A GRAPHON COUNTER EXAMPLE

SVANTE JANSON

ABSTRACT. We give an example of a graphon such that there is no
equivalent graphon with a degree function that is (weakly) increasing.

1. INTRODUCTION

A central fact in the theory of dense graph limits (see e.g. the book by
Lovész [7]) is that each graph limit can be represented by a graphon, but
this representation is not unique. We say that two graphons are equivalent
(also called weakly isomorphic) if they define the same graph limit; thus
there is a bijection between graph limits and equivalence classes of graphons.
(Recall that equivalence of graphons can be described by the homomorphism
densities being the same; furthermore, it is equivalent to the cut distance
being 0; see [7] for details.)

Recall that graphons are symmetric measurable functions W : Q x Q —
[0, 1], where Q = (€2, F, u) is a probability space. We may always choose € to
be [0, 1] with Lebesgue measure, in the sense that any graphon is equivalent
to a graphon defined on [0, 1], but it is often advantageous to use graphons
defined on other probability spaces €2 too.

The characterization of equivalence between graphons is known to be
complicated. Any two graphons on the same space {2 that are equal a.e. are
equivalent, and every graphon is equivalent to any the pull-back of it by a
measure preserving map (see below for definitions), but equivalence is not
limited to this. See e.g. [8], [1], [5], [2] and [6].

Given a graph limit, it would be desirable to somehow define a canonical
graphon representing it (at least up to equality a.e.); in other words, to define
a canonical choice of a graphon in the corresponding equivalence class. In
some special cases, this can be done in a natural way. For example, see [4], a
graph limit that is the limit of a sequence of threshold graphs can always be
represented by a graphon W (x,y) on [0, 1] that only takes values in {0, 1},
and furthermore is increasing in each coordinate separately (we say that a
function f(z) is increasing if f(z) < f(y) when x < y); moreover, two such
graphons are equivalent if and only if they are a.e. equal. There is thus a
canonical graphon representing each threshold graph limit.

Similarly, if a graphon W (z,y) defined on [0, 1] has a degree function
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that is a strictly increasing function [0,1] — [0, 1], then it is not difficult
to show that any equivalent graphon that also has an increasing degree
function is a.e. equal to W; see Section 3 for details. Hence, a graphon with
a strictly increasing degree function can be regarded as a canonical choice
in its equivalence class.

Of course, not every graphon is equivalent to such a graphon; for example
not a graphon with a constant degree function. Nevertheless, this leads to
the following interesting question. We repeat that we use ’increasing’ in the
weak sense (also known as 'weakly increasing’): f is increasing if f(z) < f(y)
when z < y;

Problem. Given any graphon W, does there exist an equivalent graphon on
[0, 1] with an increasing degree function (1.1)7

The purpose of this note is to show that this is not the case.

Theorem 1. There exists a graphon on [0, 1] such that there is no equivalent
graphon on [0, 1] with a (weakly) increasing degree function.

We prove this theorem by giving a simple explicit example in (2.1). The
example is similar to, and inspired by, standard examples such as [7, Exam-
ple 7.11] showing that two equivalent graphons are not necessarily pull-backs
of each other.

Remark 2. The analogue for finite graphs of the problem above for graphons
is the trivial fact that the vertices of a graph can be ordered with (weakly)
increasing vertex degrees. Note that there will always be ties, so even for a
finite graph, this does not define a unique canonical labelling.

1.1. Some notation. [0,1] will, as above, be regarded as a probability
space equipped with the Lebesgue measure and the Lebesque o-field. (We
might also use the Borel o-field. For the present paper, this makes no differ-
ence; for other purposes, the choice of o-field may have some importance.)

Let (Q1, Fi, p1) and (Q2, Fa, u2) be two probability spaces. A function ¢ :
01 — Qo is measure preserving if py(p~1(A)) = p2(A) for any measurable
A C Qo. If W is a graphon on {29 and ¢ : ;1 — o is measure preserving,
then the pull-back W is the graphon W¥(z,y) := W (¢(z), ¢(y)) defined
on ;. As mentioned above, a pull-back W¥ is always equivalent to W.

2. THE EXAMPLE
Our example is the graphon
dzy, wz,y€(0,3),
Wr,y):={1/2, o+y>3/2, (2.1)
0, otherwise.
Note that the degree function is given by
1 1 1
S, z € (0,5),
D(z) := / W(z,y)dy =1 ] 2
0 %(l’ - %)) T € (%7 1)

Suppose that W is equivalent to a graphon Wj on [0,1] that has an

(2.2)

increasing degree function D;(x) := fol Wi (z,y) dy; we will show that this
leads to a contradiction.
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The equivalence W = W implies by [1, Corollary 2.7], see also [7, Corol-
lary 10.35] and [6, Theorem 8.6], that there exist a probability space (€2, u)
and two measure preserving maps ¢, :  — [0, 1] such that W% = Wfb
a.e., i.e.,

W (o), o(y) = Wi(v(z),%(y)),  ae. on Q2 (2.3)

(The probability space (€2, 1) can be taken as [0, 1] with Lebesgue measure,
but we have no need for this. Instead, we prefer to use the notation {2 and
u to distinguish between this space and [0, 1], which hopefully will make the
proof easier to follow.)

Since ¢ and v are measure preserving, we have for every Borel measurable
f>=00n0,1],

/ f()de = / F(o(@)) du(z) = /Q f@)du).  (24)

We use this repeatedly below.
In particular, (2.3) and (2.4) imply that for a.e. x € Q

@(som):/ Wy dy—/w (4)) dyu(y)
= [ W), 00) duty) = /0 W (0(2). ) dy = D1 (1()).
(2.5)
Hence, for every real r € (0, 1], using (2.2),
)\{336 [0,1] : D (z r}—u{xGQ D1(¢ 7‘}
=pf{zreQ: @( r}—)\{x€01] D(z)<r}p=4r. (2.6)
Since we have assumed that ’}31 is increasing, this implies
D1(z) = x/4, x € (0,1). (2.7)
Define
1 1
he) = My s We,w) ¢ (0,31} = {5’ Tan e
) 29 +)
and, similarly,
hi(z) :== My : Wia,y) ¢ {0, 3} }. (2.9)

Then (2.3) implies, similarly to (2.5), for a.e. x € Q,

h(p(x)) = My : W(p(x),9) ¢ {0,5}}
= u{y: W(p(x),e(y) ¢ {0,3}}
= u{y : Wi (¥ (2),¢(y)) € {0,5}}
= My Wi(y(2),y) ¢ {0,5}} = hi(v(x)). (2.10)

This will yield our contradiction. We first calculate hl.
If 0 < a <b< 1, then, using (2.7), (2.4), (2.10), (2.5), and (2.4) again,

/abhl(x)d:c = /01 hl(x)l{% <Di(x) < Z}dx
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M) {2 <01 (0() < ) du(a)

J
= [ ne@n{§ <o) < 7} duto
J

}dx. (2.11)

/01 h(x)l{% <D(z) < Z}dm = ;/01/2 1{% <D(x) < g}dx

1. ra b b—a
=253 =" (2.12)
Consequently, (2.11) and (2.12) show that for every a € (0,1) and ¢ €
(07 1- a)a

1 [ote 1 e 1

- h de=---=-. 2.13
e /a o)de=2-3=7 (2.13)
However, by the Lebesgue differentiation theorem, as ¢ — 0, this converges
a.e. to hy(z). Hence,

b () = i ae. z € [0,1]. (2.14)

We may now complete the proof. It follows from (2.14) that hy(¢(z)) = %
a.e. on €2, while (2.8) implies that h(z) # I a.e. on [0,1], and thus h(p(z)) #
1 a.e. on Q. Thus (2.10) yields a contradiction.

Consequently, there is no graphon Wj equivalent to W with increasing

degree function. O

3. STRICTLY INCREASING DEGREE FUNCTIONS

In this section, we give a proof of the following result, mentioned in the
introduction. This result is not new; it is mentioned in Delmas, Dhersin and
Sciauveau [3] (without proof), and it may also have been observed earlier.
We do not know any published proof, so we give one for completeness.

Theorem 3. If W(x,y) is a graphon defined on [0, 1] such that its degree
function ®(x) is a strictly increasing function [0,1] — [0, 1], then any equiv-
alent graphon that also has a strictly increasing degree function is a.e. equal

to W.

Proof. Suppose that W is an equivalent graphon on [0, 1] that has a strictly
increasing degree function ;. As in Section 2, there exists a probability
space (2, ) and measure preserving maps ¢, :  — [0, 1] such that (2.3)—
(2.5) hold. By (2.5), for a.e. z,y € ,

p(z) <¢ly) = D(p(z)) <D(p(y) = D1(v(z)) <D1((y))
= Y(x) <P(y). (3.1)
We may interchange W and W7 and thus, for a.e. x,,

p(r) < ply) <= P(z) <P(y). (3.2)
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Consequently, for a.e. z € €Q,
pl) =Mt e[0,1]: 1 <p()} = pn{y € QoY) < p(z)}
— iy €0 ly) < @)} = ME€ [0,1] 1 £ < (@)}t = v(a).  (33)
This together with (2.3) shows that W (¢ (), ¢(y)) = Wi(e(z), o(y)) a.e.

on 92, and a final use of the fact that ¢ is measure preserving shows that
W (s,t) = Wi(s,t) for a.e. s,t € [0, 1]. O

Remark 4. Theorem 3 can easily be slightly extended to show that also
there is no equivalent graphon with a weakly but not strictly increasing
degree funtion. We omit the proof.
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