THE SPACE D IN SEVERAL VARIABLES: RANDOM
VARIABLES AND HIGHER MOMENTS

SVANTE JANSON

ABSTRACT. We study the Banach space D([0,1]™) of functions of sev-
eral variables that are (in a certain sense) right-continuous with left
limits, and extend several results previously known for the standard
case m = 1. We give, for example, a description of the dual space, and
we show that a bounded multilinear form always is measurable with re-
spect to the o-field generated by the point evaluations. These results
are used to study random functions in the space. (I.e., random elements
of the space.) In particular, we give results on existence of moments (in
different senses) of such random functions, and we give an application
to the Zolotarev distance between two such random functions.

1. INTRODUCTION

Recall that D([0, 1]) is the set of real-valued functions on I := [0, 1] that
are right-continuous with left limits, see e.g. [1, Chapter 3]. Similarly, the m-
dimensional analogue D([0, 1]™) is defined as the set of real-valued functions
f on [0,1]™ such that at every t = (t1,...,tn) € [0,1]™, the limit of f(s)
exists (as a finite real number), as s — t in any of the octants of the form
J1 x -+ X Jp, where each J; is either [¢;, 1] or [0,¢;) (the latter only if ¢; > 0).
For example, take m = 2 for notational convenience; then f € D([0,1]?) if
and only if, for each (x,y) € [0, 1]?, the limits

fla+y+) = lim  f(@'y),

>z, ' >x
Y-y, Y’y
f(x+7y_) = lim f(xlvy/))
>z, ' >z
Y-y, y'<y
f(:E—,y-i-) = , hm, f(xlvy,)7
-z, ' <z
Y-y, y'>y
f(x_7y_) = , hm, f(xlvy/)
'z, <z
Y-y, y'<y
exist, except that we ignore all cases with an argument 0—. Note the slight
asymmetry; we use = but <. Note also that necessarily f(z+,y+) = f(x,y)
when the limit exists.
The space D([0,1]™) was studied by Wichura [17, 18] and Neuhaus [13];
the latter extended the definition of the Skorohod topology from the case
m = 1 and proved many basic results on it. (The definition of the space
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in [13] differs slightly from the one above at the top and right parts of the
boundary; this is not essential and his proofs are just as valid for the version
considered here.) See also Straf [16] for an even more general setting.

In the present paper we study D([0, 1]™) from a different point of view, as
anormed (Banach) space. The space D([0, 1]) was studied as a normed space
in [11, Chapter 9] (together with D([0, 1]"") to some minor extent) in order to
show some results on second and higher moments of D([0, 1])-valued random
variables; these results were at least partly motivated by an application [12]
where convergence in distribution of some D([0, 1])-valued random variables
was shown by the contraction method, which required some of these results
as technical tools. The purpose of the present paper is to extend some of
these results for D([0,1]) to D([0,1]™); one motivation is that this enables
similar applications of the contraction method to D([0, 1]™)-valued random
variables, see [3].

Functions in D([0, 1]™) are bounded, and we define

IfI:="sup [f(B)]. (L.1)
te[0,1]™
D([0,1]™) is a Banach space with this norm. Note that the Banach space
D([0,1]™) is not separable (already for m = 1), and that the space C([0, 1]™)
of continuous functions on [0, 1]™ is a closed, separable subspace.

Remark 1.1. We consider, for definiteness, real-valued functions. The
definitions and results extend with no or trivial modifications to complex-
valued functions and measures. It is also easy to extend the results to vector-
valued functions with values in a fixed, finite-dimensional vector space.

Acknowledgement. I am indebted to Henning Sulzbach for initiating this
work by asking me questions that led to it, and also for helpful comments;
this almost led to a joint paper.

2. PRELIMINARIES

2.1. The split interval. Define the split interval T as the set consisting
of two copies, t and t—, of every point in (0, 1], together with a single 0.
There is a natural total order on I, with s < t— < ¢ when s,t € [0,1] with
s <t. We define intervals in 7 in the usual way, using this order, and equip
T with the order topology, which has a base consisting of all open intervals
[0,2), (z,1], and (x,y) with 2,y € I; then I is a compact Hausdorff space;
see e.g. [6, Problems 1.7.4 and 3.12.3]. The compact space T is separable
(i.e., has a countable dense subset, for example the rational numbers) and
first countable (every point has a countable neighbourhood basis), but not
second countable and not metrizable, see e.g. [11, Section 9.2].

We regard [0, 1] as a subset of T, with the inclusion mapping ¢ : [0,1] — T
given by ¢(t) = t. This mapping is not continuous; the subspace topology on
I induced by Tis stronger than the usual topology on I (which we continue to
use for I). (The induced topology on (0, 1) yields a version of the Sorgenfrey
line, see [6, Examples 1.2.2, 2.3.12, 3.8.14, 5.1.31].)

Every function f € D([0,1]) has a (unique) extension to a continuous

function on I, given by f(t—) = lim, ~ f(s). Conversely, the restriction to
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I of any continuous function on I is a function in D([0,1]). There is thus
a bijection D([0,1]) = C(I), which is an isometric isomorphism as Banach
spaces [5]. Another way to see this is to note that D([0,1]) is a Banach
algebra with T as its maximal ideal space, and that the Gelfand transform
is this isomorphism D([0,1]) = C(I), see [11, Section 9.2].

These results extend immediately to D([0, 1]™). The definition of D([0, 1]™)
shows that every function f € D([0,1]™) has a (unique) extension to a con-
tinuous function on I’ ™ and, conversely, that the restriction to I™ of any
continuous function on I™ is a function in D([0,1]™); hence, there is a bi-
jection D([0,1]™) =~ C (f "), which is an isometric isomorphism as Banach
spaces. Again, this can be regarded as the Gelfand transform for the Banach
algebra D([0,1]™), with maximal ideal space I™.

2.2. Tensor products. For definitions and basic properties of the injective
and projective tensor products X XY and X@Y of two Banach spaces X
and Y see e.g. [15], or the summary in [11].

In particular, recall that if K is a compact Hausdorff space, then C/(K)®F ~
C(K*) (isometrically) by the natural identification of f; ® - - ® fi with the
function

:a\v

® - ® fr(xy,...,zx) = fi(x;) (2.1)

i=1
on K*. In particular, linear combinations of such functions @’f fi are dense
in C(K*). Furthermore, C(K) has the approximation property (see [11,
Chapter 4]), and as a consequence, C(K )®k can be regarded as a linear
subspace of C(K)®F = C(K*) (with a different norm).

Since D([0,1]™) =~ C(fm), these results apply also to D([0,1]™). In
particular, D([0, 1]m)®k ~ C(I™*) =~ D([0,1]™), again by the natural
identification (2.1) of @lf fi and Hle fi(z;). (From now on, we identify
these spaces and write = instead of =.) In particular, linear combina-
tions of functions 7" fi = [[i%, fi(zi) with f; € D([0,1]) are dense in
D([0,1]™). Furthermore, D([0,1]™) has the approximation property and
thus D([0,1]™)®* < D([0,1]™)®* = D([0, 1]™*). Note that D([0, 1]™)®* is
not a closed subspace of D(][0, 1]m)®k = D([0,1]™*) when k > 2, and thus

the projective and injective norms are not equivalent on D(]0, l]m)®k ; see
e.g. [11, Remark 7.9 and Theorem 9.27].

2.3. Baire sets and measures. If K is a topological space, then the Borel
o-field B(K) is the o-field generated by the open sets in K, and if K is a
compact Hausdorff space (the only case that we consider), the Baire o-field
Ba(K) is the o-field generated by the continuous real-valued functions on K
see e.g. [2, §6.3], 9, §51] (with a somewhat different definition, equivalent in
the compact case) and [4, Exercises 7.2.8-13]. Elements of B(K) are called
Borel sets and elements of Ba(K) are called Baire sets. A Baire (Borel)
measure on K is a measure on Ba(K) (B(K)), and similarly for signed
measures; we consider in this paper only finite measures.
We collect some basic properties.
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Lemma 2.1. Let K, K1, Ko be compact Hausdorff spaces.

(i) Ba(K) < B(K).

(ii) If K is a compact metric space, then Ba(K) = B(K).

(iii) Ba(K1 x Ky) = Ba(Kj) x Ba(K3).

(iv) If (S,S) is any measurable space, then a function f : (S,S) —
(K, Ba(K)) is measurable if and only if go f : (5,8) — (R, B) is
measurable for every g € C(K).

(v) If f : K1 — Ky is continuous, then f is Baire measurable, i.e
[ (Ky,Ba(Ks)) — (K2, Ba(K3)) is measurable.

°)

Proof. (i) and (ii) are easy and well-known; for (iii) see [9, Theorem 51E] or
[2, Lemma 6.4.2]. (iv) is a consequence of the definition of Ba(K), and (v)
follows. O

By Lemma 2.1(ii), there is no reason to study Baire sets instead of the per-
haps more well-known Borel sets for metrizable compact spaces, since they
coincide. However, we shall mainly study non-metrizable compact spaces
such as I, and then the Baire o-field is often better behaved than the Borel
o-field. One example is seen in Lemma 2.1(iii) above; the corresponding re-
sult for Borel o-fields is not true in general, and in particular not for K = I ,
see Proposition A.4. Another important example is the Riesz representa-
tion theorem, which takes the following simple form using Baire measures.
Let Mpg,(K) be the Banach space of signed Baire measures on K, with | u||
the total variation of u, i.e., ||| := |u|(K), where the measure |u| is the
variation of u.

Proposition 2.2 (The Riesz representation theorem). Let K be a compact
Hausdorff space. There is an isometric bijection between the space C(K)*
of bounded continuous linear functionals on C(K) and the space Mg, (K) of
stgned Baire measures on K, where a signed Baire measure p corresponds
to the linear functional f — §, fdpu.

Remark 2.3. The Riesz representation theorem is perhaps more often
stated in a version using Borel measures, but then one has to restrict to
reqular signed Borel measures, see e.g. [4, Theorem 7.3.5] or [2, Theorem
7.10.4]. The connection between the two versions is that every (signed) Baire
measure on K has a unique extension to a regular (signed) Borel measure,
see [9, Theorem 54.D] or [2, Corollary 7.3.4].

For a proof of Proposition 2.2, see [9, §56], or the references in Remark 2.3
above.

ExamplAe 2.4. élthough not needed Afor our results, it is interesting to note
that Ba(l) = B(I), but Ba({™) < B(I™), when m > 2. See Appendix A.

2.4. Some further notation. Let [m]:= {1,...,m}.

If z € R, then |z| and [z] denote x rounded down or up to the nearest
integer, respectively.

Recall that t— is a point in T \[ for t € (0,1]. For completeness we define
0—:=0.
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Recall also that ¢ : [ — T denotes the inclusion mapping. Conversely,
define the projection p : I — I by p(t) =t and p(t—) = ¢ for t € [0,1]. Let
¢pi=1op:I—1T (2.2)

be the composition of ¢ and p, i.e., the projection

P(t) =t,
foos, »

Note that ¢ o ¢ = ¢, i.e., ¢ is a projection map.

If Ac[0,1],let A—:={t—:tc Ay cI,and A:=p 1 (A) = AU (A-)
I. In particular, if s € [0,1], then {/s\} = {s,s—}.

We sometimes denote elements of 1™ by t = (t1,...,tm). Let m; : m T

denote the projection on the i-th coordinate: m;(t) = ;.
If f e D([0,1]) and t € (0, 1], let

Af(t) == f(t) = f(t=). (2.4)

This defines a bounded linear map A : D([0,1]) — ¢o((0,1]), with norm
|A| = 2; see [11, Theorem 9.1] for further properties.

We extend this to several dimensions by defining, for f € D([0,1]™) and
i€ [m]:={1,...,m},

Aif(tl, e ,tm) = f(tl, e ,tm) - f(tl, cee ,ti—, e ,tm), (25)

i.e., the jump along the i-th coordinate at ¢ = (¢1,...,%y). (This is 0 when
t; = 0, by our definition 0— = 0.)
We further define, for any subset J = {j1,...,Jj¢} S [m],

Asf = Aj A f. (2.6
Note that the operators A; commute, so their order in (2.6) does not matter.

Remark 2.5. In particular, (2.5) shows that for fi,..., f, € D([0,1]),

A(i®  ®fm)=fi®..0Af)®...® fm. (2.7)
Consequently, identifying D([0, 1]™) and D([0, 1])®m as in Section 2.2,
Ai=1Q QIRARI® - &1, (2.8)

where I is the identity operator and there is a single A in the i-th position.
Thus A; can be regarded as a bounded linear map into D([0,1])®---&
c0((0,1])®---® D([0,1]), and similarly for A;. However, we will not use
this point of view; we just regard A; f and A;f as the functions on I"™ given
by (2.5)—(2.6).

3. SOME PROJECTIONS

Recall the mappings ¢, p and ¢ from Section 2.4.

Lemma 3.1. (i) ¢: I — T is Baire measurable (but not continuous).
(i) p:I — I is continuous, and thus Baire measurable.
(ili) ¢ : I — I is Baire measurable (but not continuous).
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Proof. (i): We have already remarked that ¢ is not continuous.

To see that ¢ is Baire measurable, i.e., that ¢ : (I,Ba) — (I, Ba) is mea-
surable, let g € C(I). Then go. € D([0,1]), see Section 2.1, and thus
gov: (I,Ba) = (I,B) - (R, B) is measurable. Thus ¢ is Baire measurable
by Lemma 2.1(iv).

(ii): The continuity follows from the definitions.

Alternatively, we may note that if f € C(I), then f € D(I), so it has
by Section 2.1 a continuous extension (which also is its Gelfand transform)
fe C(f), given by f(t—) = f(t—) = f(t); hence f = fop. In particular,
taking f to be the identity i with i(x) = z, we have i = p, and thus p € C’(f)

(ii): That ¢ = ¢ o p is Baire measurable follows by (i) and (ii). To see
that ¢ is not continuous, it suffices to note that ¢(I ) = [ is a proper dense
subset of I and thus not a compact subset of 1. O

For a fixed m and 1 < i < m, define ¢; = ¢;m : m — m by

Giry .. ) = (1, 0, i) (3.1)

(with the identity in all coordinates except the i-th). Then ¢q,..., ¢, are
commuting projections m — Im,

Since ¢ is Baire measurable, and Ba(I™) = Ba(I)™ by Lemma 2.1(iii),
each ¢; is Baire measurable. Hence, ¢; induces a map ®; MBa(I ) —
Mg, (fm) such that

L Fann = | fooidn (3.2)
for Baire measurable and, say, bounded f : m - R. Letting 7! denote the
map Mg, — Mp, induced as in (3.2) by a function 7 : m - fm we thus
have ®; = qﬁg, and ®; 0 ®; = qbg o ¢§ = (¢; 0 ¢Z) ¢ﬁ ®,. Hence, ®; is a
projection in Mg, (fm) Similarly, ®; o ®; = ®; o ®;, so the projections ®;
commute (beacuse the projections ¢; do).

Let ¥; :=I— ®;, where I is the identity operator; thus, by (3.2),

| rawin = | (1) = o) duth (33

for bounded Baire measurable f on m.

Note that W¥; also is a projection in MBa(fm). It follows immediately
that ®4,...,®,, and ¥y,..., ¥, are commuting projections in MBa(fm).
Furthermore, for any p € Mg,(I™),

[@i()ll < Nl
Wil < [l + (i) < 2]l (3.5)

Lemma 3.2. Ifu e MBa(fm) then for each i€ {1,...,m} there is a count-
able subset A; < (0,1] such that U;(n) is supported on the set 71’1»_1(21\,‘) =
{(tr, ... tm) € I™ 1 t; € A;).

Furthermore, if s € (0,1], let ¥;(u)s— and U;(1)s denote the restrictions
of W;(u) to ﬂi_l(s—) and 7; 1 (s), respectively, regarded as measures on m=1;

| <
| <
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then
Ui(p)s— = —Wilp)s. (3.6)
Proof. For notational convenience, assume ¢ = 1, and let i := Wy (u).
For each s € (0,1], let E := 771_1({/3\}) = {s—, s} x I™1 and let ji; denote
the restriction of i to Fs. (Es is a Baire set in I™, since {s} is measurable
in I and 7 and p are Baire measurable as shown above; hence s is well

defined.)
For any finite set F' < (0, 1],

Sl = Y laE) = @(U B <lald™) = lal. - 67)
sel sel sel
Hence, Zse(o?l] lis| < || and fis # 0 only for countably many s.
Let A := {s: fis # 0} and v 1= 3} 1) [ts = Diseq Hs, Where the sum

converges in Mg, (Im) by (3. 7) We shall prove that i = v. In order to show

this, recall that C’(Im) =C( )®C’(Im 1), see Section 2.2, and thus linear
combinations of functions f of the form

b)) = A9, f), e Cd).geC(I™),  (38)
are dense in C(I™). Hence, it suffices to show that
Cgdp= | fav (3.9)
m m
for every f as in (3.8). For such f, (3.1) and (2.3) yield, for t = (f1,...,%,) €
Im
FE) = f(o1 () = (fr(hr) = fr(o(t1)))g(ta, - . ., Em)
tAl =S8E€ I,

0,
B {—Afl(s)g(fg,...,fm), = s—.
Recall that f; € C(I) = D([0,1]); regard f1 as an element of D([0,1])
b
1

(3.10)

and let Dy < (0,1] be the countable set of discontinuities of fi. Then,
by (3.10), f(t) — f(¢1(t)) = 0 unless #; = u— for some u € Dy,, and then
3

t € E,. Consequently, (3.3) yields
Cfdp= | fav = Y f (o1®)) du(®).  (3.11)
Im ITn uEDf

Furthermore, applying (3.3) to the function f1p,, we also find, for any
€ (0,1],

f fdji = j F AW () = f (F@®) = F(61(2))) du(). (3.12)

This integral vanishes when s ¢ A, because then i = 0 on F,, and also when
s ¢ Dy, , because then f(t) — f(¢1(t)) = 0 on E, by (3.10). Consequently,
(3.11)~(3.12) yield

fdi- ffdu—%AJ fan= | ran (3.13)

m uEDf
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which verifies (3.9) and thus @ = v = >, 4 fis, which is supported on

UseA Es = 7T1_1(A)
Finally, let s € (0,1]. Again, let f be as in (3.8). Then, by (3.12) and
(3.10), letting #s— denote the restriction of p to {s—} x I™!, regarded as

a measure on 1™, and ¥ := (i5,...,1m),

fan= | AREE)
E; {s—}xIm-1
= (A=) = 1) [ a®) due(®)
fm—1
- L - f(S—,f:’)d,us(f’)—ﬁ fo®)du (). (3.14)

Jm—1

Hence, \Ill(,“)sf = Ms— = _\Ijl(:u)s' U

4. THE DUAL SPACE

The continuous linear functionals on D([0, 1]) were described by Pestman
[14], see also [11, §9.1]. We extend this result to several dimensions as follows.

Theorem 4.1. Every continuous linear functional x on D([0,1]™) has a
unique representation

X(H = > xu(f) (4.1)

JE[m]
such that for every J = {j1,...,je}, with 0 < £ < m, writing J := [m]\J =
{]17 e )j;n_g};

i) = > LMAthl,..., m) ity s, (ot ) (42)

t]17 ,tue 0 1

where each pj.. .. t; 5 a signed Borel measure on I and

SRRV
Il == >0 s, ey, | < 0. (4.3)
tjl,...,t]-ee(o,l]
Furthermore,
27" x| < ), sl < 3™xl- (4.4)
J<[m]

Conversely, every such family of signed Borel measures pjy; .. Aty satisfy-

ing (4.3) defines a continuous linear functional on D([0,1]™) by (4.1)—(4.2).

Note that the sum in (4.2) formally is uncountable (when ¢ > 0), but (4.3)
implies that p . itjy ooty 1S NON-ZETO only for a countable set of (t;,,...,t;,),
so all sums are really countable.

Note also that for J = @, with £ = 0, (4.2) reduces to
Xz (f) = , flt, .. tm) dpa(t, .., tm), (4.5)

so this term in (4.1) is simply {fdug. For the other extreme, ¢ = m,
Hm];ti,....tm 1S & signed measure on the one-point space 1Y i.e., areal number,
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and (4.2) is interpreted as

Xod(F) = D Mt D f (1 ), (4.6)
tl,...,tme(o,l]
where |ppm)l| == X4, o [Bmlitr,etm | < 00 and, again, the sums really are

countable. (In other words, fi[;,] = (K[m]st;,....t,, ) i an element of 2A([0,1]™).)

Proof. Since D([0,1]™) =~ C(I™) (isometrically), we can use the Riesz repre-
sentation theorem Proposition 2.2 and represent x by a signed Baire measure
won I"™. We use the projections in Section 3 and expand p as

N:(CI)I“‘\III)"'(cI)m"'\IIm),U«: 2 A, (47)
J<[m]
where
ir = ([T T%5) - (4.8)
i¢J  jeJ

We define x;(f) := { fdfs; then (4.1) holds by (4.7), and we proceed to
show the representation (4.2). If j € J, then ¥;(f;) = fis, and thus by
Lemma 3.2, iy is supported on the set w}l(ﬁj) for some countable sets
Aj c (0, 1]

Suppose for notational convenience that J = {1,...,¢}. Then, s is thus
supported on

4
nHAy) = Ay xx A I (4.9)
=1

J
For i1,...,4p €I, let Fyooq, = {f1} x -+ x {tg} x I™* and let By i
be the restriction of iy to Fy i
Fix some (t1,...,t;) € (0,1]%, and let p* : Fy, 4, — I™¢ be the map
p*(ty, ..., t, £g+1, e ,tAm) = (p(fg_ﬂ), e ,,O(??m)) Let

M‘];tjl""’tjé = p*ﬁ(lal];tjl,---,tjg) (410)

be the signed measure on I"™~*

0 unless (t1,...,ts) € Ay x -+ x Ay.
Ifie{f+1,...,m}, then ®;(fi;) = fig by (4.8), and thus (3.2) implies
+,, recalling (3.1),

induced by this map, noting that y s, =

17t

-----

| tfdﬂJ=ﬁ (Flry. ) 0 bpr o 0 bmdiis

]m

:j , f(tla"'atfatf+17"'7tm) dMJ;tjl ..... tjl(tﬂ-‘rlv"'atm)- (411)

ith #; € {t;,t;—}, i = 1,...,¢, and let

Consider now any sequence (t;)] w
8) implies V;(f17) = fis, and thus by (3.6)

] £i)§
q:=|{i:t; =t;—}|. Fori <, (4.
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and (4.11), for any bounded Baire measurable function f on Fy ;. writing
t' = (tosty - stm),

f fd,sz(—1)qf Pt ) dugy, g, (8). (412)
F m—t

t1,....8p
Let Ey, .4, := {/tl\} X e X {/tg\} x I™~. Summing (4.12) for the 2¢ choices
of (f1,...,1t), we obtain, recalling (2.6),

fdgjzf EAJf(tl,...,tg,t’)duj;tj17__,7tjz(t’). (4.13)

m—

Furthermore, recalling that fi; is supported on (4.9),

I dji .
xs(f) fmf fiy > fE fdfig, (4.14)

(t1yeeytp)EAL XX Ay

and (4.2) follows by summing (4.13) over all (t1,...,ts) € A1 x --- x Ay.

Next, the first inequality in (4.4) follows from (4.1)—(4.3), noting | Ay f| <
21| £ < 27| f||. Furthermore, |us| < |jis| by (4.3) and (4.10), and || <
2171 11| by (4.8) and (3.4)~(3.5). Hence, the second inequality in (4.4) follows,
noting that ), ; 21/l = 3™ by the binomial theorem.

The converse, that every family satisfying (4.3) defines a continuous linear
functional on D([0,1]™) by (4.1)—(4.2) is obvious. Furthermore, it is easily
seen that if x is defined in this way, then with ji; defined by (4.8), § f du,
equals the summand x (f) given by (4.2), since the contribution from each
X with J’ # J vanishes by cancellations, and thus the construction above
recovers the measures u Titgy ity used to define y. In other words, the

MEASUTes fLry; ..t;, Are uniquely determined by x. O

5. MEASURABILITY AND RANDOM VARIABLES IN D([0,1]™)

We equip D([0,1]™) with the o-field D = D, generated by all point
evaluations f — f(t), t € [0,1]™. We sometimes mention this o-field ex-
plicitly for emphasis, but even when no o-field is mentioned, D is implicitly
assumed.

A D([0,1]™)-valued random variable, or equivalently a random element
of D([0,1]™), is thus a function X : Q@ — D([0,1]™), defined on some
probability space (£, F, P) such that for each fixed t € [0,1]™, X(¢) is
measurable (i.e., a random variable).

Note that the norm f — ||f| is a D-measurable function D([0,1]™) — R,
since it suffices to take the supremum in (1.1) over rational ¢. Hence, if X is
a D([0,1]™)-valued random variable, then || X | is measurable, i.e., a random
variable.

Remark 5.1. D is not equal to the Borel o-field defined by the norm
topology on D([0,1]™), see e.g. [11, Example 2.5]. The same example shows
also that D is strictly weaker than Borel o-field defined by the weak topology.
(We omit the details.)

However, in the positive direction, Corollary 5.4 below shows that D
coincides with the o-field generated by the continuous linear functionals.
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As a consequence (or directly), if we identify D([0,1]™) and C(I™) as
usual, then D is also generated by all point evaluations f — f(f), t € Im.

Moreover, D coincides also with the Borel o-field defined by the Skorohod
topology on D([0,1]™), see [13].

Theorem 5.2. Let m > 1 and ¢ > 1. FEvery bounded multilinear form
T : (D(]o, 1]m))e — R is measurable.

For m = 1, this is [11, Theorem 9.19]. Instead of trying to generalize the
proof in [11], we proceed through a different route, using the known case
m = 1 and Lemma 5.12 below (proved using several preliminary lemmas).

We first record the important special case £ = 1; for m = 1 this was
proved by Pestman [14].

Corollary 5.3. Every continuous linear functional on D([0,1]™) is mea-
surable. U

Corollary 5.4. The o-field D on D([0,1]™) coincides with the o-field By,
generated by the continuous linear functionals.

Proof. Corollary 5.3 implies that B,, € D. The converse follows because
every point evaluation is a continuous linear functional. U

We also rephrase this in terms of D([0,1]")-valued random variables. A
function X from a measure space into a Banach space B is weakly measurable
if {x, X) is measurable for every x € B*.

Corollary 5.5. If X : Q — D([0,1]™) is a function defined on some prob-
ability space (0, F, P), then X is D-measurable (i.e., a random variable in
D([0,1]™)) if and only if it is weakly measurable. O

We begin the proof of Theorem 5.2 by a simple observation. (See [11,
Lemma 9.12] for the case m = 1.)

Lemma 5.6. The evaluation map (f,t1,...,tm) — f(t1,...,tm) is measur-
able D([0,1]™) x [0,1]™ — R.

Proof. By right-continuity,

F(t1,. .. tm) = lim f(Wﬂ,..., [ntm]), (5.1)

n—0o0 n n

where the function on the right-hand side is measurable for each fixed n. [

In the next lemmas we fix f € D([0,1]™) and consider differences along
one coordinate only; for notational convenience we consider the first coor-
dinate and write ¢ = (t1,#') with ¢; € [0,1] and ¢’ € [0,1]™~!. Furthermore,
to avoid some trivial modifications at the endpoints 0 and 1, we extend f
by defining f(t1,t') := f(0,t) for t1 <0 and f(t1,t') := f(1,¢) for t; > 1.

We define, recalling (2.5).

Aj(t) = sup  [Aif(t,t)
t'e[0,1]m—1

) t; € [0,1], (5.2)

and, for an interval J,

Ap(J) i=sup{|f(t1,t') — flur,t)| s t1,ur € J, ¥ € [0,1]" "} (5.3)
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Lemma 5.7. For every t; € [0,1], f(s1,t') — f(t1,t') as s1 \y t1 and
f(s1,t") — f(ti—,t) as s1 / t1, uniformly for all t' € [0,1]™L.
In other words, Ag([t1,t1 +6]) — 0 and Ag([t1 —6,t1)) = 0 as 6 — 0.

Proof. A standard compactness argument. Let ¢ > 0. By the definition
of D([0,1]™), for every t = (t1,t") € [0,1]™, there exists an open ball B; =
B(t, ;) centred at t such that if s € By, then f(s) differs by at most /4 from
the limit as s — ¢ in the corresponding octant. It follows that if (s1,t") € By,
then |f(s1,t') — f(t1i—,t")| < e/2if s1 <ty and |f(s1,t') — f(t1,t))] <e/2 if
s1 = t.

Fix t;. By compactness, there exists a finite set {#'!,...#'"V} such that
the corresponding balls B, 45y cover {ti1} x [0, 1]™~!, and furthermore,

there exists 6 > 0 such that for every ¢ € [0,1]™1, the ball B((t1,t'),0)
is contained in some B, yj). It follows that for any ¢ € [0, 1m=t, if

s € (t — 0,t), then |f($1,t/) — f(tl—,t/)| < €/2, and if s1 € [t1,t1 + 9),
then |f(s1,t") — f(t1,t)] < e/2. O

Fix € > 0 and let
Epe = {t€[0,1] : A}(t) = €}. (5.4)
Lemma 5.8. The set Z¢. is finite for every f e D([0,1]™) and ¢ > 0.

This lemma is essentially the same as [13, Lemma 1.3].

Proof. Let the balls B; be as in the proof of Lemma 5.7. It follows that if
s € By and s1 # t1, then |A1f(s)] < e/2.

By compactness, there exists a finite set {t',..., ¢V} such that the corre-
sponding balls By; cover [0,1]™. It follows that =, is a subset of the finite
set {t] :j < N}. O

Say that an interval J < [0, 1] is fat if A¢(J) > ¢ and bad if J is fat and
furthermore J nE¢. = @.

Lemma 5.9. For every f € D([0,1]™) and € > 0, there exists n > 0 such
that if J < [0,1] is an interval of length |J| <, then J is not bad.

Proof. We claim that for every ¢ € [0, 1], there exists an open interval Oy 3 ¢
such that no interval J < O; is bad.

In order to show this claim, suppose first that ¢ ¢ Z¢.. Then A}'Z(t) < e,
and it follows by Lemma 5.7 that we can choose § > 0 such that A f((t —
0,t + 5)) < e. Hence, Oy := (t — §,t + 0) contains no fat interval, and thus
no bad interval.

On the other hand, if t € Zf., we similarly see by Lemma 5.7 that we
can choose § > 0 such that Ay((t —6,t)) < e and Af((t,t +0)) < e. Let
Oy := (t = 6,1 +0). Any interval J < Oy either contains ¢t € =y, or it is a
subset of (t —d,t) or (¢,t 4+ §) and then J is not fat; in both cases J is not
bad.

This proves the claim. By a standard compactness argument (Lebesgue’s
covering lemma), there exists n > 0 such that every interval J c [0, 1] of
length |J| < n is contained in some Oy, and thus not bad. O
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Lemma 5.10. Fize >0, let M := |25, = 0 and write ¢ = {&1,...,&m}
with 0 < & < --- <&y < 1. Let further & := 0 fori> M. Then M and all
&, 1 =1, are measurable functionals of f € D([0,1]™).

Proof. For n > 0 and 1 < j < 2", let J,; be the dyadic interval ((j —
1)2-", j2-1].

By Lemma 5.9, if n is large enough (depending on f), then J,; is not
bad; hence, if J,, ; is fat, then J, ; n E¢. # .

Conversely, if J, j nEr. # @, let t € J, j n Ef.; then

Aj(Jnj) = AL(E) > . (5.5)

Hence, for large n, J, ; contains some §; € Z¢ . if and only if J,, ; is fat.
Moreover, since Zy. is finite by Lemma 5.8, if n is large enough, then
each J,, ; contains at most one point &;.
For n > 0, suppose that g, of the intervals J, ;, 1 < j < 2", are fat, and
let these be J,, j,, i = 1,...,qn, With j1 <--- < jg,. Let further

{m = {]nz/ 9 ? Q’VL (56)

0, 1> Qp-

We have shown above that for large n, ¢, = M. Hence, M = lim, o qp.
Moreover, it follows from the argument above that for each fixed i > 1,
Ein — & as n — 0.

Since each Af(.J, ;) is a measurable functional of f (because it suffices to
take the supremum in (5.3) over rational ¢, u,t’), it follows that each ¢, and
&ni is measurable, and thus so are their limits M and &;. O

If F is a finite subset of [0,1], arrange the elements of F' u {0,1} as
O=xp<z1 <---<zny =1 and define
AR (F) = 1r<nizgjchf([xi_1,xi)) = 1réliag)§vAf<($i_l’xi))’ (5.7)

where the last equality holds by the right-continuity of f.

Lemma 5.11. For every f € D([0,1]™), there exists a sequence (&;)F in
[0,1] such that

Aj({&)=1) =0 as n — . (5.8)
Moreover, these points can be chosen such that each &;, j = 1, is a measur-

able functional of f € D([0,1]™).

Proof. For each k > 1, let &, i > 1, be the numbers defined in Lemma 5.10
for ¢ = 1/k. Then each &; is a measurable functional of f. Consider all these
functionals for £ > 1 and ¢ > 1, together with the constant functionals r for
every rational r € [0, 1], and arrange this countable collection of functionals
in a sequence &;, j > 1 (in an arbitrary but fixed way, not depending on f).
Now suppose that f € D([0,1]™), and let F, := {{;}}. Let k > 1, and
let ¢ = 1/k. Then M := |Z¢.| < 0 by Lemma 5.8, and thus there exists n;
such that if i < M, then &,; = &; for some j < ni. Hence, if n > nq, then

F, 2Z¢,. (5.9)
Furthermore, let n be as in Lemma 5.9, and let L := |1/n] + 1. Since

the rational numbers p/L, 0 < p < L all appear as some ¢;, it follows
that there exists ny such that if n > ny then F,, 2 {p/L}]g:O. Hence, if
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F, u{0,1} = {z;}}V as in (5.7), then each interval (z;_1,z;) has length
x; — xi—1 < 1/L < n. Consequently, by Lemma 5.9, the interval is not bad.
Moreover, if also n > nq, then (5.9) holds and thus (z;—1,2;) N Z¢. = @.
Consequently, for n > max(ni,n2), no interval (x;_1,z;) is fat, and thus
(5.7) yields A} (Fy) <e=1/k.

Since k is arbitrary, this shows (5.8). O

As noted in Section 2.2, linear combinations of functions of the form
Q71" fi = T2y fix:) with f; € D([0,1]) are dense in D([0,1]™). The next
lemma shows that f € D([0,1]™) can be approximated by such linear com-
binations in a measurable way.

Lemma 5.12. For every f € D([0,1]™), there exist functions fnyr; €
D([0,1]) for N 21,1 <k <N and 1 <i<m such that

N m
=Y R fwvwi—f  inD([0,1]™) (5.10)

k=11=1

(i.e., uniformly), as N — oo. Furthermore, the functions fy; can be cho-
sen such that the mappings f — fn . are measurable D([0,1]™) — D([0,1]).

Proof. We have so far considered the first coordinate. Of course, the results
above hold for any coordinate. We let A’J}(J ) and A;‘Z’(F ) be defined as in
(5.3) and (5.7), but using the i-th coordinate instead of the first. Thus
Lemma 5.11 shows that for every i < m, there exists a sequence of measur-
able functionals §§, j = 1, such that

A*i({gj.};?:l) —0  asn — . (5.11)
For n > 0 and 1 < i < m, arrange {{’ ", u{0,1} in increasing order as
0= 930 < e < xm 1, where n; < n + 1. (Strict inequality is possible
because there may be repetitions in {&;}7_; U{0,1}.) Let J} := [z, 2% ) for
J <mn;and J) := {1}. Thus {J’} "o is a partition of [0,1]. Let hf := 1J;;,
the indicator function of J;-. (Note that Jj’: and hé» depend on n.)
Now define the step function g, on [0, 1]™ by

D f, 2 Qb (5.12)
i=1

Jiseeesdm

ie.,
gn(t1s . tm) == f(xj,...,2T)  whent;eJ; (1<i<m). (513)

It follows from the definitions (5.3) and (5.7) that if ¢; € J Z:_ for every ¢, then

lgn(t1, - tm) — F(t1, - tm ZAZ Ji) EA (e (5.14)

Hence, (5.11) implies that

lgn — f| = sup |gn(t) — f(t)] — 0 as n — o0, (5.15)
te[0,1]™

ie., gn — f in D([0,1]™).
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The rest is easy. We can write (5.12) as

=2, QIniiimi (5.16)

J1yeeergm =1
with
Gnjn s 1= {{L;(f;l, e ,x;’:ﬂ)h}l, ’ZL z 1, (5.17)
The sum in (5.16) has [[;(n; + 1) < (n 4 2)™ terms; by rearranging the
terms in lexicographic order of (ji,..., jm), we may write it as
(n+2)™

gn= > Qi (5.18)
k=1 1

=1

where we, if necessary, have added terms that are 0 (with all g, 1, = 0).
Finally, we relabel again, defining for (n +2)™ < N < (n + 3)™

gn,k,ia k < (n + 2)m’
k>

0, (n+2)™. (5.19)

INgi =

Then fy defined by (5.10) satisfies fy = g, for (n +2)™ < N < (n + 3)™,
and thus fy — f in D(]0,1]™) as N — co. '

It is clear from the construction above that every n; and z is a measurable

functional of f; using Lemma 5.6 it follows that every gy j,.... j,.; defined by
(5.17) depends measurably on f, and thus so does every g, j; and every

N k- O

Remark 5.13. The proof above yields functions fx . ; of the special form
alp,e or alyyy, where a, b, ¢ are measurable functionals of f. Cf. [17; 18].

Proof of Theorem 5.2. We use Lemma 5.12, with some fixed measurable
choice of fy ;. For every (-tuple (f1,... , %), we apply Lemma 5.12 to
each f7 and obtain, by continuity and multilinearity of Y,

Y(fo ff) = lim T(fy,. o fy)
N

g D T(® ks @ F)- (5:20)
k =1 =1 ;

=1

Define a bounded ¢m-linear form Y on D([0,1]) by

m m
T(gllv s Gimy - -5 9015 - - - agem) = T<®gl,i7 ceey ®g€,i)' (521)

i=1 i=1
Then the summand in (5.20) is T((ffv k; i<j<t,1<i<m). We apply the case
m = 1 of the theorem, which as said above is [11, Theorem 9.19], to T
(with ¢ replaced by ¢m); since each f/ I ki is measurable, this shows

that each summand is a measurable function of (f1,..., f) e (D([0,1]™))".
Hence, so is their sum in (5.20), and thus by (5.20), also Y(f*,..., f%). O
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6. A FUBINI THEOREM

Recall that a D([0,1]™)-valued random variable X is a measurable func-
tion X : (Q,F,P) — D([0,1]™) for some (usually unspecified) proba-
bility space (2, F,P); hence X can be regarded as a function X (w,t) :
Q2 x[0,1]™ — R, and the measurability condition means that X(-,t) is mea-~
surable for each fixed t € [0,1]™. In fact, X (w,t) is jointly measurable on
2 x [0,1]™ as a consequence of Lemma 5.6.

Since functions in D([0, 1]™) extend uniquely to T ™ yielding an natural
identification D([0,1]™) = C (f ™), we can also regard the random variable
X as a function X : (2, F,P) — C’( ) and thus also as a function X(w t)
Q x I™ — R. This function is measurable in w for every fixed t € m
by Corollary 5.3 (or more simply by considering a sequence t, € [0, 1]™
that converges to t in [ m); it is also a continuous function of ¢ and thus
Baire measurable for every fixed w. In other words, the function X (w, ) is
separately measurable. However, X (w, ) is in general not jointly mesurable
on  x I™. In fact, the example in [11, Remark 9. 18] shows that Lemma 5.6
does not extend to the evaluation map C (I ) x I™, and we may then choose
Q = C(f ™) with X the identity. (Here it does not matter whether we
consider Baire or Borel measurability on T ™)

This lack of joint measurability is a serious technical problem. A con-
tinuous linear functional on C’(f ™) is given by integration with respect to
a Baire measure p on fm, see Proposition 2.2, and we would like to be
able to use Fubini’s theorem and interchange to order of integrations with
respect to pu and the probability measure P on €2, but the lack of joint mea-
surability means that a straight-forward application of Fubini’s theorem is
not possible. However, the following theorem shows that the desired result
nevertheless holds.

We say that a function f on a measure space (S,S,u) is p-measurable
if it is defined p-a.e. and is p-a.e. equal to an S-measurable function (this
is equivalent to f being measurable with respect to the p-completion of
S). Furthermore, f is p-integrable if it is p-measurable and §|f]d|u| < oo.
(Recall that |u| denotes the variation measure of .)

Theorem 6.1. Suppose that X is a random variable in D([0,1]™) = C(fm),
defined on some probability space (Q, F,P), and that u € Mg,(I™) is a signed
Baire measure on I™.

(i) If | X|| < C for some constant C' < oo, i.e., | X (w,t)| < C for allw € Q
and t € [0,1]™, then w — {3, X (#)du(t) is a (bounded) measurable
function on €, i.e., a random variable, and t — E[X ()] is an element
of C(fm), and thus Baire measurable on I™.

(ii) If X >0 and p is a positive Baire measure, then w — §z,, X (£) du(t)
is a measurable function Q — [0,00], i.e., a (possibly infinite) random
variable, and t — E[X (f)] is a Baire measurable function Im - [0, c0].

(iii) If E|X(t)| < C for some constant C < o and all t € [0,1]™, then
§7m X(8) du(t) exists a.s. and defines an integrable function on €, i.e.,
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an integrable random variable; and t — E[X ()] is a bounded Baire
measurable function on m.
(iv) If either E§, | X (6)|d|p|(f) < © or {5, E[|X(#)[]d|u|(t) < oo, then
Sfm X (t) du(t) exists a.s. and defines an integrable function on €, i.e.,
an integrable random variable; similarly, E[X ()] exists for p-a.e. t
and defines a u-integrable function on m.
In all four cases,

B[ X0 dut) = | BLX@]du(d (6.1)

Im m
We first prove a simple lemma, which is useful also in other situations.

Lemma 6.2. Suppose that X is a random variable in D([0,1]™). Then, for
every te I™,

E|X(#)| < sup E|X(t)]. (6.2)
te[0,1]™
Consequently,
sup E|X(f)| = sup E|X(t)]. (6.3)
fefm te[071]m

Proof. If t € T ™ then there exists a sequence t, € [0,1]™ such that ¢, — i,
and thus X (¢,) — X (f). Hence, Fatou’s lemma implies

E|X(f)| < liminf E|X(t,)] < sup E|X(¢)]. (6.4)
n—® te[0,1]™
This shows (6.2), and (6.3) is an immediate consequence. O

Proof of Theorem 6.1. (i): First, {7, X (#)du(f) is measurable by Corol-
lary 5.5, since x : f — {z,, f dp is a continuous linear functional on D([0, 1]™).

Secondly, if , — £ € I™, then X (t,) — X (f) by continuity, and thus
E[X (f,)] — E[X(f)] by dominated convergence. This shows that {
E[X (1)] is sequentially continuous, which is equivalent to continuity since Tis
first countable (see Section 2.1). Alternatively, considering only t € [0, 1]™,
dominated convergence shows that ¢ — E[X (¢)] is a function in D(]0, 1]™),
and that its continuous extension to C'(I™) is given by E[X (£)].

Finally, to show (6.1) we consider again the continuous linear functional
x : f — §7. fdu and use the decomposition in Theorem 4.1. Fix J < [m]

and suppose for notational convenience that J = {1,...,¢} for some ¢ €
{0,...,m}. (The cases £ = 0 and ¢ = m are somewhat special; we leave the
simplifications in these cases to the reader.) Also fix ¢1,...,t, € (0,1] and
consider the corresponding term in (4.2). Then Ajf(t1,...,ty) is a linear
combination of the 2¢ terms f(1,...t¢, tgs1, ... tm) with t} € {tj,t;—} c I
fori=1,...,¢. R

Fix one such choice of #1,...,t,, and define for f € C(I™) the func-

tion y(f) on I by y(f)(in, ..., dm—r) == f(F1,... .01, ., Gpn_g); in
other words, v(f) is the restriction of f to the (m — ¢)-dimensional slice
with the coordinates in J fixed to # := ({1,...,%), regarded as a func-
tion on I, Obviously, y(f) € C(I™*) for every f € C(I™), so 7 :
D([0,1]™) = C(fm) — C(fmfg) = D([0,1]™ ). Furthermore, for any
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fixed u := (ug,...,Un_¢) € [0,1]™7¢, the mapping f — v(f)(u) = f(¥',u)
is Dy,-measurable on D([0,1]™), see Remark 5.1; hence, v : D([0,1]™) —
D([0,1]™~*) is measurable for D, and D,, ;. Hence, v(X) is a D([0, 1]™*)-
valued random variable, and applying Lemma 5.6 to y(X), we see that
(w, 1) — y(X)(w,u) = X(w, (#,u)) is jointly measurable on Q x [0, 1]™*.
Consequently, we can use Fubini’s theorem and conclude

B[ X@wduet) - | EXEuduele). (6

e

Jm—¢

Summing over all 2¢ choices of #' for a fixed t' = (t1, ..., 1), after multiplying
with the correct sign, we obtain, letting E X denote the function ¢t — E[X (¢)]
in D([0,1]™),

EJ Ay Xt ) dp g (u) = J AyEX)H u)dpgp(u). (6.6)
Jm—¢ Jm—¢

We now apply the decomposition (4.2) and sum (6.6) over all ¢ e (0, 1]¢;
recall that the sum really is countable. This yields, using (4.2) twice and
justifying the interchange of order of summation and expectation in the
second equality below by dominated convergence, because

J ) AJX(t,v u) d,uJ;t’(u)
Im—
where the sum over ¢’ of the right-hand sides is finite by (4.3),

Eho(] =B Y | AX( ) dus(w)
et It

- Y E J Ay X (¢ u) dg (u)
ve@1e M

- A (EX)(¢,u) dpig (u)
%1]14 me J HJ

= xs(EX), (6.8)

Finally, summing (6.8) over J < [m] yields, by (4.1), Ex(X) = x(EX),
which is (6.1).

(ii): Let X,(w,?) := min(X(w,%),n), and note that X, is a random
variable in C'(I™) for every n > 1. The result follows by applying (i) to each
X, and letting n — 00, using the monotone convergence theorem repeatedly.

(iii), (iv): Note first that the two alternative conditions in (iv) are equiv-
alent by (6.1) applied to | X| and |u|, which is valid by (ii). Furthermore, by
Lemma 6.2, the assumption in (iii) implies

E|X({)|<C,  tel™, (6.9)
which in turn implies the assumption in (iv).

Decompose X = X, — X_, where X, (w,i) := max(X(w,f),O) and
X (w,t):= max(—X(w,f), 0), and note that X, and X_ are random vari-
ables in C(f ™). Similarly, use the Hahn decomposition [4, Theorem 4.1.4]

W = pr — pu— as the difference of two positive Baire measures on C(f m.
The result follows by applying (ii) to all combinations of X1 and p4, noting

< 27C|psw (6.7)
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that this yields E §;,, X4 (f) dps(t) = §7, E[X+(8)] dus(f) < oo, using the
assumptions. For (iii), note also that (6.9) shows that E[X+(#)] is a bounded
(and thus finite) function on I™. O

7. SEPARABILITY

The Banach space D([0,1]™) is non-separable, which is a serious compli-
cation in various ways already for m = 1, see e.g. [1] and [11].

Let X : (2,F,P) — B is a function defined on a probability space and
taking values in a Banach space B. (In particular, X may be a B-valued
random variable, for a given o-field on B, but here we do not assume any
measurability.) We then say, following [11, Definition 2.1], that

(i) X is a.s. separably valued if there exists a separable subspace B; € B
such that X € By a.s.
(il) X is weakly a.s. separably valued if there exists a separable subspace
B; € B such that if 2* € B* and 2*(B;) = 0, then 2*(X) =0 a.s.
Note that in (ii), the exceptional null set may depend on z*. (In fact, this
is what makes the difference from (i): to assume z*(X) = 0 outside some
fixed null set for all z* as in (ii) is equivalent to (i).)

Remark 7.1. A.s. separability is a powerful condition, which essentially
reduces the study of X to the separable case. Unfortunately, it is too strong
for our purposes. In the case m = 1, a random variable X taking values in
D([0,1]) is a.s. separably valued if and only if there exists a fixed countable
set N such that a.s. every discontinuity point of X belongs to N [11, The-
orem 9.22]; we extend this to D([0,1]™) in Theorem 7.5 below. Hence, in
applications to random variables in D([0,1]) or D([0,1]™), this condition
is useful only for variables that have a fixed set of discontinuities, but not
when there are discontinuities at random locations. We therefore mainly
use the weaker property 'weakly a.s. separably valued’ defined in (ii).

Example 7.2. Let U ~ U(0, 1) be a uniformly distributed random variable,
and let X be the random element of D([0,1]) given by X = 1y, ie.
X(t) = 1{U < t}. Then, see [11, Example 2.5] for details, X is not a.s.
separably valued, but X is weakly a.s. separably valued. (We can take
B; = C([0,1]) in the definition (ii) above.)

We note the following simple properties.

Lemma 7.3. Let B be a Banach space, and assume that X1, Xo,... are
weakly a.s. separably valued functions (0, F,P) — B for some probability
space (Q, F,P).
(i) Any finite linear combination vazl a; X; is weakly a.s. separably valued.
(ii) If X;, > X in B a.s., then X is weakly a.s. separably valued.
(iii) IfT: B — B is a bounded linear map into another Banach space, then
T(X,) is weakly a.s. separably valued in B.

The same properties hold for a.s. separably valued functions too.

Proof. Let By; be a separable subspace of B satisfying the property in the
definition for X;, and let B; be the closed subspace generated by | J, Bi;.
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Then By is separable, and it is easily seen that this subspace verifies (i) and
(ii). For (iii) we similarly use By := T'(B;1). We omit the details. O

It was shown in [11, Theorems 9.24 and 9.25] that random variables in
D([0,1]) always are weakly a.s. separably valued, and so are tensor powers
of them in either the injective or projective tensor power. We extend this
to D([0, 1]™).

Theorem 7.4. (i) Let X be a D-measurable D([0,1]™)-valued random
variable. Then X is weakly a.s. separably valued.

(il) More generally, let Xi,...,X; be D-measurable D([0,1]™)-valued
random wvariables. Then, @le X, is weakly a.s. separably valued in the

projective and injective tensor products D([0,1]™)®¢ and D([0, 1]™)®".
Proof. Consider first m = 1. Then, as said above, (i) is [11, Theorem 9.24],
while [11, Theorem 9.25] is the special case X; = --- = Xy of (ii); moreover,
it is easily checked that the proof of [11, Theorem 9.25] applies also to the
case of general Xi,..., Xy. (The main difference in the proof is that we fix
a countable set N and consider X1, ..., X, that a.s. are continuous at every
fixed t ¢ N.) Hence, the results hold for m = 1.

In general, we apply Lemma 5.12 to Xj, ..., Xy and conclude that there
are random variables X{V,“ in D([0,1]) such that, for every j =1,...,¢,

N m
X4 o= D @ X — X, in D([0,1]™) (7.1)
k=1i=1
as N — 0. Let Xy = X, ® - ® X% € D([0, 1]m)®€. Then Xy — X :=
X'® - -® X% in D([0,1]™)® as N — oo. Furthermore, by (7.1),

XN:Zé

k1,..ke<NJ=11

m

XLp i (7.2)
=1

By the case m = 1 of the theorem (with ¢ replaced by ¢m), each term in this
sum is a weakly a.s. separably valued random variable in D([0, 1])®€m. Since
the canonical inclusion D(]0, 1])®m — D([0, 1])®m = D([0,1]™) is continu-
ous, and thus induces a continuous map D([0, 1])@’” = (D([0, 1])®m)®£ —
D([o, 1]m)®£, it follows by Lemma 7.3 that each X is weakly a.s. separably

valued in D([0,1]™)®¢, and thus so is their limit X.
This proves the result for the projective tensor product. For the injective
tensor product we use Lemma 7.3(iii) again, with the continuous inclusion

D([0, 1]™)®¢ — D([0, 1]™)&~. 0

In contrast, and for completeness, we have the following characterization
of a.s. separably valued random variables. (The case m = 1 is [11, Theeorem
9.22].)

Theorem 7.5. Let X be a D-measurable D([0, 1]™)-valued random variable.
Then X is a.s. separably valued if and only if there exist (non-random) count-
able subsets Ay, ..., Ap of [0,1] such that for everyi < m, a.s. A;X(t) =0
forallt = (ty,... ,ty) with t; ¢ A;.
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We consider first the deterministic case.

Lemma 7.6. Let f € D([0,1]™). Then there exist countable subsets Ay, ...,
Ay, of [0,1] such that for every i < m, A;f(t) =0 for allt = (t1,...,tm)
with ti ¢ Az

Proof. Consider the first coordinate and let, recalling (5.2) and (5.4),

Ay = {te[0,1]: A%(t) > 0} = | JZ 1/n- (7.3)

k
Then A; satisfied the claimed property by the definition (5.2), and A; is
countable by Lemma 5.8. The same holds for ¢ > 1 by relabelling the
coordinates. O

Proof of Theorem 7.5. If X is a.s. separably valued, let D; be a separable
subspace of D([0,1]™) such that X € Dy a.s. Let {f,} be a countable dense
subset of D1, and apply Lemma 7.6 to f, for each n, yielding countable
sets Ajn. Define A; := J,, Ain. Then, for every i, A;f(t) = 0 for all
t = (t1,...,t;,) with t; ¢ A; and all f € Dq; hence A; X (t) = 0 a.s. for all
such t.

Conversely, suppose that such Ay, ..., A, exist. Then, using the notation
in Section 5 (with f = X), a.s. A%(t1) = 0 for every ¢t ¢ Ay, and thus
Ex.e € Aj. Hence, the construction in the proof of Lemma 5.11 yields
& € Ay := A1 U (Qn[0,1]) ass. for every j. Consequently, in the proof of
Lemma 5.12, a.s. every E; € A;:= A; U (Q N [0,1]) and every x; € A;. Let
Q: be the countable subset of D([0,1]) consisting of 1(,;) with a,b € A;,
together with 1yy. Then a.s. h;- € @i, and thus if D; is the closed separable
subspace of D([0,1]™) generated by the countable set )., h; with h; € Q;,
then a.s. g, € Q for every n, and thus a.s. X € Q). U

8. MOMENTS

For a random variable X with values in some Banach space B, moments
of X can be defined as E[X®/], see [11]. However, there are several possible
interpretations of this; we may take the expectation in either the projective
tensor power B®’ or the injective tensor power B®¢, and we can assume
that the expectation exists in Dunford, Pettis or Bochner sense, thus giv-
ing six different cases. See [11] (and the short summary in Appendix B)
for definitions and further details; we recall here only the implications for
existence:

projective = injective,

Bochner = Pettis = Dunford,

and that if the moment exists in Bochner and Pettis sense, it is an element
of the tensor product, but a Dunford moment is in general an element of
the bidual of the tensor product.

In the special case £ = 1, when we consider the mean E[X], there is no
difference between the projective and injective case, but we can still consider
the mean in Bochner, Pettis or Dunford sense.
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8.1. Bochner and Pettis moments as functions. We consider here the
different moments when B = D([0,1]™). Recall first from Section 2.2 that
D([o, 1]m)®£ = D([0,1]"™). Hence, if the injective moment IE[X@] exists
in Bochner or Pettis sense, then this moment is an element of D([0, 1]™),
and thus a function on [0, 1]¢™.

Moreover, recall also that D([0, 1]™) has the approximation property and
thus the natural map D(]0, 1]m)®e — D(]0, 1]m)®€ = D([0,1]%™) is a con-

tinuous injection. Hence, if the projective moment E[X®] exists in Bochner
or Pettis sense, then it too can be regarded as function in D([0,1]“™), and
it equals the corresponding injective moment. (Cf. [11, Theorem 3.3].)

It is easy to identify this function that is the moment (in any of these

four senses for which the moment exists).

Theorem 8.1. Let X be a D-measurable random variable in D([0,1]™) and
let £ > 1. If X has a projective or injective moment E[X®] in Bochner or
Pettis sense, then this moment E[X®*] is the function in D([0,1]"™) given

by
¢
E[X®](t1,...,te) =E <H X(h’)) , tie[0,1]™ (8.1)
i=1

In other words, the injective or projective Bochner or Pettis /-th moment
(when it exists) is the function describing all mixed ¢-th moments of X (t),
te[0,1]™.

Proof. As seen before the theorem, the moment can be regarded as a function
in D([0,1]%™). Since point evaluations are continuous linear functionals on
D([0,1]%™), it follows that

l
E[X®](t1,...,t)) = E[X®(t1,...,t)) ] = E (H X(ti)) : (8.2)
i=1

showing (8.1). O

Remark 8.2. Theorem 8.1 does not hold for Dunford moments, since a
Dunford integral in general is an element of the bidual, see Examples 8.11—
8.12. However, we show a related result in Theorem 8.9, where we consider
the moment function (8.1) for arguments in I™ and not just in [0, 1]™.

8.2. Existence of moments. Since the Bochner and Pettis moments are
given by (8.1) when they exist, the main problem is thus whether the differ-
ent moments exist or not for a given random random X € D([0,1]™). We
give some conditions for existence, all generalizing results in [11] for the case
m = 1.

For Bochner moments, we have a simple necessary and sufficient condi-
tion, valid for both projective and injective moments.

Theorem 8.3. Let X be a D-measurable D([0, 1]™)-valued random variable.
Then the following are equivalent.

(i) The projective moment E X® ezists in Bochner sense.
(ii) The injective moment E X®F exists in Bochner sense.
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(iii) E|X | < oo and there exist (non-random,) countable subsets Ay, ..., Ap,
of [0,1] such that for every i < m, a.s. N;X(t) = 0 for all t =
(tl, e ,tm> with ti ¢ AZ'.

Proof. By Theorem 7.5, (iii) is equivalent to E|X|¢ < o0 and X a.s. sepa-

rably valued. The equivalence now follow by [11, Theorem 3.8], since X is
weakly measurable by Corollary 5.5. O

Unfortunately, the condition in Theorem 8.3(iii) shows that Bochner mo-
ments do not exist in many applications, cf. Remark 7.1. Hence the Pettis
moments are more useful for applications; the following theorem gives a
simple and widely applicable sufficient condition for their existence.

Theorem 8.4. Let X be a D-measurable D([0, 1]™)-valued random variable,
and suppose that E|X|* < oo. Then the projective moment E X®¢ and
injective moment B X® exist in Pettis sense.

Proof. Recall that a bounded linear functional a on D([0, 1]’”)@ is the
same as a bounded f-linear form « : D([0,1]™)* — R. By Theorem 5.2,
(o, X® = a(X, ..., X) is measurable. Furthermore,

[, X2 < ]| X %, (8.3)

and it follows that the family {(a, X ®£> : e < 1} is uniformly integrable.
Moreover, X® s weakly a.s. separably valued in D([O,l]m)@ by Theo-
rem 7.4. Hence a theorem by Huff [10], see also [11, Theorem 2.23 and
Remark 2.24], shows that E X ®f exists in Pettis sense.

Since the natural inclusion D([0, l]m)®g — D(]o0, 1]m>®e is continuous,

the injective moment E X®’ too exists in Pettis sense. O

For injective moments, we can weaken the condition in Theorem 8.4, and
obtain a necessary and sufficient condition; there is also a corresponding
result for Dunford moments.

Theorem 8.5. Suppose that X is a D-measurable D([0, 1]™)-valued random
variable, and let £ > 1.
(i) E X®! exists in Dunford sense <= SuPyefo,1)m E |IX(t)[ < 0.

(ii) E X® exists in Pettis sense <= the family {|IX(@®)|¢:te[0,1]™} of
random variables is uniformly integrable.

We postpone the proof and show first two lemmas.

Lemma 8.6. Suppose that X is a random element of D([0,1]™). Then

s EN(X)|= sup E[X(). (8.4)
xeD([0,1]™)*, x| <1 te[0,1]™

Proof. Denote the left and right sides of (8.4) by L and R, and note that
trivially R < L because each point evaluation X — X(¢) is a linear func-
tional of norm 1.

For the converse, let x € D([0,1]™)* with ||x| < 1. Note that the mea-
surability of x(X) follows from Corollary 5.3. By the Riesz representation
theorem (Proposition 2.2), there exists a signed Baire measure p on I™ with
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lull = |Ix| < 1 such that x(f) = {7, fdu for every f e D([0,1]™). Con-
sequently, applying Theorem 6 1 to | X (#)| and |u|, noting that Lemma 6.2
yields E | X (£)| < R for every f € I'™,

BICO = B[ X0 a0 <E [ 1@l ul)

= ﬁmEX( )| dlul(t) < R|p|(I™) = R|p| < R
Hence L < R, which completes the proof. O

We extend this to powers.

Lemma 8.7. Suppose that X is a D([0,1]™)-valued random variable, and
(=1,

(i) Then
sup Elx(X)" = sup E[X ()", (85)
XeD([0,1]™)*, [x]<1 te[0,1]™
In particular, the set {|x(X)|*: x € D([0,1]™)*, |x| < 1} of random
variables is a bounded subset of L' if and only if the set {|X(t)|*: t €
1™} is.
(i) The set {|x(X)[*: x € D([0,1]™)*, |x| < 1} is uniformly integrable if
and only if the set {|X(t)|*: t e 0 1™} is.
Proof. (i): Let x € D([0,1]™)* with ||x| < 1. Thus x : D([0,1]") > R is a
linear map, and we can take its tensor power x® : D([0, 1]™) B, RO = R,
which is defined by
l

Fhe...@f)=]]x£) (8.6)

i=1

together with linearity and continuity; x®' is a linear functional on D([0, 1]™)
with norm [x®] = x| < 1.

Recalling that D([0, 1]™)®* = D([0,1]*™), we apply Lemma 8.6 to X® e
D([0,1]%™) and the linear functional x®* and obtain

EX(X)| =EN®(X®) < sup E|X®(1)]. (8.7)
te[0,1]¢m

Furthermore, if t € [0, 1], write t = (t1,...,t,) with ¢; € [0,1]™; then by
Hoélder’s inequality

¢
E|X®(t)] = E|X(t1)- <[[EX( < sup E[X(t)[".
i=1 te[0,1]™
(8.8)

Combining (8.7) and (8.8), we see that the left-hand side of (8.5) is at most
equal to the right-hand side. The converse follows again because each point
evaluation X — X(¢) is a linear functional of norm 1.

(ii): Let E € F be an arbitrary event in the probability space (2, F,P),
and apply (8.5) to the random function 15X . This yields

s E(Leh(0)) = sup EQgX@F).  (89)
xeD([0,1]™)*, x| <1 te[0,1]™

&t
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The result follows, since a collection {{,} of random variables is uniformly
integrable if and only if it is bounded in L' and supp(p <5 sup, E [15€a| — 0
as 0 — 0 [8, Theorem 5.4.1]. O

Proof of Theorem 8.5. (i): X is weakly measurable by Corollary 5.5, and
weakly a.s. separably valued by Theorem 7.4. Hence [11, Theorem 3.11]
shows that the injective Dunford moment exists if and only if {|x(X)|*: x €
D([0,1]™)*, |x| < 1} is a bounded subset of L'. The proof is completed
by Lemma 8.7(i).

(ii): Similar, using [11, Theorem 3.20] and Lemma 8.7(ii). O

For ¢ = 1, there is as said above no difference between projective and
injective moments. For £ = 2, the projective and injective moments are
expectations taken in different spaces; nevertheless, the projective moments
exist if and only if the injective moments do. For Bochner moments, this
was shown in Theorem 8.3 (for any /); for Pettis and Dunford moments this
is shown in the next theorem. This theorem does not hold for £ > 3; see the
counterexample in [11, Example 7.27] (which is defined in C(K) for another
compact space K, but can be embedded in C([0,1]) < D(][0,1])).

Theorem 8.8. Let X be a D-measurable D([0,1]™)-valued random variable.

(i) EX®2 exists in Dunford sense <— EX®2 exists in Dunford sense
<= SUPe[o,1]m E | X (1)]? < 0.

(ii) E X®2 epists in Pettis sense <= E X®? exists in Pettis sense <«
the family {|X(t)|* : t € [0,1]™} of random wvariables is uniformly
integrable.

Proof. The second equivalences in (i) and (ii) are the case £ = 2 of Theo-
rem 8.5. Furthermore, the existence of a projective moment always implies
the existence of the corresponding injective moment. Hence it suffices to
show that in both parts, the final condition implies the existence of the
projective moment.

(i): Let o be a bounded bilinear form on D([0,1]™) = C(I™). By
Grothendieck’s theorem [7], a extends to a bounded bilinear form on L2(I™, v)

for some Baire probability measure v on T ™: furthermore, see e.g. [11, The-
orem 7.20],

a(f Dl <Helol [ 1fOP W0, fecd™),  (10)

where ki is a universal constant. (In this version, k¢, is at most 2 times the
usual Grothendieck’s constant, see [11, Remark 7.21].)

Furthermore, applying Lemma 8.6 to the random function |X(¢)|?> e
D([0,1]™) yields

Eﬁ X(@Pdv < sup E|X(@O)2 (8.11)
m tef0,1]™
Consequently, by combining (8.10) and (8.11),

Ela(X,X)Kk'GHOéHEL [ X(®)° dv < kol sup EIX(®). (8.12)
m te s m
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If 311pte[071]mﬁ'£\X(t)|2 < o0, then (8.12) shows that E |a(X, X)| < o for
every bounded bilinear form « on D([0, 1]™), which implies the existence of
the projective Dunford moment E X®?2 by [11, Theorem 3.16].

(ii): Since the bounded linear functionals on D([0, 1]’”)®2 are identified
with the bounded bilinear forms on D([0,1]™), (8.12) means, equivalently,

that for every a € (D([0, 1]™)®2)*

E|a(X®)| < khla| sup E[X (1) (8.13)
t 1|m™

€[0.1]

Assume that the family {|X(¢)|* : t € [0,1]™} is uniformly integrable.
By applying (8.13) to 15X as in the proof of Lemma 8.7(ii), we obtain
that the family {a(X®2) : a € (D([0,1]™)®2)*, o/ < 1} is uniformly in-
tegrable. Moreover, X ®2 g weakly a.s. separably valued by Theorem 7.4.
Hence E X®? exists in Pettis sense by Huff’s theorem [10], cf. the proof of
Theorem 8.4. (]

8.3. Dunford moments. As said above, a Dunford moment in general is
an element of the bidual of the space, and thus Theorem 8.1 does not hold
for Dunford moments. Examples 8.11-8.12 below illustrate this. However,
although even for ¢ = 1, the bidual D([0,1]™)** is large and unwieldy, it
turns out that Dunford moments are always rather simple elements of it,
and that they have a representation as functions generalising Theorem 8.1.
This extends to injective moments of any order £.

Theorem 8.9. Let X be a D-measurable random variable in D([0,1]™) and
let £ = 1. If X has an injective Dunford moment E[X®!] then this moment

IE[X@] is represented by the bounded Baire measurable function ¢ on Itm
defined by
z ~
C(ky, ... 0) =E (H X(fi)) . Liel™, (8.14)
i=1
in the sense that if x is any continuous linear functional on D([0, 1]m)®é =
D([0,1]%™) = C(I'™) and x is represented by a signed Baire measure y on

~,

Igm, then
E[X®Y, ) = Jﬂm ¢dp. (8.15)

In particular, if ( € C’(ﬂm), then the Dunford moment IE[XC;)K] is the ele-
ment ¢ € C(I'™) = D([0, 1]°™).

Proof. Again, by considering the random variable X®¢ ¢ D([o, 1]7”)@6 =
D([0,1]%™), it suffices to consider the case £ = 1.

In the case ¢ = 1, the assumption says that E[X] exists as a Dun-
ford moment; by Theorem 8.5, this implies that supcoqjm E|X ()] < 0.
It follows from Theorem 6.1(iii) that ((#) := E[X ()] is a bounded Baire
measurable function on I ™ and that for any continuous linear functional
x € D([0,1]™)*, represented by a signed Baire measure p € Mg, (fm),

E(0X) =B | X(0)u(i) = LHE[X@] au(i) = | c)autd). (816
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This shows, cf. Definition B.2, that the Dunford integral is given by (E[ X ], x)
§im C(t) dp(t). O

Thus, similarly to the Bochner or Pettis moments in Theorem 8.1, an
injective Dunford ¢-th moment is represented by the function describing all
mixed (-th moments of X (t), ¢ € I"™. However, unlike the situation for
Bochner and Pettis moments, for Dunford moments we have, in general, to
consider ¢ as a function of I and not just on [0, l]em, see Example 8.12
below.

Remark 8.10. For projective Dunford moments E[X@], the situation
seems more complicated. We have a continuous inclusion i : D([0, 1]m)®g c
D([o, 1]m)®e, which induces a continuous linear map between the biduals
i** : (D(]o0, l]m)@)** < (D(]o, 1]’”)@)**. Thus, if a projective Dunford
moment E[X ®Z] exists, then so does the injective Dunford moment E[X @],
and can by Theorem 8.9 be represented by the function ¢ in (8.14). How-
ever, for £ > 2, we do not know whether the map i** is injective so that also
the projective moment is represented by (.

We give two simple examples of Dunford moments, showing some bad
behaviour that may occur. We take m = 1 and ¢ = 1, i.e., we consider the
mean E X of random variables X in D([0,1]).

Example 8.11. Let X = 2"1[3-n-1 9-n) With probability 27", n > 1. Then
E|X(t)] = EX(t) = 1(,12)(t) < 1, for every ¢ € [0, 1], and thus E X exists
in Dunford sense by Theorem 8.5(i). However, the function ¢(¢) := E[X ()]
is not right-continuous at 0, so it does not belong to D([0, 1]); hence this
function does not represent E X in the sense of Theorem 8.1. In fact, it
follows that E X € D([0,1])**\D([0,1]).

Nevertheless, Theorem 8.9 shows that E X is represented by (, regarded
as a function on I. Tt is easily seen that ((f) := E[X({)] = 1(9,1/2)(f) for
all £ e T, , and thus the Dunford mean E X is given by this function 1(g /)

on I ; this function is bounded and Baire measurable (as guaranteed by
Theorem 8.9), but it is not continuous, and thus does not correspond to an
element of D([0,1]).

By Theorem 8.5, or Theorem 8.1, E X does not exist in Pettis (or Bochner)
sense.

Example 8.12. Let X = 2"1;_5-n1_5-n-1) with probability 27", n > 1.
Then E[X(t)] = EX(t) = 1p1/21)(t) < 1 for every ¢t € [0,1], and thus
E X exists in Dunford sense by Theorem 8.5(i). In this case, the function
C(t) == E[X(t)] = 1p1/21)(t) is a function in D([0,1]). Nevertheless, the
Dunford moment E X € D([0,1])** cannot be identified with the function
¢ =1p2,1) € D([0, 1]).

To see this, we consider ¢ € I , as prescribed by Theorem 8.9. We have
X(1-) = 0 a.s., and thus (8.14) yields ((1—) := E[X(1—)] = 0. Hence, if
tn /" 1—, with t,, € (1/2,1), then ((¢,) = 1 does not converge to (1—) = 0,
and thus ( is not continuous on Tatl-—.
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Consequently, we see that also in this example, E X € D([0, 1])**\D([0, 1]).
Nevertheless, Theorem 8.9 shows that E X is represented by the function
C(t) = 1[1/2,1,)(1?) on I, and that (8.15) holds.

By Theorem 8.5, E X does not exist in Pettis (or Bochner) sense.

This example shows that it is necessary to consider the function ¢ given
by (8.14) as defined on I and not just on [0,1]%™. In the present example,

A~

¢ ¢ C(I), but its restriction to [0, 1] is an element of D([0,1]), and thus the

~

restriction of another function ¢’ € C(I). Theorem 8.9 shows that the mean

E X is represented by ¢, which is interpreted as an element of C/(I )*\C (I)
by (8.15), and not by ¢’ € C(I).

If a Pettis moment exists, then the corresponding Dunford moment exists
and is equal to the Pettis moment. Theorems 8.1 and 8.9 then yield two
versions of the same representation; obviously (8.1) is the restriction of
(8.14) to [0,1]%™; we state a simple result showing the consistency of the

~

extensions to 10",

Theorem 8.13. Let X be a D-measurable random variable in D([0,1]™)
and let £ > 1. If X has an injective Pettis moment E[Xéé], then the
function ¢ in (8.14) is continuous on I'™, and this element of C(I'™) =
D([0,1]™) = D([o, 1]m)®g equals the moment E[X(;)K].

Proof. The Pettis moment E[Xée] e D([0,1]™) = C(I'™), and this func-
tion on ™ equals ¢ in (8.14) by the calculation (8.2) extended to i1, ...,%; €
I, see also [11, Theorem 7.10]. O

There exists no general converse to this; even if the function ¢ in (8.14)

is continuous on I ‘m_the Pettis moment E[X &)e] does not have to exist, as
shown by the trivial Example 8.14 below. However, Theorem 8.15 shows
that the implication holds in some cases.

Example 8.14. Take again { = m = 1. Let Y = nX, where X is as in
Example 8.11 and n = +1, with P(n = 1) = P(n = —1) = 1/2, with X

and 7 independent. Then ((£) := E[X(£)] = 0 for every i € I, so ¢ € C(I);
nevertheless EY does not exist in Pettis sense by Theorem 8.5 (or by the

definition (B.3), taking E := {n = 1}).
Theorem 8.15. Let X be a D-measurable random variable in D([0,1]™)
and let £ = 1. Suppose further that either

(a) X(t) =0 a.s. for every t € [0,1], or

(b) £ is even.
Then the following are equivalent.

(i) X has an injective Pettis moment E[X@].

(ii) The function ¢ in (8.14) exists everywhere and is continuous on
(iii) E|X()|¢ < o for every t € I™, and the function t — C(f,... 1) :=

E[X (£)¢] is continuous on m.

fém

Proof. (i) = (ii): By Theorem 8.13.
(i) = (iii): Trivial.
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(iii) = (i): In both cases we have X (£)’ = 0 and thus | X ({)|* = X ()
a.s. The argument in the proof of the similar [11, Theorem 7.19] shows that
the family {|X(#)|* : { e T "1 of random variables is uniformly integrable.
This proof in [11] is stated for C'(K) when K is a metrizable compact, but
in the part of the proof used here, metrizability is used only to show that a
sequentially continuous function on K is continuous, and this holds for every
first countable compact K [6, Theorem 1.6.14 and Proposition 1.6.15], and
thus for I™.

The result (i) now follows from Theorem 8.5. O

9. AN APPLICATION TO ZOLOTAREV DISTANCES

9.1. Equal moments. As a corollary of the results on moment above,
we obtain the following results on equality of moments of two different
D([0, 1]™)-valued random variables.

Theorem 9.1. Let X and Y be D-measurable D([0,1]™)-valued random
variables, and let £ = 1. Suppose that E | X||*, E|Y|* < 0. Then the mo-
ments in (iil) and (iv) below exist in Pettis sense, and the following are
equivalent.

(i) For every ty,...,ty € [0,1]™,

l 0
E (H X(ti)> —E (H Y(ti)> . (9.1)
1=1 i=1

(ii) For every continuous (-linear form a on D([0,1]™),
Ea(X,...,X)=Ea(Y,....Y). (9.2)

(iii) E[X®] = E[Y®].

(iv) E[X®] = E[Y®].

Note that (i) is a special case of (ii); the converse implication (i) = (ii)
is far from trivial and is the main content of this theorem.

Proof. First, the Pettis moments in (iii) and (iv) exist by Theorem 8.4. The
assumptions imply also that the expectations in (9.1) and (9.2) are finite,
see (8.3).

(i) & (iil) <= (iv): By Theorem 8.1.

(ii) <= (iii): The equality E[X®‘] = E[Y®] holds if and only if we
have (o, E[X®]) = (a, E[Y®*]) for every continuous linear functional a on

D([0,1]™)®; these o can be identified with the continuous /-linear forms
on D([0,1]™), and the result follows since

(o, E X® = Ba, X&) = Ela(X, ..., X)) (9.3)
and similarly for Y. O
9.2. Zolotarev distance. The Zolotarev distance (s(X,Y) between two
random variables X and Y with values in a Banach space, or more precisely
between their distributions £(X) and £(Y), with s > 0 a real parameter,

was defined by Zolotarev [19]; we refer to [19] or to [11, Appendix B] and
the further references there for the definition and basic properties.
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The Zolotarev distance is a useful tool to show approximation and conver-
gence of distributions. In order to apply the Zolotarev distance to a problem,
the first step is to show that the distance (5(X,Y") between two given ran-
dom variables is finite. It was shown in [11, Lemma B.2] that, assuming that
X and Y are weakly measurable and that E || X|*, E[|Y||® < co, this holds if

and only if the projective (Dunford) moments E X®¢ and EY®* are equal
for every positive integer ¢ < s. (This condition is vacuous if 0 < s < 1.)

For the case of random variables in D([0, 1]™), this and the results above
yield the following simple criterion, which extends results for the case m =1
in [11].

Theorem 9.2. Let X and Y be D-measurable D([0,1]™)-valued random
variables, and let s > 0. Suppose that E||X|*,E|Y|® < c. Then the
following are equivalent.

(i) The Zolotarev distance (s(X,Y) < c0.
(ii) For every positive integer £ < s and every ti,...,ty € [0,1]™,

l ¢
E (H X(tz-)) —E (H Y(ti)> . (9.4)
1=1 i=1

Proof. By Corollary 5.5, X and Y are weakly measurable, and thu§ [11,
Lemma B.2] applies and shows, as said above, that (i) «—= E[X®] =
E[Y®*], which is equivalent to (ii) by Theorem 9.1. O

9.3. Further results and comments. For injective moments, we can
weaken the moment assumption in Theorem 9.1.

Theorem 9.3. Let X and Y be D-measurable D([0,1]™)-valued random
variables, and let £ > 1. Suppose further that supeo,1m E |X(t)]* < o and
SUpye(o,1]m E Y (t)|* < 0. Then the injective moments in (i) below exist in
Dunford sense, and the following are equivalent.

(i) For every ti,...,tye fm,

l l
E (H X(fi)> -E (H Y(t})) . (9.5)
1=1 i=1

(i) E[X®] = E[Y®].

Proof. The injective Dunford moments in (ii) exist by Theorem 8.5.
The equivalence (i) <= (ii) follows by Theorem 8.9. O

Note that we consider arbitrary £; € I in (9.5), unlike in (9.1); this is
necessary as is shown by the following example.

Example 9.4. Take / = m = 1. Let X be as in Example 8.12, and let
Y be the deterministic function 1f;,5;) € D([0,1]). Then, as shown in
Example 8.12, E[X (t)] = E[Y ()] for every ¢t € [0,1], so (9.1) holds, but
E[X(1-)] =0+# 1 =E[Y(1-)], and (9.5) fails; consequently, neither (i) nor
(ii) in Theorem 9.3 holds.
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For ¢ = 1, there is no difference between injective and projective moments,
and thus Theorem 9.3 applies to projective moments as well.

For ¢ = 2, Theorem 8.8 shows that the assumptions of Theorem 9.3
imply also existence of the projective Dunford moments E X®? and E Y®2.
However, we do not know whether they always are equal when the injective
moments are, see also Remark 8.10.

Problem 9.5. Assume that the assumptions of Theorem 9.3 hold with
¢ =2. Are (i) and (ii) equivalent also to E[X®’] = E[Y®]?

APPENDIX A. BAIRE AND BOREL SETS IN ™

We show here the claims in Example 2.4, and give some further results.
The results are presumably known, but we have not found a reference and
give proofs for completeness.

A.1. The case m = 1. Recall from Lemma 2.1(ii) that the Baire and Borel
o-fields coincide for every metrizable compact space; in particular Ba(I) =
B(I). The space T is compact but not metrizable; nevertheless, as shown
below, the Baire and Borel o-field coincide there too.

Recall also that p : I — I is the natural projection.

Proposition A.1.
Ba(I) = B(I) = {p"(A) AN : Ae B(I), N c I with |[N| <Ro}. (A.1)

In other words, the Borel (or Baire) sets in T are obtained from the Borel
sets in I in the natural way (by identifying ¢ and t—), except that there may
be a countable number of ¢ such that the set contains only one of ¢ and ¢—.

Proof. Let G := {p~'(A) AN : Ae B(I), N T with |N| < No}; G is easily
seen to be a o- ﬁeld We prove three inclusions separately.

(i) Ba(I )C B(1 ) Trivial.

(ii) B(I ) < G. Note first that an open interval in I always is either of the
form p~'((a,b)) for some open interval (a,b) < (0,1), or of this form with
one or two of the endpomts a and b— added; if b = 1 we may also add 1.
Let U < T be open; then U is a_union of a (possibly uncountable) set of
open intervals U,c1. For each Ua, let V,, = (aq,ba) be the corresponding
open interval in I; thus U, 2 p “1(Va) and Ua\p 1(V,) consists of at most
the two endpoints and 1. Let V := |, Va; this is an open subset of (0, 1).
Consequently, V = U W; for some countable collection of open disjoint
intervals W; = (¢;,d;) < (O 1).

Consider one of the intervals V, = (aq,ba). If an € V, then a, € p~1(V),
and if a, ¢ V, then a, equals one of the endpoints c;. Slmﬂarly, either b,— €
p 1(V) or b, equals some endpoint d;. Consequently, U= U Uy 2 pL(V),
and U \p~1(V) is a subset of the countable set {c;,d;j—,1}. Consequently,
Ueg.

This shows that G contains every open subset of 2 , and thus the Borel
o-field B(I).

(iii) G < Ba(f): By Lemma 3.1(ii), the mapping p is continuous and thus
Baire measurable; hence p~1(A) € Ba(f) for every A € B(I) = Ba(I).
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If { € I, then the singleton {f} is closed, and a Gy set; hence {{} is a Baire
set. Consequently, every countable subset IV of I is a Baire set.

~

It follows that G < Ba([). O

Corollary A.2. Every closed subset off is a Gs and every open subset of
I is an F,.

Proof. The two parts are obviously equivalent. If F' is a closed, and thus
compact, subset, then F' is a Borel set and thus by the proposition a Baire
set. By [9, Theorem 51D], every compact Baire set is a Gj. U

Since the Baire o-field is generated by the compact G4 sets, the corollary
is equivalent to the proposition.

Corollary A.3. Fvery finite Borel measure on I is reqular.

Proof. Every finite Baire measure is regular [9, Theorem 52G]. O

A.2. The case m > 2. The equality of the Baire and Borel o-fields in
Proposition A.1 does not extend to I"™ for m > 1. We begin with the case
m = 2.

Proposition A.4. B(I) x B(I) = Ba(I) x Ba(I) = Ba(I?) < B(I?).

Proof. The first equality follows by Proposition A.1, and the second by
Lemma 2.1(iii). The final inclusion is trivial, and it remains to show that it
is strict.

Let h : I — I% be given by h(t) = (t,1—t). Thus, if we write & = (hq, ha),
then hy is the inclusion ¢ in Section 2.4, and ha(t) = ¢(1—t). By Lemma 3.1,
¢ is measurable (I,B) = (I,Ba) — , Ba), and thus both h; and hy are
measurable (I,B) — (I,Ba); Hence, if E ¢ Ba(I?) = Ba(I) x Ba(I), then
h~Y(E) is a Borel set in I.

On the other hand, for any ¢ € [0, 1], [¢,1] and [1 —¢, 1] are open intervals
in I. Now let A < I be arbitrary, and define a subset of 12 by

Ea:=[J([t,1] x [1 =¢,1]). (A.2)
teA
This is an open subset of fz, and thus a Borel set, i.e., F4 € B(ﬂ)
However, h™1(E4) = A. Hence, if we take a set A that is not a Borel set,
then h=1(E,4) is not a Borel set, and thus, by the first part of the proof,
E4 ¢ Ba(I?). O

It follows easily from Proposition A.4 that Ba(fm) o B(fm) for every
m > 2 too; we omit the details.

Note also that Proposition A.4 implies that there exists a closed set in
that is not Gg; cf. Corollary A.2.

I2

Remark A.5. Proposition A.4 gives one proof that Tis not metrizable, since
if it were, then 12 would be as well, which would contradict Lemma 2.1(ii).
(Another proof uses that the proof above shows that the set {(¢t,1—t) : t € I}
is an uncountable discrete subset of ﬁ; this is impossible for a compact
metric space.)
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APPENDIX B. INTEGRATION IN BANACH SPACES

Let f be a function defined on a measure space (S, S, i) with values in a
Banach space B. Then there are (at least) three different ways to define the
integral {¢ f dyu; the three definitions apply to different classes of functions
f, but when two or all three definitions apply to a function f, then the
integrals coincide. We use all three integrals in Section 8 in the case when
(S,S, i) is a probability space and the integrals can be seen as expectations.

We give here a brief summary, and refer to [11] and the reference given
there for further details.

B.1. Bochner integral. The Bochner integral is a straight-forward gener-
alization of the Lebesgue integral to Banach-space valued functions.

Theorem B.1. A function f is Bochner integrable if and only if f is Borel
measurable, a.s. separably valued, and §q | f|dp < co. O

The Bochner integral SS fdu then is an element of B.

Unfortunately, as discussed in Section 8, the condition of a.s. separably
valued makes the Bochner integral unapplicable in many interesting exam-
ples of D([0,1]™)-valued random variables.

B.2. Dunford integral. The Dunford integral is the most general of our
integrals.

Definition B.2. A function f : § — B is Dunford integrable if z —
{x, f(x)) is integrable (and in particular measurable) on S for every contin-
uous linear functional y € B*. In this case, as a consequence of the closed
graph theorem, there exists a (unique) element { f dy € B** (the Dunford
integral) such that

| orapan=¢] rano. xes (B.1)
S S

Note that the Dunford element is defined as an element of the bidual B**;
in general, it is not an element of B. (See Example 8.11.)

B.3. Pettis integral. A Pettis integral is a Dunford integral that has its
value in B; furthermore, the following is required (in order to have useful
properties). Note that if f is Dunford integrable over S, then f is always
Dunford integrable over every measurable subset £ < S.

Definition B.3. A function f : S — B is Pettis integrable if f is Dunford
integrable with Ss fdp € B, and, moreover, { g [ dp € B for every measurable
subset £ < S.

By definition, a Pettis integrable function is also Dunford integrable, and
the two integrals coincide. Similarly, it is easy to see that a Bochner inte-
grable function is Pettis integrable (and thus also Dunford integrable) and
that the integrals coincide. The converses do not hold, in general.
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