
A CENTRAL LIMIT THEOREM FOR m-DEPENDENT

VARIABLES

SVANTE JANSON

Abstract. We give a simple and general central limit theorem for a triangular
array of m-dependent variables. The result requires only a Lindeberg condition
and avoids unnecessary extra conditions that have been used earlier. The result
applies also to increasing m = m(n), provided the Lindeberg condition is modified
accordingly. This improves earlier results by several authors.

1. Introduction

Central limit theorems for m-dependent variables under various conditions have a
long history. Pioneering results, for a fixed m, were given by Hoeffding and Robbins
[10] and Diananda [5] (for an m-dependent sequence), and Orey [12] (more generally,
and also for a triangular array). The results were extended to the case of increasing
m = m(n), see for example Bergström [1], Berk [2], Romano and Wolf [16].

The purpose of the present paper is to give a simple and general central limit
theorem which includes several previous results, but to our knowledge has not been
stated before in this form. We state first the case of a fixed m, where we only have
to assume the usual Lindeberg condition. For notation, see Section 2.

Theorem 1.1. Let m > 0 be fixed. Suppose that (Xni)n>1,16i6Nn is an m-dependent

triangular array and denote its row sums by Sn :=
∑Nn

i=1Xni. Suppose further that
the variables Xni have finite second moments and EXni = 0. Let

σ2n := VarSn, (1.1)

and assume that σ2n > 0 for all large n. Finally, assume the usual Lindeberg condi-
tion: for every ε > 0, as n→∞,

1

σ2n

Nn∑
i=1

E
[
X2
ni1{|Xni| > εσn}

]
→ 0. (1.2)

Then

Sn/σn
d−→ N(0, 1) as n→∞. (1.3)

Remark 1.2. The case m = 0 of Theorem 1.1, i.e., an independent array (Xni), is
the classical central limit theorem with Lindeberg’s condition; see e.g. [6, Theorem
XV.6.1 and Problem XV.29], [11, Theorem 5.12] or [7, Theorem 7.2.4]. Moreover, in
this case the Lindeberg condition (1.2) in necessary under a weak extra condition, see
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[6, Theorem XV.6.2] and [11, Theorem 5.12]; hence we cannot expect a more general
theorem for m-dependent variables without this condition (or something stronger).

Theorem 1.1 is only a minor generalization of the result by Orey [12], where the
main theorem essentially (ignoring some technical details) shows the same result
under the extra condition

Nn∑
i=1

VarXni = O
(
σ2n
)
. (1.4)

(See also [17, Theorem 13.1] which gives another proof of Orey’s result, now stated
similarly to our Theorem 1.1 with the extra condition (1.4).) The condition (1.4) is
satisfied in most applications, but it is easy to see that there are cases where (1.4)
does not hold but Theorem 1.1 applies, see Example 5.1.

Note also that this result by Orey [12] for m-dependent variables extends to much
more mixing conditions. As shown by Peligrad [13, Theorem 2.1], Theorem 1.1
holds also if we replace “m-dependent” by “strongly mixing”, and add (1.4) and the
condition lim ρ̄∗n < 1. (See [13] for definition, and note that in the m-dependent case
this is trivial since then ρ̄∗n = 0 when n > m.) We will not consider mixing conditions
further, but we state a problem. (There is a large literature on asymptotic normality
under various mixing conditions. See e.g. [3], which however mainly considers only
the case of stationary sequences, and the references there.)

Problem 1.3. Does Theorem 1.1 extend to suitable mixing conditions? In partic-
ular, does [13, Theorem 2.1] hold also without the assumption (1.4)?

More generally, we can allow m to depend on n. (Then mixing results such as
[13] do not apply. However, more complicated results such as [15] may apply in this
case, see Remark 4.5.) The statement is almost the same in this case; we only have
to modify the Lindeberg condition.

Theorem 1.4. Let (mn)n be a given sequence of integers with mn > 1. Suppose that
(Xni)n>1,16i6Nn is a (mn)-dependent triangular array and denote its row sums by

Sn :=
∑Nn

i=1Xni. Suppose further that the variables Xni have finite second moments
and EXni = 0. Let

σ2n := VarSn, (1.5)

and assume that σ2n > 0 for all large n. Finally, assume the following version of the
Lindeberg condition: for every ε > 0, as n→∞,

mn

σ2n

Nn∑
i=1

E
[
X2
ni1
{
|Xni| >

εσn
mn

}]
→ 0. (1.6)

Then

Sn/σn
d−→ N(0, 1) as n→∞. (1.7)

Remark 1.5. The assumption mn > 1 in Theorem 1.4 is just for convenience.
(Otherwise we would have to replace mn by mn + 1 or mn ∨ 1 in (1.6).) It is no real
loss of generality, since we may replace any mn = 0 by 1. It is then obvious that
Theorem 1.1 is a special case of Theorem 1.4.
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We will see in Example 5.2 that (1.6) is the natural version of the Lindeberg
condition when m is allowed to depend on n, and that it cannot be weakened. In
particular, (1.2) is not enough if mn →∞.

As immediate corollaries, the Lindeberg conditions (1.2) and (1.6) can be replaced
by corresponding Lyapunov conditions; se Section 4. We will also compare this to
the results of [2] and [16], and in particular show that their main results follow from
Theorem 1.4 and that some of their conditions are not needed.

Remark 1.6. There is a large number of papers on various aspects of limits for
m-dependent random variables not discussed here. In particular, we mention results
on rate of convergence and Berry–Essen type estimates, see for example [14; 9; 18; 4].

2. Notation

We recall some standard notions, and give our notation for them.
Let m > 0 be an integer. A (finite or infinite) sequence (Xi)i of random variables

is m-dependent if the two families {Xi}i6k and {Xi}i>k+m of random variables are
independent of each other for every k. In particular, 0-dependent is the same as
independent.

A triangular array is an array of random variables (Xni)n>1, 16i6Nn , for some given
sequence Nn > 1; it is assumed that the variables (Xni)i in a single row are defined
on the same probability space. (No relation is required between variables in different
rows.)

The row lengths Nn are supposed to be given; we often omit them from the
notation and write e.g.

∑
iXni for the row sum

∑Nn
i=1Xni.

If m > 0 is a fixed integer, we say that the triangular array (Xni) is m-dependent
if each row (Xni)i is m-dependent. More generally, given a sequence (mn)∞1 with
mn > 0, we say that (Xni) is (mn)-dependent if, for every n > 1, the row (Xni)i is
mn-dependent.

For a random variable X, ‖X‖2 :=
(
E[X2]

)1/2
.

Convergence in probability and distribution is denoted by
p−→ and

d−→, respec-
tively. Unspecified limits are as n→∞.

3. Proof of Theorems 1.1 and 1.4

We begin with a special case of Theorem 1.4. The general case will then follow
by a simple truncation argument.

Lemma 3.1. In addition to the assumptions in Theorem 1.4, assume also that
σ2n → 1 as n→∞, and that (εn)n is a sequence with εn → 0 such that

|Xni| 6 εn/mn a.s., (3.1)

for all n and i. Then

Sn
d−→ N(0, 1) as n→∞. (3.2)

Proof. The idea of the proof is to approximate, for each n, the sequence of partial

sums
∑k

i=1Xni by a martingale (Mnk)
Nn
k=0 with Mn0 = 0 and MnNn = Sn, see (3.7)

below, and then use a martingale central limit theorem for Mnk. (Note that in
the independent case, the sequence of partial sums is a martingale, but in the m-
dependent case it is in general not; the proof shows that the martingale (3.7) is a
good approximation.)
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The martingale limit theorem that we use is [8, Theorem 3.2 with Remarks, pp. 58–
59], which shows that the conclusion (3.2) follows provided we show that, with
∆nk := Mn,k −Mn,k−1,

max
k
|∆nk|

p−→ 0, (3.3)∑
k

∆2
nk

p−→ 1, (3.4)

E
[
max
k

∆2
nk

]
6 C. (3.5)

We separate the proof into several steps. For notational convenience, we define
Xni := 0 for i 6 0 and i > Nn.

Step 1: The martingale. Let Fnk be the σ-field generated by Xn1, . . . , Xnk, and
define

Wnik := E
(
Xni | Fnk

)
, (3.6)

Mnk := E
(
Sn | Fnk

)
=
∑
i

Wnik. (3.7)

Thus (Mnk)
Nn
k=0 is a martingale for each n, with Mn0 = ESn = 0, MnNn = Sn, and

martingale differences

∆nk := Mn,k −Mn,k−1 =
∑
i

(
Wni,k −Wni,k−1

)
. (3.8)

If i 6 k, then Xni is Fnk-measurable, and thus

Wnik = Xni, i 6 k. (3.9)

In particular, if i 6 k − 1, then Wni,k −Wni,k−1 = Xni −Xni = 0. Furthermore, if
i > k +m, then the m-dependence shows that Xni is independent of Fnk, and thus

Wnik = E(Xni | Fnk) = EXni = 0, i > k +m. (3.10)

Hence, (3.8) simplifies to

∆nk =

k+m∑
i=k

(
Wni,k −Wni,k−1

)
. (3.11)

Similarly, by (3.9) and (3.10) again,

Mnk =
k∑
i=1

Xni +
k+m∑
i=k+1

Wnik. (3.12)

We have also, by the martingale property and MnNn = Sn,

E
∑
k

∆2
nk =

∑
k

E∆2
nk = EM2

nNn
= ES2

n. (3.13)

Step 2: Proof of (3.3) and (3.5). The assumption (3.1) and (3.6) yield

|Wnik| 6 εn/mn a.s. (3.14)

There are 2(mn + 1) variables W in the sum in (3.11), and thus (3.14) yields

|∆nk| 6 2(mn + 1)
εn
mn
6 4εn a.s. (3.15)

Since εn → 0, both (3.3) and (3.5) follow (trivially) from (3.15).
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Step 3: Proof of (3.4). Let

Qn :=
∑
k

∆2
nk, qnk := E∆2

nk, Tnk :=

k∑
i=1

Xni. (3.16)

Then EQn = ES2
n by (3.13). Furthermore,

VarQn = E

[
Nn∑
i=1

(
∆2
ni − qni

)]2

=

Nn∑
i=1

E
[(

∆2
ni − qni

)2]
+ 2

Nn∑
i=1

Nn∑
j=i+1

E
[(

∆2
ni − qni

)
∆2
nj

]
. (3.17)

First, using (3.15) and (3.13),∑
i

E
[(

∆2
ni − qni

)2]
=
∑
i

Var
[
∆2
ni

]
6
∑
i

E
[
∆4
ni

]
6 16ε2n

∑
i

E∆2
ni = 16ε2n ES2

n.

(3.18)

For the double sum in (3.17), we note that since ∆ni are martingale differences, if
i < j < k, then E

[(
∆2
ni−qni

)
∆nj∆nk

]
= 0; by symmetry, the same holds if i < k < j.

Hence,

Nn∑
i=1

Nn∑
j=i+1

E
[(

∆2
ni − qni

)
∆2
nj

]
=

Nn∑
i=1

Nn∑
j=i+1

Nn∑
k=i+1

E
[(

∆2
ni − qni

)
∆nj∆nk

]
=

Nn∑
i=1

E
Nn∑

j=i+1

Nn∑
k=i+1

(
∆2
ni − qni

)
∆nj∆nk

=
∑
i

E
[(

∆2
ni − qni

)(
MnNn −Mni

)2]
. (3.19)

Recall that MnNn = Sn = TnNn . The conjugate rule gives(
MnNn −Mni

)2
=
(
TnNn −Mni

)2
=
(
TnNn − Tn,i+mn

)2
+
(
2TnNn − Tn,i+mn −Mni

)(
Tn,i+mn −Mni

)
. (3.20)

Hence,

E
[(

∆2
ni − qni

)(
MnNn −Mni

)2]
= E

[(
∆2
ni − qni

)(
TnNn − Tn,i+mn

)2]
+ E

[(
∆2
ni − qni

)(
Tn,i+mn −Mni

)(
2TnNn − Tn,i+mn −Mni

)]
. (3.21)

For the first term on the right-hand side of (3.21), we note that ∆ni is Fi-measurable,

and thus the m-dependence of (Xni)i implies that TnNn − Tn,i+mn =
∑Nn

i+mn+1Xnk

is independent of ∆2
ni − qni. Furthermore, E[∆2

ni − qni] = 0, and thus

E
[(

∆2
ni − qni

)(
TnNn − Tn,i+mn

)2]
= E

[
∆2
ni − qni

]
E
[(
TnNn − Tn,i+mn

)2]
= 0.

(3.22)

Similarly, TnNn−Tn,i+2mn is independent of
(
∆2
ni−qni

)(
Tn,i+mn−Mni

)
, and E

(
TnNn−

Tn,i+2mn

)
= 0; hence,

E
[(

∆2
ni − qni

)(
Tn,i+mn −Mni

)(
2TnNn − 2Tn,i+2mn

)]
= 0. (3.23)
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Consequently, we obtain from (3.21)–(3.23)

E
[(

∆2
ni − qni

)(
MnNn −Mni

)2]
= E

[(
∆2
ni − qni

)(
Tn,i+mn −Mni

)(
2Tn,i+2mn − Tn,i+mn −Mni

)]
. (3.24)

The assumption (3.1) implies |Tn,i+2mn − Tn,i+mn | 6 εn, and also, using (3.12) and
(3.14),

|Tn,i+mn −Mni| =

∣∣∣∣∣∣
i+mn∑
j=i+1

(
Xnj −Wnji

)∣∣∣∣∣∣ 6 2εn. (3.25)

Hence,∣∣2Tn,i+2mn − Tn,i+mn −Mni

∣∣ 6 2|Tn,i+2mn − Tn,i+mn |+ |Tn,i+mn −Mni| 6 4εn,
(3.26)

and (3.24)–(3.26) yield

E
[(

∆2
ni − qni

)(
MnNn −Mni

)2]
6 8ε2n E

∣∣∆2
ni − qni

∣∣ 6 16ε2n E∆2
ni. (3.27)

Combining (3.19) and (3.27) yields, using again (3.13),

Nn∑
i=1

Nn∑
j=i+1

E
[(

∆2
ni − qni

)
∆2
nj

]
6 16ε2n

∑
i

E∆2
ni = 16ε2n ES2

n. (3.28)

Finally, (3.17), (3.18) and (3.28) yield the estimate

Var
[
Qn
]
6 48ε2n ES2

n = 48ε2nσ
2
n → 0, (3.29)

recalling εn → 0 and σ2n → 1.

Consequently, Qn − EQn
p−→ 0. Since EQn = ESn = σ2n → 1 by (3.13) and

assumption, we obtain

Qn
p−→ 1, (3.30)

which is (3.4). (Recall the definition (3.16).)

Step 4: Conclusion. We have verified (3.3)–(3.5), and, as said above, the asymptotic
normality (3.2) of Sn = MnNn follows by [8, Theorem 3.2 with Remarks, pp. 58–
59]. �

Proof of Theorem 1.4. First, by replacing Xni by Xni/σn (possibly ignoring some
small n with σn = 0), we may and will assume that σn = 1 for all n.

Next, since (1.6) holds for every fixed ε > 0, it holds also for some sequence
εn → 0; i.e., there exists a sequence εn → 0 such that

mn

Nn∑
i=1

E
[
X2
ni1{|Xni| > εn/mn}

]
→ 0. (3.31)

We fix such a sequence εn, and use it to truncate the variables: define

X ′ni := Xni1{|Xni| 6 εn/mn} − υni, X ′′ni := Xni1{|Xni| > εn/mn}+ υni, (3.32)

where

υni := E
[
Xni1{|Xni| 6 εn/mn}

]
= −E

[
Xni1{|Xni| > εn/mn}

]
. (3.33)

Clearly, both (X ′ni)n,i and (X ′′ni)n,i are triangular arrays with (mn)-dependent rows
and means 0. Denote the corresponding row sums by S′n and S′′n.
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We will estimate E(S′′n)2 in (3.35) below; this is an instance of an estimate in [17,
Lemma 13.1], but for completeness we include the simple proof. For any two square-
integrable random variables Y and Z, we have by the Cauchy–Schwarz inequality
and the arithmetic-geometric inequality

|Cov(Y,Z)| 6
(
E[Y 2]E[Z2]

)1/2
6 1

2

(
E[Y 2] + E[Z2]

)
. (3.34)

Hence, by (3.32)–(3.33), for convenience again defining Xni := 0 for i 6 0 and
i > Nn,

E
[
(S′′n)2

]
=
∑
i,j

Cov
(
X ′′ni, X

′′
nj

)
=
∑
i

i+mn∑
j=i−mn

Cov
(
X ′′ni, X

′′
nj

)
6
∑
i

i+mn∑
j=i−mn

1
2

(
E[|X ′′ni|2] + E[|X ′′nj |2]

)
6 (2mn + 1)

∑
i

E[|X ′′ni|2]

6 (2mn + 1)
∑
i

E
[
X2
ni1{|Xni| > εn/mn}

]
. (3.35)

Consequently, (3.31) implies

E
[
(S′′n)2

]
→ 0. (3.36)

In other words, ‖S′′n‖2 → 0, and since ‖Sn‖2 = σn = 1 by assumption (recalling
ESn = 0), we obtain from Minkowski’s inequality ‖S′n‖2 = ‖Sn − S′′n‖2 → 1, and
thus

VarS′n = E
[
(S′n)2

]
= ‖S′n‖22 → 1. (3.37)

Furthermore, (3.32)–(3.33) imply |X ′ni| 6 2εn/mn. Consequently, Lemma 3.1
applies to (X ′ni) (with 2εn), which yields

S′n
d−→ N(0, 1). (3.38)

Since also S′′n
p−→ 0 by (3.36), the conclusion (1.7) follows by the Cramér–Slutsky

theorem [7, Theorem 5.11.4]. �

Proof of Theorem 1.1. Theorem 1.1 is, as said in Remark 1.5, a special case of The-
orem 1.4. �

4. Lyapunov conditions

It is an immediate corollary of Theorems 1.1 and 1.4 that instead of the Lindeberg
conditions (1.2) and (1.6), we may use a Lyapunov type condition. This is often more
convenient for applications. We state such a version of Theorem 1.4.

Theorem 4.1. Suppose that (Xni)n>1,16i6Nn is a (mn)-dependent triangular array

with EXni = 0. Let Sn :=
∑Nn

i=1Xni and σ2n := VarSn, and assume that σ2n > 0 for
all large n. Assume also that for some fixed r > 2, as n→∞,

mr−1
n

σrn

Nn∑
i=1

E |Xni|r → 0. (4.1)

Then

Sn/σn
d−→ N(0, 1) as n→∞. (4.2)
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Proof. We have

E
[
X2
ni1
{
|Xni| >

εσn
mn

}]
6
(mn

εσn

)r−2
E |Xni|r (4.3)

and thus

mn

σ2n

Nn∑
i=1

E
[
X2
ni1
{
|Xni| >

εσn
mn

}]
6 ε2−r

mr−1
n

σrn

Nn∑
i=1

E |Xni|r. (4.4)

Hence, (1.6) follows from (4.1), and Theorem 1.4 applies. �

Remark 4.2. In the classical case with independent summands, the Lyapunov con-
dition gets stronger as the exponent r increases, so the most general result is obtained
with r small (i.e., close to 2). However, this is not always the case here; see Exam-
ples 5.1 and 5.3. Thus different values of r yield incomparable conditions, so in an
application r may have to be adapted to the problem.

We next compare Theorem 4.1 to the results of Berk [2] and Romano and Wolf [16],
and show that their theorems follow from Theorem 4.1. We will see in Example 5.3
that the implications are strict; there are examples where Theorem 4.1 applies but
not [2] or [16].

Example 4.3. Berk [2, Theorem(i)(iii)(iv)] assumes, in our notation, for some δ > 0
and constants C and c,

E |Xni|2+δ 6 C, (4.5)

σ2n/Nn → c > 0 (4.6)

m2+2/δ
n = o(Nn). (4.7)

With r := 2 + δ, we obtain from (4.5)–(4.6) (for large n)

mr−1
n

σrn

Nn∑
i=1

E |Xni|r 6 C1
m1+δ
n

N
(2+δ)/2
n

Nn = C1
m1+δ
n

N
δ/2
n

= C1

(
m

2+2/δ
n

Nn

)δ/2
. (4.8)

Hence, (4.1) follows from (4.7). Consequently, the theorem in [2] is a special case
of Theorem 4.1. (Note that we have not used the assumption (ii) in [2]; thus Theo-
rem 4.1 is stronger, and more convenient to apply.)

Example 4.4. Romano and Wolf [16] show that their theorem extends the result by
Berk [2] discussed in Example 4.3. Romano and Wolf [16, Theorem 2.1(1)(3)(5)(6)]
assume, in our notation, for some δ > 0 and γ ∈ [−1, 1), and some ∆n and Ln,

E |Xni|2+δ 6 ∆n, (4.9)

σ2n/(Nnm
γ
n) > Ln, (4.10)

∆n/L
(2+δ)/2
n = O(1), (4.11)

m1+(1−γ)(1+2/δ)
n /Nn → 0. (4.12)

With r := 2 + δ, we obtain by (4.9), (4.11), (4.10), (4.12), for some constant C,

mr−1
n

σrn

Nn∑
i=1

E |Xni|r 6
m1+δ
n

σ2+δn

Nn∆n 6 C
m1+δ
n

σ2+δn

NnL
(2+δ)/2
n 6 C

m1+δ
n

(Nnm
γ
n)(2+δ)/2

Nn
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= C
m

(1+δ/2)(1−γ)+δ/2
n

N
δ/2
n

= C

(
m

(2/δ+1)(1−γ)+1
n

Nn

)δ/2
→ 0. (4.13)

Hence, (4.1) follows. Consequently, the theorem in [16] is a special case of The-
orem 4.1. (Note that we did not use assumptions (2) and (4) in [16]. Also, our
condition is simpler and seems easier to apply.)

Remark 4.5. Rio [15, Corollary 1] is a result stated much more generally for strongly
mixing triangular arrays, where the mixing rate may depend on n. In the special
case of an (mn)-dependent array, we have (in the notation of [15]) α−1(n)(x) 6 mn+ 1,

and using this it is easy to see that, assuming mn > 1, condition (b) in the corollary
in [15] holds if

mn

σ2n

∑
i

E
[
X2
ni

(mn

σn
|Xn| ∧ 1

)]
→ 0. (4.14)

Furthermore, it can be seen that (4.14) also implies condition (a) in the corollary,
and thus the corollary then yields asymptotic normality.

Note that the condition (4.14) is intermediate between (1.6) and (4.1) for r = 3.
More precisely, it is easily seen that (4.14) implies (1.6) (and thus this special case
of [15, Corollary 1] follows from Theorem 1.4); on the other hand, (4.1) with r = 3
implies (4.14), and thus the case r = 3 of Theorem 4.1 follows from [15, Corollary 1].

Finally, we note that in Example 5.1 below, it follows from (5.3), (5.5) and (5.8)
that (4.14) holds only if α > 1/3. Hence, Theorems 1.1 and 1.4 do not follow from
this special case of [15].

5. Examples

We give some examples illustrating the various conditions.

Example 5.1. Let ξi and ηi, i > 0, be i.i.d. random variables with P(ξi = ±1) =
P(ηi = ±1) = 1

2 . Let Nn := n, let 0 < α < 1
2 , and define

Xni := n−1/2ξi + n−α
(
ηi − ηi−1

)
, 1 6 i 6 n. (5.1)

Then

Sn = n−1/2
n∑
i=1

ξi + n−α
(
ηn − η0

)
. (5.2)

It follows that we have

σ2n = VarSn = 1 + 2n−2α → 1, (5.3)

and, by the standard central limit theorem,

Sn
d−→ N(0, 1). (5.4)

The triangular array (Xni) is 1-dependent, and (1.2) is trivial since

|Xni| 6 n−1/2 + 2n−α → 0. (5.5)

Thus Theorem 1.1 applies and yields (5.4). However,

n∑
i=1

VarXni = n
(
n−1 + 2n−2α

)
= 1 + 2n1−2α →∞, (5.6)
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so (1.4) does not hold. Thus, as said in Section 1, Theorem 1.1 is more general than
previous versions assuming also (1.4).

Furthermore, let us check the Lyapunov condition (4.1). We have by (5.1), since

n−1/2 � n−α,

E |Xni|r ∼ n−rα E |ηi − ηi−1|r = cn−rα (5.7)

for some constant c > 0. (In fact, c = 2r−1.) Hence,

1

σrn

n∑
i=1

E |Xni|r ∼ cn1−rα. (5.8)

Since m = 1, (5.8) shows that (4.1) holds if r > 1/α, but not if 2 < r < 1/α.
Hence, in this example, the Lyapunov condition gets weaker if r is increased, and
not stronger as in the independent case.

Example 5.2. Let mn > 1 be a given sequence, and let (Yni) be a triangular array
with independent rows. Define the array (Xni) by repeating each random variable
Yni mn times, and dividing it by mn. In other words, we define Xni := m−1n Yn,di/mne.

Then, denoting the row-wise sums by SXn and SYn , we have SXn = SYn . Moreover, for
any ε > 0,∑

i

E
[
X2
ni1{|Xni| > εσn/mn}

]
=
∑
j

mn E
[
(Ynj/mn)21{|Ynj | > εσn}

]
= m−1n

∑
j

E
[
Y 2
nj1{|Ynj | > εσn}

]
. (5.9)

Hence, the condition (1.6) is equivalent to the usual Lindeberg condition on (Ynj).
This shows that (1.6) is a natural version of the Lindeberg condition for (mn)-
dependent arrays, and that it cannot be weakened.

Similarly, the left-hand side of (4.1) is the same for (Xni) and for (Ynj); this shows
that (4.1) is a natural version of the Lyapunov condition for (mn)-dependent arrays.

Example 5.3. Let ξi, i > 1, and η be i.i.d. N(0, 1) variables. Let mn → ∞ with

mn = o(n1/2), and take Nn := n+mn ∼ n. Define

Xni :=

{
ξi, 1 6 i 6 n,

η, n < i 6 n+mn.
(5.10)

Then (Xni) is an (mn)-dependent triangular array. Furthermore,

σ2n = n+m2
n ∼ n. (5.11)

Moreover, Sn ∈ N(0, σ2n), so (1.3) is trivial. The left-hand side of (4.1) is

∼ mr−1
n

nr/2
Nn E |ξ1|r ∼ cr

mr−1
n

nr/2−1
(5.12)

for some constant cr > 0, and thus (4.1) holds if and only if

mn = o
(
n(r−2)/(2(r−1))

)
. (5.13)

Note that the exponent in (5.13) increases with r. Consequently, as in Example 5.1
but for another reason, the Lyapunov condition (4.1) gets weaker if r is increased. In
the present example, choosing a larger r means weakening the restriction on mn. On
the other hand, if we modify the example and let ξi and η have some other (centred)



A CENTRAL LIMIT THEOREM FOR m-DEPENDENT VARIABLES 11

distribution, a larger r also means a stronger moment condition on the variables, so
there might be a trade-off.

We note also that this example does not satisfy the conditions in [16], and thus
not the stronger conditions in [2]. To see this, note that conditions (2), (4) and (3)
in [16] (choosing k = mn and a = n+ 1) imply

m2
n = Var

mm+n∑
i=n+1

Xni 6 Cm
1+γ
n

σ2n
Nnm

γ
n
∼ Cmn (5.14)

and thus mn = O(1), contradicting our assumptions.

References

[1] Harald Bergström: A comparison method for distribution functions of sums of
independent and dependent random variables. (Russian). Teor. Verojatnost. i
Primenen. 15 (1970), 442–468, 750; English transl. Theor. Probab. Appl. 15
(1970), 430–457, 727. MR 0283850, MR 0281245

[2] Kenneth N. Berk: A central limit theorem for m-dependent random variables
with unbounded m. Ann. Probab. 1 (1973), 352–354. MR 0350815

[3] Richard C. Bradley: Introduction to Strong Mixing Conditions. Vol. 1–3.
Kendrick Press, Heber City, UT, 2007. MR 2325294–2325296

[4] Louis H. Y. Chen & Qi-Man Shao: Normal approximation under local depen-
dence. Ann. Probab. 32 (2004), no. 3A, 1985–2028. MR 2073183

[5] P. H. Diananda: The central limit theorem for m-dependent variables. Proc.
Cambridge Philos. Soc. 51 (1955), 92–95. MR 0067396

[6] William Feller, An Introduction to Probability Theory and its Applications, Vol-
ume II, 2nd ed., Wiley, New York, 1971. MR 0270403

[7] Allan Gut: Probability: A Graduate Course, 2nd ed., Springer, New York, 2013.
MR 2977961

[8] P. Hall & C. C. Heyde: Martingale Limit Theory and its Application. Academic
Press, New York, 1980. MR 0624435

[9] Lothar Heinrich: Nonuniform estimates and asymptotic expansions of the re-
mainder in the central limit theorem for m-dependent random variables. Math.
Nachr. 115 (1984), 7–20. MR 0755264

[10] Wassily Hoeffding & Herbert Robbins: The central limit theorem for dependent
random variables. Duke Math. J. 15 (1948), 773–780. MR 0026771

[11] Olav Kallenberg: Foundations of Modern Probability. 2nd ed., Springer, New
York, 2002. MR 1876169

[12] Steven Orey: A central limit theorem for m-dependent random variables. Duke
Math. J. 25 (1958), 543–546. MR 0097841

[13] Magda Peligrad: On the asymptotic normality of sequences of weak dependent
random variables. J. Theoret. Probab. 9 (1996), no. 3, 703–715. MR 1400595

[14] V. V. Petrov: On the central limit theorem for m-dependent quantities. (Rus-
sian) Proc. All-Union Conf. Theory Prob. and Math. Statist. (Erevan, 1958),
pp. 38–44, Izdat. Akad. Nauk Armjan. SSR, Erevan, 1960. MR 0200963

[15] Emmanuel Rio: About the Lindeberg method for strongly mixing sequences.
ESAIM Probab. Statist. 1 (1995/97), 35–61. MR 1382517

[16] Joseph P. Romano & Michael Wolf: A more general central limit theorem for
m-dependent random variables with unbounded m. Statist. Probab. Lett. 47
(2000), no. 2, 115–124. MR 1747098



12 SVANTE JANSON

[17] Bengt Rosén: On the central limit theorem for sums of dependent random
variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 (1967), 48–82.
MR 0208656

[18] V. V. Shergin: On the convergence rate in the central limit theorem for m-
dependent random variables. Teor. Veroyatnost. i Primenen. 24 (1979), no.
4, 781–794; English transl. Theory Probab. Appl. 24 (1980), no. 4, 782–796.
MR 0550533

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala,
Sweden

Email address: svante.janson@math.uu.se

URL: http://www.math.uu.se/svante-janson


