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Abstract. The hiring problem is studied for general strategies based
only on the relative ranking of the candidates; this includes some well
known strategies studied before such as hiring above the median. We
give general limit theorems for the number of hired candidates and some
other properties, extending previous results. The results exhibit a di-
chotomy between two classes of rank-based strategies: either the asymp-
totics of the process are determined by the early events, with a.s. con-
vergence of suitably normalized random variables, or there is a mixing
behaviour without long-term memory and with asymptotic normality.

1. Introduction

The hiring problem is a variant of the well-known secretary problem, in
which we want to hire many good applicants and not just the best. An
informal formulation is that a large number of candidates are examined (in-
terviewed) one by one; immediately after each interview we decide whether
to hire the candidate or not, based on the value of the candidate (which
is assumed to be revealed during the interview) and of the values of the
candidates seen earlier. This is thus an on-line type of decision problem.
The mathematical model assumes that the values of the candidates are i.i.d.
random variables, with some continuous distribution (which prevents ties).
See below and Section 3 for formal details.

There are two conflicting aims in the hiring problem: we want to hire
(rather) many candidates but we also want them to be good. Thus there
is no single goal in the hiring problem, and thus we cannot talk about an
optimal solution. Instead, the mathematical problem is to analyse properties
of various proposed strategies. The property that has been most studied
is the number of accepted candidates among the first n examined, here
denoted Mn. We will also study the inverse function Nm, the number of
candidates examined until m are accepted. Some other properties, such as
the distribution of the value of the accepted candidates, are discussed in
Sections 9–11.

The hiring problem seems to have been studied first by Preater [18], and
later (independently) by Broder et al [4], who also invented the name ‘hir-
ing problem’. Further papers studying the hiring problem under various
strategies are Krieger, Pollak and Samuel-Cahn [14, 15, 16], Archibald and
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Mart́ınez [2], Gaither and Ward [6], Helmi and Panholzer [10, 11], Helmi,
Mart́ınez and Panholzer [8, 9]; see [9] for a more detailed history.

There are two main groups of strategies. In the present paper we study
only rank-based strategies, i.e., strategies that depend only on the rank of the
candidate among the ones seen so far; in other words, on the relative order of
the values of the candidates. A typical example is ‘hiring above the median’,
see below; see also [14; 4; 2; 6; 10; 8; 11; 9]. In statistical terms, the values
of the candidates are regarded as on an ordinal scale. Thus, the distribution
of the value of a candidate does not matter, and can freely be chosen as
e.g. uniform (an obvious standard choice used by some previous authors)
or exponential (used in the analysis in the present paper). Furthermore,
for rank-based strategies, it is equivalent (for a fixed n) to assume that the
values of the first n candidates form a uniformly random permutation of
{1, . . . , n} [14; 2; 6; 10; 8; 11; 9].

The alternative is to use a strategy depending on the actual values; a typi-
cal example is ‘hiring above the mean’ [18; 4; 15; 16]. For such strategies, the
results depend on the given distribution of the value of a candidate; several
different distributions have been investigated in the papers just mention.
Such strategies will not be considered in the present paper.

In the present paper we thus study rank-based strategies. More precisely,
following Krieger, Pollak and Samuel-Cahn [14], we consider strategies of the
following form (which seems to include all reasonable rank-based strategies).
We assume throughout the paper that we are given a sequence of integers
r(m), m > 0, such that

r(0) = 1 and r(m) 6 r(m+ 1) 6 r(m) + 1, m > 0. (1.1)

Note that this implies 1 6 r(m) 6 m+1 for every m > 0. Then the strategy
is that if so far m > 0 candidates have been accepted, then (if r(m) 6 m)
the next candidate is accepted if her value is above the r(m)-th best value
of the ones already accepted. If r(m) = m + 1, we always accept the next
candidate.

Remark 1.1. Some authors have chosen to define smaller values as better.
This is obviously equivalent, but some care has to be taken when comparing
definitions and results. (In the discussion here, we have when necessary
translated to our setting.)

One basic example is ‘hiring above the median’, where we hire every can-
didate that is better than the median of the ones seen so far. For m odd,
this means taking r(m) = (m+ 1)/2, but for m even, there are two possible
values of the median. Tradition established by previous authors [4; 2; 11]
says that we choose the smaller value as the threshold. (This is thus the less
restrictive policy of the two possibilities.) This means taking r(m) = m/2+1
when m is even, so we can summarize the strategy ‘hiring above the median’
by

r(m) := bm/2c+ 1 = d(m+ 1)/2e, m > 0. (1.2)

The sequence (starting with r(0)) thus is 1, 1, 2, 2, 3, 3 . . .
The alternative interpretation of ‘median’ when m is even is instead a

special case of the strategy known as ‘the α-percentile rule’, which, again by
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tradition [14; 11], is defined by

r(m) := dαme, m > 1. (1.3)

In the case α = 1
2 , we thus take r(m) = m/2 when m > 2 is even, meaning a

smaller r(m) and thus a larger threshold than in ‘hiring above the median’;
the sequence (starting with r(0)) is 1, 1, 1, 2, 2, 3, . . .

A third simple example is ‘hiring above the r-th best’, where r > 1 is a
fixed number [2; 8; 9]. This means r(m) = r when m > r; we always hire
the r first candidates, so the complete definition in accordance with (1.1) is

r(m) := min{r,m+ 1}, m > 0. (1.4)

Note that the case r = 1 gives the strategy of hiring only the candidates
that are better than everyone seen earlier, i.e., the records.

The present paper gives a general analysis of strategies of the type above,
with an arbitrary sequence r(m) satisfying (1.1). Our main results give the
asymptotic distribution of Nm (in general) and Mn (under weak regularity
assumptions on r(m)), see in particular Theorems 4.6, 7.5, 1.2 and 1.3. In
particular, this gives new proofs of known results (and some new) for the
examples above.

It turns out that there is a dichotomy: the general results are of two
different types, depending on whether

∑
m r(m)−2 < ∞ or

∑
m r(m)−2 =

∞; we will call these two cases large r(m) and small r(m), respectively. Note
that the strategies ‘hiring above the median’ and ‘the α-percentile rule’ have
large r(m), while ‘hiring above the r-th best’ has small r(m); indeed, the
limit theorems found by previous researchers for these cases are of different
types, compare e.g. [11] and [9].

The main differences between the two cases can be summarized as follows,
at least assuming some further regularity of r(m). For simplicity, we consider
here only Mn; the same types of results hold for Nm.

large r(m),
∑

m r(m)−2 <∞: Mn/EMn converges to a non-degenerate
distribution on [0,∞). (Thus, the limit is not normal.) Furthermore,
Mn/EMn converges a.s. Hence, the limit and the asymptotic be-
haviour are essentially determined by what happens very early, i.e.,
by the values of the first few candidates. This also means a strong
long-range dependence in the sequence Mn.

small r(m),
∑

m r(m)−2 =∞: Asymptotic normality of Mn. There is
no long-range dependency; instead Mn is asymptotically independent
of what happened with the first n0 candidates, for any fixed n0. In
particular, there is no a.s. convergence.

Intuitively, the reason for the difference between the two cases is that
when r(m) is small, each accepted candidate has (typically) a rather large
influence on the threshold, and thus on the future of the process, and these
influences add up and eventually dominate over the influences of the values
of the first candidates, while if r(m) is large, then the influences of later
candidates are small, and the effects of the first few candidates dominate.

We state here two theorems that exemplify our main results, one for large
r(m) and one for small. In both cases, we assume a regularity condition
on r(m) yielding simpler results; proofs and more general results are given
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in Sections 4–5 and 7. See also the examples in Section 8, including the
counterexample Example 8.9.

First, consider the case r(m) = αm + O(1), where 0 < α 6 1; note that
this includes ‘hiring above the median’ (with α = 1

2) and ‘the α-percentile
rule’, and that such r(m) are large.

Theorem 1.2. Suppose that r(m) = αm+O(1), where 0 < α 6 1. Then,

Mn/n
α a.s.−→W, (1.5)

for a random variable W , which can be represented as in (5.8) below. Fur-
thermore, all moments converge in (1.5), and, for every s > 0,

EM s
n/n

αs → EW s =
Γ(s+ 1)

Γ(sα+ 2)

∞∏
k=1

1 + s/k

1 + sα/r(k)
<∞. (1.6)

The moments in (1.6) can be explicitly computed in many cases, see [6],
Theorem 6.1 and Examples 8.1–8.2.

For our example result in the case of small r(m), we assume that the
sequence r(m) is regularly varying. (See e.g. [3, p. 52] for definition, and [1]
for definition of a mixing limit theorem.)

Theorem 1.3. Assume that r(m) is a regularly varying sequence such that∑
m r(m)−2 =∞. Let µ(n), n > 1, be a sequence of real numbers such that

µ(n)∑
k=1

1

r(k)
= log n+O(1), (1.7)

and let

β(m)2 := r(m)2
m∑
k=1

1

r(k)2
=

m∑
k=1

r(m)2

r(k)2
, (1.8)

γ(n) := β
(
bµ(n)c

)
. (1.9)

Then, as n→∞,
Mn − µ(n)

γ(n)

d−→ N(0, 1). (1.10)

Furthermore, (1.10) is mixing.

Section 3 contain some basic general results. Then Theorem 1.2 and re-
lated results for large r(m) are proved in Sections 4–6, while Theorem 1.3
and related results for small r(m) are proved in Section 7. Section 8 contains
some examples. The remaining sections consider some additional properties
that have been considered by previous authors. Section 9 consider results
conditioned on the value of the first candidate. Section 10 treat the proba-
bility of accepting the next candidate, and also the number of unsuccessful
candidates since the last accepted one. Section 11 studies the distribution
of the accepted values.

Remark 1.4. Some previous papers, in particular [11; 9], contain also in-
teresting exact results on the exact distribution of Mn for finite n. We do
not consider such results here.
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2. Notation

Exp(a) denotes the exponential distribution with rate a. In other words,
if X ∈ Exp(a), then P(X > x) = e−ax for x > 0; equivalently, aX ∈ Exp(1).
Hence, EX = 1/a.

Ge(p) denotes the Geometric distribution started at 1 (also called First
Success distribution), with P(X = n) = p(1− p)n−1, n > 1.
E, Ei, E

′
j and so on will always denote Exp(1) variables, independent of

each other.
γ is Euler’s constant.
a.s.−→,

p−→ and
d−→ denote convergence almost surely (a.s.), in probability

and in distribution, respectively, for random variables.
am ∼ bm, where am and bm are real numbers, means am/bm → 1 as

m→∞. Furthermore, assuming bm > 0, am = O(bm) means supm |am|/bm <
∞ and am = o(bm) means am/bm → 0 as m→∞. Moreover, if Xm

are random variables and bm > 0 are real numbers, then Xm = Op(bm)
means that the sequence |Xm|/bm is stochastically bounded (tight), i.e.,

supm P(|Xm|/bm > K)→ 0 asK →∞, andXm = op(bm) meansXm/bm
p−→

0 as m→∞. We sometimes omit ‘as m→∞’ when clear from the context.
With high probability (w.h.p.) means with probability 1− o(1) (as, e.g.,

n→∞).
C and c are used for unspecified constants, which may vary from one

ocurrence to another. For constants that depend on some parameter (but
not on other variables such as m or n), we similarly use e.g. CK and c(δ).

If x ∈ R, then bxc := max{n ∈ Z : n 6 x} and dxe := min{n ∈ Z : n > x}.

3. General limit theorems

We begin by formalising the hiring strategy discussed in Section 1, at the
same time introducing some further notation. Recall that for a rank-based
strategy, the result does not depend on the (continuous) distribution of the
values of the candidates. We choose this distribution to be exponential.

Thus, let X1, X2, . . . be i.i.d. random variables with Xi ∈ Exp(1), repre-
senting the values of the candidates. We assume without further mention
that these values are distinct (which happens a.s.), so we ignore the possi-
bility of ties below. For convenience we identify a candidate and her value;
we will thus say both ’candidate n is accepted’ and ’value Xn is accepted’.

Let Nm be the index of the m-th accepted candidate, and denote the
m-th accepted value by X∗m := XNm . Conversely, let Mn be the number of
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candidates accepted among 1, . . . , n. Thus,

Mn > m ⇐⇒ Nm 6 n. (3.1)

The hiring strategy is defined by a given function r : Z>0 → Z>0 satisfying
(1.1), and thus, in particular, 1 6 r(m) 6 m+ 1.

The basic rule of the strategy is that if m > 0 values have been accepted
so far, then the next value is accepted if and only if it exceeds a threshold
Ym, which is the r(m)-th largest value among the m values already accepted,
interpreted as Ym := 0 when r(m) = m+ 1. (In particular, Y0 = 0.)

Remark 3.1. It is easy to see [14] that this threshold Ym is the same as the
r(m)-th best value of all candidates seen so far, since all previous candidates
with values at or above Ym were accepted. If r(m) 6 m, then the strategy is
thus to accept a candidate if her value is among the r(m) best of all values
seen so far (including her own). It follows by symmetry that conditioned on
Mn = m, and on everything else that has happened earlier, the probability
that candidate n+ 1 is accepted equals r(m)/(n+ 1), see [14].

The threshold Ym is thus updated when a new value is accepted. This is
described by the following lemma which is simple but basic for our analysis.
In particular, note that Ym never decreases.

Lemma 3.2. (i) If r(m+ 1) = r(m) + 1, then Ym+1 = Ym.
(ii) If r(m+ 1) = r(m), then Ym+1 is the smallest of the r(m) values that

are larger than Ym among the selected values X∗1 , . . . , X
∗
m+1.

Proof. Let m be fixed and order the accepted values X∗1 , . . . , X
∗
m in decreas-

ing order as X∗(1) > X∗(2) > · · · > X∗(m); define further X∗(m+1) := 0. Then

Ym = X∗(r(m)). By assumption, X∗m+1 > Ym. Thus there are in the set

{X∗1 , . . . , X∗m+1} exactly r(m) values that are larger than Ym = X∗(r(m)), viz.

{X∗(i) : 1 6 i < r(m)} ∪ {X∗m+1}. Hence, if r(m + 1) = r(m), then Ym+1 is

the smallest of these values, while if r(m+1) = r(m), then Ym+1 is the next
smaller accepted value (or 0), which is X∗(r(m)) = Ym. �

So far, the argument has been deterministic. We now use our assumption
that the values Xi are i.i.d. random variables as above; this is where the
choice of exponential distribution is convenient and greatly simplifies the
argument.

Lemma 3.3. Assume as above that X1, X2, . . . are i.i.d. and Exp(1). Then,
the increments Ym+1 − Ym, m > 0, are independent random variables with

Ym+1 − Ym ∈

{
Exp

(
r(m)

)
, r(m+ 1) = r(m),

0, r(m+ 1) = r(m) + 1.
(3.2)

Proof. Run the hiring process as above, but keep the values Xn secret as
long as possible, revealing only enough to determine whether to accept Xn

or not, and to determine the next threshold Ym. To be precise, when a new
candidate n is examined, reveal first only whether her value Xn is larger
than the current threshold Ym or not. If not, we forget this candidate and
move on to the next. Suppose instead that Xn > Ym, so that we accept
n. Then we also have to update Ym. By Lemma 3.2, this is trivial if
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r(m + 1) = r(m) + 1. However, if r(m + 1) = r(m), then there are r(m)
accepted candidates (including the latest recruit, n) that have values > Ym.
We now reveal the minimum of these values, giving Ym+1, but we do not
reveal the remaining r(m)− 1 of them.

Claim. Conditioned on Ym = y and on everything else that has been revealed
so far, the r(m) − 1 (still hidden) accepted values that are larger than Ym
have the distribution of r(m)−1 i.i.d. random variables with the distribution
L(X | X > y).

To show the claim, we use induction on m. We condition on Ym = y and
everything else that has been revealed so far, and note that when we accept
the next Xn, we know just that Xn > y, so Xn too has the distribution
L(X | X > y). Hence, by the induction hypothesis, the r(m) accepted
values that are larger than Ym = y are r(m) (conditionally) independent
random variables with this distribution. By Lemma 3.2, this completes
the induction step when r(m + 1) = r(m) + 1; otherwise we reveal the
minimum Ym+1 of them, and note that conditioned on Ym+1 = y′ > y, the
remaining r(m)− 1 = r(m+ 1)− 1 variables are i.i.d. with the distribution
L(X | X > y′).

This proves the claim. Furthermore, since X ∈ Exp(1), this distribution
L(X | X > y) is the same as the distribution of X + y. (The standard
lack-of-memory property of exponential distributions.) Hence, if r(m+1) =
r(m), then the claim and its proof yield that, conditioned on Ym = y and
everything else revealed so far,

Ym+1 = min
16j6r(m)

(Ej + y) = Ym + min
16j6r(m)

Ej , (3.3)

where E1, E2, . . . are i.i.d. and Exp(1). In particular, Ym+1 − Ym is inde-
pendent of Y1, . . . , Ym. Furthermore, (3.2) holds, since min16j6r(m)Ej ∈
Exp(r(m)). �

Let

δm := 1
{
r(m) = r(m− 1)

}
= 1 + r(m− 1)− r(m). (3.4)

Lemma 3.3 yields the following representation of Ym.

Lemma 3.4. There exists a sequence E1, E2, . . . of i.i.d. Exp(1) random
variables such that

Ym =

m∑
k=1

δk
r(k)

Ek, m > 0. (3.5)

Proof. An immediate consequence of Lemma 3.3, with

Ek := r(k)(Yk − Yk−1) = r(k − 1)(Yk − Yk−1) ∈ Exp(1) (3.6)

when δk = 1, and Ek ∈ Exp(1) arbitrary but independent of everything else
when δk = 0. �

We are now prepared for a theorem giving an exact representation of the
sequence Nm.
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Theorem 3.5. The sequence Nm, m > 0, is given by

Nm =

m−1∑
k=0

Vk, (3.7)

where, conditioned on the sequence (Ym)∞1 given by Lemma 3.4, the random
variables Vk are independent with Vk ∈ Ge(e−Yk).

Proof. Fix m and condition on Y1, . . . , Ym and N1, . . . , Nm. Each new can-
didate after Nm has probability P(Xn > Ym | Ym) = e−Ym of exceeding the
threshold Ym, and these events are independent. Hence, still conditioned on
the past,

Nm+1 −Nm ∈ Ge
(
e−Ym

)
. (3.8)

Furthermore, still conditioned on the past, this waiting time Nm+1 −Nm is
independent of the value of the next accepted candidate X∗m+1. Hence, the
argument in the proof of Lemma 3.3 extends and shows that conditioned on
Y1, . . . , Ym and N1, . . . , Nm, the increments Ym+1−Ym and Nm+1−Nm are
independent, with the (conditional) distributions given by (3.2) and (3.8).

This implies that conditioned on (Ym)∞1 , the increments Vk := Nk+1−Nk

are independent, with (conditionally) Vk ∈ Ge
(
e−Yk

)
. �

Remark 3.6. As said above, our choice Xn ∈ Exp(1) simplifies the argu-
ment, but it is not really essential. An equivalent argument has been used
by e.g. [4] with values Xn ∈ U(0, 1); then one considers the gap 1 − Ym
and shows that these gaps can be written as products of independent ran-
dom variables. Taking (minus) the logarithm of the gap yields a sum of
independent random variables (which is more convenient than a product for
limit theorems), and that is equivalent to our version with exponentially
distributed values Xn.

So far we have given exact formulas, but now we start to approximate
in order to obtain simpler formulas. First we approximate the geometric
distributions in (3.7) by exponential distributions.

Theorem 3.7. As m→∞, a.s.

Nm ∼
m−1∑
k=0

eYkE′k, (3.9)

where Yk are given by (3.5) and E′k ∈ Exp(1) are independent of each other
and of (Yk)

∞
1 .

Proof. We use continuous time, and assume that candidate n is examined
at time τn, where the waiting times τn−τn−1 (with τ0 = 0) are i.i.d. Exp(1).
In other words, the candidates arrive according to a Poisson process on

[0,∞) with intensity 1. Note that by the law of large numbers, τn/n
a.s.−→ 1

as n→∞. We assume that the times (τn)n are independent of the values
(Xn)n.

Let Tm := τNm be the time the m-th candidate is accepted. Then, as
m→∞ and thus Nm →∞,

Tm
Nm

=
τNm
Nm

a.s.−→ 1. (3.10)
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We argue as in the proof of Theorem 3.5. Condition on Y1, . . . , Ym and
T1, . . . , Tm for some m. Then, after Tm, candidates arrive according to a
Poisson process with intensity 1, and thus candidates with a value > Ym
arrive as a Poisson process with intensity e−Ym . Consequently, conditioned
on the past, the waiting time Tm+1 − Tm has an exponential waiting time

Tm+1 − Tm ∈ Exp
(
e−Ym

)
. (3.11)

By the same argument as in the proof of Theorem 3.5, this implies that

conditioned on (Yk)
∞
1 , the increments V̂k := Tk+1−Tk are independent with

V̂k ∈ Exp
(
e−Yk

)
. Define E′k := e−Yk V̂k ∈ Exp(1). Then

Tm =

m−1∑
k=0

V̂k =

m−1∑
k=0

eYkE′k. (3.12)

Furthermore, conditioned on (Yk)
∞
1 , the variables E′k are i.i.d. Exp(1); hence,

(Yk)
∞
1 and (E′k)

∞
0 are independent.

Finally, the exact continuous-time representation (3.12) implies the ap-
proximation (3.9) by (3.10). �

The results above are valid for any sequence r(m) fulfilling the conditions
(1.1). For further approximations, we treat the cases of large and small r(m)
separately, in Sections 4–6 and Section 7, respectively.

We define, recalling (3.5),

ym := EYm =

m∑
k=1

δk
r(k)

=
∑

16k6m:
r(k)=r(k−1)

δk
r(k)

=

m∑
k=1

1

r(k)
−
r(m)∑
`=2

1

`
, (3.13)

where the final equality follows because each ` ∈ {2, . . . , r(m)} equals r(k)
for exactly one k ∈ {1, . . . ,m} with r(k) > r(k − 1).

4. Large r(m)

In this section we assume that r(m) is large, i.e.,

∞∑
m=1

1

r(m)2
<∞. (4.1)

Lemma 4.1. Suppose that
∑∞

m=1 r(m)−2 < ∞. Then Ym − ym
a.s.−→ Z as

m→∞, where

Z :=

∞∑
k=1

δk
r(k)

(Ek − 1), (4.2)

with, as always, (Ek)
∞
1 are i.i.d. Exp(1).

Proof. By (3.5) and (3.13),

Ym − ym =
m∑
k=1

δk
r(k)

(Ek − 1), (4.3)
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so Ym−ym converges to Z given by (4.2) whenever the latter sum converges.
Furthermore, this occurs a.s., since the summands in (4.2) are independent
random variables with mean 0 and sum of variances

∞∑
k=1

E
( δk
r(k)

(Ek − 1)
)2
6
∞∑
k=1

1

r(k)2
<∞. (4.4)

�

We let Z denote the sum in (4.2) whenever (4.1) holds.

Remark 4.2. Since the Exp(1) distribution is infinitely divisible with Lévy
measure x−1e−x dx, it follows from (4.2) that Z is infinitely divisible with
Lévy measure, arguing as in (3.13),

∞∑
k=1

δke
−r(k)x dx

x
=

( ∞∑
k=1

e−r(k)x − 1

e2x − ex

)
dx

x
, x > 0. (4.5)

Theorem 4.3. Suppose that
∑∞

m=1 r(m)−2 <∞. Then, as m→∞, a.s.

Nm ∼ eZ
m−1∑
k=0

eykE′k, (4.6)

where Z and yk are given by (4.2) and (3.13), and E′k ∈ Exp(1) are inde-
pendent of each other and of Z.

Proof. Let εk := Yk − yk − Z; then a.s. εk → 0 as k →∞ by Lemma 4.1.
Furthermore, Yk = yk + Z + εk, and thus

m−1∑
k=0

eYkE′k = eZ
m−1∑
k=0

eεkeykE′k. (4.7)

Hence, the result (4.6) follows from (3.9) and the simple deterministic Lemma
4.4 below, noting that

∑∞
k=0 e

ykE′k >
∑∞

k=0E
′
k =∞ a.s. �

Lemma 4.4. Suppose that ak > 0,
∑∞

k=0 ak = ∞ and εk → 0 as k →∞.
Then, as m→∞, ∑m

k=0(1 + εk)ak∑m
k=0 ak

→ 1. (4.8)

Proof. Let η > 0. Then there exists K such that if k > K, then |εk| < η.
Consequently, for m > K,∣∣∣∣∣

m∑
k=0

εkak

∣∣∣∣∣ 6
K∑
k=0

|εk|ak + η

m∑
k=K+1

ak, (4.9)

which is less than 2η
∑m

k=0 ak if m is large enough. This implies (4.8). �

Lemma 4.5. Suppose that
∞∑
m=1

1

r(m)2
<∞. (4.10)

Then
∞∑
m=0

e2ym(∑m
k=0 e

yk

)2 <∞. (4.11)
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Proof. Let m > 0 and let a(m) := r(bm/2c) 6 bm/2c+ 1. If 0 6 i < a(m),
then i 6 a(m)− 1 6 m/2, and thus m− i > m/2. Hence,

ym − ym−i =

m∑
j=m−i+1

δj
r(j)

6
i

r(dm/2e)
6

i

a(m)
6 1. (4.12)

Consequently,

m∑
k=0

eyk >
a(m)−1∑
i=0

eym−i >
a(m)−1∑
i=0

eym−1 = a(m)eym−1 (4.13)

and thus
∞∑
m=0

e2ym(∑m
k=0 e

yk

)2 6
∞∑
m=0

e2

a(m)2
= 2

∞∑
`=0

e2

r(`)2
<∞. (4.14)

�

Define, with yk given by (3.13),

λm :=
m−1∑
k=0

eyk , m > 0. (4.15)

Theorem 4.6. Suppose that
∑∞

m=1 r(m)−2 <∞. Then, as m→∞,

Nm/λm
a.s.−→ eZ , (4.16)

where Z and λm are given by (4.2) and (4.15).

Proof. Let Wm := eym(E′m − 1) and bm := λm+1. Then EWm = 0 and
Lemma 4.5 shows that

∑∞
m=0 Var(Wm)/b2m < ∞. Consequently, see [5,

Theorem VII.8.3], b−1
m

∑m
k=0Wk

a.s.−→ 0. Hence,∑m−1
k=0 e

ykE′k
λm

= 1 +

∑m−1
k=0 e

yk(E′k − 1)

λm
= 1 +

∑m−1
k=0 Wk

bm−1

a.s.−→ 1, (4.17)

and the result follows from (4.6). �

Equivalently, a.s. Nm ∼ λme
Z as m→∞. Hence, Nm grows as the de-

terministic sequence λm, with a random factor (asymptotically independent
of m) given by eZ .

Theorem 4.6 gives the asymptotics (and in particular the asymptotic dis-
tribution) of Nm, the number of candidates examined until m have been
accepted. By inversion, we obtain corresponding asymptotic results for Mn,
the number of accepted candidates when n have been examined. We state
one general result as the next theorem. More explicit results require inver-
sion of the functionm 7→ λm, which easily is done under further assumptions;
we study an important case in Section 5 below.

Note first that Mn
a.s.−→ ∞ as n→∞, since for every m, a.s. some future

candidate n > Nm will satisfy Xn > Ym and thus be accepted.

Theorem 4.7. Suppose that
∑∞

m=1 r(m)−2 <∞. Then, as n→∞,

λMn/n
a.s.−→ e−Z , (4.18)

where Z and λm are given by (4.2) and (4.15).



12 SVANTE JANSON

Proof. Since Mn → ∞ a.s. as n→∞, (4.16) and Lemma 4.8 below imply

that a.s. NMn/λMn

a.s.−→ eZ and NMn+1/λMn

a.s.−→ eZ . Furthermore, the

definitions imply NMn 6 n < NMn+1. Hence, n/λMn

a.s.−→ eZ . �

Lemma 4.8. If r(m)→∞ as m→∞, then λm+1/λm → 1.

Proof. By (4.15) and (4.13),

λm+1 − λm = eym 6
e

a(m)

m∑
k=0

eyk =
e

a(m)
λm+1. (4.19)

Since a(m) := r(bm/2c) → ∞ as m→∞ by assumption, it follows that
(λm+1 − λm)/λm+1 → 0, and thus λm/λm+1 → 1. �

5. Roughly linear rank thresholds

As said in the introduction, the strategies ‘hiring above the median’ and
‘the α-percentile rule’ satisfy r(m) = αm + O(1) for some constant α > 0,
and we stated Theorem 1.2 for this case. Note that r(m) = αm + O(1)
implies r(m)−1 = (αm)−1 +O(1/m2), and thus

∞∑
m=1

∣∣r(m)−1 − (αm)−1
∣∣ <∞. (5.1)

In fact, by the proof below, Theorem 1.2 holds under the weaker assumption
(5.1). (For example, if r(m) = αm+O(m1−η) for some η > 0.)

We assume throughout this section that (5.1) holds, with 0 < α 6 1. We
then define

ρ :=
∞∑
m=1

( 1

r(m)
− 1

αm

)
∈ R. (5.2)

Note that (5.1) implies

r(m) ∼ αm as m→∞. (5.3)

This is an easy exercise, but for the reader’s convenience we give a proof in
Appendix A. Note also that (5.3) implies

∑∞
m=1 r(m)−2 < ∞, so r(m) is

large and we can use the results of Section 4; our goal in this section is to
use the assumption (5.1) to make the results more explicit.

Lemma 5.1. Suppose that (5.1) holds for some α ∈ (0, 1]. Then, as
m→∞,

ym =
(
α−1 − 1

)
logm+

(
α−1 − 1

)
γ − logα+ ρ+ 1 + o(1). (5.4)

Proof. Let Hm :=
∑m

1 1/k, the m-th harmonic number, and recall that
Hm = logm+ γ + o(1). Hence, by (3.13) and (5.2),

ym =
m∑
k=1

( 1

r(k)
− 1

αk

)
+

1

α
Hm − (Hr(m) − 1)

= ρ+ α−1
(
logm+ γ

)
− log r(m)− γ + 1 + o(1). (5.5)

The result (5.4) follows since log(r(m)) = log(αm) + o(1) = logm+ logα+
o(1) by (5.3). �
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Lemma 5.2. Suppose that (5.1) holds for some α ∈ (0, 1]. Then, as
m→∞,

λm ∼ e(α−1−1)γ+ρ+1m1/α. (5.6)

Proof. Lemma 5.1 implies, where o(1)→ 0 as k →∞,

λm :=

m−1∑
k=0

eyk = e(α−1−1)γ+ρ+1α−1
m−1∑
k=0

kα
−1−1

(
1 + o(1)

)
, (5.7)

and the result (5.6) follows. �

We are prepared to prove the convergence (1.5) in Theorem 1.2.

Lemma 5.3. Suppose that (5.1) holds for some α ∈ (0, 1]. Then, as n→∞,

Mn/n
α a.s.−→W := e(α−1)γ−αρ−αe−αZ , (5.8)

with ρ and Z given by (5.2) and (4.2).

Proof. Theorem 4.7 and Lemma 5.2 imply that a.s.

M1/α
n /n→ e−(α−1−1)γ−ρ−1e−Z , (5.9)

and thus (5.8) follows. �

We proceed to compute moments of W .

Lemma 5.4. Suppose that (5.1) holds for some α ∈ (0, 1]. If −∞ < u < α,
then

E euZ = e−uρ−u+u(1−α−1)γ Γ(1− u/α)

Γ(2− u)

∞∏
k=1

1− u/αk
1− u/r(k)

<∞. (5.10)

Hence, at least for −1 < s <∞,

EW s =
Γ(s+ 1)

Γ(sα+ 2)

∞∏
k=1

1 + s/k

1 + sα/r(k)
. (5.11)

Proof. It is elementary that E euEk = 1/(1 − u) for u < 1. Hence, (4.2)
implies

E euZ =
∏

k>1: δk=1

e−u/r(k)

1− u/r(k)
. (5.12)

Arguing as in (3.13), this can be written

E euZ =

∞∏
k=1

e−u/r(k)

1− u/r(k)

∞∏
`=2

1− u/`
e−u/`

(5.13)

where the products are absolutely convergent as a consequence of (5.3) and
simple estimates. Using (5.2), we rewrite this as

E euZ = e−uρ
∞∏
k=1

e−u/αk

1− u/αk

∞∏
k=1

1− u/αk
1− u/r(k)

∞∏
`=2

1− u/`
e−u/`

. (5.14)

The standard product formula for the Gamma function [17, (5.8.2)] can be

written
∏∞
k=1 e

z/k/(1+z/k) = zeγzΓ(z) = eγzΓ(z+1), and thus (5.14) yields

E euZ = e−uρe−uα
−1γΓ(1− u/α)

e−u

1− u
euγΓ(1− u)−1

∞∏
k=1

1− u/αk
1− u/r(k)

,
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which simplifies to (5.10).
Finally, (5.11) follows from (5.8) and (5.10), with u = −αs. �

Remark 5.5. Let r∗ := inf{r(k) : δk = 1} > 1 be the first repeated value
in the sequence r(0), r(1), . . . . Then the proof shows that (5.10) holds for
α 6 u < r∗ too, with the right hand side interpreted by continuity when
necessary, and that E euZ = ∞ for u > r∗. Consequently, (5.11) holds for
s > −r∗/α. Furthermore, by analytic continuation, or by the proof above,

(5.11) extends to complex s with Re s > −r∗/α. However, EW−r∗/α =∞.

Next we bound moments of Mn, using a series of lemmas. Recall Tm :=
τNm from the proof of Theorem 3.7. We tacitly continue to assume (5.1).

Lemma 5.6. For every integer K > 1 there exists a constant CK such that
if m > 2K + 2, then

E
(
Tm/m

1/α
)−K

6 CK . (5.15)

Proof. For convenience, we first consider T2m. By (3.12),

T2m >
2m−1∑
k=m

eYkE′k > e
Ym

2m−1∑
k=m

E′k =: eYmU, (5.16)

where U :=
∑2m−1

k=m E′k has a Gamma distribution Γ(m) and is independent
of Ym. Consequently,

ET−K2m 6 E e−K(Ym−ym)e−Kym EU−K . (5.17)

We estimate the three factors on the right-hand side separately.
For the first factor, by (4.3) and (5.12), for any real u,

E eu(Ym−ym) =
∏

k6m: δk=1

e−u/r(k)

1− u/r(k)
6 E euZ , (5.18)

since each factor in (5.12) is > 1 (by the explicit form or by Jensen’s in-
equality). In particular,

E e−K(Ym−ym) 6 E e−KZ = CK , (5.19)

using (5.10) to see that E e−KZ <∞.
For the second factor in (5.17), Lemma 5.1 yields

e−Kym = m−K(α−1−1)CKe
o(1) 6 m−K(α−1−1)CK . (5.20)

Finally, for the third factor, we use the fact that U ∈ Γ(m) and compute

EU−K =
1

Γ(m)

∫ ∞
0

x−Kxm−1e−x dx =
Γ(m−K)

Γ(m)
6 CKm

−K , (5.21)

for m > K + 1.
Combining (5.19), (5.20) and (5.21) with (5.17), we find that if m > K+1,

then

ET−K2m 6 CKm
−K/α. (5.22)

This proves (5.15) for even m > 2K + 2, and the case of odd m follows
because T2m+1 > T2m. �
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Lemma 5.7. For every K > 0 there exists a constant CK such that

E
(
Nm/m

1/α
)−K

6 CK , m > 1. (5.23)

Proof. We may assume that K is an integer (by Lyapunov’s inequality).
Furthermore, Nm > m > 1, and thus EN−Km 6 1. It follows that (5.23)
holds trivially for m < 4K+ 2, so we may assume m > 4K+ 2. In this case,
we use the Cauchy–Schwarz inequality and obtain by Lemma 5.6(

E
( Nm

m1/α

)−K)2

6 E
( Tm

m1/α

)−2K
E
(Nm

Tm

)−2K
6 CK E

( Tm
Nm

)2K
. (5.24)

Furthermore, conditioned on Nm = n, Tm = τn is the sum of n i.i.d. wait-
ing times E′′i ∈ Exp(1). Since E′′i have moments of all orders, the law of
large numbers holds with moment convergence [7, Theorem 6.10.2], and thus
E τ2K

n /n2K → 1 as n→∞, and therefore E τ2K
n /n2K 6 CK for all n > 1.

Consequently,

E
(( Tm

Nm

)2K ∣∣∣ Nm = n
)

=
E τ2K

n

n2K
6 CK (5.25)

and thus

E
( Tm
Nm

)2K
= E

(( Tm
Nm

)2K ∣∣∣ Nm

)
6 CK . (5.26)

The result follows by (5.24) and (5.26). �

Lemma 5.8. For every K > 0 there exists a constant CK such that

E
(
Mn/n

α
)K
6 CK , n > 1. (5.27)

Proof. Let x > 0 and n > 1, and let m := dxnαe. If Mn > xnα, then

Mn > m, and thus, by (3.1), Nm 6 n 6 x−1/αm1/α. Consequently, for any
L > 0, by Markov’s inequality and Lemma 5.7,

P
(
Mn > xn

α
)
6 P

(
Nm 6 x

−1/αm1/α
)
6 x−L/α E

(
Nm/m

1/α
)−L
6 CLx

−L/α.
(5.28)

Choosing L := (K + 1)α, we obtain P
(
Mn > xnα

)
6 CKx

−(K+1), which
implies (5.27). �

Proof of Theorem 1.2. We have shown the a.s. convergence (1.5) in Lemma
5.3, and moment convergence follows from this and the uniform estimate in
Lemma 5.8. Finally, the moments of W are computed in Lemma 5.4. �

Although perhaps of less interest, we show further that the moment con-
vergence in Theorem 1.2 holds also for some, but not all, s < 0. Let r∗ > 1
be as in Remark 5.5.

Lemma 5.9. For every real u < r∗, there exists a constant Cu such that

E
(
Nm/m

1/α
)u
6 Cu, m > 1. (5.29)

Proof. The case u < 0 is Lemma 5.7, and u = 0 is trivial, so we may assume
u > 0. We consider again first Tm = τNm .

Assume first that r(1) = 2, so that r∗ > 2. It then suffices to prove
(5.29) for 1 6 u < r∗, so we assume this. Recall from Remark 5.5 that then
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E euZ < ∞. Hence, (3.12), Minkowski’s inequality, (5.18), (4.15) and (5.6)

yield, with ‖X‖u := (E |X|u)1/u,

‖Tm‖u 6
m−1∑
k=0

∥∥eYkE′k∥∥u =
m−1∑
k=0

eyk
(
E eu(Yk−yk)

)1/u‖E′k‖u (5.30)

6 Cu
(
E euZ

)1/u m−1∑
k=0

eyk = Cuλm 6 Cum
1/α. (5.31)

In other words,

ET um 6 Cumu/α, m > 1. (5.32)

The argument above fails if r(1) = 1, since then r∗ = 1 and E euZ = ∞
for every u > 1, see again Remark 5.5. (And we need u > 1 in order to
use Minkowski’s inequality.) In this case, let k0 := min{k : r(k) = 2} and
consider

T̃m :=
m−1∑
k=k0

eYk−Yk0E′k, m > 1. (5.33)

We have, cf. (4.3) and (5.12),

E eYk−Yk0−(yk−yk0 ) =
∏

k0<j6m: δj=1

e−1/r(j)

1− 1/r(j)
6
∞∏
j=k0

e−1/r(j)

1− 1/r(j)
<∞,

(5.34)
and thus, using (4.15) and (5.6) as above,

E T̃m :=

m−1∑
k=k0

E eYk−Yk0 6 C
m−1∑
k=k0

eyk−yk0 6 Cλm 6 Cm
1/α. (5.35)

Consequently, for 0 < u < 1 = r∗, using Tm = Tk0 + eYk0 T̃m and the
subadditivity of x 7→ xu,

ET um 6 ET uk0 + E euYk0 E T̃ um 6
k0−1∑
k=0

E euYk E(E′k)
u + E euYk0

(
E T̃m

)u
6 Cu + Cum

u. (5.36)

Hence, (5.32) holds in this case too.
Finally, by the law of large numbers, P(τn > n/2) → 1 as n→∞, and

thus P(τn > n/2) > c for every n > 1. Hence,

E
(
T um | Nm

)
> c(Nm/2)u = cuN

u
m (5.37)

and thus

ET um > cu ENu
m. (5.38)

Consequently, (5.29) follows from (5.32). �

Lemma 5.10. For every s > −r∗/α,

E
(
Mn/n

α
)s
6 Cs. (5.39)
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Proof. By Lemma 5.8, it suffices to consider s < 0. Then, let −r∗/α < t < s
and u := −αt ∈ (0, r∗). We argue as in the proof of Lemma 5.8 with minor
modifications. Let x > 0 and let m := bxnαc. Then, by Lemma 5.9,

P
(
Mn + 1 < xnα

)
6 P

(
Mn < m

)
= P(Nm > n) 6 n−u ENu

m

6 Cum
u/αn−u 6 Cux

u/α = Cux
−t. (5.40)

It follows that, since trivially 1 +Mn 6 2Mn,

EM s
n 6 2−s E(Mn + 1)s 6 Csn

sα. (5.41)

�

Theorem 5.11. The moment convergence (1.6) holds for every real s >
−r∗/α, and more generally for every complex s with Re s > −r∗/α, with a
finite limit. On the other hand, if s 6 −r∗/α, then EM s

n →∞.

Proof. Note that the right-hand side of (1.6) is finite for Re s > −r∗/α and
an analytic function of s in that half-plane, see Remark 5.5.

Lemma 5.10 implies uniform integrability of (Mn/n
α)s for every s ∈

(−r∗/α, 0), and thus by Theorem 1.2 for every real s > −r∗/α, which implies
(1.6) for Re s > −r∗/α. On the other hand, if s 6 −r∗/α, then EW s =∞,
see Remark 5.5, and thus EM s/nαs →∞ by (1.5) and Fatou’s lemma. �

6. Linear-periodic rank thresholds

In this section we restrict r(m) further to an important case where we
can evaluate the moments in (5.11) explicitly. We assume that

r(m+ q) = r(m) + ν, m > 1, (6.1)

for some integers ν and q with 1 6 ν 6 q. Hence, with α := ν/q ∈ (0, 1],
r(m) − αm is periodic. In particular, r(m) = αm + O(1), and thus the
results of Sections 4–5 apply. Moreover, it is obivious from (1.2)–(1.3) that
‘hiring above the median’ satisfies (6.1) with ν = 1, q = 2, and that ‘the
α-percentile rule’ satisfies (6.1) whenever α = ν/q is rational.

When (6.1) holds, the asymptotic moments can be evaluated explicitly;
for convenience in applications, we give several equivalent formulas.

Theorem 6.1. Suppose that (6.1) holds, with 1 6 ν 6 q, and let α := ν/q.
Then, for 0 6 s <∞, as n→∞,

EM s
n/n

αs → EW s =
Γ(s+ 1)

Γ(sα+ 2)

q∏
i=1

Γ
(
i
q

)
Γ
(
s
q + r(i)

ν

)
Γ
( r(i)
ν

)
Γ
(
s
q + i

q

) (6.2)

=
qs

Γ(sα+ 2)

q∏
i=1

Γ
(
s
q + r(i)

ν

)
Γ
( r(i)
ν

) (6.3)

=
qs

ναs

q∏
i=1

Γ
(
s
q + r(i)

ν

)
Γ
( r(i)
ν

) ν+1∏
j=2

Γ
( j
ν

)
Γ
(
s
q + j

ν

) (6.4)

=
qs+1

ναs(νs+ q)

q∏
i=1

Γ
(
s
q + r(i)

ν

)
Γ
( r(i)
ν

) ν∏
j=1

Γ
( j
ν

)
Γ
(
s
q + j

ν

) . (6.5)
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Proof. Theorem 1.2 applies and shows (1.6), and it remains only to compute
the infinite product there. Standard manipulations yield, for every s > 0,
writing k = jq + i and noting that r(jq + i) = jν + r(i),

∞∏
k=1

1 + s/k

1 + sα/r(k)
=
∞∏
k=1

(k + s)r(k)

k(r(k) + sα)
=

q∏
i=1

∞∏
j=0

(jq + i+ s)r(jq + i)

(jq + i)
(
r(jq + i) + sα

)
=

q∏
i=1

∞∏
j=0

(jq + i+ s)(jν + r(i))

(jq + i)
(
jν + r(i) + sα

) =

q∏
i=1

∞∏
j=0

(
j + i+s

q

)(
j + r(i)

ν

)(
j + i

q

)(
j + r(i)

ν + s
q

)
=

q∏
i=1

lim
n→∞

Γ
(
n+ i+s

q

)
Γ
(
n+ r(i)

ν

)
Γ
(
i+s
q

)
Γ
( r(i)
ν

) Γ
(
i
q

)
Γ
( r(i)
ν + s

q

)
Γ
(
n+ i

q

)
Γ
(
n+ r(i)

ν + s
q

)
=

q∏
i=1

Γ
(
i
q

)
Γ
( r(i)
ν + s

q

)
Γ
(
i+s
q

)
Γ
( r(i)
ν

) .

The result (6.2) follows. Furthermore, by the Gauss multiplication formula
for the Gamma function [17, (5.5.6)],

Γ(s+ 1) = (2π)(1−q)/2qs+1/2
q−1∏
k=0

Γ
(s
q

+
1

q
+
k

q

)
, (6.6)

Γ(sα+ 2) = (2π)(1−ν)/2νsα+3/2
ν−1∏
k=0

Γ
(s
q

+
2

ν
+
k

ν

)
, (6.7)

which together with the special case s = 0 in (6.6) and (6.7) easily yield
(6.3)–(6.5). �

See Examples 8.1, 8.2 and 8.5.

Example 6.2. Taking s = q in (6.3), we see that the q-th moment has the
rational value

EW q =
qq

Γ(ν + 2)

q∏
i=1

r(i)

ν
=

qq

νq(ν + 1)!

q∏
i=1

r(i). (6.8)

Remark 6.3. The result extends to all complex s such that Re s > −q/ν
(and more generally to Re s > −r∗/α); in particular to imaginary s, which
gives the characteristic function of logW , see Remark 5.5 and Theorem 5.11.

Remark 6.4. Positive random variables with moments that can be ex-
pressed as a fraction of products of Gamma functions as in (6.2) are studied
in e.g. [12]. In particular, [12, Theorems 5.4 and 6.1] imply that W has an
infinitely differentiable density dunction fW (x) on [0,∞), with the asymp-
totic

fW (x) ∼ C2x
c1−1e−c2x

1/(1−α)
, (6.9)

where the positive constants C2, c1, c2 can be expressed explicitly in ν, q and
r(1), . . . , r(q). This density fW is of a type known as H-function, see [12,
Addendum].
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7. Small r(m)

In this section we develop the results in the case of small r(m), i.e.,∑
m r(m)−2 =∞. However, we begin with some results holding in general,

although their main interest is for the case of small r(m).
Let, recalling (3.5),

σ2
m := VarYm =

m∑
k=1

δk
r(k)2

(7.1)

and, as a simpler approximation,

σ̂2
m :=

m∑
k=1

1

r(k)2
. (7.2)

We have, by the argument in (3.13),

σ2
m := σ̂2

m −
r(m)∑
`=2

1

`2
= σ̂2

m −O(1). (7.3)

Hence, the condition that r(m) is small can be written in three equivalent
forms: ∑

m

r(m)−2 =∞ ⇐⇒ σ̂2
m →∞ ⇐⇒ σ2

m →∞ (7.4)

Furthermore, when this holds, then σm ∼ σ̂m.
For convenience, define

Am :=
m∑
k=0

eYkE′k, (7.5)

Bm :=
m∑
k=0

eYk . (7.6)

Hence, Theorem 3.7 says that a.s. Nm ∼ Am−1 as n→∞.

Lemma 7.1. For any sequence r(m),

Bm = r(m)eYm+Op(1), m > 1, (7.7)

i.e.,

logBm − log r(m)− Ym = Op(1). (7.8)

Proof. Let m > 1 and let m1 := m− dr(m)/2e > 0. Then, by (7.6),

Bme
−Ym >

m∑
k=m1

eYk−Ym > (m−m1)eYm1−Ym >
r(m)

2
eYm1−Ym . (7.9)

If i < m−m1 = dr(m)/2e, then i 6 br(m)/2c and thus

r(m− i) > r(m)− i > r(m)− br(m)/2c = dr(m)/2e. (7.10)

Hence,

E |Ym − Ym1 | = E(Ym − Ym1) = ym − ym1 =
m∑

k=m1+1

δk
r(k)
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=

m−m1−1∑
i=0

δm−i
r(m− i)

6 (m−m1) · 1

dr(m)/2e
= 1. (7.11)

Thus Ym − Ym1 = Op(1), which by (7.9) yields the lower bound

Bme
−Ym > r(m)e−(Ym−Ym1 )−log 2 = r(m)eOp(1). (7.12)

In the other direction, we note that δk = 0 for exactly r(m)− 1 values of
k 6 m. Hence, if r(m) 6 j 6 m, then δk = 1 for more that j − r(m) values
of k ∈ [m− j + 1,m]. For each such k,

E e−Ek/r(k) = (1 + 1/r(k))−1 6 (1 + 1/r(m))−1. (7.13)

Consequently, by (3.5),

E eYm−j−Ym =
∏

m−j<k6m
δk=1

E e−Ek/r(k) 6
( 1

1 + 1/r(m)

)j−r(m)
. (7.14)

In other words, if r(m) 6 j 6 m, then

E eYm−j−Ym 6
(
1 + 1/r(m)

)r(m)−j
6 e
(
1 + 1/r(m)

)−j
, (7.15)

and the same estimate holds trivially if 0 6 j < r(m) too. Consequently,

E
(
Bme

−Ym) 6 ∞∑
j=0

e
(
1 + 1/r(m)

)−j
= e(r(m) + 1) 6 2er(m) (7.16)

and thus, noting that log+Op(1) = Op(1),

Bme
−Ym = r(m)Op(1) 6 r(m)eOp(1). (7.17)

The result follows by combining (7.12) and (7.17). �

Lemma 7.2. For any sequence r(m),

Am = Bme
Op(1) = r(m)eYm+Op(1). (7.18)

Proof. First condition on the entire sequence (Yk)
∞
1 . Then, by (7.5)–(7.6),

E
(

(Am −Bm)2 | (Yk)∞1
)

= E
(( m∑

k=0

eYk(E′k − 1)
)2 ∣∣∣ (Yk)

∞
1

)
=

m∑
k=0

e2Yk 6
m∑
k=0

eYk+Ym = Bme
Ym (7.19)

and thus

E
((Am

Bm
− 1
)2 ∣∣∣ (Yk)

∞
1

)
6 B−1

m eYm . (7.20)

Using (7.9), with m1 := m−dr(m)/2e as above, and taking the expectation,
we obtain

E
(Am
Bm
− 1
)2
6 E

(
B−1
m eYm

)
6

2

r(m)
E eYm−Ym1 . (7.21)

Furthermore, by (3.5) and (7.10), if r(m) > 3,

E eYm−Ym1 6
m∏

k=m1+1

E eE
′
k/r(k) 6

(
1− 1

r(m1 + 1)

)−(m−m1)
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6
(

1− 1

dr(m)/2e

)−dr(m)/2e
6 4. (7.22)

Consequently, if r(m)→∞ asm→∞, then (7.21) and (7.22) imply E
(
Am/Bm−

1
)2 → 0, and thus Am/Bm

p−→ 1, which is the same as log(Am/Bm) = op(1),

or Am = Bme
op(1). In particular, Am = Bme

Op(1), and (7.18) follows in this
case by Lemma 7.1.

On the other hand, if supm r(m) < ∞, we note that the right-hand side
of (7.20) is 6 1, and thus taking the expectation yields

E
(Am
Bm
− 1
)2
6 E

(
B−1
m eYm

)
6 1, (7.23)

which implies that Am/Bm = Op(1) and thus, using (7.7),

Am 6 Bme
Op(1) = r(m)eYm+Op(1). (7.24)

Furthermore, assuming r(m) = O(1) and thus log r(m) = O(1),

Am > e
YmE′m = eYm+Op(1) = r(m)eYm+Op(1). (7.25)

The result in this case (bounded r(m)) follows from (7.24) and (7.25), to-
gether with (7.7) again. �

Theorem 7.3. For any sequence r(m),

Nm = r(m)eYm+Op(1). (7.26)

Proof. Theorem 3.7 yields Nm/Am−1
a.s.−→ 1, and thus Nm/Am−1

p−→ 1,
which is the same as log(Nm/Am−1) = op(1). Hence, Lemma 7.2 yields

logNm = logAm−1 + op(1) = log r(m− 1) + Ym−1 +Op(1). (7.27)

Furthermore, log r(m − 1) = log r(m) + O(1) and Ym − Ym−1 = δm
r(m)E

′
m =

Op(1). Hence, (7.26) follows from (7.27). �

Theorem 7.3 holds for any sequence r(m), but if r(m) is large, then The-
orem 4.6 gives a sharper result. In the remainder of this secion we assume
that r(m) is small.

Lemma 7.4. Suppose that
∑

m r(m)−2 =∞. Then, as m→∞,

Ym − ym
σm

d−→ N(0, 1). (7.28)

Proof. An immediate consequence of (4.3) and the central limit theorem
with Lyapounov’s condition [7, Theorem 7.2.2], using the estimate

m∑
k=1

E
∣∣∣ δk
r(k)

(Ek − 1)
∣∣∣3 = C

m∑
k=1

δk
r(k)3

6 Cσ2
m = o(σ3

m). (7.29)

�

Theorem 7.5. Suppose that
∑

m r(m)−2 =∞. Then

logNm −
(
ym + log r(m)

)
σ̂m

d−→ N(0, 1). (7.30)
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Proof. Since σ̂m →∞ by the assumption and (7.4), Theorem 7.3 yields

logNm −
(
ym + log r(m)

)
= Ym +Op(1)− ym = Ym − ym + op(σ̂m)

and thus

logNm −
(
ym + log r(m)

)
σ̂m

=
σm
σ̂m
· Ym − ym

σm
+ op(1). (7.31)

Since (7.3) implies σm/σ̂m → 1, the result follows from Lemma 7.4 and the
standard Cramér–Slutsky theorem [7, Theorem 5.11.4]. �

The asymptotic distribution of Nm is thus log-normal, for any small se-
quence r(m). Under weak regularity assumptions, this can be inverted to
yield asymptotic normality of Mn. For convenience, we will assume that the
sequence r(m) is regularly varying, see e.g. [3, §1.9]. We define,

ŷm :=

m∑
k=1

1

r(k)
, (7.32)

and see by (3.13) that

ŷm − ym =

r(m)∑
`=2

1

`
= log r(m) +O(1). (7.33)

Lemma 7.6. Suppose that
∑

m r(m)−2 = ∞, and that r(m) is regularly
varying.

(i) Let β(m) := r(m)σ̂m as in (1.8). Then, for all m > 1,

β(m) > m1/2, (7.34)

β(m) 6 Cm0.51 = o(m). (7.35)

(ii) Suppose further that m = mn and m̃ = mn are two sequences such
that, as n→∞, m̃ ∼ m. Then,

r(m̃) ∼ r(m), (7.36)

σ̂m̃ ∼ σ̂m. (7.37)

Proof. Suppose that r(m) is regularly varying of index κ. Then r(m) =

mκ+o(1), as a consequence of [3, Theorem 1.9.7 or Theorem 1.5.4]. Hence, the

assumption
∑

m r(m)−2 =∞ implies κ 6 0.5. Hence, r(m) = O
(
m0.5+o(1)

)
,

and in particular,

r(m) = O
(
m0.51

)
= o(m). (7.38)

Since κ < 0.51, we have r(m)/r(k) 6 C(m/k)0.51 whenever 1 6 k 6 m;
this is another consequence of [3, Theorem 1.9.7, or Theorem 1.5.6]. Hence,

β(m)2 =

m∑
k=1

r(m)2

r(k)2
6

m∑
k=1

C
m1.02

k1.02
6 Cm1.02, (7.39)

which yields (7.35). In the opposite direction, trivially

β(m)2 =
m∑
k=1

r(m)2

r(k)2
>

m∑
k=1

1 = m. (7.40)
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(ii): Since r(m) is regularly varying, if m̃ ∼ m then r(m̃) ∼ r(m), as a
consequence of [3, Theorem 1.9.7 or Theorem 1.5.2].

Furthermore, r(m)−2 is regularly varying of index −2κ, and it follows,
using the assumption

∑
m r(m)−2 = ∞ when κ = 1/2, that σ̂2

m defined
by (7.2) is regularly varying of index 1 − 2κ, see [3, Theorem 1.9.5(ii) and
Propositions 1.5.8 and 1.5.9b]. Hence σ̂2

m̃ ∼ σ̂
2
m. �

Proof of Theorem 1.3. Note first that (1.7) implies that µ(n)→∞ as n→∞.
We may thus assume µ(n) > 1. Furthermore, (7.34) yields γ(n) = β(bµ(n)c)→
∞ as n→∞. We may thus also replace µ(n) by bµ(n)c, and thus in the
sequel assume that µ(n) is an integer.

Fix x ∈ R and let m := dµ(n) + xγ(n)e. By (1.9) and (7.35), as n→∞,

γ(n) = β
(
µ(n)

)
= o
(
µ(n)

)
(7.41)

and thus m ∼ µ(n). In particular, m → ∞ as n→∞ and m > 1 for all
large n; consider only such n. Then, using (3.1),

P
(
Mn > µ(n) + xγ(n)

)
= P

(
Mn > m

)
= P

(
Nm 6 n

)
= P

(
logNm − (ym + log r(m))

σ̂m
6

log n− (ym + log r(m))

σ̂m

)
. (7.42)

In the last line, the random variable on the left of ’6’ is asymptotically
normal by (7.30); we turn to the term on the right. By (1.7) and (7.32),
ŷµ(n) = log n+O(1), and by (7.33) this yields

log n−
(
ym + log r(m)

)
= ŷµ(n) − ŷm +O(1). (7.43)

Write m̃ := µ(n). Since m̃ ∼ m, it follows by (7.36) that r(k) ∼ r(m)
uniformly for all k with m̃ 6 k 6 m or m 6 k 6 m̃. Consequently, by
(3.13),

ŷm̃ − ŷm ∼
m̃−m
r(m)

. (7.44)

Furthermore, by (7.36)–(7.37),

γ(n) = β(m̃) = r(m̃)σ̂m̃ ∼ r(m)σ̂m, (7.45)

and hence, using (7.36)–(7.37) again,

m̃−m
r(m)

=
−xγ(n) +O(1)

r(m)
=
−xr(m̃)σ̂m̃

r(m)
+O(1)

= −xσ̂m
(
1 + o(1)

)
+O(1). (7.46)

Since σ̂m →∞ by (7.4), it follows from (7.46) that

m̃−m
r(m)σ̂m

→ −x (7.47)

and thus (7.43) and (7.44) yield

log n−
(
ym + log r(m)

)
σ̂m

=
ŷm̃ − ŷm
σ̂m

+ o(1)→ −x. (7.48)

Consequently (7.42) and Theorem 7.5 imply, with ζ ∈ N(0, 1),

P
(
Mn > µ(n) + xγ(n)

)
→ P(ζ 6 −x) = P(ζ > x) (7.49)

for every x ∈ R, which proves (1.10).
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Finally, the limit (7.28) is evidently mixing, i.e., it holds also conditioned
on any fixed set Y1, . . . , YK of the variables. (See [1, Proposition 2].) Using
the argument in the proof of Lemma 3.3, (7.28) holds also conditioned on
the sequence of indicators 1{Xk} is accepted, k 6 NK , which is equivalent
to conditioning on M1, . . . ,MNK . It follows that the results above, including
(7.49) and (1.10), hold also conditioned on M1, . . . ,MNK , and thus a fortiori
also conditioned on M1, . . . ,MK . Hence (1.10) is mixing. �

Remark 7.7. It can be seen from the proof that the assumption that r(m)
be regularly varying may be replaced by the weaker

if m̃ = m+O(β(m)), then r(m̃) ∼ r(m). (7.50)

8. Examples

Example 8.1. Consider ‘hiring above the median’. By (1.2), this is the
case r(m) = bm/2c+ 1. Hence, (6.1) holds with ν = 1 and q = 2, and thus
Theorem 6.1 applies and yields

EW s = 2sΓ
(s

2
+ 1
)
, (8.1)

which shows that (W/2)2 ∈ Exp(1) and that W thus has a Rayleigh distri-
bution with density function

1
2xe
−x2/4, x > 0. (8.2)

Consequently, Theorem 1.2 shows that Mn/n
1/2 converges in distribution to

this Rayleigh distribution, as shown by Helmi and Panholzer [11]; moreover,
Theorem 1.2 shows a.s. convergence, and convergence of all moments. ([11]
treated only the mean.)

Furthermore, the definition (3.4) yields δk = 1{m odd}, and consequently,
(4.2) yields

Z =
∞∑
j=1

1

r(2j − 1)
(E2j−1 − 1) =

∞∑
j=1

1

j
(E2j−1 − 1)

d
=
∞∑
j=1

1

j
(Ej − 1). (8.3)

It is well-known that this sum yields a centered Gumbel distribution:

P(Z 6 x) = e−e
−(x−γ)

. (8.4)

(Recall that by definition, EZ = 0.) This can be seen in several ways, for
example by computing the moment generating function E esZ = e−γsΓ(1−s),
Re s < 1, by arguments similar to the proof of Theorem 6.1, or directly from
(5.8) and the identification of W as a Rayleigh distribution; we omit the
details.

Example 8.2. Let 0 < α 6 1 and consider ‘the α-percentile rule’, i.e.
r(m) = dαme by (1.3). Theorem 1.2 applies and shows convergenceMn/n

α →
Wα, a.s., in distribution, and with all moments, to some positive random
variable Wα with moments given by (1.6). In particular, when α is rational,
the moments can be calculated (in terms of the Gamma function) by Theo-
rem 6.1. We give a few examples in Table 1. (The expectations were given in
[6], see below. Note that the results can be written in different forms, using
standard Gamma functions identities; cf. the partly different but equivalent
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α EWα EW 2
α

1 1
2

1
3

1
2

2
√
π

3 2

1
3

1
4Γ
(

1
3

)2 12
5 Γ
(

2
3

)2
2
3

3
22/3·5Γ

(
1
3

)
9

21/3·7Γ
(

2
3

)
1
4

1
20Γ
(

1
4

)3 4
3π

3/2

3
4

4
33/4·7Γ

(
1
4

)
16

33/2·5π
1/2

1
5

1
150Γ

(
1
5

)4 16
35Γ
(

2
5

)4
2
5

21/5

7 Γ
(

1
5

)
Γ
(

2
5

)
27/5·5

9 Γ
(

2
5

)
Γ
(

4
5

)
3
5

5Γ( 13
15)Γ( 1

5)
33/5·8Γ( 2

3)
10Γ( 1

15)Γ( 2
5)

311/5·11Γ( 2
3)

4
5

5
28/5·9Γ

(
1
5

)
25

211/5·13
Γ
(

2
5

)
Figure 1. Some values of the asymptotic first and second
moments for ‘the α-percentile rule’.

formulas for the expectations given here and in [6].) In particular, note that
(6.5) yields for the special case ν = 1 (where r(i) = 1 for 1 6 i 6 q)

EW s
1/q =

qs+1

s+ q
Γ
(s
q

+ 1
)q−1

=
qs+2−qsq−1

s+ q
Γ
(s
q

)q−1
(8.5)

and for ν = q − 1 (where r(i) = i for 1 6 i 6 q − 1 and r(q) = ν = q − 1)

EW s
ν/q =

qs+1

ννs/q(νs+ q)
Γ
(s
q

+ 1
)

=
sqs

ννs/q(νs+ q)
Γ
(s
q

)
. (8.6)

The expectations cα := EWα = limn→∞ EMn/n
α have been considered

before. Krieger, Pollak and Samuel-Cahn [14] found that W1 ∼ U(0, 1) and
thus c1 = 1/2, but otherwise showed only existence of the limit cα. Gaither
and Ward [6] computed cα (our EWα) as

cα =
1 +

∑
k>1

dαke−αk
dαke

∏k
j=1

1
1+α/dαje

(α+ 1)Γ(α+ 1)
. (8.7)

In the case α = ν/q rational, they showed further how this can be trans-
formed into a form that they could evaluate symbolically; as examples they
gave explicit values for all cases with q 6 6. The formula (8.7) must agree
with (1.6) for s = 1, i.e.,

cα = EWα =
1

Γ(α+ 2)

∞∏
k=1

1 + 1/k

1 + α/dαke
, (8.8)

but we do not see any direct proof of this. The explicit values for α rational
are obtained more easily from (6.2)–(6.5); in particular, for the cases ν = 1
and ν = q − 1, we can take s = 1 in (8.5)–(8.6).

Gaither and Ward [6] gave a graph of the function α 7→ cα, and con-
jectured that it is continuous at all irrational α but only left-continuous
at rational α. This is easily verified from our form (8.8), since the infinite
product converges unifomly on each interval [a, 1], and each factor in it is
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continuous at irrational α and left-continuous everywhere, but for each ra-
tional α there are factors that have jumps; furthermore, the jumps in the
factors are always positive. Hence, cα has a positive jump at each rational
α ∈ (0, 1).

Let us consider the case α = 1/2 in more detail. For comparisons, let
Wmed denote the limit variable for ‘hiring above the median’ in Example 8.1.
Then (6.3) and (8.1) yield

EW s
1/2 =

2s

1 + s/2
Γ
(s

2
+ 1
)

=
1

s/2 + 1
EW s

med (8.9)

and thus

W1/2
d
= U1/2Wmed, (8.10)

where U ∼ U(0, 1) is independent ofWmed. In particular, EW1/2 = 2
√
π/3 =

2
3 EWmed, as shown by Helmi and Panholzer [11], who also gave a formula
for the density function of W1/2 which is equivalent to (8.10).

The relation between W1/2 and Wmed is studied further in Example 8.3
and Example 8.4.

Example 8.3. One way to regard the difference between ‘hiring above
the median’ and ‘the 1

2 -percentile rule’ is that their sequences (r(m))∞0 are
1, 1, 2, 2, . . . and 1, 1, 1, 2, 2, . . . , respectively, and thus differ only by an extra
1 in the latter case.

We can study this in general. Given a sequence r(m) satisfying (1.1),
define a new sequence r̃(m) by inserting an extra 1 first, i.e., let r̃(m) :=
r(m − 1), m > 1. We use ˜ to denote variables for the new sequence. It
follows from (4.2) that

Z̃
d
= Z + E − 1 (8.11)

with E ∈ Exp(1) independent of Z. Suppose now that r(m) = αm+O(1), or
more generally that (5.1) holds. Then the same is true for r̃(m); furthermore
it is easy to see from (5.2) that ρ̃ = ρ+1, and thus (5.8) yields, using (8.11),

W̃
d
= e−αEW = UαW (8.12)

where U = e−E ∈ U(0, 1) is independent of W . Equivalently,

E W̃ s =
1

1 + αs
EW s, (8.13)

which also follows from (1.6).
In fact, this has a simple probabilistic explanation. In the modified strat-

egy, the first candidate is, as always, accepted, and because r̃(1) = 1, the

threshold for the next candidate is Ỹ1 = X1. Since the threshold never de-
creases (see Lemma 3.3), this means that only candidates better than X1

have a chance of being considered. Moreover, it is easy to see that if we
consider only the subsequence of candidates with values Xn > X1, then
the ones hired by the modified strategy are precisely those that would have
been hired by the original strategy applied to this subsequence of candidates.
Conditioning on X1 = x1, the values in the subsequence will be indepen-
dent with the conditional distribution L(E + x1), and subtracting x1 from
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all values, we obtain the original problem for the original sequence. How-
ever, still conditioned on X1, if we start with a sequence of n candidates,
the subsequence will contain only Bin(n − 1, e−X1) candidates. Note that
U := e−X1 ∈ U(0, 1). It follows, using the law of large numbers, that if
Theorem 1.2 applies to the original strategy, then it holds for the modified
one too, with

W̃
d
= UαW, (8.14)

where U ∈ U(0, 1) is independent of W .

Example 8.4. Another way to view the difference between ‘hiring above
the median’ and ‘the 1

2 -percentile rule’ is that r(m) has been decreased by 1
for every even m > 2. Let us consider, in general, the effect of decreasing a
single value r(m) by 1, assuming that this is possible (i.e., that r(m− 1) <
r(m) = r(m + 1)). Assume also for simplicity that Theorem 1.2 applies.
Then (1.6) shows that W is modified such that EW s is multiplied by

1 + sα/r(m)

1 + sα/(r(m)− 1)
=
r(m)− 1

r(m)
+

1/r(m)

1 + sα/(r(m)− 1)
= EV sα/(r(m)−1),

(8.15)
where V has density 1/r(m) on (0, 1) and a point mass P(V = 1) =

1 − 1/r(m). Hence, the modified limit W̃
d
= V α/(r(m)−1)W . This can be

repeated for several changes.
In particular, looking just at the expectation, decreasing r(2) from 2 to 1

in ‘hiring above the median’ multiplies EW by (1 + 1
4)/(1 + 1

2) = 5/6. As
seen above, EW decreases by a factor 2/3 if we change ‘hiring above the
median’ to ‘the 1/2-percentile rule’, and we now see that half of the decrease
is due to the decrease of r(2). This illustrates that, as said in Section 1, in
the case of large r(m), the asymptotic behaviour is heavily influenced by
the effects of the first candidates.

Example 8.5. Another variation of ‘hiring above the median’ is to take the
sequence 1,2,2,3,3,. . . , i.e.,

r(m) = dm/2e+ 1, m > 0. (8.16)

Theorem 6.1 applies and yields, e.g. by (6.3),

EW s = 2sΓ
(s

2
+ 2
)
. (8.17)

This follows also from Example 8.3, since if we insert an extra 1 first in this
sequence r(m), we obtain ‘hiring above the median’ as in Example 8.1, and
thus by (8.13) and (8.1),

2sΓ
(s

2
+ 1
)

=
1

s/2 + 1
EW s. (8.18)

It follows from (8.17) that W 2/4 ∈ Γ(2), and thus W has the density

fW (x) =
x3

8
e−x

2/4, x > 0. (8.19)

Equivalently, W/
√

2 ∼ χ(4), a chi distribution.
We return to the significance of this example in Section 9.
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Example 8.6. The extreme case of small r(m) is r(m) = 1, m > 0. This
means the we only accept candidates that are better than all previous can-
didates, i.e., the record values in the sequence (Xn).

Theorem 1.3 applies with µ(n) = log n, β(m)2 = m and γ(n)2 = blog nc ∼
log n, which yields

Mn − log n

log1/2 n

d−→ N(0, 1). (8.20)

This is a well-known result for the number of records, see e.g. [7, The-
orem 7.4.2], and is easily proved directly by the central limit theorem, ob-
serving that the indicators Ik := 1{Xk is a record} are independent with
Ik ∼ Be(1/k). See further the next example. (This connection between
records and the hiring problem was noted by [4].)

Example 8.7. More generally, consider ‘hiring above the r-th best’ for a
fixed r > 1, with r(m) given by (1.4). Thus Example 8.6 is the case r = 1.
This strategy was studied by Archibald and Mart́ınez [2] and, in great detail,
by Helmi, Mart́ınez and Panholzer [9]. A value Xk is accepted if it is an
r-record, in the sense that it is one of the r best values seen so far. (In
particular, the first r values Xk are always accepted.)

Theorem 1.3 applies with µ(n) = r log n, β(m)2 ∼ m and γ(n)2 ∼ r log n,
which yields

Mn − r log n

(r log n)1/2

d−→ N(0, 1), (8.21)

as shown by [9] (who also gave many other results, including for fixed
n, and for the case when both n, r → ∞). Again, this is easily shown
directly by the central limit theorem, using the fact that the indicators
Ik := 1{Xk is an r-record} are independent with Ik ∼ Be(r/k) for k > r,
which is noted in [9], see also the furthern references given there.

Example 8.8. Let r(m) := b
√
mc, m > 1. This is an example of small

r(m). (But rather large among the small ones.) We have

σ2
m = σ̂2

m +O(1) =
m∑
k=1

1

b
√
kc2

+O(1) =
m∑
k=1

1

k
+O(1) = logm+O(1)

and

ŷm =
m∑
k=1

1

b
√
kc

=

b
√
mc∑

j=1

2j + 1

j
+O(1) = 2

√
m+ 1

2 logm+O(1). (8.22)

It follows that Theorem 1.3 applies with

µ(n) = 1
4 log2 n− 1

2 log n log log n, (8.23)

β(m)2 = r(m)2σ̂2
m ∼ m logm and

γ(n)2 ∼ µ(n) logµ(n) ∼ 1
2 log2 n log log n. (8.24)

Hence, Theorem 1.3 yields

Mn − (1
4 log2 n− 1

2 log n log log n)

log n(log log n)1/2

d−→ N
(

0,
1

2

)
. (8.25)
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Example 8.9. We give an example showing how Theorem 1.3 can fail when
the sequence r(m) is too irregular.

Let r(m) be such that r(8i) = 2i, r(m) increases linearly on each interval
[8i, 8i + 2i], and is constant between these intervals; i.e.,

r(m) :=

{
2i +m− 8i, 8i 6 m 6 8i + 2i, i > 0

2i+1, 8i + 2i 6 m 6 8i+1, i > 0.
(8.26)

Thus r(m) � m1/3 (meaning that cm1/3 6 r(m) 6 Cm1/3 for some constants

c and C), and thus (7.2)–(7.3) yield σ2
m ∼ σ̂2

m � m1/3. Hence β(m)2 =

r(m)2σ̂2
m � m so β(m) � m1/2. We see also that m̃ ∼ m implies σ̂m̃ ∼ σ̂m.

Define mi = 8i and ni := bexp
(
ŷ8i
)
c, i > 1. Consider only the subse-

quence (ni)i. We have chosen ni such that (1.7) holds with n = ni and
µ(n) = 8i, so we may choose µ(n) such that µ(ni) = 8i = mi for i > 1.

Then γ(ni) = β(8i) � 23i/2.
Now argue as in the proof of Theorem 1.3 for n = ni. Thus m̃ = µ(ni) =

mi = 8i. Suppose first that x < 0. Then m 6 m̃, and r(k) = 2i = r(mi) for
every k ∈ [m, m̃] (at least if i is large); hence, as i→∞,

ŷm̃ − ŷm =
m̃−m
r(mi)

∼ −xγ(ni)

r(mi)
=
−xβ(mi)

r(mi)
= −xσ̂mi , (8.27)

and since σ̂m ∼ σ̂mi ,

ŷm̃ − ŷm
σ̂m

→ −x. (8.28)

On the other hand, if x > 0, then m > m̃, and for most k ∈ [m̃,m],
r(k) = 2i+1 = 2r(mi). Hence, as i→∞, similarly,

ŷm̃ − ŷm ∼ −
m− m̃
2r(mi)

∼ −xγ(ni)

2r(mi)
= −x

2
σ̂mi , (8.29)

and

ŷm̃ − ŷm
σ̂m

→ −x
2
. (8.30)

Instead of (7.49), we thus obtain

P
(
Mni > µ(ni) + xγ(ni)

)
→

{
P(ζ 6 −x) = P(ζ > x), x < 0,

P(ζ 6 −x/2) = P(2ζ > x), x > 0.
(8.31)

Consequently, along the sequence (ni), Mn after normalization as in (1.10)
converges to the non-normal random variable

η :=

{
ζ, ζ 6 0,

2ζ, ζ > 0,
(8.32)

where ζ ∈ N(0, 1).
On the other hand, for many other subsequences there is asymptotic nor-

mality (by the same proof), for example for bexp(ŷ2·8i)c.
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9. Conditioning on the first value

We have seen above that in the case of large r(m), the asymptotics depend
heavily on the first values Xk, and thus in particular on the first value X1.
Furthermore, as have been remarked by [4], assuming r(1) = 1, so that the
second accepted candidate is the first one with Xn > X1, the waiting time
N2 −N1 until the second candidate is accepted has, conditioned on X1, the
distribution Ge

(
e−X1

)
with expectation

E
(
N2 −N1 | X1

)
= eX1 = 1/U, (9.1)

where U := e−X1 ∈ U(0, 1). Consequently, E(N2 −N1) = EU−1 = ∞, and
thus ENm =∞ for every m > 2.

These effects led [4] to consider ‘hiring above the median’ conditioned on
X1. We can do this in general. We assume that r(m) is large, since for
small r(m), conditioning on X1 has no effect on the asymptotics, see e.g.
the mixing property in Theorem 1.3.

Theorem 9.1. Suppose that r(m) is large and that r(1) = 1, and define
ř(m) := r(m + 1), m > 0. Conditioned on Xi = x1, the results in The-
orem 1.2 and Sections 4–6 hold, mutatis mutandis, with r(m) replaced by
ř(m) and n replaced by pn, where p := P(X2 > x1) = e−x1.

In particular, when Theorem 1.2 applies, (1.5) extends to

Mn/n
α a.s.−→W = pαW̌ = e−αX1W̌ , (9.2)

where W̌ is independent of X1 and has moments as in (1.6) for the sequence
ř(m).

For a different distribution of the values Xn, e.g. uniform, p is of course
given by the corresponding tail probability.

Proof. This was explained already in Example 8.3, although we here modify
in the opposite direction, so the original sequence here is the modified one
there. As explained in Example 8.3, of the first n candidates, the ones ac-
cepted are the first one and then the candidates accepted using the strategy
given by ř(m) on the candidates that pass the test Xk > x1. For asymp-
totics, we can ignore the first accepted candidate, and thus the results are
the same as for ř(m) with n replaced by Ňn, the (random) number of values
Xk, 2 6 k 6 n, such that Xk > x1. By the law of large numbers, a.s.
Ňn ∼ pn, and the result follows. We omit the details. �

Example 9.2. Consider again ‘hiring above the median’ as in Example 8.1,
but condition on X1. The sequence ř(m) := r(m+1) then is the one studied
in Example 8.5; thus we find, for example, see (9.2), that conditioned on
X1 = x1,

Mn/n
1/2 a.s.−→ p1/2W̌ (9.3)

where p = e−x1 and W has the distribution with density (8.19). This (and
more) has been shown by Helmi and Panholzer [11, Theorem 5]. Moment
convergence holds too, and thus, using (8.17), for −2 < s <∞,

E
(
M s
n | X1 = x1

)
∼ e−sx1/2 E W̌ sns/2 = e−sx1/22sΓ

(s
2

+ 2
)
ns/2. (9.4)
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Problem 9.3. What happens if we condition on X1 in a case with r(1) = 2?

10. Probability of accepting and length of gaps

Let In := 1{Xn is accepted} and pn := E In be the indicator and the
probability that candidate n is accepted; thus Mn =

∑n
k=1 Ik and EMn =∑n

k=1 pk. Let Y ∗n be the current threshold when candidate n is examined.
We then have accepted Mn−1 candidates, and thus

Y ∗n = YMn−1 . (10.1)

Furthermore, if Pn is the conditional probability that Xn is accepted given
the past,

Pn : = E
(
In | X1, . . . , Xn−1

)
= e−Y

∗
n = e−YMn−1 (10.2)

and thus

pn = EPn = E e−YMn−1 . (10.3)

We return to a more explicit asymptotic result in the case (5.1) in Theo-
rem 10.5 below.

Conditioned on Y ∗n , or equivalently on Pn, the waiting time until the next
candidate is accepted is Ge(Pn). We will see that asymptotically, the same
holds if we go back in time from n to the last acceptance. The next lemma
excludes some extreme cases.

Lemma 10.1. If

∞∑
k=1

δk
r(k)

=∞, (10.4)

then Ym
a.s.−→∞ as m→∞, and thus Pn

a.s.−→ 0 and pn → 0 as n→∞.

Conversely, if the sum in (10.4) converges, then Ym
a.s.−→ Y∞ <∞.

Proof. It follows from (3.5) that

Ym → Y∞ :=
∞∑
m=1

δk
r(k)

Ek 6∞. (10.5)

Note that the sum in (10.4) is EY∞. Hence, if the sum is finite, then Y∞ <∞
a.s.

Conversely, assume that (10.4) holds. Then the a.s. divergence of the sum
in (10.5) follows by the Kolmogorov three series theorem [7, Theorem 6.5.5],
or by Lemma 4.1 in the case of large r(m) and otherwise by Lemma 7.4,

which implies first ym/σm → ∞ and then Ym/ym
p−→ 1. Furthermore,

Mn−1
a.s.−→ ∞, and thus YMn−1

a.s.−→ ∞ as n→∞; hence Pn
a.s.−→ 0 by (10.2)

and pn → 0 by (10.3) and dominated convergence. �

Theorem 10.2. Suppose that (10.4) holds and that r(m)→∞ as m→∞.
Then there exists a sequence an → ∞, such that on the interval Jn :=
[n− anP−1

n , n], the stochastic process (Ik)k∈Jn w.h.p. agrees with a sequence
(I ′k)k∈Jn of indicator variables that conditioned on Pn are i.i.d. with I ′k ∈
Be(Pn).
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Proof. Fix an integer K > 0, and define the stopping time νn := min{k :
Mk−1 >Mn−1−K}. Thus νn 6 n and, assuming n is so large that Mn−1 >
K,

Y ∗νn = YMn−1−K > YMn−1 −
K

r(Mn−1 −K)
= YMn−1 + o(1) = Y ∗n + o(1)

(10.6)

a.s. as n→∞, since Mn → ∞ and thus r(Mn−1 − K) → ∞ a.s. Conse-
quently, a.s. as n→∞,

Pνn ∼ Pn. (10.7)

By definition, K candidates are accepted in the interval J ∗ := [νn, n)
(provided νn > 1), and, conditioned on Pνn , each candidate in J ∗ is accepted
with probability at most Pνn .

Let a be a fixed large number and define n1 := dn − aP−1
νn e. If νn > n1,

then |J ∗| 6 n− n1 6 aP−1
νn , and thus at least K candidates are accepted in

the interval [νn, νn + baP−1
νn c). Hence, using Markov’s inequality,

P
(
νn > n1 | Pνn = p

)
6 P

(
Bin
(
bap−1c, p

)
> K

)
6 a/K. (10.8)

Consequently, given any ε > 0, we may by choosing K > a/ε make this
probability < ε, uniformly in p > 0. Hence, we may in the rest of the
proof assume that νn < n1. This means that for every k in the interval
[n1, n], νn < k 6 n, and thus Pνn > Pk > Pn. It follows that, conditioned
on Pνn , we may couple the Markov process (Ik)k∈[n1,n] with a sequence of
(conditionally) i.i.d. variables (I ′′k )k∈[n1,n] with P(I ′′k ) = Pνn , with an error
probability at most, using (10.7),

(n− n1 + 1)
(
Pνn − Pn

)
∼ aP−1

νn

(
Pνn − Pn

) a.s.−→ 0. (10.9)

We now uncondition, and see (using (10.9) and dominated convergence) that
we may couple (Ik)k∈[n1,n] and (I ′′k )k∈[n1,n] with error probability o(1). We
may then instead couple with (I ′k)k∈[n1,n] where I ′k are conditionally i.i.d.
with P(I ′k) = Pn, introducing an additional error o(1) by an estimate similar
to (10.9).

Furthermore, a.s. Pνn ∼ Pn by (10.7), and thus aP−1
νn > (a − 1)P−1

n for

large n. Thus, we may as well couple (Ik) and (I ′k) on [n − (a − 1)P−1
n , n],

for any fixed a.
We may here replace a by a+1. Moreover, by a simple general argument,

since this coupling with error probability o(1) is possible for every fixed
a > 0, it is also possible for some sequence an → ∞; this follows by the
following elementary lemma, taking x(a, n) to be the total variation distance
between the two sequences, which completes the proof. �

Lemma 10.3. Suppose that x(a, n), a, n ∈ N, are real numbers such that for
every fixed a, x(a, n)→ 0 as n→∞. Then there exists a sequence an →∞
such that x(an, n)→ 0.

Proof. Let n0 = 1. For every k > 1, choose nk > nk−1 such that |x(k, n)| <
1/k when n > nk. Define an = k when nk 6 n < nk+1. �
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Let Ln := n−NMn be the number of candidates examined after the last
accepted one. Let dTV(X,Y ) denote the total variation distance between
two distributions or random variables.

Corollary 10.4. Suppose that (10.4) holds and that r(m)→∞ as m→∞.
Then, conditioned on Pn, dTV

(
Ln,Ge(Pn)

)
→ 0 as n→∞. Consequently,

still conditioned on Pn,

PnLn
d−→ Exp(1). (10.10)

Proof. Immediate from Theorem 10.2 and the fact that Pn
a.s.−→ 0 by Lemma

10.1. �

We can also find the unconditional distribution of Ln. For convenience,
and in order to obtain more explicit results, we consider only the case in
Section 5, and we assume α < 1, which implies (10.4). We first study Pn.

Theorem 10.5. Suppose that (5.1) holds for some α ∈ (0, 1). Then, a.s.,

Pn ∼ αMn/n ∼ αWnα−1, (10.11)

where W is as in Theorem 1.2.

Proof. Let, for convenience ξ :=
(
α−1 − 1

)
γ + ρ + 1, so W = e−αξ−αZ by

(5.8). Then, by Lemma 4.1 and (5.4), a.s.,

Ym = ym + Z + o(1) =
(
α−1 − 1

)
logm− logα+ ξ + Z + o(1) (10.12)

and thus, by (5.8),

Y ∗n =
(
α−1 − 1

)
logMn − logα+ ξ + Z + o(1)

= (1− α) log n+
(
α−1 − 1

)
logW − logα+ ξ + Z + o(1)

= (1− α) log n− logα+ αξ + αZ + o(1). (10.13)

Hence, by (10.2),

Pn ∼ αe−αξ−αZnα−1 = αWnα−1. (10.14)

�

Theorem 10.6. Suppose that (5.1) holds for some α ∈ (0, 1). Then

Ln/n
1−α d−→ L̂ := α−1W−1E, (10.15)

where W is as in Theorem 1.2 and E ∈ Exp(1) is independent of W .

Proof. A consequence of Corollary 10.4 and Theorem 10.5. �

Remark 10.7. The moments

E L̂s = α−s E
[
W−s

]
E
[
Es
]

= α−sΓ(s+ 1)EW−s, s > −1, (10.16)

follow from (1.6). Note that for real s, E L̂s <∞ if −1 < s < r∗/α, but not
outside this interval, see Remark 5.5.

Example 10.8. For ‘hiring above the median’, W has the density function

(8.2), and thus L̂ = 2W−1E has the density function

f
L̂

(x) =

∫ ∞
0

fW (y)f2y−1E(x) dy =

∫ ∞
0

y

2
e−y

2/4 y

2
e−yx/2 dy
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= 2

∫ ∞
0

t2e−t
2−tx dt, (10.17)

as found by [11, Theorem 3]. Furthermore, (10.16) and (8.1) yield

E L̂s = Γ(s+ 1)Γ
(

1− s

2

)
, −1 < s 6 2. (10.18)

In particular, E L̂ =
√
π. [11] proved convergence of ELn/n1/2 to this limit.

Remark 10.9. Theorem 10.2 implies also the same limit results for, e.g.,
the distance between the last two accepted. See [11, Theorem 4] for ‘hiring
above the median’.

11. The distribution of accepted values

Finally, we study the distribution of the accepted values. For simplicity we
consider again only the situation in Section 5. We also assume for simplicity
that α < 1, leaving the case α = 1 to the reader.

Let, for a real number x, M6x
n be the number of values Xk with k 6 n that

are accepted and furthermore satisfy Xk 6 x. Define M>x
n = Mn −M6x

n

similarly.

Theorem 11.1. Suppose that (5.1) holds for some α ∈ (0, 1). Then, a.s.,
for every u ∈ R,

M
6Y ∗n+u
n

Mn
→ F (u) :=

{
(1− α)eαu/(1−α), u 6 0,

1− αe−u, u > 0.
(11.1)

In other words, the empirical distribution function of the differences Xk −
Y ∗n for the Mn accepted candidates converges a.s. to the distribution with
distribution function F (u). Hence, if X̄n is the value of one of the Mn

accepted candidates, chosen uniformly at random, then,

X̄n − Y ∗n
d−→ V, (11.2)

where V has the distribution F (u).

The proof is given later. Note that V has density

f(u) := F ′(u) =

{
αeαu/(1−α), u < 0,

αe−u, u > 0.
(11.3)

Thus, V has an asymmetric double exponential distribution (Laplace distri-
bution); if α = 1/2, V has the usual Laplace distribution.

In order to prove Theorem 11.1, we introduce a simpler strategy. Fix a
real number z and define

xn = xn(z) := (1− α) log n+ αz − logα (11.4)

and, for later convenience,

w = w(z) := e−αz ∈ [0,∞). (11.5)

Define the strategy H(z) as ’accept if Xn > xn’. (Thus H(z) is not a rank-
based strategy.)
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Lemma 11.2. For the strategy H(z), a.s.,

Mn ∼ wnα (11.6)

and, for every real u,

M6xn+u
n

Mn
→ F (u) :=

{
(1− α)eαu/(1−α), u 6 0,

1− αe−u, u > 0.
(11.7)

Proof. Consider first a fixed u > 0. Then every value Xk > xn + u with
k 6 n will have Xk > xn > xk, and thus be accepted. Hence, M>xn+u

n is
the number of all such values, and since the indicators 1{Xk > xn + u} are
i.i.d. with P(Xk > xn + u) = e−xn−u,

M>xn+u
n ∈ Bi

(
n, e−xn−u

)
. (11.8)

This binomial random variable has mean ne−xn−u = αwe−unα, recalling
(11.4) and (11.5). A standard Chernoff bound, see e.g. [13, Corollary 2.3],
shows that for every ε > 0,

P
(∣∣M>xn+u

n /EM>xn+u
n − 1

∣∣ > ε
)
6 2 exp

(
−c(ε, u)nα

)
. (11.9)

It follows, by the Borel–Cantelli lemma, that a.s. M>xn+u
n /EM>xn+u

n → 1,
i.e.,

M>xn+u
n ∼ EM>xn+u

n = αwnαe−u. (11.10)

Consider next Mn. This too is a sum of independent indicators Ik :=
1{Xk > xk}. Furthermore, for k large enough so that xk > 0,

pk := E Ik = e−xk = αe−αzkα−1 = αwkα−1. (11.11)

Since Mn =
∑n

k=1 Ik, we have

EMn =

n∑
k=1

pk =

n∑
k=1

αwkα−1 +O(1) = wnα +O(1). (11.12)

The random variables Ik are not identically distributed, but the Chernoff
bound holds for sums of arbitrary independent indicator variables [13, The-
orem 2.8], and thus (11.9) holds for Mn too, and we obtain as above

Mn/EMn
a.s.−→ 1, (11.13)

which together with (11.12) yields (11.6).
Furthermore, (11.6) and (11.10) show that for every fixed u > 0,

M>xn+u
n /Mn

a.s.−→ αe−u, (11.14)

and thus (11.7) holds for u > 0.
Finally, consider a fixed u 6 0. Similarly as above, we write M6xn+u

n as
a sum of independent indicators I ′k := 1{xk < Xk 6 xn + u}. Note that
I ′k = 0 unless xk < xn + u, which by (11.4) is equivalent to

(1− α) log k < (1− α) log n+ u (11.15)

or

k < eu/(1−α)n. (11.16)

For such k, except possibly for some small k with xk < 0,

E I ′k := e−xk − e−(xn+u) = αwkα−1 − αwe−unα−1. (11.17)
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Hence,

EM6xn+u
n =

eu/(1−α)n∑
k=1

(
αwkα−1 − αwe−unα−1

)
+O(1)

= w
(
eu/(1−α)n

)α − αwe−ueu/(1−α)nα +O(1)

= wnαeαu/(1−α)(1− α) +O(1). (11.18)

The Chernoff argument applies again, and yields

M6xn+u
n /EM6xn+u

n
a.s.−→ 1 (11.19)

and thus, using (11.18) and (11.6), a.s.,

M6xn+u
n ∼ (1− α)wnαeαu/(1−α) (11.20)

and

M6xn+u
n /Mn → (1− α)eαu/(1−α) = F (u). (11.21)

We have proved that (11.7) holds a.s. for every fixed u ∈ R. Hence, it holds
a.s. for every rational u, but this implies that it holds for all u simultane-
ously, since the left-hand side is monotone in u and the right-hand side is
continuous; we omit the details. �

Proof of Theorem 11.1. Consider the rank-based strategy (as in the rest of
the paper), which we denote by R, together with the strategies H(z) for all
rational z ∈ R, acting on the same sequence Xn. We indicate quantities for
the strategy H(z) with an extra argument z; for example, Mn(z) for the
number of accepted values of the n first ones.

Recall that the strategy R is to accept Xn if Xn > Y ∗n . By (10.13) and
(11.4), if z < Z + ξ, then a.s. Y ∗n > xn(z) for all large n, and thus (for large
n) every value accepted by R is also accepted by H(z). Consequently, a.s.

Mn 6Mn(z) +O(1). (11.22)

Similarly, for every fixed real u, a.s.,

M>Y ∗n+u
n 6M>xn(z)+u

n (z) +O(1). (11.23)

For every rational z > Z + ξ, (11.22) and (11.23) hold a.s. with the inequal-
ities in the opposite direction.

Consequently, with G(u) := 1 − F (u), a.s., for every rational z < Z + ξ
and z′ > Z + ξ, using (11.6), (11.5), and (11.7),

M
>Y ∗n+u
n

Mn
6
M

>xn(z)+u
n (z) +O(1)

Mn(z′) +O(1)
=
M

>xn(z)+u
n (z) +O(1)

Mn(z)

Mn(z)

Mn(z′) +O(1)

→ G(u)
w(z)

w(z′)
= G(u)eα(z′−z). (11.24)

Hence, a.s.,

lim sup
n→∞

M
>Y ∗n+u
n

Mn
6 G(u)eα(z′−z) (11.25)

for every rational z and z′ with z < Z + ξ < z′. Consequently, a.s.

lim sup
n→∞

M
>Y ∗n+u
n

Mn
6 G(u) = 1− F (u). (11.26)
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A lower bound follows in the same way, now comparing in the opposite
directions with z > Z + ξ > z′. This proves (11.1) a.s. for a fixed u, and
thus for all rational u simultaneously, which again implies the result for all
real u simultaneously by monotonicity and continuity. �

Corollary 11.3. Suppose that (5.1) holds for some α ∈ (0, 1). Then, the
fraction of the accepted values that are larger than the current threshold, and
thus would have been accepted now, converges a.s. to α.

Proof. This fraction is M
>Y ∗n
n /Mn, so the result is the case u = 0 of Theo-

rem 11.1. �

Appendix A. Proof of (5.3)

Lemma A.1. Suppose that (5.1) holds for some α ∈ (0, 1]. Then (5.3)
holds.

Proof. Fix δ > 0 and suppose that m is such that r(m) > (1+δ)2αm. Then,
for every k with m 6 k 6 (1 + δ)m, we have r(k) > r(m) and thus

(αk)−1 − r(k)−1 > (1 + δ)−1(αm)−1 − (1 + δ)−2(αm)−1 = c(δ)m−1. (A.1)

Hence,

∞∑
k=m

∣∣r(k)−1 − (αk)−1
∣∣ > b(1+δ)mc∑

k=m

c(δ)m−1 > c(δ). (A.2)

Since the sum in (5.1) converges, (A.2) cannot hold for arbitrarily large m,
and thus r(m) < (1 + δ)2αm for large m. Similarly, if 0 < δ < 1, then
r(m) > (1− δ)2αm for large m. This proves (5.3). �
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