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Abstract

This paper concerns the long-term behaviour of a system of interacting random

walks labeled by vertices of a finite graph. The model is reversible which allows to

use the method of electric networks in the study. In addition, examples of alternative

proofs not requiring reversibility are provided.
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1 Introduction

Let G be a finite non-oriented graph with n ≥ 1 vertices labelled by 1, 2, . . . , n. Somewhat

abusing notation, we will use G also for the set of the vertices of this graph. Let A = (aij)

be the adjacency matrix of the graph, that is aij = aji = 1 or aij = 0 according to whether

vertices i and j are adjacent (connected by an edge) or not. If vertices i, j ∈ G are connected

by an edge, i.e. aij = 1, call them neighbours and write i ∼ j. By definition, a vertex is not

a neighbour of itself, i.e aii = 0 for all i = 1, . . . , n (i.e. there are no self-loops).

Let Z+ be the set of all non-negative integers including zero. Consider a continuous-

time Markov chain, CTMC for short, ξ(t) = (ξ1(t), . . . , ξn(t)) ∈ Zn+ evolving as follows.

Given ξ(t) = ξ = (ξ1, . . . , ξn) ∈ Zn+, a component ξi increases by 1 at the rate

eαξi+β(Aξ)i = eαξi+β
∑
j:j∼i ξj , (1.1)

where α, β ∈ R are two given constants. A positive component ξi decreases by 1 at constant

rate 1.
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In other words, denoting the rates of the CTMC ξ(t) by qξ,η, for ξ, η ∈ Zn+, we have

qξ,η =


eαξi+β(Aξ)i = eαξi+β

∑
j:j∼i ξj , η = ξ + ei,

1, η = ξ − ei,

0, ‖η − ξ‖ 6= 1,

(1.2)

where ei ∈ Zn+ is the i-th unit vector, and ‖·‖ denotes the usual Euclidean norm.

It is easy to see that if β = 0, then CTMC ξ(t) is a collection of n independent

reflected continuous-time random walks on Z+ (symmetric if also α = 0). In general, the

Markov chain can be regarded as an inhomogeneous random walk on infinite graph ZG+.

Alternatively, it can be interpreted as a system of n random walks on Z+ labelled by the

vertices of graph G and evolving subject to a nearest neighbour interaction.

The purpose of the present paper is to study how the long term behaviour of CTMC

ξ(t) depends on the parameters α and β together with properties of the graph G. In our

main result (Theorem 2.3), we give a complete classification saying whether the Markov

chain is recurrent or transient, and in the recurrent case whether it is positive recurrent

or null recurrent. We find phase transitions, with different behaviour in various regions

depending of parameters α, β and properties of graph G. Furthermore, we give results

(Theorem 6.1) on whether the Markov chain is explosive or not. (This is relevant for the

transient case only, since a recurrent CTMC always is non-explosive.) These results are

less complete and leave one case open.

It is obvious that CTMC ξ(t) is irreducible; hence the initial distribution is irrelevant

for our results. (We may if we like assume that we start at 0 = (0, . . . , 0) ∈ Zn+.)

CTMC ξ(t) was introduced in [13], where its long term behaviour was studied in several

cases. In particular, conditions for positive or null recurrence and transience were obtained

in some special cases; these results are extended in the present paper. In addition, the

typical asymptotic behaviour of the Markov chain was studied in some transient cases.

One example of our results is the case α < 0 and β > 0, which is of a particular

interest because of the following phenomenon observed in [13] in some special cases. If

α < 0 and β = 0, then, as said above, CTMC ξ(t) is formed by a collection of independent

positive recurrent reflected random walks on Z+, and is thus positive recurrent. If both

α < 0 and β < 0, then the Markov chain is still positive recurrent (as shown below). The

interaction in this case is, in a sense, competitive, as neighbours obstruct the growth of

each other. Now keep α < 0 fixed but let β > 0. If β is positive, but not large, then one

could intuitively expect that the Markov chain is still positive recurrent (“stable”), as the

interaction (cooperative in this case) is not strong enough. On the other hand, if β > 0

is sufficiently large, then the intuition suggests that the Markov chain becomes transient

(“unstable”). It turns out that this is correct and that the phase transition in the model

behaviour occurs at the critical value β = |α|
λ1(G)

, where λ1(G) is the largest eigenvalue

of graph G. Namely, if β < |α|
λ1(G)

then the Markov chain is positive recurrent, and if

β ≥ |α|
λ1(G)

then the Markov chain is transient. Moreover, it turns out that exactly at the
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critical regime, i.e., β = |α|
λ1(G)

, the Markov chain is non-explosive transient. We conjecture

that if β > |α|
λ1(G)

, then it is explosive transient. This remains as an open problem in

the general case (see Remark 6.2 below). Another important contribution of this paper

to the previous study of the Markov chain is a recurrence/transience classification in the

case α = 0 and β < 0. This case was discussed in [13] only for the simplest graph with two

vertices. We show that in general there are only two possible long term behaviours of the

Markov chain if α = 0 and β < 0. Namely, CTMC ξ(t) is either non-explosive transient or

null recurrent, and this depends only on the independence number of the graph G.

We also consider some variations of the Markov chain defined above. First, we include

in our results the Markov chain above with dynamics obtained by setting β = −∞ (with

convention 0 · ∞ = 0). In other words, a component cannot jump up (only down, when

possible), if at least one of its neighbours is non-zero; this can thus be interpreted as

hard-core interaction. See Section 3.3 for more details on this hard-core case.

In Section 5 we consider the discrete time Markov chain (DTMC) ζ(t) ∈ Zn+ that

corresponds to CTMC ξ(t), i.e. the corresponding embedded DTMC. We show that our

main results also apply to this DTMC.

Finally, in Section 7, we study the CTMC with the rates given by

q̃ξ,η =


eαξi , η = ξ + ei,

e−β
∑
j:j∼i ξj , η = ξ − ei,

0, ‖η − ξ‖ 6= 1.

(1.3)

We show that similar results holds for this chain, although there is a minor difference.

We use essentially the method of electric networks in our proofs; this is possible since

the CTMC ξ(t) is reversible (see Section 3.1). The use of reversibility was rather limited

in [13], where the Lyapunov function method and direct probabilistic arguments were the

main research techniques. In addition, we provide examples of alternative proofs of some of

our results based on the Lyapunov function method and renewal theory for random walks.

The advantage of these alternative methods is that they do not require reversibility and

can be applied in more general situations. Therefore, the alternative proofs are of interest

on their own right.

Remark 1.1. In the case α = β = 0, all rates (1.1) equal 1, and the Markov chain is a

continuous-time simple random walk on Zn+. It is known that a simple random walk on

the octant Zn+ is null recurrent for n ≤ 2 and transient for n ≥ 3; this is a variant of the

corresponding well-known result for simple random walk on Zn, and can rather easily be

shown using electric network theory, see Example 3.2 below.

Remark 1.2. We allow the graph G to be disconnected. However, there is no interaction

between different components of G, and the CTMC ξ(t) consists of independent Markov

chains defined by the connected components of G. Hence, the case of main interest is when

G is connected.
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Remark 1.3. The case whenG has no edges is somewhat exceptional but also rather trivial,

since then the value of β is irrelevant, and ξ(t) consists of n independent continuous-time

random walks on Z+; in fact, ξ(t) then is as in the case β = 0 for any other G with n

vertices. In particular, if G has no edges, we may assume β = 0.

Remark 1.4. CTMC ξ(t) is a model of interacting spins and, as such, is related to models

of statistical physics. The stationary distribution of a finite Markov chain with bounded

components and the same transition rates is of interest in statistical physics. In particular, if

components take only values 0 and 1, then the stationary distribution of the corresponding

Markov chain is equivalent to a special case of the famous Ising model. One of the main

problems in statistical physics is to determine whether such probability distribution is

subject to phase transition as the underlying graph indefinitely expands. In the present

paper, we keep the finite graph G fixed, but allow arbitrarily large components ξi. We then

study phase transitions of this model, in the sense discussed above.

2 The main results

In order to state our results, we need two definitions from graph theory. We also let e(G)

denote the number of edges in G.

Definition 2.1. The eigenvalues of a finite graph G are the eigenvalues of its adjacency

matrix A. These are real, since A is symmetric, and we denote them by λ1(G) ≥ λ2(G) ≥
· · · ≥ λn(G), so that λ1 := λ1(G) is the largest eigenvalue.

Note that λ1(G) > 0 except in the rather trivial case e(G) = 0 (see Remark 1.3).

Definition 2.2. (i) An independent set of vertices in a graph G is a set of the vertices

such that no two vertices in the set are adjacent. (I.e., no pair of vertices in the set

are joined by an edge of G.)

(ii) The independence number κ = κ(G) of a graph G is the cardinality of the largest

independent set of vertices.

For example, if G is a cyclic graph Cn with n vertices, then κ = bn/2c.
The main results of the paper are collected in the following theorem, which generalises

results concerning positive recurrence of the Markov chain obtained in [13].

Theorem 2.3. Let −∞ < α <∞ and −∞ ≤ β <∞, and consider the CTMC ξ(t).

(i) If α < 0 and α + βλ1(G) < 0, then ξ(t) is positive recurrent.

(ii) ξ(t) is null recurrent in the following cases:

(a) α = 0, β < 0 and κ(G) ≤ 2,
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(b) α = β = 0 and n ≤ 2,

(c) α = 0, β > 0, e(G) = 0 and n ≤ 2.

(iii) In all other cases, ξ(t) is transient. This means the cases

(a) α > 0,

(b) α = 0, β > 0 and e(G) > 0,

(c) α = 0, β > 0, e(G) = 0 and n ≥ 3,

(d) α = β = 0 and n ≥ 3,

(e) α = 0, β < 0 and κ(G) ≥ 3,

(f) α < 0 and α + βλ1(G) ≥ 0.

Theorem 2.3 is summarized in the diagram in Figure 1
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Figure 1: The different phases for the CMTC ξ(t). (Ignoring a trivial exception if e(G) = 0,

α = 0 and β > 0, see Remark 1.3.)

Remark 2.4. Theorem 2.3 shows that the behaviour of the Markov chain has the following

monotonicity property: if the Markov chain is transient for some given parameters (α0, β0),

then it is also transient for all parameters (α, β) such that α ≥ α0 and β ≥ β0. This

can also easily be seen directly using electric networks as in Section 3.2, see the proof of

Lemma 4.8.

Remark 2.5. There is a vast literature devoted to a graph eigenvalues. In particular,

there are well known bounds for the largest eigenvalue λ1. We give two simple examples
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where the largest eigenvalue λ1 easily can be computed explicitly, which allows us to rewrite

the conditions of Theorem 2.3 in the case α < 0 in more explicit form. These examples

basically rephrase results previously obtained in [13, Theorems 4 and 6].

Example 2.6. Assume that G is a regular graph, i.e., a graph with constant vertex degrees

ν, say. Then λ1 = ν. Hence, the Markov chain is positive recurrent if and only if α < 0

and α + βν < 0. If α < 0 and α + βν ≥ 0, then the Markov chain is transient.

Example 2.7. Assume that the graph G is a star K1,m with m = n − 1 non-central

vertices, where m ≥ 1. A direct computation gives that λ1 =
√
m. Hence, the Markov

chain is positive recurrent if and only if α < 0 and α+β
√
m < 0. If α < 0 and α+β

√
m ≥ 0,

then the Markov chain is transient.

We consider also two examples with α = 0 and β < 0, when the independence number

κ(G) is crucial.

Example 2.8. Let, as in Example 2.7, G be a star K1,m, where m ≥ 1. Then κ(G) = m =

n − 1. Assume that α = 0 and β < 0. Then, the Markov chain is null recurrent if n ≤ 3,

and transient if n ≥ 4.

Example 2.9. Let G be a cycle Cn, where n ≥ 3. Then κ(G) = bn/2c. Assume that α = 0

and β < 0. Then, the Markov chain is null recurrent if n ≤ 5, and transient if n ≥ 6.

3 Preliminaries

3.1 Reversibility of the Markov chain

Define the following function

W (ξ) :=
α

2

n∑
i=1

ξi(ξi − 1) + β
∑
i,j: i∼j

ξiξj =
1

2
〈(αE + βA)ξ, ξ〉 − α

2
S(ξ), ξ ∈ Zn+, (3.1)

where the second sum is interpreted as the sum over unordered pairs {i, j} (i.e, a sum over

the edges in G), 〈·, ·〉 is the Euclidean scalar product, E is the unit n× n matrix, A is the

adjacency matrix of the graph G and

S(ξ) :=
n∑
i=1

ξi. (3.2)

A direct computation gives the detailed balance equation

eαξi+β(Aξ)ieW (ξ) = eW (ξ+ei), (3.3)

for i = 1, . . . , n and ξ ∈ Zn+. Note that, recalling (1.2), (3.3) is equivalent to the standard

form of the balance equation

qξ,ηe
W (ξ) = qη,ξe

W (η), ξ, η ∈ Zn+. (3.4)
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Hence, (3.3) means that the Markov chain is reversible with invariant measure µ(ξ) := eW (ξ),

ξ ∈ Zn+.

The explicit formula for the invariant measure µ enables us to easily see when µ is

summable, and thus can be normalised to an invariant distribution (i.e., a probability

measure); we return to this in Lemma 4.13.

Remark 3.1. Recall that a recurrent CTMC has an invariant measure that is unique up

to a multiplicative constant, while a transient CTMC in general may have several linearly

independent invariant measures (or none). We do not investigate whether the invariant

measure µ is unique (up to constant factors) for our Markov chain also in transient cases.

3.2 Electric network corresponding to the Markov chain

Let us define the electric network on graph Zn+ corresponding to the Markov chain of

interest. According to the general method (e.g., see [2] or [6]) the construction goes as

follows. First, suppose that β > −∞. Given ξ = (ξ1, . . . , ξn) ∈ Zn+ replace each edge

{ξ − ei, ξ} = {(ξ1, ξ2, . . . , ξi − 1, . . . , ξn), (ξ1, ξ2, . . . , ξi, . . . , ξn)} , i = 1, . . . , n,

(assuming ξi ≥ 1) by a resistor with conductance (resistance−1) equal to

Cξ−ei,ξ := eW (ξ). (3.5)

Note that Cξ−ei,ξ does not depend on i in our case. Also, C0,ei = eW (ei) = 1, i.e., the edges

connecting the origin 0 with ei have conductance 1, and thus resistance 1 (Ohm, say).

We denote the network consisting of Zn+ with the conductances (3.5) by Γα,β,G. Other-

wise, we will for convenience sometimes denote an electric network by the same symbol as

the underlying graph when it is clear from the context what the conductances are.

LetN(Γ) be an electric network on an infinite graph Γ. The effective resistance R∞(Γ) =

R∞(N(Γ)) of the network is defined, loosely speaking, as the resistance between some fixed

point of Γ, which in our case we choose as 0, and infinity (see e.g. [2], [6] or [8] for more

details). Recall that a reversible Markov chain is transient if and only if the effective

resistance of the corresponding electric network is finite. Equivalently, a reversible Markov

chain is recurrent if and only if the effective resistance of the corresponding electric network

is infinite.

A common approach to showing either recurrence or transience of a reversible Markov

chain is based on Rayleigh’s monotonicity law. In particular, if N(Γ′) is a subnetwork of

N(Γ), obtained by deleting some edges, then R∞(Γ) ≤ R∞(Γ′). Therefore, if R∞(Γ′) <∞,

then R∞(Γ) < ∞ as well, and thus the corresponding Markov chain on Γ is transient.

Similarly, if the network N(Γ′′) is obtained from N(Γ) by short-circuiting one or several

sets of vertices, then R∞(Γ′′) ≤ R∞(Γ). Hence, if R∞(Γ′′) =∞, then R∞(Γ) =∞ as well,

and the corresponding Markov chain on Γ is recurrent.
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Example 3.2. We illustrate these methods, and give a flavour of later proofs, by showing

how they work for a simple random walk (SRW) on Zn+, which as said in Remark 1.1 is the

special case α = β = 0 of our model. The corresponding electric network has all resistances

equal to 1.

First, we obtain a lower bound of R∞(Zn+) by some short-circuiting. (See [2, page 76],

or the Nash-Williams criterion and Remark 2.10 in [8, pages 37–38].) Let, recalling (3.2),

VL := {x ∈ Zn+ : S(x) = L}, L = 0, 1, . . . , (3.6)

and let Γ′′ be the network obtained from Zn+ by short-circuiting each set VL of vertices; we

can regard each VL as a vertex in Γ′′. Then we have � Ln−1 resistors in parallel connecting

VL−1 and VL. As a result, their conductances (i.e. inverse of resistance) sum up; hence the

effective resistance RL between VL−1 and VL is � 1
Ln−1 . Now Γ′′ consists of a sequence of

resistors RL in series, so we must sum them; consequently the resistance of the modified

network is

R∞(Γ′′) =
∞∑
L=1

RL �
∞∑
L=1

1

Ln−1
. (3.7)

If n = 1 or n = 2, this sum is infinite and thus R∞(Zn+) ≥ R∞(Γ′′) = ∞; hence the SRW

is recurrent.

On the other hand, if n ≥ 3, one can show that the random walk is transient. See, for

example, the description of the tree NT2.5849 in [2, Section 2.2.9], or the construction of

a flow with finite energy in [8, page 41] (there done for Zn, but works for Zn+ too), for a

direct proof that R∞(Zn+) < ∞. An alternative argument uses the well-known transience

of SRW on Zn (n ≥ 3) as follows. Consider a unit current flow from 0 to infinity on

Zn. By symmetry, for every vertex (x1, . . . , xn) ∈ Zn, the potential is the same at all

points (±x1, . . . ,±xn). Hence we may short-circuit each such set without changing the

effective resistance R∞. The short-circuited network, Γ′ say, is thus also transient. However,

Γ′ can be regarded as a network on Zn+ where each edge has a conductance between 2

and 2n (depending only on the number of non-zero coordinates). Hence, by Rayleigh’s

monotonicity law, R∞(Zn+) ≤ 2nR∞(Γ′) <∞, and thus the SRW is transient.

3.3 The hard-core interaction

Let us discuss in more detail the model with hard-core interaction, i.e. β = −∞. Then a

component ξi can increase only when ξj = 0 for every j ∼ i, and it follows that the set

Γ0 := {ξ ∈ Zn+ : ξiξj = 0 when i ∼ j} (3.8)

is absorbing, i.e., if the Markov chain ξ(t) reaches Ω, then it will stay there forever. In

particular, if the chain starts at 0, then it will stay in Γ0. Moreover, it is easy to see that

given any initial state, the process will a.s. reach Γ0 at some time (and then thus stay in Γ0).

Hence, any state ξ ∈ Zn+ \ Γ0 (i.e., with at least two neighbouring non-zero components)
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is a non-essential state, and the long-term behaviour of ξ(t) depends only on its behaviour

on Γ0.

Therefore, in the hard-core case we consider the Markov chain with the state space Γ0.

This chain on Γ0 is easily seen to be irreducible.

Note that Γ0 is the set of configurations such that 〈Aξ, ξ〉 = 0, where A is the adjacency

matrix of graph G. Equivalently, a configuration ξ belongs to Γ0 if and only if the set

{i : ξi > 0} is an independent set of vertices in G (see Definition 2.2).

Remark 3.3. In the special case α = 0, the Markov chain with the hard-core interaction

β = −∞ can be regarded as a simple symmetric random walk on the subgraph Γ0 ⊆ Zn+.

In this special case, (3.1) yields W (ξ) = 0 for every ξ ∈ Γ0, so by (3.5), the conductance

of every edge in Γ0 is 1. We may also regard this network as a network on Zn+ with the

conductance for edge {ξ − ek, ξ} defined by

Cξ−ek,ξ =

{
1, if

∑
i,j: i∼j ξiξj = 0,

0, if
∑

i,j: i∼j ξiξj 6= 0,
(3.9)

where the second case simply means that the edge is not wired.

4 Proof of Theorem 2.3

In this section we prove Theorem 2.3 by proving a long series of lemmas treating different

cases. Note that we include the hard-core case β = −∞. (For emphasis we say this

explicitly each time it may occur.) Recall that Γα,β,G denotes Zn+ regarded as an electrical

network with conductances (3.5) corresponding to the CTMC ξ(t).

As a first application of the method of electric networks we treat the case α > 0.

Lemma 4.1. If α > 0 and −∞ ≤ β <∞, then the CTMC ξ(t) is transient.

Proof. Consider the subnetwork of Γα,β,G consisting of the axis Γ′ = Z+e1 = {x ∈ Zn+ : xi =

0, i 6= 1}. For k ≥ 1, the conductance on the edge connecting (k − 1)e1 = (k − 1, 0, . . . , 0)

and ke1 = (k, 0, . . . , 0) is by (3.5) and (3.1) equal to

eW (ke1) = e
α
2
k(k−1); (4.1)

hence the resistance is e−
α
2
k(k−1). Since the resistors in Γ′ are connected in series, the

effective resistance of this subnetwork is

R∞(Γ′) =
∞∑
k=1

e−
α
2
k(k−1) <∞, (4.2)

as α > 0. Therefore, the effective resistance of the original network Γα,β,G is also finite.

Consequently, the Markov chain is transient.
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We give similar arguments for the other transient cases. Recall that A is a non-negative

symmetric matrix with eigenvalues λ1, . . . , λn. Thus there exists an orthonormal basis of

eigenvectors vi with Avi = λivi, i = 1, . . . , n. By the Perron–Frobenius theorem v1 can

be chosen non-negative, i.e. v1 ∈ Rn
+. (If G is connected, then v1 is unique and strictly

positive.)

Lemma 4.2. If α < 0 and α + βλ1 ≥ 0, then the CTMC ξ(t) is transient.

Proof. For each t ≥ 0, define x(t) := tv1 and y(t) := (bx1(t)c, . . . , bxn(t)c). By construc-

tion, y(t) is piecewise constant. Let y0 = 0, y1, y2, . . . be the sequence of different values of

y(t), where at each t such that two or more coordinates of y(t) jump simultaneously, we in-

sert intermediate vectors, so that only one coordinate changes at a time, and ‖yk+1−yk‖ = 1

for all k. Then S(yk), the sum of coordinates of yk, is equal to k, and thus k/n ≤ ‖yk‖ ≤ k.

Furthermore, for each k there is a tk such that ‖yk − y(tk)‖ ≤ n, and thus

‖yk − tkv1‖ = ‖yk − x(tk)‖ = O(1). (4.3)

Express yk in the basis v1, . . . ,vn as yk =
∑n

i=1 ak,ivi; then (4.3) implies ak,i = O(1) for

i 6= 1. Thus

〈(αE + βA)yk, yk〉 =
n∑
i=1

(α + βλi)a
2
k,i = (α + βλ1)a

2
k,1 +O(1) ≥ O(1), (4.4)

since α + βλ1 ≥ 0 by assumption. Therefore, by (3.1),

W (yk) ≥ −
α

2
S(yk) +O(1) =

|α|
2
k +O(1). (4.5)

Consider the subnetwork Γ′ ⊂ Γα,β,G formed by the vertices {yk}. The resistance of the

edge connecting yk−1 and yk is equal to

Rk = e−W (yk) ≤ Ce−
|α|
2
k, (4.6)

so that the effective resistance of the subnetworkR∞(Γ′) =
∑

k Rk <∞. HenceR∞(Γα,β,G) <

∞ and the Markov chain is transient.

Lemma 4.3. If α = 0, β > 0 and e(G) > 0, then the CTMC ξ(t) is transient.

Proof. We do exactly as in the proof of Lemma 4.2 up to (4.4). Now α = 0, so (4.5)

is no longer good enough. Instead we note that (4.3) implies ak,1 = tk + O(1) and also

k = S(yk) = S(x(tk)) +O(1) = Ctk +O(1), where C = S(v1) > 0. Thus, with c = C−1,

ak,1 = tk +O(1) = ck +O(1). (4.7)

Furthermore, λ1 > 0 since e(G) > 0, and thus (3.1), (4.4) and (4.7) yield, recalling α = 0,

W (yk) =
1

2
βλ1(ck +O(1))2 +O(1) ≥ c1k

2 (4.8)

for some c1 > 0 and all large k.

It follows again that the subnetwork Γ′ := {yk} has finite effective resistance, and thus

the Markov chain is transient.
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Alternatively, several other choices of paths {yk} could have been used in the proof of

Lemma 4.2, for example {(k, 1, 0, . . . , 0) : k ≥ 0}.

Lemma 4.4. If α = 0, β = 0 and n ≥ 3, then the CTMC ξ(t) is transient.

Proof. As said in Remark 1.1 and Example 3.2, in this case, the Markov chain is just simple

random walk on Zn+, which is transient for n ≥ 3.

Lemma 4.5. If α = 0, β > 0, e(G) = 0 and n ≥ 3, then the CTMC ξ(t) is transient.

Proof. When e(G) = 0, the parameter β is irrelevant and may be changed to 0. The result

thus follows from Lemma 4.4.

Lemma 4.6. If α = 0, β ≥ −∞ and κ ≥ 3, then the CTMC ξ(t) is transient.

Proof. Since κ ≥ 3, there are three vertices of the graph G not adjacent to each other;

w.l.o.g. let them be 1, 2 and 3. Consider the subnetwork

Γ′ := Z3
+ × {0}n−3 = {(ξ1, ξ2, ξ3, 0, . . . , 0)} ⊂ Γ0 ⊂ Γα,β,G = Zn+. (4.9)

By (3.1), we have in this case W (ξ) = 0 for every ξ ∈ Γ′, and thus (3.5) implies that in the

corresponding electrical network all edges in Γ′ have conductance 1, and thus resistance

1. Hence, the Markov chain corresponding to the network Γ′ is simple random walk on

Γ′ ∼= Z3
+. By Remark 1.1 and Example 3.2, a simple random walk on the octant Z3

+ is

transient, and thus R∞(Γ′) = R∞(Z3
+) < ∞. Consequently, R∞(Γα,β,G) ≤ R∞(Γ′) < ∞,

and thus the Markov chain is transient.

We turn to proving recurrence in the remaining cases.

Lemma 4.7. If α < 0, α + βλ1 < 0 and β ≥ 0, then the CTMC ξ(t) is recurrent.

Proof. Let δ = −(α + βλ1) > 0. The eigenvalues of the symmetric matrix αE + βA are

α + βλi ≤ α + βλ1 = −δ, i = 1, . . . , n. Thus, by (3.1),

W (ξ) =
1

2
〈(αE + βA)ξ, ξ〉 − α

2
S(ξ) ≤ −δ

2
〈ξ, ξ〉+

|α|
2
S(ξ). (4.10)

We now argue as in Example 3.2. Let again VL be defined by (3.6), and let Γ′′ be the

network obtained from Γα,β,G by short-circuiting each set VL of vertices. For ξ ∈ VL, we

have by the Cauchy–Schwarz inequality L2 = S(ξ)2 ≤ n〈ξ, ξ〉, and thus by (4.10) and (3.5),

the conductance

Cξ−ei,ξ = eW (ξ) ≤ e−
δ
2n
L2+

|α|
2
L ≤ Ce−cL

2

(4.11)

for some positive constants c, C.

For L ≥ 1, there are O(Ln−1) vertices in VL, and thus O(Ln−1) edges between VL−1 and

VL. When short-circuiting each VL, we can regard each VL as a single vertex in Γ′′; the

edges between VL−1 and VL then become parallel, and can be combined inte a single edge
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between VL−1 and VL. The conductance, CL say, of this edge is obtained by summing the

conductances of all edges between VL−1 and VL (since they are in parallel), and thus

CL = O
(
Ln−1

)
·O
(
e−cL

2)
= O(1). (4.12)

Consequently, the resistances C−1L are bounded below, and since Γ′′ is just a path with

these resistances in series,

R∞(Γ′′) =
∞∑
L=1

C−1L =∞. (4.13)

As explained in Section 3.2, this implies that R∞(Γα,β,G) =∞ and that the Markov chain

ξ(t) is recurrent.

Lemma 4.8. If α < 0, α + βλ1 < 0 and −∞ ≤ β ≤ 0, then the CTMC ξ(t) is recurrent.

Proof. We use monotonicity. If we replace β by 0, then Lemma 4.7 applies; consequently,

R∞(Γα,0,G) = ∞. On the other hand, if W0(ξ) is defined by (3.1) with β replaced by 0,

then W (ξ) ≤ W0(ξ) (since β ≤ 0), and thus by (3.5), each edge in Γα,β,G has at most the

same conductivity as in Γα,0,G. Equivalently, each resistance is at least as large in Γα,β,G as

in Γα,0,G, and thus by Rayleigh’s monotonicity law, R∞(Γα,β,G) ≥ R∞(Γα,0,G) =∞. Hence,

the Markov chain is recurrent.

Lemma 4.9. If α = 0, β = 0 and n ≤ 2, then the CTMC ξ(t) is recurrent.

Proof. See Remark 1.1 and Example 3.2.

Lemma 4.10. If α = 0, −∞ ≤ β < 0 and κ ≤ 2, then the CTMC ξ(t) is recurrent.

Proof. We assume that n ≥ 3; the case n ≤ 2 follows by a simpler version of the same

argument (taking u = 0 below), or by Lemma 4.9 and Rayleigh’s monotonicity law as in

the proof of Lemma 4.8.

The assumption κ ≤ 2 implies that amongst any three vertices of the graph there are

at least two which are connected by an edge.

Let b := −β > 0. Then, since α = 0, (3.1) yields

W (x) = − b
2
〈Ax,x〉 = −b

∑
i,j: i∼j

xixj, x ∈ Zn+. (4.14)

Let again VL be defined by (3.6), short-circuit all the vertices within each VL, and denote

the resulting network by Γ′′. We can regard each VL as a vertex of Γ′′.

Fix L ∈ Z+ and consider x = (x1, . . . , xn) ∈ VL. Let us order the components of x

in decreasing order: x(1) ≥ x(2) ≥ x(3) ≥ · · · ≥ x(n) ≥ 0. Denote x(3) = u; then, by con-

struction, u ∈ {0, 1, . . . , bL/3c}. Among the three vertices corresponding to x(1), x(2), x(3)
at least two are connected, so that we can bound

W (x) = −b
∑
i,j: i∼j

xixj ≤ −bu2. (4.15)
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Hence, by (3.5), the conductance of each of the resistors coming to x from VL−1 is bounded

above by e−bu
2
. Next, the number of such x ∈ VL with x(3) = u is bounded by n! (u+1)n−3L,

as there are at most u+ 1 possibilities for each of x(4), x(5), . . . , x(n), at most L possibilities

for x(2) and then x(1) = L −
∑n

i≥2 x(i) is determined, and there are at most n! different

orderings of xi for each x(1), . . . , x(n).

All these resistors are in parallel, so we sum their conductance to get an effective con-

ductance between VL−1 and VL, which is thus bounded above by

n!L
L∑
u=1

(u+ 1)n−3e−bu
2 ≤ C(n, b)L, (4.16)

for some C(n, b) < ∞. (Thus, the conductance between VL−1 and VL is of the same order

as in the case Z2
+ in Example 3.2.) Hence, the effective resistance RL between VL−1 and VL

is bounded below by cL−1, and thus

R∞(Γ′′) =
∞∑
L=1

RL ≥ c
∞∑
L=1

1

L
=∞. (4.17)

Finally, R∞(Γα,β,G) ≥ R∞(Γ′′) =∞, and the chain is therefore recurrent.

Lemma 4.11. If α = 0, β > 0, e(G) = 0 and n ≤ 2, then the CTMC ξ(t) is recurrent.

Proof. Since e(G) = 0, we may replace β by 0; the result then follows from Lemma 4.9.

This completes the classification of transient and recurrent cases. We proceed to dis-

tinguish between positive recurrent and null recurrent cases; we do this by analysing the

invariant measure µ(ξ) = eW (ξ), and in particular its total mass

Zα,β,G :=
∑
ξ∈Zn+

eW (ξ) =
∑
ξ∈Zn+

e
1
2
〈(αE+βA)ξ,ξ〉−αS(ξ) ≤ ∞. (4.18)

Note that if Z = Zα,β,G < ∞, then the invariant measure µ can be normalised to an

invariant distribution Z−1eW (ξ). Furthermore, recall that an irreducible CTMC is positive

recurrent if and only if it has an invariant distribution and is non-explosive.

Remark 4.12. In general, a CTMC may have an invariant distribution and be explosive

(and thus transient), see e.g. [10, Section 3.5]; we will see that this does not happen in our

case. In other words, our CTMC is positive recurrent exactly when Zα,β,G < ∞. See also

Section 5.

Lemma 4.13. Let −∞ < α < ∞ and −∞ ≤ β < ∞. Then Zα,β,G < ∞ if and only if

α < 0 and α + βλ1 < 0.
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Proof. We consider four different cases.

Case 1: α ≥ 0. By (4.1), eW (ke1) = e
α
2
k(k−1) ≥ 1, and thus Zα,β,G ≥

∑∞
k=1 e

W (ke1) =∞.

Case 2: α < 0 and α+βλ1 ≥ 0. Let yk be as in Lemma 4.2. Then (4.5) applies and implies

in particular W (yk) ≥ −C for some constant C. Hence,

Zα,β,G ≥
∞∑
k=1

eW (yk) ≥
∞∑
k=1

e−C =∞. (4.19)

Case 3: α < 0, α + βλ1 < 0 and β ≥ 0. The estimate (4.11) applies for every ξ ∈ VL, and

since the number of vertices in VL is O(Ln−1) for L ≥ 1, we have

Zα,β,G = 1 +
∞∑
L=1

∑
ξ∈VL

eW (ξ) ≤ 1 +
∞∑
L=1

C1L
n−1e−cL

2

<∞. (4.20)

Case 4: α < 0, α + βλ1 < 0 and −∞ ≤ β ≤ 0. We use monotonicity as in the proof of

Lemma 4.8. Let again W0(ξ) be given by (3.1) with β replaced by 0. Then, since β ≤ 0,

W (ξ) ≤ W0(ξ) and thus Zα,β,G ≤ Zα,0,G. Furthermore, Zα,0,G < ∞ by Case 3. Hence,

Zα,β,G <∞.

Lemma 4.14. (i) If α < 0 and α+ βλ1 < 0, then the CTMC ξ(t) is positive recurrent.

(ii) If α = 0, −∞ ≤ β < 0 and κ ≤ 2, then the CTMC ξ(t) is null recurrent.

(iii) If α = 0, β = 0 and n ≤ 2, then the CTMC ξ(t) is null recurrent.

(iv) If α = 0, β > 0, e(G) = 0 and n ≤ 2, then the CTMC ξ(t) is null recurrent.

Proof. In all four cases, the Markov chain is recurrent, by Lemmas 4.7, 4.8, 4.9, 4.10, 4.11.

Hence the chain is non-explosive, and the invariant measure is unique up to a constant

factor; furthermore, the chain is positive recurrent if and only if this measure has finite

total mass so that there exists an invariant distribution. In other words, in these recurrent

cases, the chain is positive recurrent if and only if Zα,β,G <∞. By Lemma 4.13, this holds

in case (i), but not in (ii)–(iv).

Proof of Theorem 2.3. The theorem follows by collecting Lemmas 4.1–4.6 and 4.14.

5 The corresponding discrete time Markov chain

In this section we consider the discrete time Markov chain (DTMC) ζ(t) ∈ Zn+ that corres-

ponds to the CTMC ξ(t), i.e. the corresponding embedded DTMC. Note that we use t to

denote both the continuous and the discrete time, although the two chains are related by

a random change of time.
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Recall that the transition probabilities of DTMC ζ(t) are proportional to corresponding

transition rates of CTMC ξ(t). Thus, if the rates of ξ(t) are qξ,η, given by (1.2), and

Cξ,η = Cη,ξ are the conductances given by (3.5) (with Cξ,η = 0 if ‖ξ − η‖ 6= 1), and further

qξ :=
∑

η∼ξ qξ,η and Cξ :=
∑

η∼ξ Cξ,η, then the transition probabilities of ζ(t) are

pξ,η :=
qξ,η
qξ

=
Cξ,η
Cξ

. (5.1)

It is obvious that a CTMC is irreducible if and only if the corresponding DTMC is,

and it is easy to see that the same holds for reversibility. Similarly, since a CTMC and

the corresponding DTMC pass through the same states (with a random change of time

parameter), if one is recurrent [or transient], then so is the other. However, in general,

since the two chains pass through the states at different speeds, one of the chains may be

positive recurrent and the other null recurrent. (Recall that many different CTMC have

the same embedded DTMC, and that some of them may be positive recurrent and others

not.) In our case, there is no such complication.

Theorem 5.1. The conclusions in Theorem 2.3 hold also for the DTMC ζ(t).

Before proving the theorem, we note that it follows from (5.1) that the DTMC ζ(t) is

reversible with an invariant measure

µ̂(ξ) := Cξ. (5.2)

We denote the total mass of this invariant measure by

Ẑα,β,G :=
∑
ξ∈Zn+

Cξ =
∑
ξ

∑
η: η∼ξ

Cξ,η = 2
∑
ξ

∑
i: ξi>0

Cξ,ξ−ei = 2
∑
ξ

|{i : ξi > 0}|eW (ξ). (5.3)

Consequently,

Zα,β,G − 1 ≤ Ẑα,β,G ≤ 2nZα,β,G. (5.4)

Lemma 5.2. Let −∞ < α <∞ and −∞ ≤ β <∞. Then Ẑα,β,G <∞ if and only if α < 0

and α + βλ1 < 0.

Proof. Immediate by (5.4) and Lemma 4.13.

Proof of Theorem 5.1. As said above, ζ(t) is transient precisely when ξ(t) is.

A DTMC is positive recurrent if and only if it has an invariant distribution, and then

every invariant measure is a multiple of the stationary distribution. Hence, ζ(t) is positive

recurrent if and only if the invariant measure µ̂(ξ) has finite mass, i.e., if Ẑα,β,G < ∞.

Lemma 5.2 shows that this holds precisely in case (i) of Theorem 2.3, i.e., when ξ(t) is

positive recurrent.
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Remark 5.3. We can use the DTMC ζ(t) to give an alternative proof of Lemma 4.14(i)

without Lemmas 4.7–4.8. Assume α < 0 and α+ βλ1 < 0. Then, by Lemma 5.2, Ẑα,β,G <

∞. Hence, the DTMC ζ(t) has a stationary distribution and is thus positive recurrent.

(Recall that this implication holds in general for a DTMC, but not for a CTMC, see

Remark 4.12.) Hence ξ(t) is recurrent, and thus non-explosive. Furthermore, Lemma 4.13

shows that also Zα,β,G <∞, and thus also ξ(t) has a stationary distribution. Since ξ(t) is

non-explosive, this implies that ξ(t) is positive recurrent.

6 Explosions

It was shown in [13] that in most of the transient cases in Theorem 2.3, the CTMC ξ(t)

is explosive. (Recall that a recurrent CTMC is non-explosive.) We complement this by

exhibiting in Lemma 6.3 one non-trivial transient case where ξ(t) is non-explosive.

Recall also the standard fact that if, as above, qξ :=
∑

η qξ,η is the total rate of leaving ξ,

and ζ(t) is the DTMC in Section 5, then ξ(t) is explosive if and only if
∑∞

t=1 q
−1
ζ(t) <∞ with

positive probability. In particular, ξ(t) is non-explosive when the rates qξ are bounded.

Combining these results, we obtain the following partial classification, proved later in

this section. Let νi denote the degree of vertex i ∈ G, and note that

min
i
νi ≤ λ1 ≤ max

i
νi. (6.1)

Theorem 6.1. Let −∞ < α <∞ and −∞ ≤ β <∞, and consider the CTMC ξ(t).

(i) ξ(t) is non-explosive in the following cases:

(a) α < 0 and α + βλ1(G) ≤ 0,

(b) α = 0 and β ≤ 0,

(c) α = 0, β > 0 and e(G) = 0.

(ii) ξ(t) explodes a.s. in the following cases:

(a) α > 0,

(b) α = 0, β > 0 and e(G) > 0,

(c) α < 0 and α + βmini νi > 0.

Remark 6.2. Theorem 6.1 gives a complete characterization of explosions when the graph

G is regular, i.e., νi is constant, since then mini νi = λ1, see (6.1).

For other graphs G, Theorem 6.1 leaves one case open, viz.

α < 0 and α + βmin
i
νi ≤ 0 < α + βλ1(G) (6.2)

(and, as a consequence, β > 0). We conjecture that ξ(t) always is explosive in this case,

but leave this as an open problem. (Our intuition is that in this case, which is transient

16



by Theorem 2.3, ξ(t) will tend to infinity along a path that stays rather close to the line

{sv1 : s ∈ R} in Rn, and that the rates qξ are exponentially large close to this line.)

Lemma 6.3. If α < 0 and α + βλ1(G) = 0, then the CTMC ξ(t) is transient and non-

explosive.

We prove first an elementary lemma.

Lemma 6.4. Define the functions φ, ψ : R → R and Φ,Ψ : Rn → R by, with u =

(u1, . . . , un),

φ(u) := eu + 1, ψ(u) := u(eu − 1), (6.3)

Φ(u) :=
n∑
i=1

φ(ui), Ψ(u) :=
n∑
i=1

ψ(ui). (6.4)

Then Ψ(u)/Φ(u)→ +∞ as ‖u‖ → ∞.

Proof. Note that φ(u) > 0 and ψ(u) ≥ 0 for all u ∈ R, and that ψ(u)/φ(u) → +∞ as

u→ ±∞.

Fix B > 0. Then ψ(u) − Bφ(u) > 0 if |u| is large enough, and thus there exists a

constant C = C(B) ≥ 0 such that ψ(u) − Bφ(u) ≥ −C for all u ∈ R. Consequently, for

any u ∈ Rn,

BΦ(u) =
n∑
i=1

Bφ(ui) ≤
n∑
i=1

(
ψ(ui) + C

)
= Ψ(u) + nC. (6.5)

Furthermore, ψ(u)→ +∞ as u→ ±∞, and thus Ψ(u)→ +∞ as ‖u‖ → ∞. Consequently,

there exists M = M(B) such that if ‖u‖ > M , then Ψ(u) > nC, and hence, by (6.5),

BΦ(u) < 2Ψ(u), i.e., Ψ(u)/Φ(u) > B/2. Since B is arbitrary, this completes the proof.

Proof of Lemma 6.3. The CMTC ξ(t) is transient by Theorem 2.3(iii)(f) (Lemma 4.2).

Let

Q(x) :=
1

2
〈(αE + βA)x,x〉, x ∈ Rn, (6.6)

be the quadratic part of W (x) in (3.1). Let, as in Section 4, v1, . . . ,vn be an orthonormal

basis of eigenvectors of A with Avk = λkvk. The assumptions imply β > 0 and thus, for

any k ≤ n, α + βλk ≤ α + βλ1 = 0. Hence, for any vector x =
∑n

k=1 ckvk,

Q(x) =
1

2

n∑
k=1

(α + βλk)c
2
k ≤ 0. (6.7)

In other words, Q(x) is a negative semi-definite quadratic form on Rn.

We denote the gradient of Q(x) by U(x) =
(
U1(x), . . . , Un(x)

)
. Thus, by (6.6),

U(x) := ∇Q(x) = (αE + βA)x. (6.8)
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It follows from (6.6) and (6.8) that, for any x ∈ Rn,

Q(x± ei) = Q(x) +Q(ei)± 〈(αE + βA)x, ei〉 = Q(x) +
α

2
± Ui(x). (6.9)

Let a′ := −α/2 > 0. Since W (x) = Q(x) + a′S(x) by (3.1), and S(x) is the linear function

(3.2), it follows from (6.9) that

W (x± ei)−W (x) = Q(x± ei)−Q(x)± a′S(ei) = ±Ui(x)− a′ ± a′. (6.10)

In particular, for ξ ∈ Zn+, the rate of increase of the i-th component is, by (1.2) and (3.3),

qξ,ξ+ei = eW (ξ+ei)−W (ξ) = eUi(ξ). (6.11)

Fix ξ ∈ Zn+ and consider the DTMC ζ(t) started at ζ(0) = ξ, and the stochastic process

Qζ(t) := Q(ζ(t)), t ∈ Z+. Denote the change of Qζ(t) in the first step by ∆Qζ(0) :=

Qζ(1) − Qζ(0). Then the expected change of Qζ(t) in the first step is, using (6.9), (5.1),

(1.2) and (6.11),

E
(
∆Qζ(0) | ζ(0) = ξ

)
=
∑
η

pξ,η
(
Q(η)−Q(ξ)

)
=

n∑
i=1

(
pξ,ξ+ei

(
Ui(ξ)− a′

)
+ pξ,ξ−ei

(
−Ui(ξ)− a′

))
= q−1ξ

n∑
i=1

(
eUi(ξ)Ui(ξ)− 1ξi>0Ui(ξ)

)
− a′, (6.12)

where 1E denotes the indicator of an event E . Furthermore, using (6.11) and the notation

(6.4),

qξ :=
n∑
i=1

(
qξ,ξ+ei + qξ,ξ−ei

)
=

n∑
i=1

(
eUi(ξ) + 1ξi>0

)
≤ Φ(U(ξ)). (6.13)

(With equality unless some ξi = 0.) Moreover, if ξi = 0, then (6.8) implies Ui(ξ) =

β
∑

j∼i ξj ≥ 0. Hence, (6.12) yields

E
(
∆Qζ(0) | ζ(0) = ξ

)
≥ q−1ξ

n∑
i=1

(
eUi(ξ)Ui(ξ)− Ui(ξ)

)
− a′ ≥ Ψ(U(ξ))

Φ(U(ξ))
− a′. (6.14)

Lemma 6.4 now implies the existence of a constant C1 such that if ‖U(ξ)‖ ≥ C1, then

E
(
∆Qζ(0) | ζ(0) = ξ

)
≥ 0.

We have, as in (6.7), with ωk := α + βλk ≤ 0, the eigenvalues of αE + βA,

Q(x) =
1

2

n∑
k=1

ωk〈x,vk〉2, (6.15)

18



and it follows that the gradient U(x) can be expressed as

U(x) =
n∑
k=1

ωk〈x,vk〉vk, (6.16)

and thus

‖U(x)‖2 =
n∑
k=1

ω2
k〈x,vk〉2. (6.17)

Comparing (6.15) and (6.17), and recalling ωk ≤ 0, we see that

2 min
k
|wk| · |Q(x)| ≤ ‖U(x)‖2 ≤ 2 max

k
|wk| · |Q(x)|. (6.18)

Hence, the result above shows the existence of a constant C2 such that

If |Q(ξ)| ≥ C2, then E
(
∆Qζ(0) | ζ(0) = ξ

)
≥ 0. (6.19)

Fix m ≥ 0 and consider ζ(t) for t ≥ m. Define the stopping time τm := inf{t ≥
m : |Qζ(t)| ≤ C2}. Then (6.19) and the Markov property imply that the stopped process

−Qζ(t∧τm), t ≥ m, is a positive supermartingale. (Recall that Qζ(t) ≤ 0 by (6.7).) Hence,

this process converges a.s. to a finite limit. In particular, if we define the events Em :=

{|Qζ(t)| > C2 for every t ≥ m} and E ′ := {|Qζ(t)| → ∞ as t→∞}, then P(Em ∩ E ′) = 0.

Clearly, E ′ :=
⋃∞
m=1 E ′ ∩ Em. Consequently, P(E ′) = 0.

We have shown that a.s. |Qζ(t)| = |Q(ζ(t))| does not converge to∞. In other words, a.s.

there exists a (random) constant M such that |Q(ζ(t))| ≤M infinitely often. By (6.18) and

(6.13), there exists for each M <∞ a constant C3(M) <∞ such that |Q(ξ)| ≤M implies

qξ ≤ C3(M). Consequently, a.s., qζ(t) ≤ C3(M) infinitely often, and thus
∑∞

t=0 q
−1
ζ(t) = ∞,

which implies that ξ(t) does not explode.

Remark 6.5. Note that if α < 0, β > 0 and α + λ1β < 0, then the function Q defined

in (6.6) is negative definite, so that Q̃(x) := −Q(x) → ∞ as ‖x‖ → ∞. Therefore, it

follows from equation (6.14) that the CTMC ξ(t) is positive recurrent by Foster’s criterion

for positive recurrence (e.g. see [9, Theorem 2.6.4]). In other words, the function Q̃ can be

used as the Lyapunov function in Foster’s criterion for showing positive recurrence of the

Markov chain in this case. In fact, function Q̃ was used in Foster’s criterion to show positive

recurrence of the Markov chain in the following special case α < 0 and α + βmaxi νi < 0

in [13, Section 4.1.1].

Proof of Theorem 6.1. The non-explosive case (i)(a) follows from Theorem 2.3(i) when α+

βλ1(G) < 0 (then the chain is positive recurrent), and from Lemma 6.4 when α+βλ1(G) =

0. The other non-explosive cases (i)(b) and (i)(c) are trivial because in these cases (1.2)

implies qξ,η ≤ 1, and thus qξ ≤ 2n is bounded.

For explosion, we may assume that G is connected, since we otherwise may consider

the components of G separately, see Remark 1.2. Then, [13, Theorem 1(3) and its proof]

19



show that if α + βmini νi > 0 and β ≥ 0, then ξ(t) explodes a.s.; this includes the cases

(ii)(b) and (ii)(c) above, and the case α > 0, β ≥ 0. Furthermore, [13, Theorem 2] shows

that if α > 0 and β ≤ 0, then ξ(t) a.s. explodes; together with the result just mentioned,

this shows explosion when α > 0.

Remark 6.6. It is shown in [13] that explosion may occur in several different ways, de-

pending on both the parameters α, β and the graph G. For example, if G is a star, then

there are (at least) three possibilities, each occuring with probability 1 when (α, β) is in

some region: a single component ξi explodes (tends to infinity in finite time); two adjacent

components explode simultaneously; or all components explode simultaneously.

Furthermore, the results in [13] show that in the explosive cases in Theorem (ii), the

Markov chain asymptotically evolves as a pure birth process, in the sense that, with prob-

ability one, there is a random finite time after which none of the components decreases, i.e.

there are no ”death” events after this time. Consequently, the corresponding discrete time

Markov chain can be regarded as a growth process on a graph similar to interacting urn

models (e.g., see models in [1], [11] and [12]). One of the main problems in such growth

processes is the same as in the urn models. Namely, it is of interest to understand how

exactly the process escapes to infinity, i.e. whether all components grow indefinitely, or the

growth localises in a particular subset of the underlying graph.

We do not discuss this sort of problems here and hope to address it elsewhere.

7 A modified model

In this section, we study the CTMC ξ̃(t) with the rates q̃ξ,η in (1.3), and the corresponding

DTMC ζ̃(t). This model is interesting since we have “decoupled” α and β, with birth rates

depending on α and death rates depending on β.

Since q̃ξ,ξ±ei differ from qξ,ξ±ei by the same factor e−β
∑
j:j∼i ξj , which furthermore does

not depend on ξi, the balance equation (3.4) holds for q̃ξ,η too, and thus ξ̃(t) has the same

invariant measure µ(ξ) = eW (ξ) as ξ(t).

The electric network Γ̃α,β,G corresponding to ξ̃(t) has conductances

C̃ξ−ei,ξ := eW (ξ−ei)+α(ξi−1) = eW (ξ)−β(Aξ)i . (7.1)

Remark 7.1. If β > 0, then C̃ξ,η ≤ Cξ,η, and if β < 0, then C̃ξ,η ≥ Cξ,η. (If β = 0, the two

models are obviously identical.)

Theorem 7.2. The results in Theorem 2.3 hold for ξ̃(t) too, with a single exception: If

e(G) = 1, α < 0 and α + βλ1(G) = 0, then ξ̃(t) is null recurrent while ξ(t) is transient.

Here λ1(G) is as above the largest eigenvalue of G. If e(G) = 1, then λ1(G) = 1; thus

the exceptional case is e(G) = 1, α = −β < 0.
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Proof. The lemmas in Section 4 all hold for ξ̃(t) too by the same proofs with no or minor

modifications, except Lemma 4.2 in the case α < 0, α+βλ1 = 0; we omit the details. This

exceptional case is treated in Lemmas 7.4 and 7.5 below.

A few cases alternatively follow by Remark 7.1 and the Rayleigh monotonicity law.

Before treating the exceptional case, we give a simple combinatorial lemma.

Lemma 7.3. Suppose that G is a connected graph with e(G) ≥ 2, and let as above v1 =

(v11, . . . , v1n) be a positive eigenvector of A with eigenvalue λ1. Then, for each i,

v1i <
∑
j 6=i

v1j. (7.2)

Proof. First, e.g. by (6.1), λ1 ≥ 1. Hence, for every i,

v1i ≤ λ1v1i = (Av1)i =
∑
j∼i

v1j ≤
∑
j 6=i

v1j. (7.3)

If one of the inequalities in (7.3) is strict, then (7.2) holds. In the remaining case λ1 = 1,

and every j 6= i is a neighbour of i. Consequently, if j 6= i, then

v1j = λ1v1j = (Av1)j =
∑
k∼j

v1k ≥ v1i. (7.4)

By the assumption e(G) ≥ 2, G has at least 3 vertices, and thus (7.4) implies
∑

j 6=i v1j ≥
2v1i > v1i, so (7.2) holds in this case too.

Lemma 7.4. If α < 0, α + βλ1 ≥ 0 and e(G) ≥ 2, then the CTMC ξ̃(t) is transient.

Proof. If G is connected, then v1 satisfies (7.2) by Lemma 7.3.

On the other hand, if G is disconnected and has a component with at least two edges,

it suffices to consider that component.

In the remaining case, G consists only of isolated edges and vertices. There are at

least two edges, which we w.l.o.g. may assume are 12 and 34. Then λ1 = 1 and v1 :=
1
2
(e1 + e2 + e3 + e4) = 1

2
(1, 1, 1, 1, 0, . . . ) is an eigenvector satisfying (7.2).

Hence we may assume that v1 satisfies (7.2). Hence there exists δ > 0 such that for

every i = 1, . . . , n,

S(v1) = v1i +
∑
j 6=i

v1j ≥ 2v1i + δ. (7.5)

We follow the proof of Lemma 4.2, and note that there is equality in (4.4) and (4.5).

Hence, for any i, again writing a′ := −α/2 > 0, and using (4.3),

W (yk) + αyk,i = a′
(
S(yk)− 2yk,i

)
+O(1) = a′tk

(
S(v1)− 2v1,i

)
+O(1)

≥ a′δtk +O(1) ≥ c′k +O(1) (7.6)

for some c > 0. Thus, the resistance of the edge connecting yk and yk+1 is, for some i,

Rk+1 = C̃−1yk,yk+ei
= e−W (yk)−αyk,i ≤ e−c

′k+O(1). (7.7)

Hence,
∑∞

k=1Rk <∞, and the network is transient by the same argument as before.
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Lemma 7.5. If α < 0, α+ βλ1 ≥ 0 and e(G) = 1, then the CTMC ξ̃(t) is null recurrent.

Proof. Suppose first that n = 2 so G = K2 consists of a single edge. Then (3.1) gives, with

a′ := −α/2 > 0 as above,

W (ξ1, ξ2) = −a′(ξ1 − ξ2)2 + a′(ξ1 + ξ2), (7.8)

and then (7.1) yields

C̃ξ,ξ+e1 = eW (ξ)+αξ1 = e−a
′(ξ1−ξ2)2+a′(ξ2−ξ1) ≤ 1, (7.9)

and similarly, C̃ξ,ξ+e1 ≤ 1. Hence all conductances are bounded by 1, and thus all resistances

are bounded below by 1. We may compare the network Γ̃α,β,G to the network Z2
+ with

unit resitances, and obtain by Rayleigh’s monotonicity law R∞(Γ̃α,β,G) ≥ R∞(Z2
+) = ∞,

recalling that simple random walk on Z2
+ is recurrent by Remark 1.1 and Example 3.2.

Hence ξ̃(t) is recurrent.

The invariant measure eW (ξ) is the same as for ξ(t) and has total mass Zα,β,G = ∞ by

Lemma 4.13; hence ξ̃(t) is not positive recurrent.

This completes the proof when G is connected. If G is disconnected, then G consist of

one edge and one or several isolated vertices. By Remark 1.2, ξ(t) then consists of n − 1

independent parts: one part is the CTMC in Z2
+ defined by the graph K2, which is null

recurrent by the first part of the proof; the other parts are independent copies of the CMTC

in Z+ defined by a single vertex, and these are positive recurrent since α < 0. It is now

easy to see that the combined ξ(t) is null recurrent.

The corresponding DTMC ζ̃(t) has invariant measure

C̃ξ :=
∑
η

C̃ξ,η. (7.10)

Note that this (in general) differs from the invariant measure Cξ for ζ(t), see (5.2). Denote

the total mass of this invariant measure by

Z̃α,β,G :=
∑
ξ

C̃ξ =
∑
ξ,η

C̃ξ,η. (7.11)

There is no obvious analogue of the relation (5.4), but we can nevertheless prove the

following analogue of Lemma 5.2

Lemma 7.6. Let −∞ < α <∞ and −∞ ≤ β <∞. Then Z̃α,β,G <∞ if and only if α < 0

and α + βλ1 < 0.

Proof. By the proof of Lemma 4.13 with minor modifications. In particular, in the case

α < 0 and α+βλ1 = 0, we argue also as in (7.5)–(7.7) in the proof of Lemma 7.4 (but now

allowing δ = 0). We omit the details.

Theorem 7.7. Theorem 7.2 holds for the DTMC ζ̃(t) too.

Proof. By Theorem 7.2 for recurrence vs transience, and by Theorem 7.7 for positive re-

currence vs null recurrence.

We are not going to analyse the modified model any further.
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8 Alternative proofs using Lyapunov functions

In this section we give alternative proofs of some parts of Theorem 2.3. These proofs do

not use reversibility, and have therefore potential extensions also to cases where electric

networks are not applicable. They are based on the following recurrence criterion for

countable Markov chains using Lyapunov functions, see e.g. [4, Theorem 2.2.1].

Recurrence criterion 8.1. A CTMC with values in Zn+ is recurrent if and only if there

exists a positive function f (the Lyapunov function) on Zn+ such that f(ξ)→∞ as ξ →∞
and Lf(ξ) ≤ 0 for all ξ /∈ D, where L is the Markov chain generator, and D is a finite set.

Note that the Lyapunov function f(ξ) is far from unique. The idea of the method is

to find some explicit function f for which the conditions can be verified. There is also a

related criterion for transience [4, Theorem 2.2.2], but we will not use it here.

We give only some examples. (See also [13] for further examples.) It might be possible

to give a complete proof of Theorem 2.3 using these methods, but this seems rather chal-

lenging. Note that (since our Markov chains have bounded steps), the Lyapunov function

f can be changed arbitrarily on a finite set; hence it suffices to define f(ξ) (and verify its

properties) for ‖ξ‖ large. We do so, usually without comment, in the examples below.

Example 8.2. (Proof of the hard-core case of Theorem 2.3(ii)(a) by the recurrence cri-

terion 8.1.) Assume that α = 0, β = −∞ and kmax(G) ≤ 2. As said in Section 3.3, we may

assume that the Markov chain lives on Γ0 defined in (3.8); since κ ≤ 2, this implies that no

more than two components of the process can be non-zero. Therefore, the Markov chain

evolves as a simple random walk on a certain finite union of quadrants of Z2
+ and half-lines

Z+ glued along the axes. Each of these random walks is null-recurrent, and, hence, the

whole process should be null-recurrent as well. We provide a rigorous justification to this

heuristic argument by using the recurrence criterion 8.1.

The generator L of the Markov chain in the case α = 0, β = −∞ is

Lf(ξ) =
n∑
i=1

(f (ξ + ei)− f(ξ)) 1{ξ:ξj=0, j∼i} + (f (ξ − ei)− f(ξ)) 1{ξi>0}.

We define a Lyapunov function on Zn+ by

f(ξ) := log

(
‖ξ − e‖2 − n+

3

2

)
, ‖ξ‖ ≥ C1, (8.1)

where e = (1, . . . , 1) ∈ Zn+ is the vector whose all coordinates are equal to 1, and C1 > 0

is sufficiently large so that the expression inside the log is greater than 1. Note that the

function is defined for any state in Zn+, but we consider it only on the subset Γ0. Let ξ ∈ Γ0

with ‖ξ‖ > C1 + 1. First, assume that ξ has two non-zero components, say x > 0 and

y > 0, so that

f(ξ) = log

(
(x− 1)2 + (y − 1)2 − 1

2

)
,
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and both x and y can increases as well as decrease. A direct computation gives that

Lf(ξ) = log

(
x2 + (y − 1)2 − 1

2

)
+ log

(
(x− 1)2 + y2 − 1

2

)
+ log

(
(x− 2)2 + (y − 1)2 − 1

2

)
+ log

(
(x− 1)2 + (y − 2)2 − 1

2

)
− 4 log

(
(x− 1)2 + (y − 1)2 − 1

2

)
= log

(
1− 64(x− y)2(x+ y − 2)2

(2x2 + 2y2 − 4x− 4y + 3)4

)
≤ 0.

Next, assume that ξ has only one non-zero component, say x = a + 1 > 0. Then f(ξ) =

log (a2 + 1/2) , and this component can both increase and decrease. Note that some of the

other components may also increase by 1, and assume there are m ≥ 0 such components.

A direct computation gives that

Lf(ξ) =

[
log

(
(a+ 1)2 +

1

2

)
+ log

(
(a− 1)2 +

1

2

)
− 2 log

(
a2 +

1

2

)]
+m

[
log

(
a2 − 1

2

)
− log

(
a2 +

1

2

)]
= log

(
4a4 − 4a2 + 9

4a4 + 4a2 + 1

)
+m

[
log

(
2a2 − 1

2a2 + 1

)]
≤ 0.

Hence, Lf(ξ) ≤ 0 whenever ξ ∈ Γ0 with ‖ξ‖ > C1 + 1. It follows now from the recurrence

criterion 8.1 that CTMC ξ(t) is recurrent.

Now consider the case α = 0 and −∞ < β < 0. The generator of the Markov chain

with parameter α = 0 is

Lf(ξ) =
n∑
i=1

(f (ξ + ei)− f(ξ)) eβ(Aξ)i + (f (ξ − ei)− f(ξ)) 1{ξi>0}. (8.2)

We consider for simplicity only some small graphs G, using modifications of the Lya-

punov function (8.1) used in the hard-core case.

Recurrence in the case α = 0, b := −β > 0 and G = K2, the graph with just 2

vertices and a single edge, was shown in [13] by applying the recurrence criterion 8.1

with the Lyapunov function f(ξ) = log(ξ1 + ξ2 + 1). Alternatively, one could use e.g.

f(ξ) = log(ξ1 + ξ2) or log(ξ21 + ξ22). We extend this to the case G = Kn, the complete graph

with n vertices, for any n ≥ 2.

Example 8.3. (Recurrence in the case α = 0, β = −b < 0 and G = Kn.) We use the

function f(ξ) := log ‖ξ‖. (Similar arguments work for variations such as log
(
‖ξ‖2± 1

)
and

log(ξ1 + · · ·+ ξn).)
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Regard f(ξ) as a function on Rn \ {0} and write r = ‖ξ‖. The partial derivatives of f

are
∂f(ξ)

∂ξi
=
ξi
r2

(8.3)

and all second derivatives are O
(
r−2
)
. Hence, a Taylor expansion of each of the differences

in (8.2) yields the formula, for ξ ∈ Zn+,

Lf(ξ) =
n∑
i=1

ξi
r2
(
e−b(Aξ)i − 1{ξi>0}

)
+O

(
r−2
)

=
n∑
i=1

ξi
r2
(
e−b(Aξ)i − 1

)
+O

(
r−2
)
. (8.4)

Suppose first that at least 2 components ξi are positive. Then Aξi =
∑

j 6=i ξj ≥ 1 for

every i, and thus (8.4) implies, since r ≤
∑

i ξi,

Lf(ξ) ≤ −
(
1− e−b

) n∑
i=1

ξi
r2

+O
(
r−2
)
≤ −1− e−b

r
+O

(
r−2
)
, (8.5)

which is negative for large r, as required.

It remains to consider the case when a single component ξi is positive, say ξ = (x, 0, . . . , 0)

with x > 0. Then the estimate (8.4) is not good enough. Instead we find from (8.2)

Lf(ξ) = log(x+ 1) + log(x− 1)− 2 log x+ (n− 1)e−bx
(
log
√
x2 + 1− log x

)
= log

x2 − 1

x2
+
n− 1

2
e−bx log

x2 + 1

x2
≤ − 1

x2
+
n− 1

2
e−bx, (8.6)

which is negative when x is large.

Hence, in both cases, Lf(ξ) ≤ 0 when ‖ξ‖ is large, and recurrence follows by the

recurrence criterion 8.1.

The argument in Example 8.3 used the fact that G is a complete graph so that (Aξ)i ≥ 1

unless only ξi is non-zero. Similar arguments work for some other graphs.

Example 8.4. Let again α = 0, β < 0 and let G = K1,2, a star with 2 non-central

vertices, which is the same as a path of 3 vertices. Number the vertices with the central

vertex as 3, and writre ξ = (x, y, z). Taylor expansions similar to the one in (8.4), but

going further, show that f(ξ) := log‖ξ‖ is not a Lyapunov function. (The problematic

case is ξ = (x, x, 0), with Lf(ξ) = 1
2
r−4 + O(r−6).) However, similar calculation also show

that f(ξ) := log(‖ξ‖2 − 1) is a Lyapunov function, showing recurrence by the recurrence

criterion 8.1. We omit the details.

A An alternative argument in the hard core case

We present here yet another argument, which seems to be able to give an alternative proof

of Theorem 2.3(iii)(e). However, the argument is not completely rigorous, so it should in
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its present form be regarded only as a heuristic argument. It is included here in order to

suggest future developments.

For simplicity, we consider a particular case, namely, when the graph G is a cycle C6

with 6 vertices. In this case the state space of the Markov chain is Γ0 =
⋃3

1 Γ2
j ∪

⋃2
1 Γ3

j ,

where (with addition of indices modulo 6)

Γ2
j =

{
(x1, . . . , x6) : xi = 0 unless i ∈ {j, j + 3}

}
,

Γ3
j =

{
(x1, . . . , x6) : xi = 0 unless i ∈ {j, j + 2, j + 4

}
}.

The Markov chain is simple random walk on this state space.

If the random walk is in Γ3
j , then it will sooner or later reach a point where two of the

three allowed coordinates are 0, and thus only one non-zero, say xj. The random walk then

may either go back into Γ3
j , or it may move into Γ2

j . In the latter case, it might either return

again to the intersection line Lj = Γ2
j ∩ Γ3

j , or it might cross Γ2
j and reach Lj+3, in which

case it may go on to other parts of Γ. We want to show that with positive probability, the

latter case will not happen. Consequently, the random walk will a.s. eventually be confined

to Γ̂3
j := Γ3

j ∪ Γ2
j ∪ Γ2

j+2 ∪ Γ2
j+4 for j = 1 or 2; in particular, the random walk is transient.

If the random walk is in Γ̂3
j , it may escape through Γ2

j , Γ2
j+2 or Γ2

j+4. Allowing three

routes of escape does not seem to be significantly different from just one, so we consider for

simplicity instead random walk on Γ′j := Γ3
j ∪ Γ2

j . (This is one of the non-rigorous steps.)

The rest of the argument is thus devoted to showing the following, which implies that there

is a positive probability of not escaping.

Claim A.1. A random walk on Γ′j a.s. hits the line Lj+3 ⊂ Γ2
j only a finite number of

times.

We drop the index j. Note that Γ′ is a product Γ′ = U × (V ∪W ), where U ∼= Z+,

V ∼= Z+ and W ∼= Z2
+, and V and W intersect in the single point 0 (the 0 in both V and

W ).

We consider continuous time, with jumps with rate 1 along any edge. Then the random

walk consists of two independent components, a continuous-time random walk in U and a

continuous-time random walk in V ∪W .

Consider the latter (i.e. a continuous-time random walk in V ∪W ). It returns infinitely

often to 0, making excursions into either V or W ; the excursions are independent. (Recall

that random walk in V or in W is recurrent, thus every excursion is finite and eventually

returns to 0.)

Consider first excursions into V ∼= Z+. Let TV be the time until the first return,

fV (s) := Ee−sTV its Laplace transform, and

gV (s) :=

∫ ∞
0

e−sx dµV (x) =
fV (s)

1− fV (s)
, (A.1)

the Laplace transform of the corresponding renewal measure µV . By symmetry, we can

consider a random walk on Z instead of Z+, and then the intensity dµV (x)/ dx of a return
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at x is ≈ x−1/2, where ≈ means ’of the same order as’. Hence, as s→ 0,

gV (s) ≈
∫ ∞
0

e−sxx−1/2 dx ≈ s−1/2, (A.2)

and thus fV (s) ≈ 1− s1/2.
For excursions into W ∼= Z2

+, we similarly have dµW (x)/ dx ≈ x−1 and hence, for small

s, gW (s) ≈
∫∞
1
e−sxx−1 dx ≈ | log s| and thus

fW (s) =
gW (s)

1 + gW (s)
≈ | log(s)|

1 + | log(s)|
≈ 1− 1/| log s|. (A.3)

For the combined excursions, we have fV ∪W (s) = 1
3
fV (s) + 2

3
fW (s) and thus

1− fV ∪W (s) =
1

3
(1− fV (s)) +

2

3
(1− fW (s)) ≈ 2

3
(1− fW (s)) ≈ 1/| log s|,

since 1− fW (s)� 1− fV (s). Hence, the Laplace transform of the renewal measure µV ∪W
describing the intensity of returns to 0 in V ∪W is

gV ∪W (s) =
fV ∪W (s)

1− fV ∪W (s)
≈ | log s|. (A.4)

Now consider also U . We are interested in excursions into Γ2 = U ×V that cross to the

other boundary. This happens if the random walk in U hits 0 during an excursion of the

V ∪W walk into V .

Consider an excursion into Γ2 = U × V ∼= Z2
+ starting at time t; it begins with a step

from (XU(t), 0) to (XU(t), 1), where XU is the random walk on U . By Lemma A.2 below,

the probability that a random walk in Z2
+ starting at (x, 1) hits the diagonal before it hits

Z+ × {0} is ≈ 1/(x + 1). Hence, the probability q(t) that an excursion starting at time t

hits the diagonal in Γ2 is q(t) ≈ E 1
Xt+1

.

Now, Xt is (almost) the same as the modulus of a simple random walk on Z, so at time

t, by the Central Limit Theorem, the probability function P(Xt = k) = O(t−1/2), uniformly

in k. Hence, for large t,

q(t) ≈ E
1

Xt + 1
=

√
t∑

k=0

P(Xt = k)

k + 1
+O(t−1/2) ≈

√
t∑

k=0

t−1/2

k + 1
+O(t−1/2) ≈ t−1/2 log t = O(t−0.49).

(A.5)

The expected number of times an excursion into U × V hits the diagonal before it hits

Z+ × {0} is thus∫ ∞
0

q(t) dµV ∪W (t) ≤ C

∫ ∞
0

t−0.49 dµV ∪W (t) ≈ C

∫ ∞
0

∫ 1

0

s−0.51e−st ds dµV ∪W (t)

= C

∫ 1

0

s−0.51gV ∪W (s) ds ≈
∫ 1

0

s−0.51| log s| ds <∞,
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where we used the fact that∫ 1

0

s−0.51e−st ds =

∫ ∞
0

s−0.51e−st ds−
∫ ∞
1

s−0.51e−st ds = Γ(0.49) · t−0.49 + o(t−1)

and hence, for t ≥ 1, say, t−0.49 ≈
∫ 1

0
s−0.51e−st ds. Consequently, a.s. only a finite number

of excursions into Γ2 will hit the diagonal. Any excursion hitting the line Lj+3 = {0} × V
has to hit the diagonal first, and thus there is a.s. only a finite number of such excursions,

each hitting the line a finite number of times.

This completes our (partly heuristic) argument for Claim A.1, and thus for transience

of the Markov chain.

Lemma A.2. Let (Xn, Yn) be a discrete time symmetric simple random walk on Z2
+. Then,

for every x > 0,

1

x
≤ P

(
(Xn, Yn) hits the diagonal before it hits y = 0 | (X0, Y0) = (x, 1)

)
≤ 2

1 + x
. (A.6)

Proof. Define τ := min{n : Yn = 0 or Xn = Yn}, Zn := Yn
Xn+Yn

and Z̃n := Zn∧τ . A direct

computation gives that E(Zn+1 − Zn | (Xn, Yn)) < 0 if 0 < Yn < Xn. Hence, the stopped

process Z̃n is a bounded supermartingale. Furthermore, τ <∞ a.s., and it follows from the

Optional Stopping Theorem that E
(
Zτ | (X0, Y0) = (x, 1)

)
≤ Z̃0 = 1

x+1
. On the other hand,

Zτ takes only the values 0 and 1/2, with the latter value if the diagonal is hit first. Thus

E(Zτ ) = 1
2
P
(
Zτ = 1

2

)
. Therefore, given (X0, Y0) = (x, 1), the probability that (Xn, Yn) hits

diagonal before the line y = 0 is no larger than 2
1+x

.

Consider now the process W̃n := Wτ∧n, where Wn := Yn
Xn

. A direct computation gives

that E
(
W̃n+1 − W̃n | (Xn, Yn)

)
≥ 0 is non-negative. Thus W̃n is a bounded submartin-

gale, and by the optional stopping theorem E(Wτ ) ≥ W̃0 = 1
x
. Furthermore, E(Wτ ) =

P(Wτ = 1), the probability of hitting the diagonal. Therefore, given (X0, Y0) = (x, 1), the

probability that (Xn, Yn) hits the diagonal before it hits the line y = 0 is at least 1
x
.
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