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Abstract. We study S(Tn), the number of subtrees in a conditioned
Galton–Watson tree of size n. With two very different methods, we
show that log(S(Tn)) has a Central Limit Law and that the moments of
S(Tn) are of exponential scale.

We define the model which we study in Section 1. Our main results are
given in Section 2; the proofs can be found in Sections 3, 4 and 5 respectively.
An extension is given in Section 6.

1. Definitions

1.1. Subtrees. We consider only rooted trees. We denote the node set of
a rooted tree T by V (T ), and the number of nodes by |T | = |V (T )|. We
denote the root of T by o = o(T ). We regard the edges of a rooted tree as
directed away from the root.

A (general) subtree of a rooted tree T is a subgraph T ′ that is a tree.
T ′ is necessarily an induced subgraph, so we may identify it with its node
set V ′ = V (T ′); hence we can also define a subtree as any set of nodes that
forms a tree; in other words, any non-empty connected subset V ′ of the node
set V (T ).

Note that a subtree T ′ of T has a unique node o′ of smallest depth in T ,
and that all edges in T ′ are directed away from o′. We define o′ to be the
root of T ′. Thus every subtree T ′ is itself a rooted tree, with the direction
of any edge agreeing with the direction in T .

A fringe subtree is a subtree T ′ that contains all children of any node in
it, i.e., if v ∈ V ′ = V (T ′) then w ∈ V ′ for every child w of v. Equivalently,
a fringe subtree is the tree Tv consisting of all descendants (in T ) of some
node v ∈ V (T ) (which becomes the root of Tv). Hence the number of fringe
subtrees of T equals the number of nodes of T .

Fringe subtrees are studied in many papers; often they are simply called
subtrees. To avoid confusion, we call the general subtrees studied in the
present paper non-fringe subtrees. (This is a minor abuse of notation, since
fringe subtrees are examples of non-fringe subtrees; the name should be
interpreted as “not necessarily fringe”.)

A root subtree of a rooted tree T is non-fringe subtree T ′ that contains
the root o(T ) (which then becomes the root of T ′ too). Equivalently, a root
subtree is a non-empty set V ′ ⊆ V (T ) such that if v ∈ V ′, then the parent
of v also belongs to V ′.
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Let S(T ) be the set of non-fringe subtrees of T , and R(T ) the subset of
root subtrees. Let S(T ) := |S(T )| be the number of non-fringe subtrees of
T , and R(T ) := |R(T )| the number of root subtrees.

Note that a non-fringe subtree of T is a root subtree of a unique fringe
subtree Tv. Hence,

S(T ) =
∑
v∈T

R(Tv). (1.1)

Furthermore, for any v ∈ T , R(Tv) 6 R(T ), since we obtain an injective
map R(Tv) → R(T ) by adding to each tree T ′ ∈ R(Tv) the unique path
from o to v. Consequently, using (1.1),

R(T ) 6 S(T ) 6 |T | ·R(T ), (1.2)

1.2. Conditioned Galton–Watson trees. A Galton–Watson tree T is a
tree in which each node is given a random number of child nodes, where the
numbers of child nodes are drawn independently from the same distribu-
tion ξ which is often called the offspring distribution. (We use ξ to denote
both the offspring distribution and a random variable with this distribu-
tion.) Galton–Watson trees were implicitly introduced by Bienaymé [1] and
Watson and Galton [10] for modeling the evolution of populations.

A conditioned Galton–Watson tree Tn is a Galton–Watson tree condi-
tioned on having size n. It is well-known that Tn encompasses many ran-
dom tree models. For example, if P (ξ = i) = 2−i−1, i.e., ξ has geometric
1/2 distribution, then Tn is a uniform random tree of size n. Similarly, if
P (ξ = 0) = P (ξ = 2) = 1/2, then Tn is a uniform random full binary tree of
size n.

As a result, the properties of Tn has been well-studied. See, e.g., [7] and
the references there. For fringe and non-fringe subtrees of Tn, see [8; 4; 2; 3].

1.3. Simply generated trees. Let (wi)i>0 be a given sequence of nonneg-
ative numbers, with w0 > 0. For a tree T , let D+(v) be the out-degree
(number of children) of a node v ∈ T , and define the weight of T by

w(T ) =
∏
v∈T

wD+(v). (1.3)

Let T [s]
n be a tree chosen at random from all ordered trees of size n with

probability proportional to their weights. In other words,

P
(
T [s]
n = T

)
=

w(T )∑
T :|T |=nw(T )

. (1.4)

We call T [s]
n a simply generated tree with weight sequences (wi)i>0, and the

generating function

Φ(z) :=
∑
i>0

wiz
i. (1.5)

its generator.
Note that the conditioned Galton–Watson tree Tn with the offspring dis-

tribution ξ is the same as the T [s]
n with the weight sequence (P (ξ = i))i>0.

In this case, the generator Φ(z) is just the probability generating function
of ξ. Hence, simply generated trees generalize conditioned Galton–Watson
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trees. On the other hand, given a sequence (wi) with generator Φ(z), any

sequence with a generator aΦ(bz) with a, b > 0 yields the same T [s]
n , and in

many cases a and b can be chosen such that the new generator is a probabil-

ity generating function, and then T [s]
n is a conditioned Galton–Watson tree.

Consequently, simply generated trees and conditioned Galton–Watson trees
are essentially the same, and we use in the sequel the notation Tn for both.
In particular, see, e.g., [7, Section 4], a simply generated tree with genera-
tor Φ(z) is equivalent to a conditioned Galton–Watson tree with offspring
distribution ξ satisfying E ξ = 1 and E etξ < ∞ for some t > 0, if and only
if Φ(z) has a positive radius of convergence R ∈ (0,∞] and

lim
z↗R

zΦ′(z)

Φ(z)
> 1. (1.6)

Although the two formulations are equivalent under our conditions, the for-
mulation with simply generated trees is sometimes more convenient, since it
gives more flexibility in choosing a convenient Φ; see for example Section 4.1.

For more on the connection between the two models, see [6, pp. 196–198]
and [7, Sections 2 and 4].

1.4. Some further notation. If v and w are nodes in a tree T , then v ≺ w
denotes that v is ancestor of w.

We denote T ′ being a non-fringe (general) subtree of T by T ′ ⊆ T and T ′

being a root subtree of T by T ′ ⊆r T .
For a formal power series f(z) :=

∑
n fnz

n, we let [zn]f(z) := fn.

2. Main results

We give two types of results in this paper, proved by two different meth-
ods. First, both R(Tn) and S(Tn) have an asymptotic log-normal distribu-
tion, as conjectured by Luc Devroye (personal communication).

Theorem 2.1. Let Tn be a random conditioned Galton–Watson tree of order
n, defined by some offspring distribution ξ with E ξ = 1 and 0 < Var ξ <∞.
Then there exist constants µ, σ2 > 0 such that, as n→∞,

logR(Tn)− µn√
n

d−→ N(0, σ2), (2.1)

logS(Tn)− µn√
n

d−→ N(0, σ2), (2.2)

where N(0, σ2) denotes the normal distribution with mean 0 and variance
σ2. Furthermore,

E[logR(Tn)] = E[logS(Tn)] +O(log n) = nµ+ o
(√
n
)
, (2.3)

Var[logR(Tn)] = Var[logS(Tn)] + o(n) = nσ2 + o(n). (2.4)

The proof is given in Section 3, and is based on a general theorem in [8].
It is in principle possible to calculate µ and σ2 in Theorem 2.1, at least
numerically, see Remark 3.5.

Secondly, if we also assume that ξ has a finite exponential moment (a mild
assumption satisfied by all standard examples), then we can use generating
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functions and singularity analysis to obtain asymptotics for the mean and
higher moments of R(Tn).

Theorem 2.2. Let Tn be as in Theorem 2.1, and assume further that
E etξ < ∞ for some t > 0. Assume further that if R 6 ∞ is the ra-
dius of convergence of the probability generating function Φ(z) := E zξ, then
Φ′(R) := limz↗R Φ′(z) =∞. Then there exist sequences of numbers γm > 0
and 1 < τ1 < τ2 < . . . such that for any fixed m > 1,

ER(Tn)m =
(
1 +O(n−1)

)
γmτ

n
m. (2.5)

We will later use the formulation of simply generated trees. In this lan-
guage, Theorem 2.2 has the following, equivalent, formulation.

Theorem 2.3. Let Tn be a simply generated tree with generator Φ(z). Let
R 6∞ be the radius of convergence of Φ(z). Assume that R > 0 and that

lim
z↗R

zΦ′(z)

Φ(z)
> 1, (2.6)

Φ′(R) := lim
z↗R

Φ′(z) =∞. (2.7)

Then (2.5) holds.

The proof of Theorems 2.2–2.3 is given in Section 4. We first (Sec-
tions 4.1–4.2) illustrate the argument by studying the simple case of full
binary trees, where we do explicit calculations. (Similar explicit calcula-
tions could presumably be performed, e.g., for full d-ary trees, or for ordered
trees.) Then we give the proof for the general case in Section 4.3. Note that
the condition (2.6) is the same as (1.6); however, we need also the extra
condition (2.7). The latter condition is a weak assumption that is satisfied
in most applications, and in particular if R =∞, or if Φ(R) =∞. Neverthe-
less, this extra condition (or some other) is necessary; we give in Section 4.4
an example showing that Theorems 2.2–2.3 are not valid without (2.7).

For moments of S(Tn), we have by (1.2) the same exponential growth τnm,
but possibly also a polynomial factor. In fact, there is no such polynomial
factor, and ES(Tn)m and ER(Tn)m differ asyptotically only by a constant
factor, as shown by the following theorem, proved in Section 5.

Theorem 2.4. Let Tn be as in Theorem 2.2 or 2.3. Then, for any m > 1,

ES(Tn)m =
(
1 +O(n−1)

)
γ′mτ

n
m, (2.8)

where τm is as in (2.5) and γ′m > 0.
More generally, for m, ` > 0,

E[R(Tn)`S(Tn)m] =
(
1 +O(n−1)

)
γ′m,`τ

n
`+m, (2.9)

for some γ′m,` > 0.

The constants γ′m,` can be calculated explicitly, see (5.29).

Remark 2.5. We can express (2.1) and (2.2) by saying that R(Tn) and
S(Tn) have the asymptotic distribution LN(nµ, nσ2). Note that if W ∼
LN(nµ, nσ2) exactly, so W = eZ with Z ∼ N(nµ, nσ2), then the moments
of W are given by

EWm = E emZ = emnµ+m2nσ2/2 = e(mµ+m2σ2/2)n. (2.10)



NON-FRINGE SUBTREES IN CONDITIONED GALTON–WATSON TREES 5

We may compare this to Theorem 2.2 and ask whether

τm
?
= emµ+m2σ2/2. (2.11)

It seems natural to guess that equality holds in (2.11); however, we show
in Remark 4.3 that it does not hold, at least not for all m, in the case
of full binary trees. We therefore conjecture that, in fact, equality never
holds in (2.11). This may seem surprising; however, note that the same
happens in the simpler case Y = eX with X ∼ Bi(n, p), with p fixed. Then
Y is asymptotically LN(np, np(1 − p)) in the sense above, but EY m =
E emX =

(
1 + p(em − 1)

)n
while if W ∼ LN(np, np(1 − p)), then EWm =

e(mp+m2p(1−p)/2)n, with a different basis for the n:th power.

3. Proof of Theorem 2.1

Proof of Theorem 2.1. First, by (1.2), | logS(Tn) − logR(Tn)| 6 log n, and
thus (2.1) and (2.2) are equivalent. Similarly, the first inequalities in (2.3)
and (2.4) hold, using also Minkowski’s inequality for the latter. We consider
in the rest of the proof only R(Tn).

Suppose that the root o of T has D children v1, . . . , vD, and write Ti :=
Tvi . Then, a root subtree of T consists of the root o and, for each child vi,
either the empty set or a root subtree of Ti. Consequently,

R(T ) =
D∏
i=1

(
R(Ti) + 1

)
. (3.1)

Define
F (T ) := log

(
R(T ) + 1

)
= logR(T ) +O(1). (3.2)

Then (3.1) implies

F (T ) = logR(T ) + log
(
1 +R(T )−1

)
=

D∑
i=1

F (Ti) + log
(
1 +R(T )−1

)
. (3.3)

In other words, F (T ) is an additive functional with toll function f(T ) :=
log
(
1 +R(T )−1

)
, see e.g. [8, §1].

For any tree T , and any node v ∈ T , the path from the root o to v is a
root subtree. Hence,

R(T ) > |T |, (3.4)

and as a consequence,

0 6 f(T ) := log
(
1 +R(T )−1

)
6 R(T )−1 6 |T |−1. (3.5)

In particular, we have the deterministic bound |f(Tn)| 6 1/n. This bound
implies that the conditions of [8, Theorem 1.5] are satisfied, and that the-
orem, together with the estimate in (3.2), yields (2.1), (2.3) and (2.4), for
some µ, σ2 > 0. Furthermore, if T is the (unconditioned) Galton–Watson
tree with offspring distribution ξ, then

µ = E f(T ) > 0. (3.6)

It remains only to verify that σ2 > 0. This is expected in all applications
of [8, Theorem 1.5], except trivial ones where F (Tn) is deterministic for all
large n, but we do not know any general result; cf. [8, Remark 1.7]. In the
present case, it can be verified as follows.
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Consider a tree T . Denote the depth and out-degree (number of children)
of a node v ∈ T by d(v) and D+(v). Fix a node v ∈ T , write d = d(v), and
let the path from o to v be o = v0, v1, . . . , vd = v. By (3.1), we have for
j = 0, . . . , d− 1,

R(Tvj ) = αj
(
R(Tvj+1) + 1

)
, (3.7)

where αj is the product of R(Tw) + 1 over all children w 6= vj+1 of vj . Note
that each R(Tw) > 1, and thus

αj > 2D+(vj)−1 > D+(vj). (3.8)

Define

β(v) :=
d−1∏
j=0

αj , (3.9)

and

γ(v) :=
d∑
j=1

β(vj)

β(v)
=

d∑
j=1

d−1∏
k=j

α(vk)
−1. (3.10)

Then repeated applications of (3.7) (i.e., induction on d) yield the expansion

R(T ) = R(Tv0) =
d∑
j=1

β(vj) + β(v)R(Tv) = β(v)
(
R(Tv) + γ(v)

)
. (3.11)

Hence, with

γ∗(v) := γ(v) + β(v)−1 =
d∑
j=0

β(vj)

β(v)
, (3.12)

we have

F (T ) = log
(
R(T ) + 1

)
= log β(v) + log

(
R(Tv) + γ∗(v)

)
. (3.13)

Define also

γ∗∗(v) :=
d∑
j=0

d−1∏
k=j

D+(vk)
−1, (3.14)

and note that γ∗∗(v) > γ∗(v) by (3.8)–(3.12).
Now, let T ′ be a modification of T , where the subtree Tv is replaced by

some tree T ′v, but all other parts of T are left intact. Then all αj , β(vj),
γ(v), γ∗(v) and γ∗∗(v) are the same for T ′ as for T . Hence, if we further
assume that R(T ′v) < R(Tv), then (3.13) yields

F (T )− F (T ′) = log
(
R(Tv) + γ∗(v)

)
− log

(
R(T ′v) + γ∗(v)

)
> log

(
R(Tv) + γ∗(v)

)
− log

(
R(Tv)− 1 + γ∗(v)

)
>
(
R(Tv) + γ∗(v)

)−1
>
(
R(Tv) + γ∗∗(v)

)−1
. (3.15)

Next, fix an ` > 2 be such that P(ξ = `) > 0. Let Ta be a tree where the
root o and two of its children have out-degrees `, and all other nodes have
out-degree 0 (i.e., they are leaves). Similarly, let Tb be a tree where o, one
of its children, and one of its grandchildren have out-degree `, and all other
nodes have out-degree 0. Then both Ta and Tb are trees of order 3`+ 1, and
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both are attained with positive probability by T3`+1. Furthermore, a simple
calculation using (3.1) shows that

R(Ta) = 2`−2(2` + 1)2 = 23`−2 + 22`−1 + 2`−2, (3.16)

R(Tb) = 2`−1
(
2`−1(2` + 1) + 1

)
= 23`−2 + 22`−2 + 2`−1, (3.17)

and thus R(Ta) > R(Tb). Consequently, the random variable R(T3`+1) is
not a.e. equal to a constant.

Fix also a large constant A, to be chosen later, and say that a node v ∈ T
is good if |Tv| = 3`+1 and γ∗∗(v) 6 A. Define the core T ∗ of T as the subtree
obtained by marking all good nodes in T and then deleting all descendants of
them. Note that adding back arbitrary trees of order 3`+ 1 at each marked
node of T ∗ yield a tree T ′ of the same order as T , and with the same good
nodes, because |Tv| and γ∗∗(v) are unchanged for every v ∈ T ∗. It follows
that the random tree Tn, conditioned on its core T ∗n = T ∗, consists of T ∗

with an added tree Tv at each good (i.e., marked) node of T ∗, and that these
added trees Tv all have order 3`+ 1 and are independent copies of T3`+1.

Now suppose (in order to obtain a contradiction) that σ2 = 0; then (2.1)

and (3.2) show that (F (Tn)− µn)/
√
n

p−→ 0. In particular,

P
(
|F (Tn)− nµ| >

√
n
)
→ 0. (3.18)

We show in Lemma 3.1 below that there exists a constant c > 0 such that,
for large n, Tn has with probability > 1/2 at least cn good nodes. Hence,
(3.18) holds also if we condition on the existence of at least cn good nodes.
Condition further on the core T ∗n , and among the possible cores T ∗ of Tn
with at least cn good nodes, choose one that minimizes P

(
|F (Tn) − nµ| >√

n | T ∗n = T ∗
)
. For each n, fix this choice T ∗ = T ∗(n), and note that

P
(
|F (Tn)− nµ| >

√
n | T ∗n = T ∗

)
6 P

(
|F (Tn)− nµ| >

√
n | at least cn good nodes

)
→ 0. (3.19)

Let m be the number of good (i.e., marked) nodes in T ∗ = T ∗(n) and label
these v1, . . . , vm. Condition on T ∗n = T ∗. Then, as noted above, Tn consists
of T ∗ with a tree Ti added at vi, for each i, and these trees T1, . . . , Tm
are m independent copies of T3`+1. Let Xi := R(Ti); thus X1, . . . , Xm are
i.i.d. random variables with some fixed distribution. Furthermore, repeated
applications of (3.1) show that R(Tn) is a function (depending on T ∗(n)) of
X1, . . . , Xm. Hence, by (3.2), we have, still conditioning on T ∗n = T ∗,

F (Tn) = gn(X1, . . . , Xm), (3.20)

for some function gn. Consequently, writing Ym := gn(X1, . . . , Xm), we have
by (3.19)

P
(
|Ym − nµ| >

√
n
)

= P
(
|F (Tn)− nµ| >

√
n | T ∗n = T ∗

)
→ 0, (3.21)

as n→∞. Recalling that m > cn, this implies

P
(
|Ym − nµ| > c−1/2√m

)
→ 0. (3.22)

We now obtain the sought contradiction from (3.40) in Lemma 3.4 below.
(To be precise, we use a relabelling. We have m = m(n) → ∞ as n→∞;
we may select a subsequence with increasing m and consider this sequence
only, relabelling gn as gm.) Note that in this application of Lemma 3.4, S is
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a finite set of integers (the range of R(T3`+1)). The conditions of Lemma 3.4
are satisfied: by (3.16)–(3.17), we can find s such that 0 < P(X1 6 s) < 1;
furthermore, (3.39) holds (under the stated condition) with δ := (23`+1 +
A)−1 by (3.15), since γ∗∗(vi) 6 A by the definition of good vertices and

R(Tv) 6 2|Tv | = 23`−1.
This completes the proof that σ2 > 0, given the lemmas below. �

Lemma 3.1. With notations as above, there exists A <∞ and c > 0 such
that, for large n, P

(
Tn has at least cn good nodes

)
> 1/2.

Proof. Note first that if P(ξ = 1) = 0, and thus Tn has no nodes of out-degree

1, then this is easy. In this case, (3.14) yields γ∗∗(v) 6
∑d

j=0 2j−d < 2 for

every v, since D+(vk) > 2 for each vk. Taking A = 2, every node v with
|Tv| = 3` + 1 is thus good. If n3`+1(Tn) denotes the number of these nodes
in Tn, then

n3`+1(Tn)/n
p−→ P

(
|T | = 3`+ 1

)
> 0, as n→∞, (3.23)

and thus

P
(
n3`+1(Tn) > cn

)
→ 1 (3.24)

for any c < P(|T | = 3`+ 1).
In general, (3.24) still holds, but there is no uniform bound on γ∗∗(v), as

is shown by the case of a long path, and it remains to show that γ∗∗(v) is
bounded for sufficiently many nodes. We define, for a given tree T and any
pair of nodes v, w with v � w,

π(u, v) :=
∏

u�w≺v
D+(w)−1. (3.25)

We then can rewrite (3.14) as

γ∗∗(v) =
∑
u�v

π(u, v), (3.26)

and we define also the dual sum

ζ(v) =
∑
w�v

π(v, w). (3.27)

Note that ζ(v) is a functional of the fringe subtree Tv. We write ζ(T ) := ζ(o),
where o is the root of T ; then for an arbitrary node v ∈ T , ζ(v) = ζ(Tv).

We may also note, although we do not use this explicitly, that ζ(v) has
a natural interpretation: π(v, w) is the probability that a random walk,
started at v and at each step choosing a child uniformly at random, will
pass through w. Hence, ζ(v) is the expected length of this random walk.

If the root o of T has D children v1, . . . , vD, and the corresponding fringe
trees are denoted T1, . . . , TD, then

ζ(T ) =
∑
w∈T

π(o, w) = 1+

D∑
i=1

∑
w∈Ti

D−1π(vD, w) = 1+D−1
D∑
i=1

ζ(Ti). (3.28)

We apply this with T = Tn, the conditioned Galton–Watson tree. Note that
conditioned on the root degree D, and the sizes ni := |Ti| of the subtrees,
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each Ti is a conditioned Galton–Watson tree Tni . Consequently, (3.28) yields

E
(
ζ(Tn) | D,n1, . . . , nD

)
= 1 +D−1

D∑
i=1

E ζ(Tni). (3.29)

We claim that

E ζ(Tn) 6 C1 (3.30)

for some constant C1 and all n. We prove this by induction, assuming that
(3.30) holds for all smaller n. Note also that if |T | = 1, then ζ(T ) = 1.
Hence, by (3.29) and the induction hypothesis, if D1 := |{i : ni = 1}|, the
number of children of o that are leaves, then

E
(
ζ(Tn) | D,n1, . . . , nD

)
6 1 +D−1

(
(D −D1)C1 +D1

)
= C1 + 1−D1(C1 − 1)/D. (3.31)

and hence

E ζ(Tn) 6 C1 + 1− (C1 − 1)E(D1/D), (3.32)

where D1 and D are calculated for the random tree Tn. As n→∞, the
distribution of the pair (D,D1) converges to the (D̂, D̂1), the same quantities

for the random limiting infinite tree T̂ , see for example [7, Section 5 and

Theorem 7.1]. Hence, using bounded convergence, E(D1/D)→ E(D̂1/D̂) >
0 as n→∞. Since P(D1 > 0) > 0 for every n, and thus E(D1/D) > 0 for
every n, it follows that there exists a constant c1 > 0 such that for every n,
E(D1/D) > c1. If we choose C1 = 1 + 1/c1, then (3.32) yields E ζ(Tn) 6 C1,
which verifies the induction step. Hence, (3.30) holds for all n.

Next, let, for any tree T ,

Z(T ) :=
∑
v∈T

ζ(Tv), (3.33)

the additive functional with toll function ζ(T ). It follows from (3.30) that

E ζ(T ) =
∑
n>1

P (|T | = n)E [ζ(Tn)] 6 C1, (3.34)

where T denotes an unconditioned Galton–Watson tree. By [8, Remark 5.3],
it follows from (3.34) and (3.30) that

EZ(Tn) ∼ nE ζ(T ) = O(n). (3.35)

Thus there exists a constant C2 such that for all n > 1,

EZ(Tn) 6 C2n. (3.36)

Consequently, by Markov’s inequality, with probability > 2
3 ,

Z(Tn) 6 3C2n. (3.37)

For any tree T , (3.33) and (3.26)–(3.27) yield

Z(T ) =
∑
v∈T

ζ(v) =
∑

v,w:v�w
π(v, w) =

∑
w∈T

γ∗∗(w). (3.38)

Hence, if we choose A := 6C2/c, then (3.37) implies that at most 3C2n/A =
cn/2 nodes w in Tn satisfy γ∗∗(w) > A, and hence at least n3`+1(Tn)− cn/2
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nodes are good. This and (3.24) show that, with probability 2
3 + o(1), Tn

has at least cn/2 good nodes. �

Remark 3.2. As the proof shows, the probability 1/2 in Lemma 3.1 can
be replaced by any number < 1. We conjecture that in fact, for suitable A
and c, the probability tends to 1.

Remark 3.3. If we assume that the offspring distribution ξ has an expo-
nential moment, so that its probability generating function has radius of
convergence > 1, then one can alternatively derive (3.30) and (3.36), and
precise asymptotics, using generating functions. We leave this to the reader.

Lemma 3.4. Let X1, X2, . . . be i.i.d. random variables, with values in some
set S ⊆ R. Let Ym = gm(X1, . . . , Xm), for some functions gm : Sm → R,
m > 1, and assume that there is a number s and a δ > 0 such that 0 <
P(X1 6 s) < 1 and that

gm
(
y1, . . . , yj−1, y

′
j , yj+1, . . . , ym

)
> gm

(
y1, . . . , yj−1, yj , yj+1, . . . , ym

)
+ δ,

(3.39)
for any m, j 6 m, y1, . . . , ym ∈ S and y′j ∈ S, such that yj 6 s and y′j > s.

Then, for any constant B and any sequence µm,

lim sup
m→∞

P
(
|Ym − µm| 6 B

√
m
)
< 1. (3.40)

Proof. First, by replacing gm by gm − µm, we may assume that µm = 0.
If (3.40) does not hold, then, by restricting attention to a subsequence,

we may assume P
(
|Ym| 6 B

√
m
)
→ 1, as m→∞.

Let Nm := |{i : Xi > s}|. Thus Nm has a binomial distribution Bi(m, p),
where p := P(X1 > s) ∈ (0, 1). Fix a large number K > 0, and define
the events E+

m := {Nm > mp + K
√
m} and E−m := {Nm < mp − K

√
m}.

By the central limit theorem for the binomial distribution, P(E+
m) → q and

P(E−m)→ q for some q > 0, and thus our assumption implies that

P
(
|Ym| 6 B

√
m | E+

m

)
→ 1, P

(
|Ym| 6 B

√
m | E−m

)
→ 1. (3.41)

Hence we can find integers n+
m and n−m with 0 6 n−m < mp − K

√
m <

mp+K
√
m < n+

m 6 n such that

P
(
|Ym| 6 B

√
m | Nm = n+

m

)
→ 1, P

(
|Ym| 6 B

√
m | Nm = n−m

)
→ 1.
(3.42)

(Choose e.g. n±m as the integers in the allowed ranges that maximize these
probabilities.)

Let X−m = (X−1 , . . . , X
−
m) be a random vector with the distribution of(

(Xi)
m
1 | Nm = n−m

)
. By construction, a.s., exactly n−m of the variables X−i

satisfy X−i > s, and thus m−n−m satisfy X−i 6 s. Select n+
m−n−m of the latter

variables, chosen uniformly at random (independent of everything except the
set of indices {i : X−i 6 s}), and replace these by variables X+

i that are i.i.d.
copies of the random variable X+ :=

(
X1 | X1 > s

)
(and independent of

everything else). Denote the result by X+
m ; then X+

m
d
=
(
(Xi)

m
1 | Nm = n+

m

)
.

Consequently, by (3.42),

P
(∣∣gm(X−m)∣∣ 6 B√m)→ 1, P

(∣∣gm(X+
m

)∣∣ 6 B√m)→ 1. (3.43)
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Hence,

P
(
|gm
(
X−m
)
− gm

(
X+
m

)
| 6 2B

√
m
)
→ 1. (3.44)

On the other hand, (3.39) and the construction imply that

gm
(
X+
m

)
− gm

(
X−m
)
>
(
n+
m − n−m

)
δ > 2K

√
mδ. (3.45)

Choosing K = Bδ−1, we obtain a contradiction with (3.44). �

Remark 3.5. The constant µ equals E f(T ) by (3.6); we do not know any
explicit closed form expression for µ, but it seems possible to use (3.6) for
numerical calculation of µ for a given offspring distribution. (Note that, by
(3.5), f(T ) 6 R(T )−1, which typically decreases exponentially in the size
of T , so convergence ought to be rather fast.) For σ2, [8, (1.17)] gives the
formula

σ2 = 2E
(
f(T )(F (T )− |T |µ)

)
−Var[f(T )]− µ2/Var(ξ). (3.46)

Again, we do not know any closed form expression, but numerical calculation
should be possible.

4. Moments of the number of root subtrees

In this section we prove Theorem 2.3, using generating functions and the
language of simply generated trees; note that this also shows the equivalent
Theorem 2.2. In Sections 4.1 and 4.2, we study a simple example of simply
generated trees to illustrate the main idea behind Theorem 2.3; in this ex-
ample we derive explicit formulas for some generating functions. The proof
for the general case is postponed to Section 4.3; it uses the same argument
(but in general we do not find explicit formulas).

4.1. An example: full binary trees. Consider as an example the simply
generated tree Tn with the generator Φ(z) := 1+z2. Then Tn is a uniformly
random full binary tree of order n. (Provided n is odd; otherwise, such trees
do not exist.) Note that Φ(z) satisfies the conditions of Theorem 2.3. (Note
that we have chosen a generator that is not a probability generating func-
tion; the corresponding offspring distribution ξ has probability generating
function 1

2(1 + z2), and thus P(ξ = 0) = P(ξ = 2) = 1
2 ; this generator would

lead to similar calculations and the same final result.)
A combinatorial class is a finite or countably infinite set on which a size

function of range Z>0 is defined. For a combinatorial class D and an element
δ ∈ D, let |δ| denote its size. The generating function of D is defined by

D(z) :=
∑
δ∈D

z|δ| =
∞∑
n=0

dnz
n, (4.1)

where dn denotes the number of elements in D with size n. It encodes all
the information of (dn)n>0 and is a powerful tool to get asymptotic approx-
imations of dn.

Let Z = {•} denote the combinatorial class of node, which contains only
one element • since we are considering unlabelled trees. Let | • | = 1. Then
the generating function of Z is simply z. Let F0 denote the combinatorial
class of full binary trees. For T ∈ F0, we let |T | be the total number of
nodes in T . Since T is a binary tree, it must be either a node, or a node
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together with a left subtree T1 and a right subtree T2, with T1, T2 ∈ F0.
This can be formalized by the symbolic language developed by Flajolet and
Sedgewick [6, p. 67] as

F0 = Z + Z × F0 ×F0, (4.2)

with + denotes “or” and × denotes “combined with”.
Let F0(z) denote the generating function of F0, i.e.,

F0(z) :=
∑
T

z|T | =
∞∑
n=1

anz
n, (4.3)

where an is the number of full binary trees of order n. Then the definition
(4.2) directly translates into the functional equation

F0(z) = z + z × F0(z)× F0(z) = zΦ(F0(z)), (4.4)

with the explicit solution

F0(z) =
1−
√

1− 4z2

2z
. (4.5)

To compute ER(Tn), we consider a pair (T, T ′) in which T is a full binary
tree and T ′ is a rooted subtree of T painted with color 1. Let F1 be the
combinatorial class of such partially colored full binary trees, with |(T, T ′)| =
|T |. Let F1(z) be the generating function of F1, i.e.,

F1(z) :=
∑
T

∑
T ′⊆rT

z|T | =
∑
T

R(T )z|T | =:

∞∑
n=1

a(1)
n zn. (4.6)

Then, for any (odd) n,

ER(Tn) = a(1)
n /an. (4.7)

For a tree T in F1, its root o is always colored. Every subtree Tv where v
is a child of o (so d(v) = 1) can be either itself a partially colored tree (an
element of F1) or an uncolored tree (an element of F0). Thus, we have the
following symbolic specification

F1 = Z + Z × (F0 + F1)× (F0 + F1) = ZΦ(F0 + F1). (4.8)

Consequently, using (4.4),

F1(z) = zΦ
(
F1(z) + F0(z)

)
= z + z

(
F0(z) + F1(z)

)2
= F0(z) + 2zF0(z)F1(z) + zF1(z)2. (4.9)

with the explicit solution

F1(z) =
1−

√
1− 4z(z + F0(z))

2z
− F0(z)

=
1−

√
2
√

1− 4z2 − 1− 4z2

2z
− F0(z). (4.10)

For the second and higher moments we argue similarly. For m > 1, we
consider a (m+ 1)-tuple (T, T ′1, · · · , T ′m) in which T is a full binary tree and
T ′1, · · · , T ′m are m root subtrees of T with T ′i painted with color i. (Note
that T ′1, · · · , T ′m are not necessarily distinct. Note also that a node may
have several colors.) Let Fm be the combinatorial class of such partially
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m-colored trees. Let |(T, T1, · · · , T ′m)| = |T |. Let Fm(z) be the generating
function of Fm, i.e.,

Fm(z) :=
∑
T

∑
T ′1,...,T

′
m⊆rT

z|T | =
∑
T

R(T )mz|T | =:
∞∑
n=1

a(m)
n zn. (4.11)

Then, for any (odd) n,

ER(Tn)m = a(m)
n /an. (4.12)

The root o of a tree in Fm is always painted by all m colors. Every subtree
Tv where v is a child of o is itself a partially C-colored tree for some set of
colors C ⊆ [m] := {1, . . . ,m}. Let, for a given (finite) set of colors C, FC
be the class of partially C-coloured trees, defined analogously to Fm, and
note that there is an obvious isomorphism FC ∼= F|C|. Furthermore, let

F̂m :=
⋃
C⊆[m]FC . Taking into account that there are

(
m
k

)
ways to choose

k colors out of m, we thus have the equations

Fm = Z + Z × F̂m × F̂m = ZΦ
(
F̂m
)
, (4.13)

F̂m =

m∑
k=0

(
m

k

)
Fk. (4.14)

Consequently, for the corresponding generating functions,

Fm(z) = zΦ
(
F̂m(z)

)
= z + z

(
m∑
k=0

(
m

k

)
Fk(z)

)2

, (4.15)

which determines every Fm(z) by recursion, solving a quadratic equation in
each step. Equivalently, and perhaps more conveniently,

F̂m(z) =

m∑
k=0

(
m

k

)
Fk(z) =

m−1∑
k=0

(
m

k

)
Fk(z) + zΦ

(
F̂m(z)

)
.

=
m−1∑
k=0

(−1)m−k+1

(
m

k

)
F̂k(z) + zΦ

(
F̂m(z)

)
. (4.16)

For example, for m = 2,

F2(z) = zΦ
(
F2(z) + 2F1(z) + F0(z)

)
= z + z

(
F0(z) + 2F1(z) + F2(z)

)2
= z + z

(
F0(z) + 2F1(z)

)2
+ 2z

(
F0(z) + 2F1(z)

)
F2(z) + zF2(z)2,

(4.17)

and

F̂2(z) = F0(z) + 2F1(z) + zΦ
(
F̂2(z)

)
= −F̂0(z) + 2F̂1(z) + z + zF̂2(z)2.

(4.18)

Explicitly, we obtain from (4.17) or (4.18)

F2(z) =
1

2z

(
2

√
2
√

1− 4z2 − 1− 4z2 −
√

1− 4z2

−

√
4

√
2
√

1− 4z2 − 1− 4z2 − 2
√

1− 4z2 − 1− 4z2

)
. (4.19)
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4.2. Singularity analysis: full binary trees. Let ρm be the radius of
convergence of Fm(z); then ρm is a singularity of Fm(z) (of square-root
type). We see from (4.5) that

1− 4ρ2
0 = 0, (4.20)

and thus

ρ0 =
1

2
. (4.21)

Since full binary trees can only have odd number of nodes, we have a2m = 0
for m > 0. For odd n, applying singular analysis to (4.5) gives

an =
(
1 +O

(
n−1

))
λ0n

− 3
2 ρ−n0 , (4.22)

where λ0 =
√

2
π . See [6, Theorem VI.2] for details. (In fact, in this case we

have the well-known exact formula a2m+1 = Cm := (2m)!/(m! (m+ 1)!), the
Catalan numbers [6, p. 67].)

Similarly, (4.10) shows that

2
√

1− 4ρ2
1 − 1− 4ρ2

1 = 0, (4.23)

and thus

ρ1 =

√
2
√

3− 3

2

.
= 0.340625. (4.24)

Using the standard singular analysis recipe (see [6, Figure VI.7, p. 394]),

a(1)
n =

(
1 +O

(
n−1

))
λ1n

− 3
2 ρ−n1 , (4.25)

where λ1 =

√
3+
√

3
π

.
= 1.227297. (Such computations can be partially auto-

mated with Maple, see, e.g., [9].) Thus (4.7) implies that

ER(Tn) =
(
1 +O

(
n−1

)) λ1

λ0

(
ρ0

ρ1

)n
. (4.26)

For the second moment, (4.19) similarly yields

ρ2 =
1

2

√
2

√
48
√

2 + 59− 8
√

2− 11
.
= 0.231676. (4.27)

Thus

a(2)
n =

(
1 +O

(
n−1

))
λ2n

− 3
2 ρ−n2 , (4.28)

where λ2
.
= 1.883418 is a constant. Then by (4.12)

ER(Tn)2 =
(
1 +O

(
n−1

)) λ2

λ0

(
ρ0

ρ1

)n
. (4.29)

It is not difficult to prove by induction that there exist sequences of num-
bers λm > 0 and ρ0 > ρ1 > · · · such that for every fixed m > 1,

a(m)
n =

(
1 +O

(
n−1

))
λmn

−3/2ρ−nm (4.30)

and

E [R(Tn)m] =
(
1 +O

(
n−1

)) λm
λ0

(
ρ0

ρm

)n
. (4.31)
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This is (2.5) with γm = λm/λ0 and τm = ρ0/ρm = (2ρm)−1. In particular,

τ1 =
1

2ρ1
=

√
2
√

3 + 3√
3

=

√
2√
3

+ 1
.
= 1.467890, (4.32)

τ2 =
1

2ρ2
=

1

7

√
57 + 40

√
2 + 2

√
1635 + 1168

√
2
.
= 2.158182, (4.33)

and

γ1 =

√
3 +
√

3

2

.
= 1.538189, γ2

.
= 2.360501. (4.34)

We do not have a closed form of ρm or τm for m > 3. Table 1 gives the
numerical values of τm and ρm for m up to 10.

τ1 1.467890 τ6 10.22570
τ2 2.158182 τ7 15.13130
τ3 3.177848 τ8 22.41257
τ4 4.685754 τ9 33.22804
τ5 6.918003 τ10 49.30410

ρ1 0.340625 ρ6 0.048896
ρ2 0.231676 ρ7 0.033044
ρ3 0.157339 ρ8 0.022309
ρ4 0.106706 ρ9 0.015048
ρ5 0.072275 ρ10 0.010141

Table 1. Numerical values of τm and ρm for full binary trees.

Remark 4.1. It can be shown, using the equations above and taking resul-
tants to eliminate variables, that ρ1, ρ2 and ρ3 are roots of the equations

16 ρ4
1 + 24 ρ2

1 − 3 = 0, (4.35)

256 ρ8
2 + 2816 ρ6

2 − 32 ρ4
2 + 6384 ρ2

2 − 343 = 0, (4.36)

65536 ρ16
3 + 5111808 ρ14

3 + 70434816 ρ12
3 − 785866752 ρ10

3

+206968320 ρ8
3 + 10195628544 ρ6

3 − 16526908224 ρ4
3

+7520519520 ρ2
3 − 176201487 = 0. (4.37)

According to Maple, these polynomials are irreducible over the rationals;
moreover, the polynomial in (4.36) is irreducible over Q(ρ1) and the polyno-
mial in (4.37) is irreducible over Q(ρ1, ρ2). In particular, we have a strictly
increasing sequence of fields Q ⊂ Q(ρ1) ⊂ Q(ρ1, ρ2) ⊂ Q(ρ1, ρ2, ρ3). We ex-
pect that this continues for largerm as well, and that the fields Q(ρ1, . . . , ρm)
form a strictly increasing sequence for 0 6 m <∞.

Remark 4.2. The values in (4.32)–(4.33) show that τ2
1 < τ2. (In fact,

τ2/τ
2
1
.
= 1.0016.) Hence (2.5) implies that, as n→∞,

E
[
R(Tn)2

]
/
(
E [R(Tn)]

)2 →∞ (4.38)

and thus

Var[R(Tn)] ∼ E
[
R(Tn)2

]
. (4.39)

We expect that the same holds for other conditioned Galton–Watson trees,
but we have no general proof.

Remark 4.3. As said in Remark 2.5, it seems natural to combine Theorems
2.1 and 2.2 and guess that the moments of R(Tn) asymptotically are as the
moments of the asymptotic log-normal distribution in Theorem 2.1; this
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means equality in (2.11). However, if equality holds in (2.11) for m = 1, 2, 3,
then

τ3
1 τ
−3
2 τ3 = e(3−6+3)µ+(3−12+9)σ2/2 = 1, (4.40)

and thus

τ3 = τ3
2 τ
−3
1 . (4.41)

Equivalently, ρ3 = ρ3
2ρ
−3
1 ρ0. However, in the case of full binary trees, we

have noted in Remark 4.1 that ρ3 /∈ Q(ρ1, ρ2) = Q(ρ0, ρ1, ρ2), so (4.41) is
impossible. In fact, a numerical calculation, using the values in Table 1,
yields in this case

τ3τ
−3
2 τ3

1 = ρ−1
3 ρ3

2ρ
−3
1 ρ0

.
= 0.99988. (4.42)

4.3. Proof of Theorems 2.2–2.3. Consider a general Φ(z) which satisfies
the condition of Theorem 2.3. We define the weighted generating function
for m-partially colored trees by

Fm(z) :=
∑
T

∑
T ′1,...,T

′
m⊆rT

w(T )z|T | =
∑
T

w(T )R(T )mz|T |, (4.43)

where w(T ) is the weight of T defined in Section 1.3. (Note that in case
of full binary trees in Section 4.1, w(T ) = 1 and (4.43) agrees with (4.11).)
Then we have

ER(Tn)m =

∑
T :|T |=nw(T )R(T )m∑

T :|T |=nw(T )
=

[zn]Fm(z)

[zn]F0(z)
. (4.44)

Following exactly the same argument as in Section 4.1, we have a system
of equations

Fm(z) = zΦ

(
m∑
k=0

(
m

k

)
Fk(z)

)
, m = 0, 1, . . . . (4.45)

By induction and the implicit function theorem [6, Theorem B.4], there
exist for each m a function Fm(z) that is analytic in some neighborhood of
0 (depending on m) and satisfies (4.45) there.

For singularity analysis, we apply Theorem VII.3 of [6]. We need some

preparations. Define again F̂m(z) by (4.16), and let

Hm(z) := F̂m(z)− Fm(z) =

m−1∑
k=0

(
m

k

)
Fk(z), (4.46)

and

Ψm(z, w) := zΦ
(
w +Hm(z)

)
. (4.47)

Then the implicit equation (4.45) can be written in the equivalent forms

Fm(z) = zΦ
(
F̂m(z)

)
, (4.48)

Fm(z) = Ψm

(
z, Fm(z)

)
. (4.49)

Let ρm > 0 be the radius of convergence of Fm(z), and let sm := Fm(ρm) 6
∞. We claim that ∞ > ρ0 > ρ1 > . . . , and that for every m, sm <∞ and

∂Ψm

∂w
(ρm, sm) = 1. (4.50)
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We prove this claim by induction. (The base case m = 0 is well-known,
see [6, Theorem VI.6, p. 404], and follows by minor modifications of the

argument below.) Note first that, by (4.48), F̂m(z) 6 R when 0 < z < ρm,
and thus, letting z ↗ ρm,

sm +Hm(ρm) = Fm(ρm) +Hm(ρm) = F̂m(ρm) 6 R. (4.51)

Next, by (4.47),

∂Ψm

∂w
(z, w) = zΦ′

(
w +Hm(z)

)
, (4.52)

and, in particular,

∂Ψm

∂w

(
z, Fm(z)

)
= zΦ′

(
F̂m(z)

)
. (4.53)

Since Fm(z) has only nonnegative coefficients, it has a singularity at ρm.
This singularity can arise in one of three ways:

(i) ρm > ρm−1.

(ii) F̂m(ρm) = sm +Hm(ρm) = R. (Recall (4.51).)
(iii) (4.50) holds.

In fact, if neither (i) nor (ii) holds, then ρm <∞, sm <∞ and Ψm is analytic
in a neighbourhood of (ρm, sm). If also (iii) does not hold, then Fm(z)
is analytic in a neighbourhood of ρm by (4.49) and the implicit function
theorem, which contradicts that Fm(z) has a singularity at ρm.

We will show that (i) and (ii) are impossible; thus (iii) is the only possi-
bility.

Differentiating (4.49), we obtain

F ′m(z) =
∂Ψm

∂z

(
z, Fm(z)

)
+
∂Ψm

∂w

(
z, Fm(z)

)
F ′m(z). (4.54)

For 0 < z < ρm, all terms in (4.54) are positive and finite; hence F ′m(z) >
∂Ψm
∂w

(
z, Fm(z)

)
F ′m(z) and

∂Ψm

∂w

(
z, Fm(z)

)
< 1, 0 < z < ρm. (4.55)

Suppose now that (i) holds. Then Fm(z) is analytic for |z| < ρm−1.
Furthermore, by induction, Fm−1(ρm−1) = sm−1 < ∞, and Hm−1(ρm−1) <

∞. Hence, F̂m−1(ρm−1) = Fm−1(ρm−1) + Hm−1(ρm−1) < ∞. This and the

definition (4.16) yield F̂m(ρm−1) > F̂m−1(ρm−1), and thus, using (4.53),

lim
z↗ρm−1

∂Ψm

∂w

(
z, Fm(z)

)
= ρm−1Φ′

(
F̂m(ρm−1)

)
> ρm−1Φ′

(
F̂m−1(ρm−1)

)
=
∂Ψm−1

∂w

(
ρm−1, Fm−1(ρm−1)

)
= 1, (4.56)

by the induction hypothesis (4.50) for m − 1. However, (4.56) contradicts
(4.55). Hence, (i) cannot hold, and ρm < ρm−1.

Next, for 0 < z < ρm, by (4.48), (4.53) and (4.55),

F̂m(z)Φ′(F̂m(z))

Φ(F̂m(z))
=
zF̂m(z)Φ′(F̂m(z))

Fm(z)
=
F̂m(z)

Fm(z)

∂Ψm

∂w

(
z, Fm(z)

)
<
F̂m(z)

Fm(z)
.

(4.57)
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Since Fk(z) 6 Fm(z) when 0 6 k 6 m by (4.43), the right-hand side of
(4.57) is by (4.16) bounded by 2m.

Suppose now that (ii) holds. Then, as z ↗ ρm,

F̂m(z)→ F̂m(ρm) = R, (4.58)

and thus (4.57) implies

lim
ζ↗R

ζΦ′(ζ)

Φ(ζ)
6 lim sup

z↗ρm

F̂m(z)

Fm(z)
6 2m. (4.59)

Consider now two cases. First, if Φ(R) <∞, then the left-hand side of (4.59)
is RΦ′(R)/Φ(R) =∞ by the assumption (2.7), which is a contradiction. On
the other hand, if Φ(R) =∞, then (4.48) and (4.58) yield

lim
z↗ρm

Fm(z) = lim
z↗ρm

zΦ
(
F̂m(z)

)
= ρmΦ(R) =∞. (4.60)

We have shown that ρm < ρm−1 6 ρk for every k < m, and thus (4.46)
shows that Hm is analytic at ρm, and Hm(ρm) < ∞. Hence, in this case
(4.59) yields, using (4.60),

lim
ζ↗R

ζΦ′(ζ)

Φ(ζ)
6 lim sup

z↗ρm

Fm(z) +Hm(z)

Fm(z)
= 1 + lim sup

z↗ρm

Hm(z)

Fm(z)
= 1, (4.61)

which contradicts the assumption (2.6). We have thus reached a contradic-
tion in both cases, which shows that (ii) cannot hold, so

F̂m(ρm) = sm +Hm(ρm) < R. (4.62)

Hence, (iii) holds. Furthermore, by (4.62), sm < ∞, and letting z ↗ ρm
in (4.49) yields

Ψm(ρm, sm) = sm. (4.63)

We now apply [6, Theorem VII.3, p. 468], noting that the conditions are
satisfied by the results above, in particular (4.63), (4.50) and (4.62). This
theorem shows that Fm(z) has a square-root singularity at ρm, and that its
coefficients satisfy

[zn]Fm(z) =
λm√
n3
ρ−nm

(
1 +O(n−1)

)
, (4.64)

where λm > 0 is a constant. (In the periodic case, as usual we consider only
n such that Tn exists.) It follows from (4.44) that

ER(Tn)m =
[zn]Fm(z)

[zn]F0(z)
=
λm
λ0

(
ρ0

ρm

)m (
1 +O

(
n−1

))
. (4.65)

Letting γm = λm/λ0 and τm = ρ0/ρm, we have shown (2.5).
This prove Theorem 2.3, and thus also the equivalent Theorem 2.2. �

4.4. A counter example. The following example shows that Theorem 2.3
does not hold without the condition (2.7).

Example 4.4. Take the generator

Φ(z) = Φa(z) = a+
1− a
ζ(4)

∞∑
k=1

zk

k4
, (4.66)
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where 0 < a < a0 := 1− ζ(4)/ζ(3). Then R = 1, Φ(R) = 1 and

ν := lim
z↗R

zΦ′(z)

Φ(z)
= Φ′(1) = (1− a)

ζ(3)

ζ(4)
=

1− a
1− a0

> 1, (4.67)

so (2.6) holds.
Suppose now that there exists ρ1 < 1 such that s1 := F1(ρ1) < ∞ and

∂Ψ1
∂w (ρ1, s1) = 1, and thus, see (4.53),

ρ1Φ′
(
F0(ρ1) + F1(ρ1)

)
= 1. (4.68)

Then F0(ρ1) + F1(ρ1) 6 R = 1. Since F0(z) 6 F1(z) for every z > 0, this
implies

F0(ρ1) 6 1
2 . (4.69)

On the other hand, Φ′
(
F0(ρ1)+F1(ρ1)

)
6 Φ′(1) = ν, and thus (4.68) implies

ρ1 > ν−1. Furthermore, F0(z) = zΦ
(
F0(z)

)
. Thus, if x := F0(ρ1) 6 1

2 , we
have x = ρ1Φ(x), and thus

x = ρ1Φ(x) > ν−1Φ(x), (4.70)

which yields, recalling (4.67),

Φ(x) = Φa(x) 6 νx =
1− a
1− a0

x. (4.71)

We claim that this is impossible if a is close to a0. In fact, suppose that
for every a < a0 there exists x = xa 6 1

2 such that (4.71) holds. Then, by
compactness, we may take a sequence an ↗ a0 such that xan converges to
some x∗ ∈ [0, 1

2 ], and then (4.71) implies

Φa0(x∗) 6 x∗, (4.72)

which is a contradiction since Φa0(1) = 1 and Φ′a0(x) < Φ′a0(1) = 1 for
x∗ < x < 1.

Consequently, we can find a < a0 such that the simply generated tree
with generator (4.66) does not have F1 with a singularity of the type above.

Hence, in this case, ρ1 is instead given by (ii) in Section 4.3, i.e., F̂1(ρ1) = 1,
which by (4.48) implies

F1(ρ1) = ρ1Φ
(
F̂1(ρ1)

)
= ρ1, (4.73)

F0(ρ1) = F̂1(ρ1)− F1(ρ1) = 1− ρ1. (4.74)

We have shown that ∂Ψ1
∂w

(
ρ1, F1(ρ1)

)
< 1, and thus it follows from (4.54)

and Φ′(1) < ∞ that limz↗ρ1 F
′
1(z) < ∞. Hence the singularity of F1 at ρ1

is not of square root type, and the asymptotic formula (2.5) cannot hold.
We leave it as an open problem to find the asymptotics of ER(Tn) and

higher moments in this case.

5. General subtrees

We have in Sections 4 considered root subtrees. Estimates for general non-
fringe subtrees follow from (1.2), but more precise results can be obtained
by introducing the corresponding generating functions

Gm(z) :=
∑
T

w(T )S(T )mz|T | =
∑
T

∑
T ′1,...,T

′
m⊆T

w(T )z|T |, (5.1)
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cf. (4.43) and note that G0(z) = F0(z).
For simplicity, we study first the case m = 1 in detail, and as in Section 4,

we consider first the example of full binary trees. We assume throughout
this section that the assumptions of Theorem 2.3 hold.

5.1. The mean, full binary trees. Let G1 be the combinatorial class of
pairs of trees (T, T ′) such that T ′ is subtree of T ∈ F0. In other words, an
element of G1 is a full binary tree with one non-fringe subtree colored. Such
a partially colored tree is either a full binary with a root subtree colored (an
element of F1), or a uncolored root together with a left (right) uncolored
subtree (an element of F0) and a partially colored right (left) subtree (an
element of G1). Thus G1 has the specification

G1 = F1 + Z × F0 × G1 + Z × G1 ×F0. (5.2)

Therefore, G1(z), the generating function of G1 given by

G1(z) :=
∑
T

∑
T ′⊆T

z|T | =
∑
T

S(T )z|T | =:

∞∑
n=1

b(1)
n zn, (5.3)

satisfies
G1(z) = F1(z) + 2zF0(z)G1(z). (5.4)

Thus

G1(z) =
F1(z)

1− 2zF0(z)
. (5.5)

By (5.5), G1(z) has the same radius of convergence ρ1 as F1(z), with sin-
gularities at the same points ±ρ1. (It is easily verified that the denominator
1− 2zF0(z) 6= 0 for |z| 6 ρ1, see also (5.11).) Since the singular expansions
of the denominator at ±ρ1 are simply both 1 − 2ρ1F0(ρ1), we obtain from
(5.5) by singularity analysis

b(1)
n ∼ (1− 2ρ1F0(ρ1))−1a(1)

n , (5.6)

as n→∞. Thus, using (4.5) and (4.24),

a(1)
n /b(1)

n → 1− 2ρ1F0(ρ1) =
√

3− 1
.
= 0.732. (5.7)

Therefore the root subtrees form the majority of all subtrees.

5.2. The mean, general trees. For simply generated trees with the gen-
erator Φ(x), (5.2) and (5.4) can be generalized to

G1 = F1 + Z × G1 × Φ′(F0), (5.8)

and
G1(z) = F1(z) + zG1(z)Φ′(F0(z)). (5.9)

Therefore,

G1(z) =
F1(z)

1− zΦ′(F0(z))
. (5.10)

Note that for any m > 0 and 0 < z < ρm, by (4.53) and (4.50),

zΦ′
(
F̂m(z)

)
< ρmΦ′

(
F̂m(ρm)

)
=
∂Ψm

∂w
(ρm, sm) = 1. (5.11)

Together with F0(z) = F̂0(z), this shows that the denominator in (5.10) is
non-zero for |z| < ρ0, and in particular for |z| 6 ρ1. Thus G1(z) has the
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same dominant singularities with |z| = ρ1 as F1(z), and it follows that, as
n→∞,

ER(Tn)

ES(Tn)
=
a

(1)
n

b
(1)
n

→ 1− ρ1Φ′(F0(ρ1)) > 0. (5.12)

Remark 5.1. In the periodic case, when F1(z) has k > 1 singularities on

the circle |z| = ρ1, it is easily verified that 1−zΦ′
(
F̂1(z)

)
is a power series in

zk and thus has the same value at all these singularities, cf. the full binary
case above.

5.3. Higher moments. The generating functions Gm for higher moments
of S(Tn) can be found recursively by similar methods. The recursion be-
comes more complicated than for Fm, however. We introduce the generating
functions for mixed moments of the numbers of root subtrees and general
subtrees

Gm,` :=
∑
T

w(T )S(T )mR(T )`z|T | =
∑
T

∑
T ′1,...,T

′
m⊆T,

T ′′1 ,...,T
′′
` ⊆rT

w(T )z|T |. (5.13)

Note that Gm,0 = Gm and G0,` = F`. It follows from (1.2) (or the recursions
below) that Gm,`(z) has the same radius of convergence ρm+` as Fm+`(z).

Consider first, as examples, the cases with m+` = 2. G1,1(z) is the gener-
ating function of the combinatorial class G1,1 consisting of triples (T, T ′, T ′′)
where T ′ is a subtree and T ′′ a root subtree of T , counted with weights w(T )
determined by Φ(z) by (1.3) and (1.5).

Let (T, T ′, T ′′) ∈ G1,1. Denote the children of the root o ∈ T by v1, . . . , vD,
and let T1, . . . , TD be the corresponding fringe subtrees of T . The subtree
T ′ is either a root subtree, and then (T, T ′, T ′′) ∈ F2, or it is a subtree of
one of the fringe trees Tj . Furthermore, the root subtree T ′′ is determined
by choosing for each fringe subtree Tj either a root subtree or nothing.
Hence, in the case (T, T ′, T ′′) /∈ F2, for some j0 6 D, we choose either
(Tj0 , T

′
j0
, T ′′j0) ∈ G1,1 or (Tj0 , T

′
j0

) ∈ G1,0; at the same time, we choose for each

j 6= j0 either (Tj , T
′′
j ) ∈ G0,1 = F1 or just Tj ∈ G0,0 = F0. Consequently,

G1,1 = F2 + Z ×
∞∑
D=1

wDD
(
G1,1 + G1,0

)
×
(
F1 + F0

)D−1
, (5.14)

and thus

G1,1(z) = F2(z) + z
(
G1,1(z) +G1,0(z)

)
Φ′
(
F̂1(z)

)
. (5.15)

Consequently,

G1,1(z) =
F2(z) + zG1,0(z)Φ′

(
F̂1(z)

)
1− zΦ′

(
F̂1(z)

) . (5.16)

Similarly, G2,0 is the class of triples (T, T ′′1 , T
′′
2 ) where both T ′′1 and T ′′2 are

general subtrees of T . The case when both T ′′1 and T ′′2 are root trees gives
F2, and the case where, say, T ′′1 , is a root tree but T ′′2 is not gives G1,1 \ F2,
found above. Finally, if neither T ′′1 nor T ′′2 is a root tree, then they are
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determined by one subtree in a fringe tree Tj1 and one subtree in Tj2 , where
j1 and j2 may be equal or not. This leads to, arguing as in (5.14)–(5.15),

G2,0(z) = F2(z) + 2
(
G1,1(z)− F2(z)

)
+ zG2,0(z)Φ′

(
F0(z)

)
+ zG1,0(z)2Φ′′

(
F0(z)

)
, (5.17)

and thus

G2,0(z) =
2G1,1(z)− F2(z) + zG1,0(z)2Φ′′

(
F0(z)

)
1− zΦ′

(
F0(z)

) . (5.18)

Singularity analysis of (5.16) and (5.18) show that

E[S(Tn)R(Tn)]

E[R(Tn)2]
=

[zn]G1,1(z)

[zn]F2(z)
→ 1

1− ρ2Φ′(F̂1(ρ2))
, (5.19)

E[S(Tn)2]

E[R(Tn)2]
=

[zn]G2,0(z)

[zn]F2(z)
→ 1

1− ρ2Φ′(F0(ρ2))

( 2

1− ρ2Φ′(F̂1(ρ2))
− 1
)
,

(5.20)

where all denominators are positive by (5.11).
The argument is easily extended to higher powers, and in principle can

any Gm,`(z) be found recursively by this method; however, the formulas will
be more and more complicated, and we see no simple general formula. On
the other hand, we are really only interested in the singular parts, and thus
we can ignore most terms.

Lemma 5.2. For each m, ` > 0, there exist functions φm,` and ψm,` that
are analytic for |z| < ρm+`−1 such that

Gm,`(z) = φm,`(z)Fm+`(z) + ψm,`(z). (5.21)

Furthermore, αm,` := φm,`(ρm+`) satisfies the recursion α0,` = 1 and, for
m > 1,

αm,` =
1 + ρm+`

∑m−1
k=1

(
m
k

)
αk,m+`−kΦ

′(F̂m+`−k(ρm+`)
)

1− ρm+`Φ′
(
F̂`(ρm+`)

) . (5.22)

Proof. The case m = 0 is trivial, with φ0,`(z) = 1 and ψ0,`(z) = 0. Thus, let
m > 1. The combinatorial class Gm,` consists of sequences

(T, T ′1, . . . , T
′
m, T

′′
1 , . . . , T

′′
` ), (5.23)

where T is a tree, counted with weight w(T ), each T ′i is a subtree and each
T ′′j is a root subtree. Let k be the number of T ′1, . . . , T

′
m that are not root

subtrees. The case k = 0 gives Fm+`. Suppose 1 6 k 6 m. Let again
T1, . . . , TD be the fringe trees rooted at the children of the root o of T .
Further suppose that the k non-root subtrees go into p > 1 of T1, · · · , TD,
which we call Tj1 , · · · , Tjp . Then there are

(
D
p

)
ways to select Tj1 , · · · , Tjp .

Suppose further that ki of the k non-root subtrees go into Tji . Given p

positive integers k1, · · · , kp with k1 + · · ·+ kp = k, there are
(

k
k1,··· ,kp

)
ways

of choosing how the k non-root subtrees are divided among Tji , · · · , Tjp .
While Tjr contains kr marked general subtrees, it also contains i 6 m+`−k
marked root subtrees, which can be chosen in

(
m+`−k

i

)
ways. For any Tj

such that j /∈ {j1, · · · , jp}, it too contains up to m + ` − k marked root
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subtrees. Hence, fixing k, p, k1, · · · , kp, D, we have the following term that
contributes to Gm,`(z)

zwD

(
D

p

)(
k

k1, . . . , kp

) p∏
j=1

(
m+`−k∑
i=0

(
m+ `− k

i

)
Gkj ,i(z)

)(
F̂m+`−k(z)

)D−p
.

(5.24)

Summing over D > 1 gives

z
1

p!

(
k

k1, . . . , kp

) p∏
j=1

(
m+`−k∑
i=0

(
m+ `− k

i

)
Gkj ,i(z)

)
Φ(p)

(
F̂m+`−k(z)

)
.

(5.25)

In (5.25), m + ` − k 6 m + ` − 1, and thus Φ(p)
(
F̂m+`−k(z)

)
has radius of

convergence at least ρm+`−1. Similarly, kj + i 6 m+ ` with equality only if
kj = k, and thus j = p = 1, and also i = m+`−k; hence, except in the latter
case, (5.25) has radius of convergence > ρm+`−1. Consequently, collecting
all terms and lumping most of them together, taking into account that there
are

(
m
k

)
ways to choose the k non-root subtrees among T ′1, · · · , T ′m,

Gm,`(z) = Fm+`(z) + z

m∑
k=1

(
m

k

)
Gk,m+`−k(z)Φ

′(F̂m+`−k(z)
)

+ φ̃(z),

(5.26)

where φ̃(z) has radius of convergence > ρm+`−1. Hence, for any m > 1,

Gm,`(z) =
Fm+`(z) + z

∑m−1
k=1

(
m
k

)
Gk,m+`−k(z)Φ

′(F̂m+`−k(z)
)

+ φ̃(z)

1− zΦ′
(
F̂`(z)

) ,

(5.27)

where the denominator is non-zero for |z| < ρm+`−1 6 ρ` by (5.11). The
results follow by induction in m. �

Example 5.3. As an example of the recursion (5.26), note that by (5.15)
and (5.17),

G2,0(z) = F2(z) + 2zG1,1(z)Φ′
(
F̂1(z)

)
+ 2zG1,0(z)Φ′

(
F̂1(z)

)
+ zG2,0(z)Φ′

(
F0(z)

)
+ zG1,0(z)2Φ′′

(
F0(z)

)
, (5.28)

where we collect the terms containing G1,0(z) into φ̃(z) in (5.26).

Proof of Theorem 2.4. An immediate consequence of Lemma 5.2 and sin-
gularity analysis, arguing as at the end of the proof of Theorem 2.3 in
Section 4.3, cf. (4.64)–(4.65). Note that this yields

γ′m,` = αm,`γ`+m, (5.29)

with αm,` given by the recursion (5.22). �
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5.4. A numerical example. It follows either from Lemma 5.2 or the direct
computations in (5.10), (5.19), (5.20) that

α1,0 =
1

1− ρ1Φ′(F0(ρ1))
, (5.30)

α1,1 =
1

1− ρ2Φ′(F̂1(ρ2))
, (5.31)

α2,0 =
1

1− ρ2Φ′(F0(ρ2))

( 2

1− ρ2Φ′(F̂1(ρ2))
− 1
)
. (5.32)

Returning again to the full binary trees, we find from (5.29)–(5.32) by Maple

α0,1
.
= 1.366025, α1,1

.
= 1.339117, α2,0

.
= 1.893755, (5.33)

γ′0,1
.
= 2.101204, γ′1,1

.
= 3.160952, γ′2,0

.
= 4.470213. (5.34)

Hence, recalling Remark 4.2, we find the correlation coefficient between the
numbers of root subtrees and general subtrees

Cov(S(Tn), R(Tn))√
VarS(Tn) VarR(Tn)

∼ E [S(Tn)R(Tn)]√
E [S(Tn)2]E [R(Tn)2]

∼
γ′1,1τ

n
2√

γ′2,0τ
n
2 · γ2τn2

=
γ′1,1√
γ′2,0γ2

=
α1,1√
α2,0

.
= 0.973087. (5.35)

Therefore, as might be expected, we have a strong but not perfect correla-
tion.

6. Average size of root subtrees

Define

F1(z, u) :=
∑
T

∑
T ′⊆rT

z|T |u|T
′| =:

∞∑
n=1

a(1)
n (u)zn. (6.1)

Then F1(z) = F1(z, 1) and thus a
(1)
n = a

(1)
n (1). Moreover a

(1)
n (u)/a

(1)
n is the

probability generating function of Xn, where Xn = |T ′| for a pair (T, T ′)
where T ′ is a root subtree of T , chosen uniformly at random from all such
pairs in F1 with |T | = n.
F1(z, u) can be computed in the same way as in Section 4.

Example 6.1. In the case of full binary trees, we obtain

F1(z, u) = zuΦ
(
F1(z, u) + F0(z)

)
= zu+ zu

(
F0(z) + F1(z, u)

)2
= uF0(z) + 2zuF0(z)F1(z, u) + zuF1(z, u)2, (6.2)

with the explicit solution

F1(z, u) =
1−

√
1− 4zu(zu+ F0(z))

2zu
− F0(z)

=
1−

√
2u
√

1− 4z2 + 1− 2u− 4z2u2

2zu
− F0(z). (6.3)
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By the well-known relationship between derivatives of probability gener-
ating functions and factorial moments [6, p. 158], we have

E (Xn)r =
dr

dur

(
a

(1)
n (u)

a
(1)
n

)∣∣∣∣∣
u=1

=
[zn] ∂rF1(z, u)/∂ur|u=1

[zn]F1(z)
, (6.4)

where (x)r := x(x− 1) · · · (x− r+ 1). It is not difficult to use induction and
singularity analysis of the partial derivatives ∂rF1(z, u)/∂ur

∣∣
u=1

to show
that

[zn]
∂rF (z, u)

∂ur

∣∣∣∣
u=1

=
(
1 +O

(
n−1

))
λ1

(
2

3

)r
nr−

3
2 ρ−n1 , (6.5)

where λ1 is as in (4.25). Thus it follows from the estimation of a
(1)
n in (4.25)

that

E(Xn)r =
(
1 +O

(
n−1

))(2n

3

)r
. (6.6)

Computing one more terms for E [(Xn)2] yields, omitting the calculations,

VarXn ∼
1 +
√

3

9
n =: σ2

1n. (6.7)

The asymptotic estimates (6.6) and (6.7) suggest, but are not enough
to conclude, asymptotic normality. However, we can apply the following
general theorem.

Theorem 6.2. Assume Φ(z) satisfies the conditions of Theorem 2.3. Let
ρ1, s1 and F0(z) be as in Section 4.3. Let

d1 := F ′0(ρ1), d2 := F ′′0 (ρ1), d3 := Φ′′(s1 + F0(ρ1)), (6.8)

and

µ1 :=
s1

s1 + ρ1d1
, σ2

1 :=
ρ1

(
d2d3ρ1s

2
1 + d2

1d3ρ1s1 + d1d3s
2
1 − d2

1

)
(d1ρ1 + s1)3 d3

. (6.9)

Then 0 < µ1 < 1 and

E [Xn] = µ1n+O(1), VarXn = σ2
1n+O(1). (6.10)

Furthermore, as n→∞,

Xn − µ1n√
n

d−→ N(0, σ2
1), (6.11)

and if σ2
1 6= 0, then also

Xn − E [Xn]√
VarXn

d−→ N(0, 1). (6.12)

Proof. Let F (x, y, u) := xuΦ(y+ F0(x)). Then most conditions of [5, Theo-
rem 2.23] are satsifed by the arguments in Section 4.3, in particular (4.50).
We only need to verify that

∂F

∂x
(ρ1, s1, 1) 6= 0,

∂2F

∂y2
(ρ1, s1, 1) 6= 0, (6.13)

where ρ1 and s1 are as in Section 4.3. The first inequality holds since

∂F

∂x
(ρ1, s1, 1) > Φ (s1 + F0(ρ1)) =

s1

ρ1
> 0. (6.14)
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By condition (1.6), Φ′′(z) > 0 for all z > 0. Then the second inequality of
(6.13) holds since

∂2F

∂y2
(ρ1, s1, 1) = ρ1Φ′′ (s1 + F0(ρ1)) > 0. (6.15)

Thus [5, Theorem 2.23] applies, which yields (6.10) and (6.12), with (6.11)
as an immediate consequence; it also gives formulas for µ1 and σ2

1, which
after some calculations yield (6.9). �

Example 6.3. In the case of full binary trees, it is easy to verify with Maple
that, see also (4.24),

ρ1 =
1

2

√
2
√

3− 3, s1 =

√
2

4
√

3
, (6.16)

and

d1 = 1 +

√
3

3
, d2 =

1

3

√
144 + 86

√
3, d3 = 2. (6.17)

Plugging these numbers into (6.9), we recover (6.6) (r = 1) and (6.7), and
also

Xn − 2n/3√
n

d−→ N
(

0,
1 +
√

3

9

)
. (6.18)
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