(λ− z)f(z)−Ψ(f)v(z) = h(z). (3.27)

Any solution to (3.27) has to be of the form

f(z) = c
v(z)

λ− z
+

h(z)

λ− z
, (3.28)
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where

c = Ψ(f) = cΨ
( v(z)

λ− z

)
+ Ψ

( h(z)

λ− z

)
. (3.29)

Suppose |λ| > R; then 1/(λ−z) is a bounded analytic function on the domain
{|z| < R}, so it follows from (3.24) and v, h ∈ H2

R that v(z)/(λ − z) ∈ H2
R

and h(z)/(λ − z) ∈ H2
R. If Ψ

(
v(z)/(λ − z)

)
6= 1, then (3.29) has a unique

solution c for any h ∈ H2
R, and thus (3.27) has a unique solution f ∈ H2

R,
given by (3.28). In other words, then λ − T is invertible on H2

R and λ /∈
σ(T ). (Continuity of (λ− T )−1 is automatic, by the closed graph theorem.)
Conversely, if Ψ

(
v(z)/(λ − z)

)
= 1, then (3.27) has either no solution or

infinitely many solutions f for any given h ∈ H2
R, and thus λ ∈ σ(T ).

We have shown that for |λ| > R,

λ ∈ σ(T ) ⇐⇒ Ψ
( v(z)

λ− z

)
= 1. (3.30)

We analyse the condition in (3.30) further. If |λ| > R and λ 6= m, then,
by (3.25),

v(z)

λ− z
=

z

(λ− z)(m− z)
=

1

m− λ

( λ

λ− z
− m

m− z

)
. (3.31)

Furthermore, λ/(λ− z) =
∑∞

k=0 λ
−kzk and thus by (3.18) and (2.1),

Ψ
( λ

λ− z

)
=
∞∑
k=1

µkλ
−k(1− λ) = (1− λ)µ̂

(
λ−1

)
. (3.32)

Hence, (3.31) yields, recalling µ̂(m−1) = 1 by (A5),

Ψ
( v(z)

λ− z

)
=

1

m− λ

(
Ψ
( λ

λ− z

)
−Ψ

( m

m− z

))
=

1

m− λ
(
(1− λ)µ̂(λ−1)− (1−m)µ̂(m−1)

)
=

1

m− λ
(
(1− λ)µ̂(λ−1) +m− 1

)
. (3.33)

Consequently, for |λ| > R with λ 6= m, by (3.30) and (3.33),

λ ∈ σ(T ) ⇐⇒ Ψ
( v(z)

λ− z

)
= 1

⇐⇒ (1− λ)µ̂(λ−1) +m− 1 = m− λ
⇐⇒ (1− λ)µ̂(λ−1) = 1− λ
⇐⇒ µ̂(λ−1) = 1. (3.34)

In the special case λ = m, we find by continuity, letting λ→ m in (3.33),

Ψ
( v(z)

m− z

)
= lim

λ→m
Ψ
( v(z)

λ− z

)
= − d

dλ

(
(1− λ)µ̂(λ−1)

)∣∣
λ=m

= µ̂(m−1)− (m− 1)m−2µ̂′(m−1) < µ̂(m−1) = 1 (3.35)
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since µ̂′(x) > 0 for x > 0. Hence m /∈ σ(T ). �

Remark 3.4. It is easily seen that λ ∈ σ(T ) for every λ with |λ| 6 R, e.g.
by taking h = v in (3.27)–(3.28) and noting that v(z)/(λ− z) /∈ H2

R. Thus
we have a complete description of the spectrum σ(T ) on `2R.

Lemma 3.5. Suppose that 1 6 R < m and that µ̂(R−1) < ∞. Suppose
furthermore that µ̂(z) 6= 1 for every complex z 6= m−1 with |z| < R−1.
Then, for every R1 > R, there exists C = C(R1) such that

‖Tn‖`2R 6 CR
n
1 , n > 0. (3.36)

Proof. By Lemma 3.3, T is a bounded linear operator on `2R and if λ ∈ σ(T )
with |λ| > R, then µ̂(λ−1) = 1 and λ−1 6= m−1. By assumption, there is
no such λ, and thus σ(T ) ⊆ {λ : |λ| 6 R}. (Actually, equality holds by
Remark 3.4.) In other words, the spectral radius

r(T ) := sup
λ∈σ(T )

|λ| 6 R. (3.37)

By the spectral radius formula [3, Lemma VII.3.4], r(T ) = limn→∞ ‖Tn‖1/n
and thus (3.37) implies that, for any R1 > R, ‖Tn‖1/n < R1 for large n,
which yields (3.36). �

4. A first normal convergence result

Let ~η := (η0, η1, η2, . . . ), where (ηk)
∞
0 are jointly normal random variables

with means E ηk = 0 and covariances

Cov(ηj , ηk) = σjk = Cov(Nj , Nk), (4.1)

see (2.8). Note that η0 = 0 since N0 = 0.

Lemma 4.1. Assume (A1)–(A6), and let ~η(k) = (η
(k)
j )∞j=0, k = 1, 2, . . . , be

independent copies of the random vector η. Then, as n→∞,

Z−1/2n Wn−k,j
d−→ (1− 1/m)1/2m−k/2η

(k)
j , (4.2)

jointly for all (j, k) with j > 0 and k > 0.

Proof. Consider first a fixed k > 0. Given Bn−k, the vector ~Bn−k :=
(Bn−k,j)

∞
j=0 is the sum of Bn−k independent copies of the random vector

~N , and by (3.5), the vector ~Wn−k := (Wn−k,j)
∞
j=0 is the sum of Bn−k in-

dependent copies of the centered random vector ~N − E ~N . By (3.1) and
(2.6),

Bn
Zn

= 1− Zn−1
Zn

a.s.−→ 1−m−1 > 0. (4.3)

In particular, Bn → ∞ a.s., and thus Bn−k → ∞. Consequently, by the
central limit theorem for i.i.d. finite-dimensional vector-valued random vari-
ables, and the definition of ηj ,

B
−1/2
n−k Wn−k,j

d−→ ηj
d
= η

(k)
j , (4.4)
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jointly for any finite set of j > 0.
Moreover, by (4.3) and (2.6),

Bn−k/Zn
a.s.−→ (1− 1/m)m−k, (4.5)

and thus (4.2) for a fixed k follows from (4.3) and (4.4).
To extend this to several k, the problem is that Wn−k,j for different k are,

in general, dependent. (For example, conditioned on Zn−1 and Bn−1, Wn−1,1
determines Bn−1,1 which contributes to Bn, and thus influences Wn,j .) We
therefore approximate Wn−k,j as follows.

We may assume that for each k, we have an infinite sequence ( ~N (k,i))i>1 of

independent copies of ~N , such that ~Wn−k is the sum
∑Bn−k

i=1
~N (k,i) of the first

Bn−k vectors; furthermore, these sequences for different k are independent.
Fix J,K > 1 and consider only j 6 J and k 6 K. Let, for 0 6 k 6 K,

Bn−k := bmK−kBn−Kc (4.6)

and let

Wn−k,j :=

Bn−k∑
i=1

~N
(k,i)
j . (4.7)

Then by the central limit theorem, exactly as for (4.4),

B
−1/2
n−k Wn−k,j

d−→ η
(k)
j , (4.8)

jointly for all j 6 J and k 6 K; note that now, if we condition on Bn−K ,
the left-hand sides for different k are independent. Furthermore, by (4.3)

and (2.6), Bn−k/Bn−k
a.s.−→ 1 for every k. Hence (4.8) yields, jointly,

B
−1/2
n−k Wn−k,j

d−→ η
(k)
j . (4.9)

Moreover, using (4.7),

E
(
(Wn−k,j −Wn−k,j)

2 | Bn−k, Bn−k
)

= |Bn−k −Bn−k|VarNj (4.10)

and, consequently, for every fixed j > 0, k > 0 and ε > 0,

P
(
|Wn−k,j−Wn−k,j | > εB

1/2
n−k | Bn−k, Bn−k

)
6 |1−Bn−k/Bn−k|σjjε−2

a.s.−→ 0.

Taking the expectation, we obtain by dominated convergence that for every

j and k, P
(
|Wn−k,j −Wn−k,j | > εB

1/2
n−k
)
→ 0 for every ε > 0, and thus

B
−1/2
n−k Wn−k,j −B

−1/2
n−k Wn−k,j

p−→ 0. (4.11)

Combining (4.9) and (4.11) yields

B
−1/2
n−k Wn−k,j

d−→ η
(k)
j , (4.12)

still jointly for all j 6 J and k 6 K. The result follows by this and (4.5),
since J and K are arbitrary. �



12 SVANTE JANSON

5. Proof of Theorem 2.1

In this section we assume (A1)–(A7). Note that (2.3) implies that µ̂(z)
is analytic in the disc Dr := {|z| < r}, and thus the points z there with

µ̂(z) = 1 form a discrete set. By (A7), they all satisfy |z| > m−1/2 except
the root z = m−1. Hence we may decrease r so that the disc Dr contains
no roots of µ̂(z) = 1 except m−1, and still r > m−1/2. Thus, assuming
(A1)–(A6), and with R := 1/r, (A7) is equivalent to

(A7′) There exists R with 1 6 R < m1/2 such that µ̂(R−1) < ∞ and,
furthermore, µ̂(z) 6= 1 for every complex z 6= m−1 with |z| < R−1.

We fix an R such that (A7′) holds, and (A6) holds with r = 1/R. Note that

R may be chosen arbitrarily close to m1/2. Furthermore, we fix R1 with
R < R1 < m1/2. Then (A7′) and Lemma 3.5 show that (3.36) holds, i.e.,
‖Tn‖`2R = O

(
Rn1
)
.

Lemma 5.1. Assume (A1)–(A7). If R < m1/2, then

E ‖ ~Xn‖2`2R 6 Cm
n (5.1)

and thus
EX2

n,k 6 CR
−2kmn (5.2)

for all n, k > 0.

Proof. By (3.21), Lemma 3.1, (3.36) and Minkowski’s inequality,

‖ ~Xn‖L2(`2R) 6
n∑
k=0

‖Wn−k‖L2‖T k(~v)‖`2R 6 C
n∑
k=0

m(n−k)/2Rk1

= Cmn/2
∞∑
k=0

(R1/m
1/2)k = Cmn/2. (5.3)

This yields (5.1), and (5.2) follows by (2.10). �

Define for convenience Wn,j also for n < 0 by W−1,1 := W0 and Wn,j = 0
for n 6 −1 and j > 1 with (n, j) 6= (−1, 1). Then (3.8) holds also for n 6 0,
provided the sum is extended to ∞, and (3.21) can be written

~Xn = −
∞∑
k=0

∞∑
j=1

Wn−k−j,jT
k(~v). (5.4)

For each finite M define also the truncated sum

~Xn,M := −
M∑
k=0

M∑
j=1

Wn−k−j,jT
k(~v). (5.5)

Lemma 4.1 implies that for any fixed M , as n→∞,

Z−1/2n
~Xn,M

d−→ −
M∑
k=0

M∑
j=1

(1−m−1)1/2m−(k+j)/2η(k+j)j T k(~v) (5.6)
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in `2R. Furthermore, by (5.4)–(5.5), Minkowski’s inequality, Lemma 3.1 and

(3.36), regarding ~Xn and ~Xn,M as elements of L2(`2R), the space of `2R-valued
random variables with square integrable norm,

‖ ~Xn − ~Xn,M‖L2(`2R) 6
∑

k>M or j>M

‖Wn−k−j,j‖L2‖T k(~v)‖`2R

6 C
∑

k>M or j>M

r−jm(n−k−j)/2Rk1

= Cmn/2
∑

k>M or j>M

(R/m1/2)j(R1/m
1/2)k. (5.7)

Since the sum on the right-hand side of (5.7) converges, it tends to 0 as M →
∞, and thus m−n/2

(
~Xn − ~Xn,M

)
→ 0 in L2(`2R), and thus in probability,

uniformly in n. Since Zn/m
n a.s.−→ Z > 0, see (2.5), supnm

n/Zn is an a.s.
finite random variable; hence also

Z−1/2n

(
~Xn − ~Xn,M

)
=
(mn

Zn

)1/2
m−n/2

(
~Xn − ~Xn,M

) p−→ 0 (5.8)

as M →∞, uniformly in n.
Moreover, the right-hand side of (5.6) converges as M →∞ in L2(`2R),

and thus in distribution, since by (3.9)

E[(η
(k)
j )2] = VarNj 6 Cr

−2j = CR2j , (5.9)

and thus, using also (3.36),

∞∑
k=0

∞∑
j=1

m−(k+j)/2‖η(k+j)j T k(~v)‖L2(`2R) =
∞∑
k=0

∞∑
j=1

m−(k+j)/2‖η(k+j)j ‖L2‖T k(~v)‖`2R

6 C
∞∑
k=0

∞∑
j=1

m−(k+j)/2RjRk1 <∞.

(5.10)

It follows, see [2, Theorem 4.2], that (5.6) extends to M =∞, i.e.,

Z−1/2n
~Xn

d−→ −
∞∑
k=0

∞∑
j=1

(1−m−1)1/2m−(k+j)/2η(k+j)j T k(~v) (5.11)

in `2R as n→∞. The right-hand side is obviously a Gaussian random vector

in `2R, which we write as ~ζ = (ζ0, ζ1, . . . ). Then (5.11) yields (2.11).
It remains to calculate the covariances of ζk. Let ~a = (a0, a1, . . . ) be a

(real) vector with only finitely many non-zero elements. Then, by (5.11),

∞∑
`=0

a`ζ` = 〈~a, ~ζ〉 = −(1−m−1)1/2
∞∑
k=0

∞∑
j=1

m−(k+j)/2η
(k+j)
j 〈T k(~v),~a〉 (5.12)

with the sum converging absolutely in L2 by (5.10).
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By the definition of η
(k)
j in (4.1) and Lemma 4.1,

Cov
(
m−k/2η

(k)
i ,m−`/2η

(`)
j

)
= m−(k+`)/2δk,`σij =

∮
|w|=m−1/2

σijw
kw̄`

|dw|
2πm−1/2

.

(5.13)

Hence, (5.12) yields

(1−m−1)−1 Var
(
〈~a, ~ζ〉

)
=

∞∑
k=0

∞∑
`=0

∞∑
i=1

∞∑
j=1

〈T k(~v),~a〉〈T `(~v),~a〉
∮
|w|=m−1/2

σijw
k+iw̄`+j

|dw|
2πm−1/2

=

∮
|w|=m−1/2

∞∑
i=1

∞∑
j=1

σijw
iw̄j

∣∣∣∣∣
∞∑
k=0

wk〈T k(~v),~a〉

∣∣∣∣∣
2
|dw|

2πm−1/2
. (5.14)

Furthermore, if |w| = m−1/2, then
∑∞

k=0 ‖wkT k(~v)‖`2R < ∞ by (3.36), and

thus
∞∑
k=0

wkT k(~v) = (1− wT )−1(~v). (5.15)

Let λ := w−1, so |λ| = m1/2 > R. We use as in the proof of Lemma 3.3
the standard isometry `2R → H2

R, and let f(z) ∈ H2
R be the function corre-

sponding to (1− wT )−1(~v) = λ(λ− T )−1(~v). Thus, see (3.26)–(3.27),

(λ− z)f(z)−Ψ(f)v(z) = (λ− T )f(z) = λv(z) (5.16)

and thus, cf. (3.27)–(3.29),

f(z) = b
v(z)

λ− z
(5.17)

for a constant b such that b = Ψ(f) + λ. This yields by (3.33)

b− λ = Ψ(f) =
b

m− λ
(
(1− λ)µ̂(λ−1) +m− 1

)
(5.18)

with the solution

b =
λ(m− λ)

(1− λ)(1− µ̂(λ−1))
. (5.19)

Hence, using (3.31), for |z| 6 R,

f(z) = b
v(z)

λ− z
=

λ

(1− λ)(1− µ̂(λ−1))

( λ

λ− z
− m

m− z

)
=

λ

(1− λ)(1− µ̂(λ−1))

∞∑
`=0

(λ−` −m−`)z`.

=
1

(w − 1)(1− µ̂(w))

∞∑
`=0

(w` −m−`)z`. (5.20)
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Thus, (1−wT )−1(~v) =
(
((w−1)(1−µ̂(w)))−1(w`−m−`)

)
`

and, using (5.15),

∞∑
k=0

wk〈T k(~v),~a〉 = 〈(1− wT )−1(~v),~a〉 =
1

(w − 1)(1− µ̂(w))

∞∑
`=0

a`(w
` −m−`).

(5.21)

Hence (2.12) follows from (5.14).
Finally, by (2.12), the variable ζk is degenerate only if Σ(z) = 0 for every

z with |z| = m−1/2, and thus, by (2.9), Ξ̂(z) = µ̂(z) a.s. for every such z,
which by (2.1)–(2.2) implies Nk = µk a.s. for every k. �

6. Random characteristics

A random characteristic is a random function χ(t) : [0,∞) → R defined
on the same probability space as the prototype offspring process Ξ; we as-
sume that each individual x has an independent copy (Ξx, χx) of (Ξ, χ), and
interpret χx(t) as the characteristic of x at age t. We consider as above the
lattice case, and define, denoting the birth time of x by τx,

Zχn :=
∑

x:τx6n

χx(n− τx), (6.1)

the total characteristic of all individuals at time n. See further Jagers [5].
We assume:

(A8) There exists R2 < m1/2 such that E[χ(k)2] 6 CR2k
2 for some C <∞

and all k > 0.

We define

λχk := Eχ(k), (6.2)

Λχ(z) :=
∞∑
k=0

λχkz
k, (6.3)

λχ :=
(
1−m−1

)
Λχ
(
m−1

)
=
∞∑
k=0

(
m−k −m−k−1

)
λχk , (6.4)

κj,k := Cov
(
χ(j), Nk

)
. (6.5)

Note that (A8) implies

|λχk | = |Eχ(k)| 6 CRk2 . (6.6)

Hence, the sum in (6.3) converges absolutely at least for |z| 6 m−1/2.
We extend Theorem 2.1 (which is the deterministic case χ(k) =

∑
j6k aj).

Theorem 6.1. Assume (A1)–(A8). Then, as n→∞,

Z−1/2n

(
Zχ − λχZn

) d−→ ζχ, (6.7)



16 SVANTE JANSON

for some normal random variable ζχ with mean ζχ = 0 and variance

Var
(
ζχ
)

=
m− 1

m

( ∞∑
k=0

m−k Var
(
χ(k)

)
− 2

∮
|z|=m−1/2

(1− z)Λχ(z)− λχ

(z − 1)(1− µ̂(z))

∞∑
k=0

∞∑
j=1

κkjz
j z̄k

|dz|
2πm−1/2

+

∮
|z|=m−1/2

|(1− z)Λχ(z)− λχ|2

|1− z|2 |1− µ̂(z)|2
∑
i,j

σijz
iz̄j

|dz|
2πm−1/2

.

)
(6.8)

Joint asymptotic normality for several characteristics, with a correspond-
ing formula for asymptotic covariances, follow by the proof, or by the Cramér–
Wold device.

Proof. We use results from Section 5, and assume as we may that R is chosen
with R2 < R < m1/2. We define

V χ
n,k :=

∑
x:τx=n

(
χx(k)− λχk

)
=
∑

x:τx=n

χx(k)− λχkBn. (6.9)

Then, (6.1) implies

Zχn =

n∑
k=0

(
V χ
n−k,k + λχkBn−k

)
=

∞∑
k=0

(
V χ
n−k,k + λχkBn−k

)
(6.10)

and, recalling (6.4), (3.1) and (2.7),

Zχn − λχZn =
∞∑
k=0

(
V χ
n−k,k + λχk

(
Bn−k − (m−k −m−k−1)Zn

))
=
∞∑
k=0

(
V χ
n−k,k + λχk

(
Xn,k −Xn,k+1

))
=
∞∑
k=0

V χ
n−k,k + 〈 ~Xn,∆~λ

χ〉, (6.11)

where ∆~λχ is the vector
(
λχk − λ

χ
k−1
)∞
k=0

(with λχ−1 := 0).

Given Bn−k, V
χ
n−k,k is the sum of Bn−k independent copies of χ(k)−λχk =

χ(k)− Eχ(k). Hence, using (A8), (2.4) and Bn−k 6 Zn−k,

E
(
V χ
n−k,k

)2
= E

(
E
(
V χ
n−k,k

)2 | Bn−k) = Var
(
χ(k)

)
EBn−k 6 Cmn−kR2k

2

(6.12)
and, using (6.6) and Lemma 5.1,

E
(
λχk (Xn,k −Xn,k+1)

)2
6 CR2k

2

(
EX2

n,k + EX2
n,k+1

)
6 Cmn(R2/R)2k.

(6.13)

Since we assume R2 < R < m1/2, it follows by standard arguments that if
we replace χ by the truncated characteristic χK(k) := χ(k)1{k 6 K}, then
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the error Z
−1/2
n

(
Zχn − λχZn − (ZχK

n − λχKZn)
)

tends to 0 in probability as
K → ∞, uniformly in n, and as a consequence, see [2, Theorem 4.2], it
suffices to prove Theorem 6.1 for the truncated characteristic χK . Hence we
may in the sequel assume (changing notation) that χ(k) = 0 for k > K, for
some K <∞.

Let ~ϑ = (ϑ0, ϑ1, . . . ) be a random vector such that (~ϑ, ~η) is jointly normal
with mean 0 and covariances given by (4.1) and

Cov(ϑj , ϑk) = Cov
(
χ(j), χ(k)

)
, (6.14)

Cov(ϑj , ηk) = κj,k := Cov
(
χ(j), Nk

)
. (6.15)

Let
(
~ϑ(k), ~η(k)

)
be independent copies of (~ϑ, ~η).

The proof of Lemma 4.1 extends to show that (4.2) holds jointly with

Z−1/2n V χ
n−k,k

d−→
(
1−m−1

)1/2
m−k/2ϑ

(k)
k , k > 0. (6.16)

Hence, by the proof in Section 5, (5.11) holds jointly with (6.16) for all k.
Consequently, by (6.11) (where we only have to sum for k 6 K),(

1−m−1
)−1/2

Z−1/2n

(
Zχn − λχZn

)
d−→

∞∑
k=0

m−k/2ϑ
(k)
k −

∞∑
k=0

∞∑
j=1

m−(k+j)/2η
(k+j)
j 〈T k(~v),∆~λχ〉. (6.17)

Write the right-hand side as A1 − A2, and note that A1 and A2 are jointly
normal with means 0. It remains to calculate Var(A1 −A2).

Var(A2) was calculated in Section 5, see (5.14) and (2.12), which yields
the last term in (6.8), using

∑
k(λ

χ
k − λ

χ
k−1)z

k = (1− z)Λχ(z) and (6.4).
Since the terms in the sum A1 are independent,

Var(A1) =
∞∑
k=0

m−k Var
(
ϑk
)

=
∞∑
k=0

m−k Var
(
χ(k)

)
. (6.18)

Finally, using (6.15) and (5.21),

Cov(A1, A2) =

∞∑
k=0

∞∑
j=1

m−(k+j)κk+j,j〈T k(~v),∆~λχ〉

=

∞∑
k=0

∞∑
j=1

〈T k(~v),∆~λχ〉
∮
|z|=m−1/2

zk+j
∞∑
`=0

z̄`κ`,j
|dz|

2πm−1/2

=

∮
|z|=m−1/2

〈(1− zT )−1(~v),∆~λχ〉
∞∑
`=0

∞∑
j=1

zj z̄`κ`,j
|dz|

2πm−1/2

=

∮
|z|=m−1/2

(1− z)Λχ(z)− (1−m−1)Λχ(m−1)

(z − 1)(1− µ̂(z))

∞∑
`=0

∞∑
j=1

zj z̄`κ`,j
|dz|

2πm−1/2

(6.19)
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The result (6.8) follows by combining (6.18), (6.19) and (2.12), recalling
(6.4). �
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