
RENEWAL THEORY FOR ASYMMETRIC U-STATISTICS

SVANTE JANSON

Abstract. We extend a functional limit theorem for symmetric U -
statistics [Miller and Sen, 1972] to asymmetric U -statistics, and use this
to show some renewal theory results for asymmetric U -statistics.

Some applications are given.

1. Introduction

Let X,X1, X2, . . . , be an i.i.d. sequence of random variables taking values
in an arbitrary measurable space S = (S,S). (In most cases, S = R or
perhaps Rk, or a Borel subset of one of these, but we can just as well
consider the general case.) Furthermore, let d > 1 and let f : Sd → R
be a given measurable function. We then define the (real-valued) random
variables

Un = Un(f) :=
∑

16i1<···<id6n
f
(
Xi1 , . . . , Xid

)
, n > 0. (1.1)

We call Un a U -statistic, following Hoeffding [14].

Remark 1.1. Many authors, including Hoeffding [14], normalize Un by
dividing the sum in (1.1) by

(
n
d

)
, the number of terms in it; the traditional

definition (which assumes n > d) is thus in our notation Un/
(
n
d

)
. We find it

more convenient for our purposes to use the unnormalized version above.

It is common, following Hoeffding [14], to assume that f is a symmetric
function of its d variables. In this case, the order of the variables does not
matter, and we can in (1.1) sum over all sequences i1, . . . , id of d distinct
elements of {1, . . . , n}, up to an obvious factor of d!. ([14] gives both ver-
sions.) Conversely, if we sum over all such sequences, we may without loss
of generality assume that f is symmetric. However, in the present paper
we consider the general case of (1.1) without assuming symmetry, which we
for emphasis may call asymmetric U -statistics. One of the purposes of this
paper is to generalize a result by [24] on functional convergence from the
symmetric case to the general, asymmetric case. We then use this result to
derive some renewal theory results for the sequence Un. One motivation for
this is some applications to random restricted permutations, see Section 5.

Univariate limit results, i.e., limits in distribution of Un after suitable
normalization, are well-known also in the asymmetric case, see e.g. [18,
Chapter 11.2]. The possibility of functional limits is briefly mentioned in
[18, Remark 11.25], and a special case (d = 2 and f antisymmetric) was
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studied in [22], see Example 5.1; However, we are not aware of functional
limit theorems in the generality of the present paper.

The main results are stated in Section 3. The proofs are given in Section 4;
they use standard methods, in particular the decomposition and projection
method of Hoeffding [14], but some complications arise in the asymmetric
case; this includes applications to random restricted permutations that gave
the initial motivation to write the present paper. Some examples and appli-
cations are discussed in Section 5. We end with some further comments and
open problems in Section 6; this includes more comments on the relation
between the symmetric and asymmetric cases.

The results in the present paper focus on the non-degenerate case, where
the covariance matrix Σ = (σij) defined by (3.2) below is non-zero. In the
degenerate case when Σ = 0, the result still holds but are less interesting,
since the obtained limits in e.g. Theorem 3.2 are degenerate. See Remark 6.3
for further comments on the degenerate case.

2. Some notation

We consider as in the introduction, unless otherwise said, some given i.i.d.
random variables Xi ∈ S and a given function f : Sd → R. In particular,
d > 1 is fixed, and we therefore often omit it from the notation.

We assume throughout f(X1, . . . , Xd) ∈ L1 (and usually L2), and define

µ := E f(X1, . . . , Xd). (2.1)

We study Un = Un(f) defined by (1.1). Let

U∗n = U∗n(f) := max
16m6n

|Um(f)|. (2.2)

We use ‖ ‖p for the Lp-norm: ‖Y ‖p := (EY p)1/p for any random vari-
able Y and p > 0, and ‖f‖p := ‖f(X1, . . . , Xd)‖p (and similarly for other
functions).
Fn is the σ-field generated by X1, . . . , Xn.
If we consider a limit as n→∞, and an is a given sequence, then oa.s.(an)

denotes a sequence of random variables Rn such that Rn/an
a.s.−→ 0. This

extends to other limits such as x→∞, mutatis mutandis.
C denotes positive constants that may change from one occurence to the

next; they may depend on d (or d̃) but not on f or n or other variables.
Similarly, Cf denote constants that may depend on f , Cp denotes constants
that may depend on the parameter p (and d), and so on.

3. Main results

3.1. Limit theorems. For completeness, we begin with the law of large
numbers, extending the result by Hoeffding [15] to the asymmetric case.

Theorem 3.1. Suppose that f(X1, . . . , Xd) ∈ L1. Then, as n→∞,

Un/

(
n

d

)
a.s.−→ µ. (3.1)

Next we state a functional limit theorem, extending the theorem by Miller
and Sen [24] for the symmetric case. We use the space D[0,∞) with the
usual Skorohod topology, see e.g. [23, Appendix A2]; recall that convergence
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in D[0,∞) to a continuous limit is equivalent to uniform convergence on any
compact interval [0, T ]. We define the d× d matrix Σ = (σij) by

σij := Cov
(
fi(X), fj(X)

)
= E

(
fi(X)fj(X)

)
, i, j = 1, . . . , d, (3.2)

with fi, fj defined by (4.1) below. Let W(t) :=
(
W1(t), . . . ,Wd(t)

)
, t > 0, be

a continuous d-dimensional Gaussian process with W(0) = 0 and stationary
independent increments

W(s+ t)−W(s) ∼ N
(
0, tΣ

)
. (3.3)

Note that each component Wj is a standard Brownian motion up to a factor

σ
1/2
jj , and that we can represent W as W(t) = Σ1/2B(t), where B(t) is a
d-dimensional standard Brownian motion. Define also the functions

ψj(s, t) = ψj;d(s, t) :=
1

(j − 1)! (d− j)!
sj−1(t− s)d−j . (3.4)

We extend Un defined by (1.1) to a function of a real variable by Ux :=
Ubxc, x > 0. (We tacitly do the same for other sequences later.)

Theorem 3.2. Suppose that f(X1, . . . , Xd) ∈ L2. Then, as n→∞,

Unt − ndtdµ/d!

nd−1/2
d−→ Zt, t > 0, (3.5)

in D[0,∞), where Zt is a continuous centered Gaussian process that can be
defined as

Zt :=

d∑
j=1

∫ t

0
ψj(s, t) dWj(s). (3.6)

Equivalently, Zt has the covariance function, for 0 6 s 6 t,

Cov(Zs, Zt) =

d∑
i,j=1

σij

∫ s

0
ψi(u, s)ψj(u, t) du

=

d∑
i,j=1

σij
(i− 1)! (j − 1)! (d− i)! (d− j)!

∫ s

0
ui+j−2(s− u)d−i(t− u)d−j du.

(3.7)

Moreover, (3.5) holds jointly for several functions f (k), possibly with dif-

ferent d(k), with limits given by (3.6), where the corresponding W
(k)
j together

form a Gaussian process with stationary independent increments given by the
covariances

Cov
(
W

(k)
i (s),W

(`)
j (t)

)
= Cov

(
f
(k)
i (X), f

(`)
j (X)

)
· (s ∧ t). (3.8)

The Itô integrals in (3.6) can by (3.4) be written as linear combinations

of tk
∫ t
0 s

d−1−k dWj(s) with 0 6 k 6 d − j; thus Zt is well-defined and
continuous for t > 0, with Z0 = 0. These stochastic integrals can also
by integration by parts be expressed as Riemann integrals of continuous
stochastic processes, see (4.18).

Note that the final integral in (3.7) is elementary, for any given i, j, d, and
that the covariance function in (3.7) is a homogeneous polynomial in s and
t of degree 2d− 1.
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Example 3.3. In the case d = 2, we obtain from (3.7), still for 0 6 s 6 t,

Cov(Zs, Zt) = 1
2

(
σ11 + σ12

)
s2t+ 1

6

(
2σ22 − σ11 − σ12

)
s3. (3.9)

Remark 3.4. By (3.4) and the binomial theorem,

d∑
j=1

ψj(s, t) =
td−1

(d− 1)!
. (3.10)

In the symmetric case, all fi are equal and thus all σij are equal, see (3.2).
Hence, (3.7) simplifies by (3.10) to

Cov(Zs, Zt) = σ11

∫ s

0

sd−1

(d− 1)!

td−1

(d− 1)!
du =

σ11
(d− 1)!2

sdtd−1. (3.11)

Equivalently, t−(d−1)Zt is σ
1/2
11 (d− 1)!−1Bt for a standard Brownian motion

Bt. This recovers the result by Miller and Sen [24] for the symmetric case.
Note that our general result Theorem 3.2 is similar to the symmetric case,
with a continuous Gaussian limit process, but that the covariance function
in general is more complicated, as seen for d = 2 in (3.9), and that the limit
thus is not a Brownian motion.

By restricting attention to t = 1, we obtain the following univariate limit,
shown in [18, Corollary 11.20].

Corollary 3.5. Suppose that f(X1, . . . , Xd) ∈ L2. Then, as n→∞,

Un −
(
n
d

)
µ

nd−1/2
d−→ N

(
0, σ2

)
, (3.12)

where

σ2 := lim
n→∞

Var(Un)

n2d−1
= Var(Z1)

=
d∑

i,j=1

(i+ j − 2)! (2d− i− j)!
(i− 1)! (j − 1)! (d− i)! (d− j)! (2d− 1)!

σij . (3.13)

Moreover,

σ2 = 0 ⇐⇒ fi(X) = 0 a.s. for every i = 1, . . . , d. (3.14)

Example 3.6. For d = 1, Corollary 3.5 reduces to the Central Limit The-
orem; indeed, (3.13) then yields σ2 = σ11.

For d = 2, (3.13) yields

σ2 =
σ11 + σ12 + σ22

3
. (3.15)

3.2. Renewal theory. For x > 0, let

N−(x) := sup{n > 0 : Un 6 x}, (3.16)

N+(x) := inf{n > 0 : Un > x}. (3.17)

Note that if f > 0, then N+(x) = N−(x)+1, but if f attains negative values,
then N−(x) > N+(x) is possible. Most of our results apply to both N+ and
N−; we then use N± to denote any of them.
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The results above easily imply some renewal theorems for U -statistics
generalizing well-known results for Sn (i.e., the case d = 1). We begin with
a law of large numbers.

Theorem 3.7. Suppose that f(X1, . . . , Xd) ∈ L1 and µ > 0. Then a.s.
N±(x) <∞ for every x <∞, and

N±(x)

x1/d
a.s.−→

(
d!

µ

)1/d

as x→∞. (3.18)

Assuming f ∈ L2, we obtain also a central limit theorem for N±.

Theorem 3.8. Suppose that f(X1, . . . , Xd) ∈ L2 and µ > 0. Then, as
x→∞,

N±(x)− (d!/µ)1/dx1/d

x1/2d
d−→ N

(
0,
(
d!/µ

)2+1/d
d−2σ2

)
, (3.19)

where σ2 is given by (3.13).

A situation that is common in application is to stop when when one pro-
cess (such as our Un) reaches a threshold, and then look at the value of an-

other process, say Ũn. For standard renewal theory, i.e. the case d = 1 in our
setting, this was studied in [12]; we extend the main result there to (asym-
metric) U -statistics. We consider as above an i.i.d. sequence X1, X2, . . . with

values in S, but we now have two functions f : Sd → R and f̃ : Sd̃ → R,
where the numbers of variables d and d̃ may be different. We use nota-
tions as above for both f and f̃ , with ˜ to denote variables defined by f̃ ,

for example Ũn := Un(f̃) and µ̃ := E f̃ ; we furthermore assume that the

Gaussian processes Wi(t) and W̃j(t) have the joint distribution specified by
(3.8) (with obvious notational changes), and thus (3.5) holds jointly for f

and f̃ with limits Zt and Z̃t.

Theorem 3.9. (i) Suppose that f(X1, . . . , Xd) ∈ L1, f̃(X1, . . . , Xd̃) ∈ L
1

and µ > 0. Then, as x→∞,

ŨN±(x)

xd̃/d
a.s.−→ µ̃

d̃!

(d!

µ

)d̃/d
. (3.20)

(ii) Suppose that f(X1, . . . , Xd) ∈ L2, f̃(X1, . . . , Xd̃) ∈ L
2 and µ > 0.

Then, as x→∞,

ŨN±(x) −
(
d!
µ

)d̃/d µ̃
d̃!
xd̃/d

xd̃/d−1/2d
d−→ N

(
0, γ2

)
, (3.21)

where, with (Z1, Z̃1) as in Theorem 3.2,

γ2 :=
(d!

µ

)(2d̃−1)/d
Var
(
Z̃1 −

(d− 1)! µ̃

(d̃− 1)!µ
Z1

)
. (3.22)

(iii) Assume the conditions in (ii). If d̃ > d, then γ2 = 0 if and only if

f̃i(X) =
µ̃

µ

∑
j

(
d−1
j−1
)(
d̃−d
i−j
)

(
d̃−1
i−1
) fj(X) a.s., i = 1, . . . , d̃. (3.23)
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If d̃ < d, then γ2 = 0 if and only if (3.23) holds with f, d, µ and f̃ , f̃ , µ̃

interchanged (and µ̃ 6= 0 unless all f̃j(X) = 0 a.s.)

In particular, if d̃ = d, then

γ2 = 0 ⇐⇒ µf̃i(X) = µ̃fi(X) a.s., i = 1, . . . , d, (3.24)

and if d = 1, then

γ2 = 0 ⇐⇒ µf̃i(X) = µ̃f1(X) a.s., i = 1, . . . , d̃. (3.25)

Remark 3.10. Theorem 3.8 can be regarded as a special case of Theo-
rem 3.9 with d̃ = 1 and f̃(X) ≡ 1.

The asymptotic variance γ2 in Theorem 3.9 can easily be calculated ex-
actly using (3.6), (3.8) and (3.4), but a general formula seems more messy
than illuminating, and we state only the special case d = 1. (In this case,
Un is the standard partial sum

∑n
i=1 f(Xi).)

Theorem 3.11. Suppose that f(X) ∈ L2, f̃(X1, . . . , Xd̃) ∈ L
2 and µ > 0.

Then, as x→∞,

ŨN±(x) − µ−d̃µ̃d̃!
−1
xd̃

xd̃−1/2
d−→ N

(
0, γ2

)
, (3.26)

where

γ2 := µ1−2d̃
d̃∑

i,j=1

(i+ j − 2)! (2d̃− i− j)!
(i− 1)! (j − 1)! (d̃− i)! (d̃− j)! (2d̃− 1)!

Cov
(
f̃i(X), f̃j(X)

)

− 2
µ−2d̃µ̃

(d̃− 1)! d̃!

d̃∑
i=1

Cov
(
f(X), f̃i(X)

)
+
µ−2d̃−1µ̃2

(d̃− 1)!2
Var
(
f(X)

)
. (3.27)

Moreover,

γ2 = 0 ⇐⇒ µf̃i(X) = µ̃(f(X)− µ) a.s., i = 1, . . . , d̃. (3.28)

Continue to assume that d = 1, and assume for simplicity that Y :=
f(X) > 0 a.s. Thus Un(f) = Sn(f) :=

∑n
1 Yi is a renewal process, and its

overshoot (residual life time) is

R(x) := UN+(x) − x > 0. (3.29)

A classical result, see e.g. [10, Theorem 2.6.2], says that if 0 < µ <∞, then
R(x) converges in distribution. Recall that (the distribution of) Y has span
d > 0 if Y ∈ dZ a.s., and d is maximal with this property, and that (the
distribution of) Y is nonarithmetic if no such d exists.

Proposition 3.12 (e.g. [10]). Let R(x) be given by (3.29), and assume that
f(X) > 0 a.s.

(i) If f(X) is nonarithmetic, then R(x)
d−→ R∞ as x→∞, with

P
(
R∞ 6 y

)
=

1

µ

∫ y

0
P
(
f(X) > s

)
ds, y > 0. (3.30)
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(ii) If f(X) has span d > 0, then R(x)
d−→ R∞ as x→∞ with x ∈ dZ,

with

P
(
R∞ = kd

)
=
d

µ
P
(
f(X) > kd

)
, k > 1. (3.31)

�

This classical result may be combined with Theorem 3.11 as follows.

Theorem 3.13. Suppose in addition to the assumptions of Theorem 3.11
that f(X) > 0 a.s. Let R∞ be as in Proposition 3.12.

(i) If f(X) is nonarithmetic, then (3.26) and R(x)
d−→ R∞ hold jointly

as x→∞.

(ii) If f(X) has span d > 0, then (3.26) and R(x)
d−→ R∞ hold jointly as

x→∞ with x ∈ dZ.
(iii) If f(X) is integer-valued, then for every fixed integer k > 1, (3.26)

holds also conditioned on R(x) = k, for integers x = n→∞. More-
over, (3.26) holds also conditioned on UN−(x) = x, as x = n→∞.
(We consider only x such that we condition on an event of positive
probability.)

Note that in (iii), the event UN−(x) = x holds if and only if some partial

sum Un :=
∑n

1 f(Xi) = x.

Remark 3.14. If d = d̃ = 1, (3.27) reduces to γ2 = µ−3 Var
(
µf̃(X) −

µ̃f(X)
)
, as shown in [12, Theorem 3].

3.3. Moment convergence. In Corollary 3.5, we have convergence of the
second moment in (3.12), and trivially also of the first moment. We have
also convergence of higher moments, provided we assume the corresponding
integrability of f .

Theorem 3.15. Suppose that f(X1, . . . , Xd) ∈ Lp with p > 2. Then, (3.12)
holds with convergence of all moments and absolute moments of order 6 p.

For moment convergence in the renewal theory theorems, we assume for
simplicity that f and f̃ have finite moments of all orders; see also Re-
mark 6.1. (For the case d = d̃ = 1, see e.g. [17], [12], and [10, Section
3.8 and Theorem 4.2.3].)

Theorem 3.16. Suppose that f(X1, . . . , Xd) ∈ Lp for every p < ∞, and
thet µ > 0. Then, (3.18) and (3.19) hold with convergence of all moments
and absolute moments. In particular, as x→∞,

EN±(x) ∼
(d!

µ

)1/d
x1/d, (3.32)

VarN±(x) ∼
(
d!/µ

)2+1/d
d−2σ2x1/d. (3.33)

Theorem 3.17. Suppose that f(X1, . . . , Xd) ∈ Lp and f̃(X1, . . . , Xd̃) ∈
Lp for every p < ∞, and that µ > 0. Then, (3.20) and (3.21) hold with
convergence of all moments and absolute moments. In particular, as x→∞,

E ŨN±(x) ∼
µ̃

d̃!

(d!

µ

)d̃/d
xd̃/d, (3.34)
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Var ŨN±(x) ∼ γ2x(2d̃−1)/d. (3.35)

Theorem 3.18. Let d = 1. Suppose that f(X) ∈ Lp and f̃(X1, . . . , Xd̃) ∈
Lp for every p <∞, and that µ > 0.

(i) Then, (3.26) holds with convergence of all moments and absolute mo-
ments.

(ii) If furthermore f(X) is integer-valued and f(X) > 0, then (i) holds also
conditioned on R(x) = k or on UN−(x) = x as in Theorem 3.13(iii).

4. Proofs

4.1. Limit theorems. The method used by Hoeffding [14] and many later
papers is a decomposition, which in the asymmetric case is as follows. As-
sume that f(X1, . . . , Xd) ∈ L2 and define, recalling (2.1),

fi(x) := E
(
f(X1, . . . , Xd) | Xi = x

)
− µ

= E f
(
X1, . . . , Xi−1, x,Xi+1, . . . , Xd

)
− µ, (4.1)

f∗(x1, . . . , xd) := f(x1, . . . , xd)− µ−
d∑
j=1

fj(xj). (4.2)

(In general, these are defined only a.e., but that is no problem.) Then, by
the definition (1.1),

Un(f) =

(
n

d

)
µ+

d∑
j=1

∑
16i1<···<id6n

fj
(
Xij

)
+ Un(f∗)

=

(
n

d

)
µ+

d∑
j=1

n∑
i=1

(
i− 1

j − 1

)(
n− i
d− j

)
fj
(
Xi

)
+ Un(f∗). (4.3)

We consider the three terms in (4.3) separately. The first is a constant, and
we shall see that the third term is negligible, so the main term is the second
term.

Remark 4.1. The decomposition (4.3) may be continued to higher terms
by expanding f∗ further, see e.g. [14] for the symmetric case and [18, Chap-
ter 11.2] in general; this is important when treating degenerate cases, see
Remark 6.3, but for our purposes we have no need of this.

For the second term, we define for convenience, for 1 6 j 6 d and n > 1,

an,j(i) :=

(
i− 1

j − 1

)(
n− i
d− j

)
, 1 6 i 6 n, (4.4)

∆an,j(i) := an,j(i+ 1)− an,j(i), 1 6 i < n. (4.5)

Recall ψ(s, t) defined in (3.4), and let ψ′(s, t) denote ∂
∂sψ(s, t).

Lemma 4.2. Uniformly for all n, j, i such that the variables are defined,

an,j(i) = ψj(i, n) +O
(
nd−2

)
, (4.6)

∆an,j(i) = ψ′j(i, n) +O
(
nd−3

)
. (4.7)

In particular, an,j(i) = O
(
nd−1

)
and ∆an,j(i) = O

(
nd−2

)
. Furthermore (for

d 6 2), any error term O(n−1) or O(n−2) here vanishes identically.
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Proof. By (4.4), for 1 6 i 6 n,

an,j =
ij−1 +O(nj−2)

(j − 1)!
· (n− i)d−j +O(nd−j−1)

(d− j)!

=
ij−1(n− i)d−j

(j − 1)! (d− j)!
+O

(
nd−2

)
, (4.8)

which is (4.6). Similarly, for 1 6 i < n, with
(
k
−1
)

= 0,

∆an,j =

((
i

j − 1

)
−
(
i− 1

j − 1

))(
n− i
d− j

)
+

(
i

j − 1

)((
n− i− 1

d− j

)
−
(
n− i
d− j

))
=

(
i− 1

j − 2

)(
n− i
d− j

)
−
(

i

j − 1

)(
n− i− 1

d− j − 1

)
=

(j − 1)ij−2(n− i)d−j − (d− j)ij−1(n− i)d−j−1 +O
(
nd−3

)
(j − 1)! (d− j)!

= ψ′j(i, n) +O
(
nd−3

)
. (4.9)

�

We now take case of the second term in (4.3).

Lemma 4.3. Let

Ûn,j :=
n∑
i=1

(
i− 1

j − 1

)(
n− i
d− j

)
fj
(
Xi

)
=

n∑
i=1

an,j(i)fj
(
Xi

)
. (4.10)

Then, as n→∞, with Wj as in (3.3),

n−(d−1/2)Ûnt,j
d−→
∫ t

0
ψj(u, t) dWj(u), t > 0, (4.11)

in D[0,∞), jointly for j = 1, . . . , d.

Proof. Let for any function g : S → R,

Sn(g) := Un(g) :=

n∑
i=1

g(Xi). (4.12)

Then, by (4.12), (4.5), and a summation by parts,

Ûn,j =

n∑
i=1

an,j(i)fj(Xi) =

n∑
i=1

an,j(i)
(
Si(fj)− Si−1(fj)

)
= an,j(n)Sn(fj)−

n−1∑
i=1

∆an,j(i)Si(fj). (4.13)

By (4.1), E fj(X) = 0, and furthermore fj(X) ∈ L2. Hence, by Donsker’s
theorem,

n−1/2Snt(fj)
d−→Wj(t), (4.14)

in D[0,∞), jointly for j = 1, . . . , d, where Wj are continuous centered Gauss-
ian processes as in (3.3).
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By the Skorohod coupling theorem [23, Theorem 4.30], we may assume
that the convergence in (4.14) holds a.s., and thus as n→∞,

n−1/2Snt(fj) = Wj(t) + oa.s.(1), (4.15)

uniformly for t ∈ [0, T ] and all j, for every fixed T <∞. (Note that the error
term here, Rn,j,t say, is random; the uniformity means that supj6d, t6T |Rn,j,t|
a.s.−→ 0 for every T .)

Fix T , and letm = ns with s 6 T . Then, by (4.13), (4.15) and Lemma 4.2,
uniformly for s ∈ [0, T ],

n−1/2Ûm,j = am,j(m)Wj(s)−
m−1∑
i=1

∆am,j(i)Wj(i/n) + oa.s.
(
nd−1

)
= ψj(m,m)Wj(s)−

m−1∑
i=1

ψ′j(i,m)Wj(i/n) + oa.s.
(
nd−1

)
. (4.16)

Furthermore, since Wj is bounded and uniformly continuous on [0, T ], with

Wj(0) = 0, and ψ′j(s, t) = O(td−2), ψ′′j (s, t) = O(td−3) for 0 6 s 6 t,

m−1∑
i=1

ψ′j(i,m)Wj(i/n) =

∫ m

0
ψ′j(x,m)Wj(x/n) dx+ o

(
md−1)

= n

∫ s

0
ψ′j(nu, ns)Wj(u) du+ o

(
nd−1

)
= nd−1

∫ s

0
ψ′j(u, s)Wj(u) du+ o

(
nd−1

)
. (4.17)

An integration by parts yields (with stochastic integrals)∫ s

0
ψ′j(u, s)Wj(u) du = ψj(s, s)Wj(s)−

∫ s

0
ψj(u, s) dWj(u) (4.18)

and combining (4.16), (4.17) and (4.18) yields, using ψj(m,m) = nd−1ψj(s, s),

n−1/2Ûns,j = n−1/2Ûm,j = nd−1
∫ s

0
ψj(u, s) dWj(u) + oa.s.

(
nd−1

)
, (4.19)

uniformly for 0 6 s 6 T . Since T is arbitrary, this yields (4.11), jointly for
all j. �

To show that the final term in (4.3) is negligible, we give another lemma.
Cf. [30] for similar results in the symmetric case.

Lemma 4.4. Suppose that f(X1, . . . , Xd) ∈ L2.

(i) Then

E |U∗n(f − µ)|2 6 Cn2d−1‖f‖22. (4.20)

(ii) If furthermore fi = 0 for i = 1, . . . , d, then

E |U∗n(f − µ)|2 6 Cn2d−2‖f‖22. (4.21)

Proof. (i): We introduce another decomposition of f and Un, which unlike

the one in (4.1)–(4.3) focusses on the order of the arguments. Let F̂0 := µ
and, for 1 6 k 6 d,

F̂k(x1, . . . , xk) := E f(x1, . . . , xk, Xk+1, . . . , Xd), (4.22)
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Fk(x1, . . . , xk) := F̂k(x1, . . . , xk)− F̂k−1(x1, . . . , xk−1). (4.23)

In other words, F̂k(X1, . . . , Xk) := E
(
f(X1, . . . , Xd) | X1, . . . , Xk

)
, and thus

F̂k(X1, . . . , Xk), k = 0, . . . , d, is a martingale, with the martingale differences
Fk(X1, . . . , Xk), k = 1, . . . , d. Hence,

EFk(x1, . . . , xk−1, Xk) = 0. (4.24)

By (4.22)–(4.23), f(x1, . . . , xd)− µ =
∑d

k=1 Fk(x1, . . . , xk), and thus

Un(f − µ) =
d∑

k=1

∑
i1<···<ik6n

(
n− ik
d− k

)
Fk(Xi1 , . . . , Xik)

=
d∑

k=1

n∑
i=1

(
n− i
d− k

)(
Ui(Fk)− Ui−1(Fk)

)
= Un(Fd) +

d−1∑
k=1

n−1∑
i=1

(
n− i− 1

d− k − 1

)
Ui(Fk), (4.25)

using a summation by parts and the identity
(
n−i
d−k
)
−
(
n−i−1
d−k

)
=
(
n−i−1
d−k−1

)
. In

particular,

|Un(f − µ)| 6 |Un(Fd)|+
d−1∑
k=1

n−1∑
i=1

(
n− i− 1

d− k − 1

)
U∗n(Fk)

= |Un(Fd)|+
d−1∑
k=1

(
n− 1

d− k

)
U∗n(Fk) 6

d∑
k=1

nd−kU∗n(Fk). (4.26)

Since the right-hand side is weakly increasing in n, it follows that

U∗n(f − µ) 6
d∑

k=1

nd−kU∗n(Fk). (4.27)

By the definition (1.1), ∆Un(Fk) := Un(Fk)−Un−1(Fk) is a sum of
(
n−1
k−1
)

terms Fk(Xi1 , . . . , Xik−1
, Xn) that all have the same distribution, and thus

by Minkowski’s inequality,

E |∆Un(Fk)|2 = ‖∆Un(Fk)‖22 6
(
n− 1

k − 1

)2

‖Fk‖22 6 n2k−2‖f‖22. (4.28)

Furthermore, it follows from (4.24) that E
(
Un(Fk)− Un−1(Fk) | Fn−1

)
= 0,

and thus Un(Fk), n > 0, is a martingale. Consequently, using (4.28),

E |Un(Fk)|2 =

n∑
i=1

|E∆Ui(Fk)|2 6 n2k−1‖f‖22 (4.29)

and Doob’s inequality yields

‖U∗n(Fk)‖2 6 C‖Un(Fk)‖2 6 Cnk−1/2‖f‖2. (4.30)

Finally, (4.27), (4.30) and Minkowski’s inequality yield

‖U∗n(f − µ)‖2 6
d∑

k=1

nd−k‖U∗n(Fk)‖2 6 Cnd−1/2‖f‖2, (4.31)
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which yields (4.20) by squaring.
(ii): By (4.22)–(4.23) and (4.1),

E
(
Fk(X1, . . . , Xk) | Xk

)
= E

(
f(X1, . . . , Xd) | Xk

)
− E f = fk(Xk). (4.32)

Hence, assuming fk = 0,

E
(
Fk(X1, . . . , Xk) | Xk

)
= 0. (4.33)

It was seen in the proof of (i) that ∆Un(Fk) is a sum of
(
n−1
k−1
)

terms

Fk(Xi1 , . . . , Xik−1
, Xn). It now follows from (4.33) that if {i1, . . . , ik−1} and

{j1, . . . , jk−1} are two disjoint sets of indices, then, by first conditioning on
Xn,

E
(
Fk(Xi1 , . . . , Xik−1

, Xn)Fk(Xj1 , . . . , Xjk−1
, Xn)

)
= 0. (4.34)

Hence, only theO
(
n2k−3

)
pairs of index sets {i1, . . . , ik−1} and {j1, . . . , jk−1}

with at least one common element contribute to E
(
∆Un(Fk)

)2
, and we ob-

tain, for 1 6 k 6 d, that (4.28) is improved to

E |∆Un(Fk)|2 6 Cn2k−3‖f‖22. (4.35)

(For k = 1, F1 = f1 = 0, and (4.35) still holds.) The result now follows as in
(i), see (4.29)–(4.31), by (4.35), Doob’s inequality, (4.27) and Minkowski’s
inequality. �

Proof of Theorem 3.2. We use the decomposition (4.3), with n replaced by

bntc. For the constant term, note that
(bntc
d

)
µ = ndtdµ/d! +O

(
nd−1

)
when

t = O(1).

The second term in (4.3) is
∑d

j=1 Ûnt,j , using the notation in (4.10), and

we use Lemma 4.3; (4.11) shows that this term divided by nd−1/2 converges
in D[0,∞) to Zt defined in (3.6).

For the third term, we apply Lemma 4.4 to f∗. It follows from the defi-
nition (4.2) that µ∗ := E f∗(X1, . . . , Xd) = 0 and that, applying (4.1) to f∗,
(f∗)i = 0 for every i 6 d. Hence, Lemma 4.4(ii) applies to f∗ and yields

E |U∗n(f∗)|2 6 Cn2d−2‖f∗‖22 6 Cn2d−2‖f‖22. (4.36)

Let T > 0 be fixed. Applying (4.36) to nT , we see in particular that

n−(d−1/2)Unt(f∗)
p−→ 0 uniformly on [0, T ].

Consequently, (3.5) follows from (4.3).

Joint convergence for several functions f (k), with limits given by (3.8),

follows by the same proof, using joint convergence for all f
(k)
i in (4.14). �

Proof of Theorem 3.1. We do this in several steps.

Step 1. First, suppose that f(X1, . . . , Xd) ∈ L2. We may assume µ = 0,
and then Lemma 4.4(i) implies, for any N > 1,

E sup
N6n62N

(
|Un|/nd

)2
6 N−2d E(U∗2N )2 6 CN−1‖f‖22. (4.37)

Summing over all N = 2m, m = 0, 1, . . . , we find

E
∞∑
m=0

sup
2m6n62m+1

(
|Un|/nd

)2
<∞. (4.38)
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Hence, a.s. the terms in the sum tend to 0, which implies Un/n
d → 0 and

thus Un/
(
n
d

)
→ 0 = µ. This proves (3.1) for f ∈ L2.

Step 2. Assume now f ∈ L1 and f > 0. Define the truncation fM := f ∧M .
Then fM ∈ L2 and Step 1 shows that for every M <∞, a.s.,

lim inf
n→∞

Un(f)(
n
d

) > lim inf
n→∞

Un(fM )(
n
d

) = E fM (X1, . . . , Xd). (4.39)

Letting M →∞ yields lim infn→∞ Un(f)/
(
n
d

)
> µ a.s.

Step 3. Continue to assume f ∈ L1 and f > 0. For every permutation
π ∈ Sd, let fπ(X1, . . . , Xd) := f(Xπ(1), . . . , Xπ(d)), and let F :=

∑
π∈S fπ

and g := F − f =
∑

π 6=id fπ. Note that f, g ∈ L1 with f, g > 0; thus Step 2
applies to both f and g. Furthermore, F = f + g is symmetric, so we have

Un(F )/
(
n
d

) a.s.−→ EF := EF (X1, . . . , Xd) by the theorem by Hoeffding [15]
for the symmetric case. (This case has a simple reverse martingale proof,
see Remark 6.6.) Consequently, a.s.,

lim sup
n→∞

Un(f)(
n
d

) = lim
n→∞

Un(F )(
n
d

) − lim inf
n→∞

Un(g)(
n
d

) 6 EF − E g = µ. (4.40)

Combined with Step 2, this shows (3.1) for every f ∈ L1 with f > 0.

Step 4. The general case follows by linearity. �

We used for convenience the known symmetric case in this proof. An
alternative would be to use suitable truncations, similarly to the original
proof of the symmetric case by Hoeffding [15].

Lemma 4.5. Suppose that f(X1, . . . , Xd) ∈ L2. Then, as n→∞, with Z1

defined by (3.6),

VarUn
n2d−1

→ σ2 := VarZ1

=

d∑
i,j=1

(i+ j − 2)! (2d− i− j)!
(i− 1)! (j − 1)! (d− i)! (d− j)! (2d− 1)!

σij . (4.41)

Proof. We may assume µ = 0. Then

VarUn = EU2
n =

∑
i1<···<id

∑
j1<···<jd

E
(
f(Xi1 , . . . , Xid)f(Xj1 , . . . , Xjd)

)
,

(4.42)
where all terms with {i1, . . . , id} ∩ {j1, . . . , jd} = ∅ vanish. There are only
O
(
n2d−2

)
terms with |{i1, . . . , id} ∩ {j1, . . . , jd}| > 2, so we concentrate on

the case when, say, ik = j` = i, and all other indices are distinct. Thus,
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using (4.1) and the notation (4.4) together with (3.2) and Lemma 4.2,

EU2
n =

d∑
k=1

d∑
`=1

n∑
i=1

an,k(i)an,`(i)E
(
fk(Xi)f`(Xi)

)
+O

(
n2d−2

)
=

d∑
k=1

d∑
`=1

n∑
i=1

ψk(i, n)ψ`(i, n)σk` +O
(
n2d−2

)
=

d∑
k=1

d∑
`=1

σk`

∫ n

0
ψk(x, n)ψ`(x, n) dx+O

(
n2d−2

)
= n2d−1

d∑
k=1

d∑
`=1

σk`

∫ 1

0
ψk(u, 1)ψ`(u, 1) du+O

(
n2d−2

)
. (4.43)

Consequently, by (3.7),

VarUn
n2d−1

→
d∑

k=1

d∑
`=1

σk`

∫ 1

0
ψk(u, 1)ψ`(u, 1) du = Var(Z1). (4.44)

Furthermore, this equals the sum in (4.41), as is seen by taking s = t = 1
in (3.7) and evaluating the resulting Beta integral. �

Remark 4.6. Similarly, it follows more generally that Cov
(
Uns, Unt

)
/n2d−1 →

Cov(Zs, Zt) given by (3.7), for any fixed s, t > 0. In other words, (3.5) holds
with convergence of second moments.

Proof of Corollary 3.5. The functional limit (3.5) implies, since Zt is con-
tinuous, convergence (in distribution) for each fixed t > 0. Taking t = 1 we
obtain (3.12) with σ2 = VarZ1, which is evaluated by Lemma 4.5.

By (3.7) and (3.2),

Var(Z1) =
d∑

i,j=1

Cov
(
fi(X), fj(X)

) ∫ 1

0
ψi(s, 1)ψj(s, 1) ds

=

∫ 1

0
Var
( d∑
i=1

ψi(s, 1)fi(X)
)

ds (4.45)

Hence, σ2 = 0 ⇐⇒
∑d

i=1 ψi(s, 1)fi(X) = 0 a.s. for (almost) every s ∈ [0, 1],
which is equivalent to fi(X) = 0 a.s. for every i since the polynomials ψi(s, 1)
are linearly independent. �

4.2. Renewal theory.

Proof of Theorem 3.7. Consider first N−. Note that Theorem 3.1 and µ > 0
imply Un →∞ a.s., and then N−(x) <∞ for every x.

Furthermore, it is trivial that N−(x) → ∞ as x→∞. Thus we may
substitute n = N−(x) in (3.1) and obtain

UN−(x)

N−(x)d
=
UN−(x)(N−(x)

d

) · (N−(x)
d

)
N−(x)d

a.s.−→ µ

d!
as x→∞. (4.46)
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Furthermore, we also have, again by (3.1),

UN−(x)+1

N−(x)d
=
UN−(x)+1(N−(x)+1

d

) · (N−(x)+1
d

)
N−(x)d

a.s.−→ µ

d!
. (4.47)

By the definition of N−(x), UN−(x) 6 x < UN−(x)+1, and thus (4.46)–(4.47)
imply

x

N−(x)d
a.s.−→ µ

d!
as x→∞. (4.48)

which is equivalent to (3.18) for N−.
The proof for N+ is the same, using UN+(x)−1 6 x < UN+(x). �

Proof of Theorem 3.8. Again, we consider N−; the argument for N+ is the
same. Let

n(x) := (d!/µ)1/dx1/d, (4.49)

T (x) := N−(x)/bn(x)c. (4.50)

As x→∞, n(x)→∞ and thus (3.5) implies

Ubn(x)ct − (bn(x)ct)dµ/d!

n(x)d−1/2
d−→ Zt in D[0,∞). (4.51)

Furthermore, (3.18) implies

T (x)→ 1 (4.52)

a.s., and thus in probability. Hence, (4.51) and (4.52) hold jointly in dis-
tribution [2, Theorem 4.4]. Now, (F, t) 7→ F (t) is a measurable mapping
D[0,∞)× [0,∞)→ R that is continuous at every (F, t) with F continuous.
Hence, by [2, Theorem 5.1], it follows from the joint convergence in (4.51)
and (4.52), together with continuity of Zt, that we may substitute t = T (x)
in (4.51) and obtain, as x→∞,

UN−(x) −N−(x)dµ/d!

n(x)d−1/2
d−→ Z1. (4.53)

Taking instead t = T1(x) := (N−(x) + 1)/bn(x)c, we similarly obtain

UN−(x)+1 −N−(x)dµ/d!

n(x)d−1/2
=
UN−(x)+1 − (N−(x) + 1)dµ/d! +O

(
N−(x)d−1 + 1

)
n(x)d−1/2

d−→ Z1, (4.54)

using (N−(x)d−1 + 1)/n(x)d−1/2
p−→ 0 by (3.18) and (4.49). Since UN−(x) 6

x < UN−(x)+1, (4.53) and (4.54) together imply, as x→∞,

x−N−(x)dµ/d!

n(x)d−1/2
d−→ Z1. (4.55)

Hence, recalling (4.49),

x

n(x)d−1/2

((
N−(x)

n(x)

)d
− 1

)
=
N−(x)dµ/d!− x

n(x)d−1/2
d−→ −Z1. (4.56)
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Furthermore, letting T2(x) := N−(x)/n(x), we have T2(x)
a.s.−→ 1 by (3.18),

and thus, interpreting the quotients as d when T2(x) = 1,(
N−(x)/n(x)

)d − 1(
N−(x)/n(x)

)
− 1

=
T2(x)d − 1

T2(x)− 1

a.s.−→ d. (4.57)

Dividing (4.56) by (4.57) yields

x

n(x)d−1/2

(
N−(x)

n(x)
− 1

)
d−→ −1

d
Z1. (4.58)

Since

N−(x)− n(x)

x1/2d
=

(
n(x)

x1/d

)d+1/2 x

n(x)d−1/2

(
N−(x)

n(x)
− 1

)
, (4.59)

(4.58) and (4.49) imply

N−(x)− n(x)

x1/2d
d−→ −

(
d!

µ

)1+1/2d

d−1Z1, (4.60)

which yields (3.19), since Z1 ∼ N(0, σ2) by Lemma 4.5. �

Proof of Theorem 3.9. (i): By Theorem 3.1 for f̃ and (3.18),

ŨN±(x)

xd̃/d
=

ŨN±(x)

N±(x)d̃
N±(x)d̃

xd̃/d
a.s.−→ µ̃

d̃!

(d!

µ

)d̃/d
. (4.61)

(ii): Define again n(x) and T (x) by (4.49)–(4.50). We have joint conver-

gence in (3.5) for f and f̃ , and thus, as x→∞, (4.51) holds jointly with

Ũbn(x)ct − (bn(x)ct)d̃µ̃/d̃!

n(x)d̃−1/2
d−→ Z̃t in D[0,∞). (4.62)

By (4.52) and the argument in the proof of Theorem 3.8, now using the

mapping (F, F̃ , t) 7→ (F (t), F̃ (t)) that maps D[0,∞) ×D[0,∞) × [0,∞) →
R2, it follows that (4.53) holds jointly with

ŨN−(x) −N−(x)d̃µ̃/d̃!

n(x)d̃−1/2
d−→ Z̃1. (4.63)

Furthermore, (4.53) and (4.55) together with UN−(x) 6 x imply

x− UN−(x)

n(x)d−1/2
p−→ 0. (4.64)

Consequently, (4.55) and (4.63) hold jointly. The argument in the proof
of Theorem 3.8 now holds with every convergence in distribution holding
jointly with (4.63). Hence, (4.63) holds jointly with (4.60), which implies,
see (4.57) and (4.49),

N−(x)d̃ − n(x)d̃

n(x)d̃−1/2
=

(
N−(x)/n(x)

)d̃ − 1(
N−(x)/n(x)

)
− 1

N−(x)− n(x)

n(x)1/2
d−→ −d̃ d!

µ
d−1Z1.

(4.65)
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Consequently, (4.63) and (4.65) hold jointly, and thus

ŨN−(x) − n(x)d̃µ̃/d̃!

n(x)d̃−1/2
d−→ Ẑ := Z̃1 −

(d− 1)! µ̃

(d̃− 1)!µ
Z1. (4.66)

We obtain (3.21)–(3.22) by substituting the definition (4.49) of n(x).

(iii): By (3.22), γ2 = 0 ⇐⇒ Var
(
µ(d̃ − 1)! Z̃1 − µ̃(d − 1)!Z1

)
= 0, and

arguing as in (4.45), and recalling (3.8), this is equivalent to

Var
(
µ(d̃−1)!

d̃∑
i=1

ψi;d̃(s, 1)f̃i(X)− µ̃(d−1)!
d∑
j=1

ψj;d(s, 1)fj(X)
)

= 0 (4.67)

for (almost) every s ∈ [0, 1], and by the definition (3.4), this is the same as

µ

d̃∑
i=1

(
d̃− 1

i− 1

)
si−1(1− s)d̃−if̃i(X) = µ̃

d∑
j=1

(
d− 1

j − 1

)
sj−1(1− s)d−jfj(X)

(4.68)
a.s., for every s.

If d̃ > d, multiply the right-hand side of (4.68) by (s + 1 − s)d̃−d =∑d̃−d
k=0

(
d̃−d
k

)
sk(1 − s)d̃−d−k, which equals 1, and identify the coefficients of

si−1(1 − s)d̃−i on both sides; this yields (3.23). Conversely, (3.23) implies
(4.68) by the same argument.

The case d̃ < d follows by the symmetry in (4.68).
The special cases (3.24) and (3.25) are immediate consequences of (3.23).

�

Proof of Theorem 3.11. Take d = 1 in Theorem 3.9(ii). To obtain the for-

mula (3.27) for γ2, we use (3.22) and note first that Var(Z̃1) is given by
(3.13), mutatis mutandis, which yields the first term on the right-hand side
of (3.27). Furthermore, (3.13) yields also, with d = 1, Var(Z1) = σ11 =
Var(f(X)), yielding the third term. Finally, note that when d = 1, (3.4)
yields ψ1;1(s, t) = 1, and thus (3.6) yields Zt = W (t); consequently, using
(3.6) and (3.8) and a standard Beta integral,

Cov
(
Z̃1, Z1

)
=

d̃∑
j=1

Cov
(∫ 1

0
ψj;d̃(s, 1) dW̃j(s),

∫ 1

0
dW (s)

)

=

d̃∑
j=1

∫ 1

0
ψj;d̃(s, 1) Cov

(
f̃j(X), f(X)

)
ds

=
d̃∑
j=1

1

d̃!
Cov

(
f̃j(X), f(X)

)
. (4.69)

This yields the second term on the right-hand side, and completes the proof.
�

Proof of Theorem 3.13. Let (for x > 2, say) x− := x− lnx in the nonarith-
metic case, and x− := db(x − lnx)/dc if f(X) has span d > 0; also, in the
latter case, consider only x ∈ dZ.
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First, run the process until the stopping time N+(x−). Let

∆x := x− UN+(x−) = x− x− −R(x−). (4.70)

As x→∞, R(x−)
d−→ R∞ by Proposition 3.12, and x − x− > lnx → ∞;

hence ∆x
p−→ ∞. In particular, with probability tending to 1 as x→∞,

∆x > 0.
Restart the process afterN+(x−) and continue untilN+(x). SinceN+(x−)

is a stopping time, this continuation is independent of what happened up
to N+(x−), and thus it can be regarded as a renewal process S∗n starting
at 0 and running to N+(∆x); in particular, the overshoot R∗(∆x) of this
renewal process equals the overshoot R(x) of the original one. Here ∆x is

random, but independent of the renewal process S∗n, and since ∆x
p−→ ∞,

Proposition 3.12 implies that the overshoot R(x) = R∗(∆x)
d−→ R∞. Fur-

thermore, this holds conditioned on any events E(x−) that depend on the
original process up to N+(x−), provided lim infx→∞ P(E(x−)) > 0.

Denote the left-hand side of (3.26) by Ṽ (x). By (3.26), Ṽ (x−)
d−→

N(0, γ2) as x→∞. Fix a, b ∈ R and let E(x−) := {Ṽ (x−) 6 a}. It then
follows from the argument above that, as x→∞,

P
(
Ṽ (x−) 6 a, R(x) 6 b

)
= P

(
R(x) 6 b | Ṽ (x−) 6 a

)
P
(
Ṽ (x−) 6 a

)
d−→ P

(
R∞ 6 b

)
P
(
N(0, γ2) 6 a

)
. (4.71)

Consequently, Ṽ (x−) and R(x) converge jointly, with independent limits
given by (3.26) and (3.30)–(3.31).

It remains only to replace by Ṽ (x−) by Ṽ (x). First, since x− = x−O(lnx)

it follows that Ṽ (x−)
d−→ N(0, γ2) is equivalent to

ŨN±(x−) − µ−d̃µ̃d̃!
−1
xd̃

xd̃−1/2
d−→ N

(
0, γ2

)
, (4.72)

Hence, (4.72) and R(x)
d−→ R∞ hold jointly, with independent limits.

Next, suppose first that f̃(X1, . . . , Xd̃) > 0. Then, ŨN±(x) > ŨN±(x−) a.s.,
and thus (3.26) and (4.72) imply

ŨN±(x) − ŨN±(x−)

xd̃−1/2
p−→ 0. (4.73)

By linearity, (4.73) holds for arbitrary f̃ ∈ L2. Finally, (4.73) and (4.72)
imply (3.26), and hence (4.73) and the joint convergence of (4.72) and

R(x)
d−→ R∞ imply the joint convergence of (3.26) and R(x)

d−→ R∞,
proving (i) and (ii).

For (iii), let d be the span of f(X), and assume first d = 1. Note that
P(R∞ = k) = 0 ⇐⇒ P

(
f(X) > k

)
= 0 by (3.31), and then (3.29) implies

R(x) 6 f(XN+(x)) < k a.s. for every x; hence we only consider k such that
P(R∞ = k) > 0, and the first part of (iii) follows from (ii).

If the span d > 1, then R(x) = k implies x+k = UN+(x) ≡ 0 (mod d) and
thus x ≡ −k (mod d), so we consider only x ∈ −k + dZ. Let k0 := ddk/de
and ∆ := k0−k ∈ [0, d−1]. Then x−∆ ≡ x+k ≡ 0 (mod d), and thus, since
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Sn(f) ∈ dZ, N+(x) = N+(x−∆) and R(x−∆) = UN+(x)−x+∆ = R(x)+∆;
hence

R(x) = k ⇐⇒ R(x−∆) = k + ∆ = k0. (4.74)

Hence, we may replace x and k by x − ∆ and k0, and thus it suffices to
consider x, k ∈ dZ, but then we can reduce to the case d = 1 by replacing
f(X) by f(X)/d.

Finally, for an integer n, UN−(n) = n ⇐⇒ R(n − 1) = 1. Hence, (3.26)
with x = n− 1 holds as n→∞, also conditioned on UN−(n) = n. The argu-

ment above showing (4.73) shows also that (ŨN±(n)−ŨN±(n−1))/n
d̃−1/2 p−→ 0

as n→∞, and it follows that (3.26) with x = n holds as n→∞, conditioned
on UN−(n) = n. �

4.3. Moment convergence. We turn to proving the theorems on moment
convergence in Section 3.3, and begin by extending Lemma 4.4 to higher
absolute moments.

Lemma 4.7. Suppose that f(X1, . . . , Xd) ∈ Lp with p > 2. Then

E |U∗n(f − µ)|p 6 Cpnp(d−1/2)‖f‖pp. (4.75)

Proof. We use the same decomposition as in the proof of Lemma 4.4. Note

that, by Jensen’s inequality, ‖F̂k‖p 6 ‖f‖p, and thus,

‖Fk‖p 6 2‖f‖p, 1 6 k 6 d. (4.76)

Hence, Minkowski’s inequality yields, as in (4.28),

E |∆Un(Fk)|p = ‖∆Un(Fk)‖pp 6
(
n− 1

k − 1

)p
‖Fk‖pp 6 Cpnpk−p‖f‖pp. (4.77)

Consequently, the Burkholder inequalities [11, Theorem 10.9.5(i)] applied to
the martingale Un(Fk) yield, using also Hölder’s inequality,

E |U∗n(Fk)|p 6 Cp E
( n∑
i=1

|∆Ui(Fk)|2
)p/2

6 Cp E
(
np/2−1

n∑
i=1

|∆Ui(Fk)|p
)

= Cpn
p/2−1

n∑
i=1

E |∆Ui(Fk)|p 6 Cpnpk−p/2‖f‖pp. (4.78)

Equivalently,

‖U∗n(Fk)‖p 6 Cpnk−1/2‖f‖p. (4.79)

Finally, (4.27), (4.79) and Minkowski’s inequality yield

‖U∗n(f − µ)‖p 6
d∑

k=1

nd−k‖U∗n(Fk)‖p 6 Cpnd−1/2‖f‖p, (4.80)

which is (4.75). �

We shall also use the following standard result, stated in detail and proved
for convenience and completeness.

Lemma 4.8. Let {Vα : α ∈ A} be a set of random variables, and let 0 <
p < q. Suppose that for every ε > 0 there exist decompositions Vα = V ′α+V ′′α
and a Bε < ∞ such that, for every α ∈ A, ‖V ′α‖q 6 Bε and ‖V ′′α ‖p 6 ε.
Then the set {|Vα|p} is uniformly integrable.
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Proof. If δ > 0 and E is any event with P(E) 6 δ, then, using Hölder’s
inequality,

E
(
|Vα|p1E

)
6 Cp E

(
|V ′α|p1E

)
+ Cp E

(
|V ′′α |p1E

)
6 Cp‖V ′α‖pq P(E)1−p/q + Cp‖V ′′α ‖pp
6 CpB

p
εδ

1−p/q + Cpε
p. (4.81)

Since ε is arbitrary, this can be made arbitrarily small, uniformly in α, by
choosing first choosing ε and then δ small. �

Proof of Theorem 3.15. Denote the left-hand side of (3.12) by Vn. Then
E |Vn|p is bounded by Lemma 4.7. This implies convergence of all moments
and absolute moments of order < p in (3.12) by standard arguments, but is
not by itself enough to include moments of order p. Thus we use a truncation:
let M > 0 and let f = f ′ + f ′′ with f ′ := f1{|f | 6 M}. This yields a
corresponding decomposition Vn = V ′n + V ′′n . Let εM := ‖f ′′‖p. Then

εM := ‖f1{|f | > M}‖p → 0 as M →∞. (4.82)

Lemma 4.7 yields
‖V ′′n ‖p 6 Cp‖f ′′‖p = CpεM (4.83)

and also, using 2p instead of p,

‖V ′n‖
2p
2p 6 Cp‖f

′‖2p2p = Cp E |f ′|2p 6 CpMp E |f |p. (4.84)

(4.82)–(4.84) show that the conditions of Lemma 4.8 are satisfied; hence,
{|Vn|p} is uniformly integrable, and the result follows from (3.12). �

We use another simple lemma.

Lemma 4.9. Suppose that, for each x > 1, V (x) is a non-negative random
variable and v(x) > 0 is deterministic.

(i) If p > 1, q > 1 and, for some function h(x) > 0,

E |V (x)q − v(x)q|p = O
(
v(x)pqh(x)p

)
, x > 1, (4.85)

then
E |V (x)− v(x)|p = O

(
v(x)ph(x)p

)
, x > 1. (4.86)

(ii) Conversely, if (4.86) holds for every p > 1 and h(x) 6 1, then (4.85)
holds for every p, q > 1.

Proof. (i): If a > b > 0, then

aq−bq = aq
(
1−(b/a)q

)
> aq

(
1−(b/a)

)
= aq−1(a−b) = max{a, b}q−1(a−b).

(4.87)
Hence, by symmetry, for all a, b > 0,

|aq − bq| > max{a, b}q−1|a− b|. (4.88)

In particular,

|V (x)q − v(x)q| > v(x)q−1|V (x)− v(x)|, (4.89)

and thus (4.85) implies (4.86).
(ii): If V (x) 6 2v(x), then, by the mean value theorem, |V (x)q−v(x)q| 6

Cqv(x)q−1|V (x)− v(x)|. Thus, using (4.86),

E
(
|V (x)q − v(x)q|p1{V (x) 6 2v(x)}

)
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6 Cp,qv(x)pq−p E |V (x)− v(x)|p = O
(
v(x)pqh(x)p

)
. (4.90)

On the other hand, if V (x) > 2v(x), then |V (x)q − v(x)q| 6 V (x)q 6
2q|V (x)− v(x)|q. Thus, using (4.86) with p replaced by pq,

E
(
|V (x)q − v(x)q|p1{V (x) > 2v(x)}

)
6 Cp,q E |V (x)− v(x)|pq = O

(
v(x)pqh(x)pq

)
. (4.91)

The result follows by (4.90) and (4.91). �

Proof of Theorem 3.16. As usual, we consider for definiteness N−(x). By
the definition (3.16), UN−(x) 6 x < UN−(x)+1. Hence,

− U∗N−(x)(f − µ) 6 UN−(x)(f − µ) 6 x−
(
N−(x)

d

)
µ

6 U∗N−(x)+1(f − µ) + CfN−(x)d−1 (4.92)

and thus ∣∣∣x−N−(x)d
µ

d!

∣∣∣ 6 U∗N−(x)+1(f − µ) + CfN−(x)d−1. (4.93)

Suppose throughout x > 1, and recall n(x) defined by (4.49). By (4.93)
and Lemma 4.7, for any p > 0 and any A > 1,

E
(∣∣∣x−N−(x)d

µ

d!

∣∣∣p1{N−(x) 6 An(x)}
)

6 Cp E |U∗An(x)+1(f − µ)|p + Cp,f
(
An(x)

)p(d−1)
6 Cp,f

(
An(x)

)p(d−1/2)
= Cp,fA

p(d−1/2)xp(1−1/2d). (4.94)

Furthermore, for any constant A > 2, N−(x) > An(x) implies N−(x)d µd! −
x > (Ad − 1)x > 1

2A
dx. Hence, for any p > 0 and q > 0, using (4.94),

E
(∣∣∣x−N−(x)d

µ

d!

∣∣∣p1{An(x) < N−(x) 6 2An(x)}
)

6 CqA
−dqx−q E

(∣∣∣x−N−(x)d
µ

d!

∣∣∣p+q1{N−(x) 6 2An(x)}
)

6 Cp,q,fA
(p+q)(d−1/2)−dqx(p+q)(1−1/2d)−q

= Cp,q,fA
p(d−1/2)−q/2xp(1−1/2d)−q/2d. (4.95)

Choosing q := 2dp, we obtain by summing (4.94) with A = 2 and (4.95)
with A = 2k, k = 1, 2, . . . , for every p > 0,

E
∣∣n(x)d −N−(x)d

∣∣p = Cp,f E
∣∣∣x−N−(x)d

µ

d!

∣∣∣p
6 Cp,fx

p(1−1/2d) + Cp,f

∞∑
k=1

2−kp/2x−p/2d

6 Cp,fx
p(1−1/2d). (4.96)

By Lemma 4.9(i), with q = d and h(x) := x−1/2d, (4.96) implies, for p > 1,

E
∣∣n(x)−N−(x)

∣∣p 6 Cp,fxp/2d. (4.97)

This shows that if Y (x) denotes the left-hand side of (3.19), then E |Y (x)|p 6
Cp,f for x > 1. By standard arguments [11, Chapter 5.4–5], this implies
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uniform integrability of |Y (x)|r for any r < p, and thus by (3.19) convergence
of moments of order < p. Since p is arbitrary, convergence of arbitrary
moments in (3.19) follows.

Moment convergence in (3.18) is an immediate corollary. Alternatively,
(4.96) implies

E
(
N−(x)dp

)
= O

(
xp
)
, x > 1, (4.98)

for every fixed p > 0, which implies moment convergence in (3.18) by the
same uniform integrability argument. �

Proof of Theorem 3.17. Recall again the definition (4.49) of n(x), and sup-
pose again x > 1. We decompose the numerator in (3.21):

ŨN±(x)−
(d!

µ

)d̃/d µ̃
d̃!
xd̃/d = UN±(x)(f̃−µ̃)+

µ̃

d̃!

(
N±(x)d̃−n(x)d̃

)
+O
(
N±(x)d̃−1

)
.

(4.99)
For the first term on the right-hand side of (4.99), we argue similarly to

the proof of Theorem 3.16. First, for any A > 2, by Lemma 4.7,

E
(∣∣UN±(x)(f̃ − µ̃)

∣∣p1{N±(x) 6 An(x)}
)
6 E

∣∣U∗An(x)(f̃ − µ̃)
∣∣p

6 Cp,f̃
(
An(x)

)p(d̃−1/2)
= Cp,f,f̃

(
Ax1/d

)p(d̃−1/2)
. (4.100)

Furthermore, for any q > 0, taking p = 0 in (4.95),

P
(
An(x) < N(x) 6 2An(x)

)
6 Cq,f

(
Ax1/d

)−q/2
. (4.101)

Consequently, using the Cauchy–Schwarz inequality, (4.100)–(4.101), and

choosing q := 4(pd̃+ 1),

E
(∣∣ŨN±(x)(f̃ − µ̃)

∣∣p1{An(x) < N±(x) 6 2An(x)}
)

6
(
E
(∣∣ŨN±(x)(f̃ − µ̃)

∣∣2p1{N±(x) 6 2An(x)}
))1/2

× P
(
An(x) < N±(x) 6 2An(x)

)1/2
6 Cp,f,f̃

(
Ax1/d

)p(d̃−1/2)−q/4
6 Cp,f,f̃A

−1xp(d̃−1/2)/d. (4.102)

Summing (4.100) for A = 2 and (4.102) for A = 2k, k = 1, 2, . . . , we obtain

E
∣∣ŨN±(x)(f̃ − µ̃)

∣∣p 6 Cp,f,f̃xp(d̃−1/2)/d(1 +
∞∑
k=1

2−k
)

= Cp,f,f̃x
p(d̃−1/2)/d.

(4.103)

For the second term on the right-hand side of (4.99), we use (4.97) and

Lemma 4.9(ii), with q = d̃ and h(x) := x−1/2d, and conclude, for every
p > 1,

E
∣∣N±(x)d̃ − n(x)d̃

∣∣p 6 Cp,f,f̃xp(d̃−1/2)/d. (4.104)

Finally, by Theorem 3.16 we have moment convergence in (3.18) and thus

E
(
N±(x)p(d̃−1)

)
= O

(
xp(d̃−1)/d

)
, (4.105)

which also follows from (4.98) (changing p).
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It follows from (4.99) and (4.103)–(4.105) that

E
∣∣∣∣ ŨN±(x) −

(
d!
µ

)d̃/d µ̃
d̃!
xd̃/d

x(d̃−1/2)d

∣∣∣∣p 6 Cp,f,f̃ . (4.106)

Since p is arbitrary, this implies convergence of arbitrary moments in (3.21)
by the same standard argument as in the proof of Theorem 3.16.

Moment convergence in (3.20) is a corollary. �

Proof of Theorem 3.18. (i): This is a special case of Theorem 3.17.
(ii): Denote the left-hand side of (3.26) by V (x), for integers x > 1, and

let p > 0. It follows from (i) that the family |V (x)|p, x > 1, is uniformly
integrable. This property is preserved by the conditioning, since we condi-
tion on a sequence of events Ex with lim infx→∞ P(Ex) > 0 by the proof of
Theorem 3.13; hence the result follows from Theorem 3.13. �

5. Examples and applications

Example 5.1. Let d = 2, and let f be anti-symmetric: f(y, x) = −f(x, y);
this case was studied in [22]. We have µ = 0 and f2(x) = E f(X,x) =
−E f(x,X) = −f1(x); hence σ11 = −σ12 = σ22 and (3.3) implies W2(t) =
−W1(t) = σB(t), where σ := ‖f1‖2 > 0 and B(t) is a standard Brownian
motion.

For d = 2, (3.4) yields ψ1(s, t) = t−s and ψ1(s, t) = s. Hence, (3.5), (3.6)
and integration by parts, see (4.18), yield

Unt

n3/2
d−→ Zt =

∫ t

0
(t− 2s) dW1(s) = −tW1(t) + 2

∫ t

0
W1(s) ds

= σtB(t)− 2σ

∫ t

0
B(s) ds (5.1)

in D[0,∞), as shown in [22] (where also the degenerate case σ = 0 is studied
further).

Example 5.2 (Substrings). Consider a random string X1 · · ·Xn of length
n from a finite alphabet A, with the letters Xi i.i.d. with some distribution
P(Xi = a) = pa, a ∈ A. Fix a pattern W = w1 · · ·wm; this is an arbitrary
string in Am, for some m > 1. A substring of X1 · · ·Xn is any string
Xi1 · · ·Xik with 1 6 i1 < · · · < ik 6 n, and we let Nn = NW(X1 · · ·Xn)
be the number of substrings that have the pattern W. Obviously, this is an
asymmetric U -statistic as in (1.1) with S = A, d = m and

f(x1, . . . , xm) := 1{x1 · · ·xm = w1 · · ·wm} =

m∏
i=1

1{xi = wi}. (5.2)

Corollary 3.5 yields asymptotic normality of Nn as n→∞, as shown by
Flajolet, Szpankowski and Vallée [8].

For example, let A := {0, 1}, let Xi ∼ Be(12), and let W := 10. A simple

calculation yields f1(x) = 1
2(x− 1

2) = −f2(x), and σ11 = σ22 = −σ12 = 1/16;
thus Corollary 3.5 yields, see (3.15),

Nn − n/4√
n

d−→ N
(

0,
1

48

)
. (5.3)
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Furthermore, calculations as in Example 5.1 show that the functional limit
(5.1) holds in this case too, with σ = 1/4.

Example 5.3 (Patterns in permutations). Let π = π1 · · ·πn be a uniformly
random permutation of length n, and let the pattern σ = σ1 · · ·σm be a fixed
permutation of length m. The number of occurences of σ in π, denoted by
Nn = Nσ(π) is the number of substrings (see Example 5.2) of π that have
the same relative order as σ.

We can generate the random permutation π by taking i.i.d. random vari-
ablesX1, . . . , Xn ∼ U(0, 1), and then replacing these numbers by their ranks.
Then Nn is the U -statistic with d = m given by the function

f(x1, . . . , xm) = 1{x1 · · ·xm have the same relative order as σ1 · · ·σm}.
(5.4)

Corollary 3.5 shows that Nn is asymptotically normal as n→∞. For details,
including explicit variance calculations, see [21]; see also the earlier proof of
asymptotic normality by Bóna [3, 4].

For example, taking σ = 21, Nn is the number of inversions in π, and we
obtain by simple calculations the well-known result, see e.g. [7, Section X.6],

Nn − n2/4
n3/2

d−→ N
(

0,
1

36

)
. (5.5)

Example 5.4 (Restricted permutations I). Fix a set T of permutations,
and consider only permutations π of length n that avoid T , in the sense
that there is no occurence of any τ ∈ T in π. Let π be uniformly random
from this set, for a given n.

Several cases are studied in [20], and some of them yield asymmetric U -
statistics, sometimes stopped or conditioned as in Theorem 3.11 or 3.13.
We sketch two examples here and in the next example, and refer to [20] for
details and further similar examples.

A permutation π avoids {231, 312} if and only if π is an increasing se-
quence of blocks that all are decreasing; in other words,

π = (L1, . . . , 1, L1+L2, . . . , L1+1, L1+L2+L3, . . . , L1+L2+1, . . . ), (5.6)

see [29, Proposition 12]. Let the number of blocks be B > 1 and the block
lengths L1, . . . , LB; thus Li > 1 and L1 + · · · + LB = n. Then, any such
sequence L1, . . . , LB is possible, and it determines π uniquely. Hence, taking
f(L) := 1 and thus Un = Sn =

∑n
1 Li, it is easily seen that (L1, . . . , LB)

has the same distribution as the first N−(n) elements of an i.i.d. sequence
(Lk)k with Li ∼ Ge(1/2), conditioned on UN−(n) = n.

Let σ be a fixed permutation that avoids {231, 312}, with block lengths
`1, . . . , `b. Then the number Nσ,n = Nσ(π) of occurrences of σ in π is given
by a U -statistic, with d = b, based on the sequence of variables L1, . . . , LB
and the function

f̃(x1, . . . , xb) :=

b∏
j−1

(
xi
`i

)
. (5.7)

Theorem 3.13(iii) applies and shows asymptotic normality in the form

Nσ,n − nb/b!
nb−1/2

d−→ N
(
0, γ2

)
, (5.8)
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for some γ2 > 0 depending on σ.
For example, taking σ = 21, so N21,n is the number of inversions in π,

b = 1 and, by a calculation, γ2 = 6; hence

N21,n − n
n1/2

d−→ N
(
0, 6
)
. (5.9)

We here applied the conditional result in Theorem 3.13. Alternatively
(since a geometric distribution has no memory), we may avoid the condi-
tioning above and instead truncate the last element LB such that the sum
becomes exactly n; using a simple approximation argument, we can then
apply the unconditional Theorem 3.11.

Example 5.5 (Restricted permutations II). Continuing Example 5.4, now
let π be a uniformly random permutation of a given length n such that π
avoids {231, 312, 321}.

A permutation π avoids {231, 312, 321} if and only if π is of the form (5.6)
and furthermore every block length Li 6 2, see [29, Proposition 15∗]. Taking
again f(L) := 1, it is easily seen that (L1, . . . , LB) has the same distribution
as the first N−(n) elements of an i.i.d. sequence (L′k)

∞
1 , conditioned on

UN−(n) = n, where we now let

P(L′i = 1) = p, P(L′i = 2) = p2, (5.10)

where p+ p2 = 1 and thus p is the golden ratio

p :=

√
5− 1

2
. (5.11)

Let σ be a fixed permutation that avoids {231, 312, 321}, with block
lengths `1, . . . , `b ∈ {1, 2}. Then the number Nσ,n = Nσ(π) of occurrences
of σ in π is given by a U -statistic based on L1, . . . , LB, with d = b and
the function f̃ in (5.7). Theorem 3.13(iii) applies and shows asymptotic
normality in the form

Nσ,n − µnb/b!
nb−1/2

d−→ N
(
0, γ2

)
, (5.12)

for some µ > 0 and γ2 > 0 depending on σ.
For example, taking σ = 21, so N21,n is the number of inversions in π,

b = 1 and, by calculations, see [20], µ = (3−
√

5)/2 and γ2 = 5−3/2; hence

N21,n − 3−
√
5

2 n

n1/2
d−→ N

(
0, 5−3/2

)
. (5.13)

6. Further comments and open problems

Remark 6.1. In Theorems 3.16 and 3.17, we assume (for simplicity) exis-

tence of all moments for f and f̃ , and conclude convergence of all moments
in (3.18)–(3.21). If we only want to conclude convergence of a specific mo-
ment, e.g. convergence of second moments in (3.19) or (3.21), the proofs
above show that it suffices to assume existence of some specific moment for
f and f̃ . However, we do not know the best possible moment conditions for
this, and we leave it as an open problem to find optimal conditions. (The
proofs above are not optimized; furthermore, the methods used there are not
necessarily optimal.) In particular, we do not know whether convergence of
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first and second moments always holds in (3.19) and (3.21) without further

moment assumptions. (For some results when d = d̃ = 1, see [17] and [10,
Chapter 3].)

Remark 6.2. In the case when f is bounded, subgaussian estimates for large
deviations of the left-hand side of (3.12) are shown in [16] and [19]. This
and the definitions (3.16)–(3.17) lead to large deviation estimates for N±,

and, provided also f̃ is bounded, then further to large deviation estimates
for the left-hand side in (3.21). We leave the details to the reader.

Remark 6.3. As said in the introduction, the results above are of most
interest in the non-degenerate case, where Σ = (σij) defined by (3.2) is non-
zero. In the degenerate case, when all σij = 0, or equivalently, fi(X) = 0
a.s. for every i, the results still hold but then the limits in e.g. Theorem 3.2
are degenerate, see also (3.14). A typical degenerate example is the anti-
symmetric f(X1, X2) = sin(X1 − X2), with X uniformly distributed on
[0, 2π) (best regarded as the unit circle), where f1 = f2 = 0.

In the degenerate case, one can instead normalize using a smaller power of
n than in Theorem 3.2 and obtain non-degenerate limits; this is well-known
in the symmetric case, see e.g. [9], [27], [18, Chapter 11] for univariate
results and [25], [13], [5], [6], [26], [18, Remark 11.11] for functional limits.
This extends to the asymmetric case; univariate results are given in [18,
Chapter 11.2] with the possibility of functional limits briefly mentioned in
[18, Remark 11.25], and the case d = 2 and f antisymmetric was studied
in [22] (functional limits for both the degenerate and non-degenerate cases),
see Example 5.1. We do not consider such refined results for the degenerate
case in the present paper.

Remark 6.4. For multi-sample U -statistics, i.e., variables of the form

Un1,...,n`
:=
∑

f
(
X

(1)
i1,1
, . . . , X

(1)
i1,d(1)

, . . . , X
(`)
i`,1
, . . . , X

(`)
i`,d(`)

)
, (6.1)

summing over 1 6 ij,1 < · · · < ij,d(j) 6 nj for every j = 1, . . . , `, a multi-
dimensional functional limit theorem has been given by Sen [28] in the sym-
metric case (i.e., with f symmetric in each of the ` sets of variables); see
also e.g. [25], [13], [6]. We expect that this too can be extended to the
asymmetric case, but we leave this to the interested reader.

Remark 6.5. There is a standard trick to convert an asymmetric U -statistic
to a symmetric one, see e.g. [18]. Let Yi ∼ U(0, 1) be i.i.d. random variables,

independent of (Xj)
∞
1 , let Zi := (Xi, Yi) ∈ S̃ := S×R, and define F : S̃n →

R by

F
(
(x1, y1), . . . , (xd, yd)

)
:= f(x1, . . . , xd)1{y1 < · · · < yd} (6.2)

and its symmetrized version

F ∗(z1, . . . , zd) :=
∑
σ∈Sd

F
(
zσ(1), . . . , zσ(d)

)
, (6.3)
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summing over the d! permutations of {1, . . . , d}. Then, letting
∑* denote

the sum over distinct indices,

Un(f)
d
=

∑*

i1,...,id6n
Yi1<···<Yid

f
(
Xi1 , . . . , Xid

)
=

∑*

i1,...,id6n

F
(
(Xi1 , Yi1), . . . , (Xid , Yid)

)
=

∑
16i1<···<id6n

F ∗
(
Zi1 , . . . , Zid

)
= Un(F ∗). (6.4)

This trick often makes it possible to transfer results for symmetric U -statistics
to the general, asymmetric case. However, this trick works only for a single
n, and we do not know of any similar trick that can handle the process
(Un)∞n=0. Hence this method does not seem useful for the results above.

Remark 6.6. In the symmetric case, it is easily seen that Un/
(
n
d

)
, n > d,

is a reverse martingale, which for example yields a simple proof of the law
of large numbers; see [1] and e.g. [11, Chapter 10.16.2]. This does not hold
in general; thus we used above (in the proof of Lemma 4.4) instead forward
martingales similarly to [15].
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