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Abstract. We present an analysis of the depth-first search algorithm in a random di-
graph model with geometric outdegree distribution. We give also some extensions to

general outdegree distributions. This problem posed by Donald Knuth in his next to

appear volume of The Art of Computer Programming gives interesting insight in one of
the most elegant and efficient algorithm for graph analysis due to Tarjan.

1. Introduction

The motivation of this paper is a new section in Donald Knuth’s The Art of Computer
Programming [5], which is dedicated to Depth-First Search (DFS) in a digraph. Briefly,
the DFS starts with an arbitrary vertex, and explores the arcs from that vertex one by one.
When an arc is found leading to a vertex that has not been seen before, the DFS explores the
arcs from it in the same way, in a recursive fashion, before returning to the next arc from its
parent. This eventually yields a tree containing all descendants of the the first vertex (which
is the root of the tree). If there still are some unseen vertices, the DFS starts again with
one of them and finds a new tree, and so on until all vertices are found. We refer to [5] for
details as well as for historical notes. (See also S1–S2 in Section 4.) Note that the digraphs
in [5] and here are multi-digraphs, where loops and multiple arcs are allowed. (Although in
our random model they are few and usually not important.) The DFS algorithm generates
a spanning forest (the depth-first forest) in the digraph, with all arcs in the forest directed
away from the roots. Our main purpose is to study the distribution of the depth of vertices
in the depth-first forest, starting with a random digraph G.

Furthermore, the DFS algorithm in [5] classifies the arcs in the digraph into the following
five types, see Figure 1 for examples:

‚ loops;
‚ tree arcs, the arcs in the resulting depth-first forest;
‚ back arcs, the arcs which point to an ancestor of the current vertex in the current

tree;
‚ forward arcs, the arcs which point to an already discovered descendant of the current

vertex in the current tree;
‚ cross arcs, all other arcs (these point to an already discovered vertex which is neither

a descendant nor an ancestor of the current vertex, and might be in another tree).

We will study the numbers of arcs of different types. (See further the exercises in [5].)
The random digraph model that we consider has n vertices and a given outdegree dis-

tribution P. The outdegrees (number of outgoing arcs) of the n vertices are independent
random numbers with this distribution. The endpoint of each arc is uniformly selected
at random among the n vertices, independently of all other arcs. (Therefore, an arc can
loop back to the starting vertex, and multiple arcs can occur.) We consider asymptotics as
nÑ8 for a fixed outdegree distribution.
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Figure 1. Example of a depth-first forest (jungle) from [5], by courtesy of
Donald Knuth. Tree arcs are solid (e.g. 9©Ñ 3©). For example, 3©99K 3©
is a loop, 2©99K 3© is a back arc, 9©99K 7© is a forward arc, 8©99K 4© and
0©99K 2© are cross arcs.

We will focus on the case of a geometric outdegree distribution; the lack-of-memory
property in this case leads to interesting features and a simpler analysis. We describe in
Section 4 how the results can be extended to general outdegree distributions using a variation
of the method. The paper will study the following outdegree distributions in the following
order:

‚ a geometric distribution;
‚ a shifted geometric distribution (starting from integer 1 instead of zero);
‚ a general distribution.

Remark 1. Related results are proved by [3] for DFS in an undirected Erdős–Rényi graph
Gpn, λ{nq; see also [2]. The main result of [3] shows convergence of the depth profile in the
depth-first forest to a certain deterministic limit. Although this is for a different random
graph model, DFS on Gpn, λ{nq is the same as DFS on the Erdős–Rényi digraph Dpn, λ{nq,
which is essentially the same as the digraph studied in the present paper with outdegree
distribution Popλq. Hence the result in [3] is essentially the special case P “ Popλq of our
result for the depths. The proofs are quite different. DFS in the random digraph Dpn, pq
has also been considered previously, for example in the proof of [6, Theorem 3].

This is an extended abstract of [4], which contains further results and complete proofs
not included here; in particular we treat there general outdegree distributions in detail.

1.1. Some notation. We denote the given outdegree distribution by P. We let η, often
with subscripts, denote random variables with this distribution. In particular, we denote the
outdegree of vertex v by ηpvq. Recall that our standing assumption is that these outdegrees
are i.i.d. (independent and identically distributed) with ηv „ P. We let vt denote the t-th
vertex found by the DFS, and simplify notation by letting ηt :“ ηpvtq be its outdegree. It
follows from the construction of the DFS that also the random variables ηt, t “ 1, . . . , n are
i.i.d. with distribution P; this fundamental property will be used repeatedly without further
mention.

The mean outdegree, i.e., the expectation E η of P, is denoted by λ. We assume through-
out, for technical reasons, that the second moment E η2 ă 8.
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As usual, w.h.p. means with high probability, i.e., with probability 1´ op1q. We use
p
ÝÑ

for convergence in probability, and
d
ÝÑ for convergence in distribution of random variables.

Moreover, let panq be a sequence of positive numbers, and Xn a sequence of random

variables. We write Xn “ oppanq if, as nÑ8, Xn{an
p
ÝÑ 0, i.e., if for every ε ą 0,

we have Pp|Xn| ą εanq Ñ 0. Furthermore, Xn “ oL2panq means E
“

|Xn{an|
2
‰

Ñ 0, and

Xn “ OL2panq means E
“

|Xn{an|
2
‰

“ Op1q. Note that Xn “ oL2panq implies Xn “ oppanq,
and that Xn “ OL2panq implies Xn “ oL2pωnanq and thus Xn “ oppωnanq, for any sequence
ωpnq Ñ 8. Note also that Xn “ oL2panq implies EXn “ opanq, and similarly for OL2panq;
thus error terms of this type implies immediately estimates for expectations and second
moments. In particular, for the most common case below, Xn “ OL2pn1{2q is equivalent to
EXn “ Opanq and VarXn “ Opnq.

We define ρ0pxq, for x ě 0, as the largest solution in r0, 1q to

1´ ρ0 “ e´xρ0 . (1)

As is well known, ρ0pxq is the survival probability of a Galton–Watson process with Popxq
offspring distribution. We have ρ0pxq “ 0 for x ď 1 and 0 ă ρ0pxq ă 1 for x ą 1.

All logarithms are natural.

2. Depth analysis with geometric outdegree distribution

In this section we assume that the outdegree distribution is geometric Gep1´ pq for some
fixed 0 ă p ă 1, and thus has mean

λ :“ E η “
p

1´ p
. (2)

When doing the DFS on a random digraph of the type studied in this paper, we generally
reveal the outdegree of a vertex as soon as we find it. (See S1–S2 in Section 4.) However, for
a geometric outdegree distribution, because of its lack-of-memory property, we do not have
to immediately reveal the outdegree when we find a new vertex v. Instead, we only check
whether there is at least one outgoing arc (probability p), and if so, we find its endpoint and
explore this endpoint if it has not already been visited; eventually, we return to v, and then
we check whether there is another outgoing arc (again probability p, by the lack-of-memory
property), and so on. This will yield the important Markov property in the construction in
the next subsection.

In the following, by a future arc from some vertex, we mean an arc that at the current
time has not yet been seen by the DFS.

2.1. Depth Markov chain. Our aim is to track the evolution of the search depth as a
function of the number t of discovered vertices. Let vt be the t-th vertex discovered by the
DFS (t “ 1, . . . , n), and let dptq be the depth of vt in the resulting depth-first forest, i.e.,
the number of tree edges that connect the root of the current tree to vt. The first found
vertex v1 is a root, and thus dp1q “ 0.

The quantity dptq follows a Markov chain with transitions (1 ď t ă n):

(i) dpt` 1q “ dptq ` 1.
This happens if, for some k ě 1, vt has at least k outgoing arcs, the first k ´ 1 arcs
lead to vertices already visited, and the kth arc leads to a new vertex (which then
becomes vt`1). The probability of this is

8
ÿ

k“1

pk
´ t

n

¯k´1´

1´
t

n

¯

“
p1´ t{nqp

1´ pt{n
. (3)

(ii) dpt` 1q “ dptq, assuming dptq ą 0.
This holds if all arcs from vt lead to already visited vertices, i.e., (i) does not happen,
and furthermore, the parent of vt has at least one future arc leading to an unvisited
vertex. These two events are independent. Moreover, by the lack-of-memory property,
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the number of future arcs from the parent of vt has the same distribution Gep1 ´ pq.
Hence, the probability that one of these future arcs leads to an unvisited vertex equals
the probability in (3). The probability of (ii) is thus

´

1´
p1´ t{nqp

1´ pt{n

¯

p1´ t{nqp

1´ pt{n
. (4)

(iii) dpt` 1q “ dptq ´ `, assuming dptq ą ` ě 1.
This happens if all arcs from vt lead to already visited vertices, and so do all future
arcs from the ` nearest ancestors of vt, while the p` ` 1qth ancestor has at least one
future arc leading to an unvisited vertex. The argument in (ii) generalizes and shows
that this has probability

´

1´
p1´ t{nqp

1´ pt{n

¯``1 p1´ t{nqp

1´ pt{n
. (5)

(iv) dpt` 1q “ dptq ´ `, assuming dptq “ ` ě 0.
By the same argument as in (ii) and (iii), except that the p`` 1qth ancestor does not
exist and we ignore it, we obtain the probability

´

1´
p1´ t{nqp

1´ pt{n

¯``1

. (6)

Note that (iv) is the case when dpt ` 1q “ 0 and thus vt`1 is the root of a new tree in the
depth-first forest.

We can summarize (i)–(iv) in the formula

dpt` 1q “
`

dptq ` 1´ ξt
˘`
, (7)

where x` :“ maxtx, 0u, and ξt is a random variable, independent of the history, with the
distribution

Ppξt “ kq “ p1´ πtq
kπt, k ě 0, with πt :“

p1´ t{nqp

1´ pt{n
“ 1´

1´ p

1´ pt{n
. (8)

In other words, ξt has the geometric distribution Gepπtq. Define

rdptq :“
t´1
ÿ

i“1

p1´ ξiq, (9)

and note that (9) is a sum of independent random variables. Then (7) and induction yield

dptq “ rdptq ´ min
1ďjďt

rdpjq, 1 ď t ď n. (10)

Remark 2. Similar formulas have been used for other, related, problems with random
graphs and trees, where trees have been coded as walks, see for example [1, Section 1.3].

Note that in our case, unlike e.g. [1], rdptq may have negative jumps of arbitrary size.

Remark 3. We can also express these relations using generating functions. Let ppt, zq be
the probability generating function E zξt of ξt, i.e.,

ppt, zq :“
p1´ t{nqp

1´ pt{n

ÿ

`ě0

ˆ

1´
p1´ t{nqp

1´ pt{n

˙`

z` “
p1´ t{nqp

1´ pt{n´ p1´ pqz
, (11)

and let fpt, zq :“ Erzdptqs. We then have the identity, equivalent to (7),

fpt` 1, zq “ N
“

Rpt, zqfpt, zq
‰

(12)

where Rpt, zq :“ ppt, 1{zqz and N is the operator on power series in z˘1:

N gpzq “ Π`gpzq ` pΠ´gqp1q (13)
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where Π` is the operator which removes the strictly negative powers of z and Π´ is the
operator which removes the nonnegative powers of z. Thus we have, since fp1, zq “ 1,

fpt` 1, zq “ NRpt, zqNRpt´ 1, zqN ¨ ¨ ¨NRp1, zq. (14)

At least some of the results below can be derived using this formalism, but we will not
employ it in the present paper.

2.2. Main result for depth analysis. Note first that (9) implies that the expectation of
rdptq is

E
“

rdptq
‰

“

t´1
ÿ

i“1

p1´ E ξiq “
t´1
ÿ

i“1

´

1´
1´ πi
πi

¯

“

t´1
ÿ

i“1

´

1´
1´ p

pp1´ i{nq

¯

. (15)

Let θ :“ t{n. We fix a θ˚ ă 1 and obtain that, uniformly for θ ď θ˚, recalling (2),

E
“

rdptq
‰

“

ż t

0

´

1´
1

λp1´ x{nq

¯

dx`Op1q “ nr`pθq `Op1q, (16)

where

r`pθq :“

ż θ

0

´

1´
1

λp1´ xq

¯

dx “ θ `
1

λ
logp1´ θq. (17)

Note that the derivative r`1pθq “ 1 ´ λ´1{p1 ´ θq is (strictly) decreasing on p0, 1q, i.e., r` is

concave. Moreover, if λ ą 1 (i.e., p ą 1
2 ) which we call the supercritical case, then r`1p0q ą 0,

and (17) shows that r`pθq is positive and increasing for θ ă θ0 :“ 1 ´ λ´1 “ p2p ´ 1q{p.

After the maximum at θ0, r`pθq decreases and tends to ´8 as θ Õ 1. Hence, there exists

a 0 ă θ1 ă 1 such that r`pθ1q “ 0; we then have r`pθq ą 0 for 0 ă θ ă θ1 and r`pθq ă 0 for
θ ą θ1. We will see that in this case the depth-first forest w.h.p. contains a giant tree, of
order and height both linear in n, while all other trees are small.

On the other hand, if λ ď 1 (i.e., p ď 1
2 ) (the subcritical and critical cases), then r`1p0q ď 0

and r`pθq is negative and decreasing for all θ P p0, 1q. In this case, we define θ0 :“ θ1 :“ 0

and note that the properties just stated for r` still hold (rather trivially). We will see that
in this case w.h.p. all trees in the depth-first forest are small.

Note that in all cases, θ1 is the largest solution in r0, 1q to

logp1´ θ1q “ ´λθ1. (18)

Remark 4. The equation (18) may also be written 1 ´ θ1 “ expp´λθ1q, which shows
that θ1 “ ρ0pλq, the survival probability of a Galton–Watson process with Popλq offspring
distribution defined in (1).

We define r``pθq :“ rr`pθqs`. Thus, by (17) and the comments above,

r``pθq “

#

θ ` λ´1 logp1´ θq, 0 ď θ ď θ1,

0, θ1 ď θ ď 1.
(19)

We can now state one of our main results. Proofs are given in the next subsection.

Theorem 5. We have

max
1ďtďn

∣∣dptq ´ nr``pt{nq∣∣ “ OL2pn1{2q. (20)

Corollary 6. The height Υ of the depth-first forest is

Υ :“ max
1ďtďn

dptq “ υn`OL2pn1{2q, (21)

where

υ “ υppq :“ r``pθ0q “

#

0, 0 ă λ ď 1,

1´ λ´1 ´ λ´1 log λ, λ ą 1
(22)
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Moreover, we can show that the height Υ is asymptotically normally distributed. Details
are given in the full paper [4].

Corollary 7. The average depth d in the depth-first forest is

d :“
1

n

n
ÿ

t“1

dptq “ αn`OL2pn1{2q, (23)

where

α “ αppq :“
1

2
θ21 ´

1

λ

´

p1´ θ1q logp1´ θ1q ` θ1

¯

“
λ´ 1

λ
θ1 ´

1

2
θ21. (24)

We have α “ 0 if and only if λ ě 1, i.e., p ď 1{2.

Remark 8. When p ą 1
2 , the height is thus linear in n, unlike many other types of random

trees. This might imply a rather slow performance of algorithms that operate on the depth-
first forest.

2.3. Proofs.

Proof of Theorem 5. Since (9) is a sum of independent random variables, rdptq ´ E rdptq (t “
1, . . . , n) is a martingale, and Doob’s inequality yields, for all T ď n,

E
“

max
tďT

|rdptq ´ E rdptq|2
‰

ď 4E
“

|rdpT q ´ E rdpT q|2
‰

“ 4
T´1
ÿ

i“1

Varpξiq. (25)

Fix θ˚ ă 1, and assume, as we may, that θ˚ ą θ1. Let T˚ :“ tnθ˚u, and consider first
t ď T˚. For i ă T˚, we have Var ξi “ Op1q, and thus, for T “ T˚, the sum in (25) is
OpT˚q “ Opnq. Consequently, (25) yields

max
tďT˚

∣∣rdptq ´ E rdptq
∣∣ “ OL2pn1{2q. (26)

Hence, by (16),

M˚ :“ max
tďT˚

∣∣rdptq ´ nr`pt{nq∣∣ “ OL2pn1{2q. (27)

For t ď T˚, the definition of M˚ in (27) implies∣∣∣ min
1ďjďt

rdpjq ´ n min
1ďjďt

r`pj{nq
∣∣∣ ďM˚. (28)

Moreover, for t{n ď θ1, we have min1ďjďt
r`pj{nq “ Op1{nq, while for t{n ě θ1, we have

min1ďjďt
r`pj{nq “ r`pt{nq. Hence, for all t ď T˚,

min
1ďjďt

r`pj{nq “ r`pt{nq ´ r``pt{nq `Op1{nq, (29)

and thus, by (28), ∣∣∣ min
1ďjďt

rdpjq ´ nr`pt{nq ` nr``pt{nq
∣∣∣ ďM˚ `Op1q. (30)

Finally, by (10), (27) and (30),∣∣dptq ´ nr``pt{nq∣∣ ď 2M˚ `Op1q. (31)

This holds uniformly for t ď T˚, and thus, by (27),

max
1ďtďT˚

∣∣dptq ´ nr``pt{nq∣∣ “ OL2pn1{2q. (32)

It remains to consider T˚ ă t ď n. Then the argument above does not quite work,
because πt Œ 0 and thus Var ξt Õ 8 as t Õ n. We therefore modify ξt. We define
pπt :“ maxtπt, πT˚u; thus pπt “ πt for t ď T˚ and pπt ą πt for t ą T˚. We may thus define

independent random variables pξt such that pξt „ Geppπtq and pξt ď ξt for all t ă n. (Thus,



DEPTH-FIRST SEARCH IN A RANDOM DIGRAPH WITH GEOMETRIC DEGREE DISTRIBUTION 7

pξt “ ξt for t ď T˚.) The argument above works for the modified variables for all t ď n.
Since the modification can only increase dptq, it follows that

max
T˚ătďn

dptq “ OL2pn1{2q, (33)

which completes the proof since r`pt{nq “ 0 for t ą T˚. We omit the details. �

Proof of Corollary 6. Immediate from Theorem 5 and (17), since we have maxt r`
`pt{nq “

maxθ r`
`pθq `Op1{nq and maxθ r`

`pθq “ r``pθ0q “ r`pθ0q. �

Proof of Corollary 7. By Theorem 5,

1

n

n
ÿ

t“1

dptq “
n
ÿ

t“1

r``pt{nq `OL2

`

n1{2
˘

“ nα`OL2

`

n1{2
˘

, (34)

where

α :“

ż 1

0

r``pxqdx “

ż θ1

0

r`pxqdx “

ż θ1

0

´

x` λ´1 logp1´ xq
¯

dx

“
1

2
θ21 ´ λ

´1
´

p1´ θ1q logp1´ θ1q ` θ1

¯

, (35)

which yields (24), using (18). �

2.4. The trees in the forest.

Theorem 9. Let N be the number of trees in the depth-first forest. Then

N “ ψn`OL2pn1{2q, (36)

where

ψ “ ψppq :“ 1´ θ1 ´
λ

2
p1´ θ1q

2. (37)

Proof. Let Jt :“ 1tdptq “ 0u, the indicator that vertex t is a root and thus starts a new
tree. Thus N “

řn
1 Jt.

If θ1 ą 0 (i.e., λ ą 1), then Theorem 5 shows that w.h.p. dptq ą 0 in the interval p1, nθ1q,
except possibly close to the endpoints. Thus the DFS will find one giant tree of order « θ1n,
possibly preceded by a few small trees, and, as we will see later, followed by many small
trees. To obtain a precise estimate, we note that there exists a constant c ą 0 such that
r`pθq ě mintcθ, cpθ1´ θqu for θ P r0, θ1s. Hence, if t ď nθ1 and dptq “ 0, then rdptq ď dptq “ 0
by (10) and, recalling (27),

M˚ ě nr`pt{nq ě cmintt, nθ1 ´ tu. (38)

Consequently, dptq “ 0 with t ď nθ1 implies t P r1, c´1M˚s Y rnθ1 ´ c´1M˚, nθ1s. The
number of such t is thus OpM˚ ` 1q “ OL2pn1{2q, using (27).

Let T1 :“ rnθ1s. We have just shown that (the case θ1 “ 0 is trivial)

T1´1
ÿ

t“1

Jt “ OL2pn1{2q. (39)

It remains to consider t ě T1. Let

µt :“ E ξt “
1´ πt
πt

“
1´ p

pp1´ t{nq
“

1

λp1´ t{nq
. (40)

For any integer k ě 0, the conditional distribution of ξt ´ k given ξt ě k equals the distri-
bution of ξt. Hence,

E
“

pξt ´ kq
`
‰

“ E
“

ξt ´ k | ξt ě k
‰

Ppξt ě kq “ µt Ppξt ´ k ě 0q. (41)
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We use again the stochastic recursion (7). Let Ft be the σ-field generated by ξ1, . . . , ξt´1.
Then dptq is Ft-measurable, while ξt is independent of Ft. Hence, (7) and (41) yield

E
“

dpt` 1q | Ft
‰

“ E
“

dptq ` 1´ ξt | Ft
‰

` E
“

pξt ´ 1´ dptqq` | Ft
‰

“ dptq ` 1´ µt ` µt P
“

ξt ´ 1´ dptq ě 0 | Ft
‰

“ dptq ` 1´ µt ` µt P
“

dpt` 1q “ 0 | Ft
‰

“ dptq ` 1´ µt ` µt E
“

Jt`1 | Ft
‰

. (42)

We write ∆dptq :“ dpt` 1q ´ dptq and J t :“ 1´ Jt. Then (42) yields

E
“

∆dptq ´ 1` µtJ t`1 | Ft
‰

“ 0. (43)

Define

Mt :“
t´1
ÿ

i“1

µ´1
i

`

∆dpiq ´ 1` µiJ i`1

˘

“

t´1
ÿ

i“1

´

µ´1
i ∆dpiq ´ µ´1

i ` J i`1

¯

. (44)

ThenMt is Ft-measurable, and (43) shows thatMt is a martingale. We have, with ∆Mt :“
Mt`1 ´Mt, using (7),

|∆Mt| ď µ´1
t

∣∣dpt` 1q ´ dptq ´ 1
∣∣` J t`1 ď µ´1

t ξt ` 1, (45)

and thus, since πt ď p ă 1 for all t by (8),

E|∆Mt|2 ď 2µ´2
t E ξ2t ` 2 “ 2

´ πt
1´ πt

¯2 1´ πt ` p1´ πtq
2

π2
t

` 2 “ Op1q. (46)

Hence, uniformly for all T ď n,

EM2
T “

T´1
ÿ

t“1

E |∆Mt|
2 “ OpT q “ Opnq. (47)

The definition (44) yields

Mn ´MT1
“

n´1
ÿ

t“T1

µ´1
t ∆dptq ´

n´1
ÿ

t“T1

µ´1
t `

n´1
ÿ

t“T1

J t`1. (48)

By a summation by parts, and interpreting µ´1
n :“ 0,

n´1
ÿ

t“T1

µ´1
t ∆dptq “

n
ÿ

t“T1`1

`

µ´1
t´1 ´ µ

´1
t

˘

dptq ´ µ´1
T1
dpT1q. (49)

As t increases, µt increases by (40), and thus µ´1
t´1 ´ µ

´1
t ą 0. Hence, (49) implies∣∣∣n´1

ÿ

t“T1

µ´1
t ∆dptq

∣∣∣ ď n
ÿ

t“T1`1

`

µ´1
t´1 ´ µ

´1
t

˘

sup
iąT1

|dptq| ` µ´1
T1
|dpT1q| ď 2µ´1

T1
sup
iěT1

|dptq|

“ OL2pn1{2q (50)

by (20), since r``pt{nq “ 0 for t ě T1 ě nθ1. Furthermore, (47) shows that Mn,MT1
“

OL2pn1{2q. Hence, (48) yields

n
ÿ

t“T1`1

Jt “ n´ T1 ´
n
ÿ

t“T1`1

J t “ n´ T1 ´
n´1
ÿ

t“T1

µ´1
t `OL2pn1{2q “ nψ `OL2pn1{2q, (51)

where

ψ :“ 1´ θ1 ´

ż 1

θ1

λp1´ xqdx “ 1´ θ1 ´
λ

2
p1´ θ1q

2. (52)

The result follows by (51) and (39). �

The argument in the proof of Theorem 9 shows also the following; we omit the details.
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Theorem 10. If λ ą 1 (p ą 1
2), then the largest tree T1 in the depth-first forest has order

|T1| “ θ1n`OL2pn1{2q.

By different methods (for λ “ 1 adapted from [1]), we can prove the following comple-
ments, which show the same behaviour as the largest component in a random Erdős–Rényi
graph.

Theorem 11. (i) If λ “ 1 (p “ 1
2), then |T1|{n

2{3 converges in distribution to a positive
random variable.

(ii) If λ ă 1 (p ă 1
2), then, for some constants c, C ą 0, w.h.p. c log n ď |T1| ď C log n.

The limit distribution in (i) is of the type found in [1] for components in random graphs.

2.5. Types of arcs. Recall from the introduction the classification of the arcs in the digraph
G. Since we assume that the outdegrees are Gep1 ´ pq and independent, the total number
of arcs, M say, has a negative binomial distribution with mean λn, and, by a weak version
of the law of large numbers,

M “ λn`OL2pn1{2q. (53)

In the following theorem, we give the asymptotics of the number of arcs of each type.

Theorem 12. Let L, T , B, F and C be the numbers of loops, tree arcs, back arcs, forward
arcs, and cross arcs in the random digraph. Then

L “ OL2p1q, (54)

T “ τn`OL2pn1{2q, (55)

B “ βn`OL2pn1{2q, (56)

F “ ϕn`OL2pn1{2q, (57)

C “ χn`OL2pn1{2q, (58)

where

τ :“ χ :“ 1´ ψ “ θ1 `
λ

2
p1´ θ1q

2, (59)

β :“ ϕ :“ λα “ pλ´ 1qθ1 ´
λ

2
θ21. (60)

The equalitites τ “ χ and β “ ϕ mean asymptotic equality of the corresponding expec-
tations of numbers of arcs. In fact, there are exact equalities.

Theorem 13. For any n, ET “ EC and

EB “ EF “ λE d “ βn`Opn1{2q. (61)

Remark 14. Knuth [5] conjectures, based on exact formulas for small n, that, much more
strongly, B and F have the same distribution for every n. (Note that T and C do not have
the same distribution; we have T ď n´ 1, while C may take arbitrarily large values.)

Partial proof of Theorems 12 and 13. L: A simple argument with generating functions shows
that the number of loops at a given vertex v is Gep1´p{pn´np`pqq; these numbers are in-
dependent, and thus L „ NegBin

`

n, 1´p{pn´np`pq
˘

with EL “ p{p1´pq “ λ “ Op1q and

VarpLq “ pp1´ p` p{nq{p1´ pq2 “ Op1q [5]. Moreover, it is easily seen that asymptotically,

L has a Poisson distribution, L
d
ÝÑ Popλq.

T : This follows immediately from Theorem 9, since T “ n´N .

B, F : Let v, w be two distinct vertices. If the DFS finds w as a descendant of v, then there
will later be Gep1´ pq arcs from w, and each has probability 1{n of being a back arc to v.
Similarly, there will be Gep1´pq future arcs from v, and each has probability 1{n of being a
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forward arc to w. Hence, if Ivw is the indicator that w is a descendant of v, and Bvw [Fvw]
is the number of back [forward] arcs vw, then

EBwv “ EFvw “
λ

n
E Ivw. (62)

Summing over all pairs of distinct v and w, we obtain

EB “ EF “
λ

n
E
ÿ

w

ÿ

v‰w

Ivw “
λ

n
E
ÿ

w

dpwq “ λE d, (63)

and (61) follows by Corollary 7.
The proofs of (56)–(58) and the equality ET “ EC are given in the full paper [4]. �

3. Depth, trees and arc analysis in the shifted geometric outdegree
distribution

In this section, the outdegree distribution is Ge1p1 ´ pq “ 1 ` Gep1 ´ pq. Thus we now
have the mean

λ “
1

1´ p
.

As in Section 2, the depth dptq is a Markov chain given by (7), but the distribution of ξt is
now different. The probability (3) is replaced by p1 ´ t{nq{p1 ´ pt{nq, but the number of
future arcs from an ancestor is still Gep1´ pq, and, with θ :“ t{n,

P
`

ξt “ k
˘

“

#

πt :“ 1´θ
1´pθ , k “ 0,

p1´ πtqp1´ πtq
k´1πt, k ě 1,

(64)

where πt “ pπt is as in (8). The probability generating function of ξt is, instead of (11),

ppt, zq “ πt ` p1´ πtq
πtz

1´ p1´ πtqz
“ p1´ θq

1´ p1´ pqz

1´ pθ ´ p1´ pqz
. (65)

The rest of the analysis does not change, and the results in Theorems 5–12 still hold, but
we get different values for many of the constants.

We now have E ξt “ p1´pqθ
pp1´θq and instead of (16) we have E rdptq “ nr`pθq `Op1q where now

r`pθq takes the new value

r`pθq :“
1

p
θ `

1´ p

p
logp1´ θq. (66)

Note that r`pθ1q “ 0 still gives (18), now with λ “ 1{p1 ´ pq, and that λ ą 1 for every p.
Differentiating (66) shows that the maximum point θ0 “ p ą 0.

Figure 2 shows r`pθq for both geometric distributions.
Straightforward calculations yield

υ :“ r`ppq “ 1`
1´ p

p
logp1´ pq, (67)

α :“
1

p

ˆ

θ21
2
´

1

λ
pp1´ θ1q logp1´ θ1q ´

1

λ
θ1

˙

“ θ1 ´
θ21
2p
, (68)

ψ :“ 1´ θ1 ´
λ

2
p1´ θ1q

2. (69)

Note that the value for ψ is the same as in (37). This is no coincidence; we show by the
method in Section 4 that this holds for all offspring distributions with the same mean λ.

Now the expected numbers of back and forward arcs differ since EB “ λE d „ λαn and
EF “ pλ´ 1qE d „ pλ´ 1qαn because the average number of future arcs at a vertex after
a descendant have been created is λ ´ 1. Thus the equality β “ ϕ and the equality of the
expected number of back and forward arcs in Theorems 12 and 13 was an artefact of the
geometric degree distribution.
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Figure 2. r`pθq, the asymptotic search depth, for geometric distribution
(solid) and shifted geometric distribution (dashed) with p “ 0.6.

The estimates (54)–(58) in Theorem 12 hold, with the constants now given by

τ :“ 1´ ψ “ θ1 `
λ

2
p1´ θ1q

2, (70)

β :“ λα “ λθ1 ´
λ

2p
θ21 “ λθ1 ´

λ2

2pλ´ 1q
θ21, (71)

ϕ :“ pλ´ 1qα “ pλ´ 1qθ1 ´
λ

2
θ21 “

λ

2
´ τ, (72)

χ :“
λ

2
´ β “

λ

2
p1´ θ1q

2 `
λ

2pλ´ 1q
θ21. (73)

Note that τ and ϕ are as in Theorem 12, while β and χ are different. In particular, β ‰ ϕ
as noted above. Similarly, χ ‰ τ , and thus the equality of the expected numbers of tree arcs
and cross arcs in Theorem 13 also was an effect of the geometric distribution.

4. Stack index analysis and forest size for a general outdegree distribution

In this section, we consider a general outdegree distribution P, with mean λ and finite
variance. When the outdegree distribution is general, the depth does not longer follow an
easy Markov chain, since we should keep track of the number of children seen so far at each
level of the branch of the tree toward the current vertex.

Instead we get back a Markov chain if we replace the depth by the stack index Iptq. The
DFS can be regarded as keeping a stack of unexplored arcs, for which we have seen the start
vertex but not the end. The stack evolves as follows:

S1. If the stack is empty, pick a new vertex v that has not been seen before (if there is
no such vertex, we have finished). Otherwise, pop the last arc from the stack, and
reveal its endpoint v (which is uniformly random over all vertices). If v already is seen,
repeat.

S2. (v is now a new vertex) Reveal the outdegree m of v and add to the stack m new arcs
from v, with unspecified endpoints. GOTO S1.

Let again vt be the tth vertex seen by the DFS, and let Iptq be the size of the stack when
vptq is found (but before we add the arcs from vt). Also let ηt be the outdegree of vt. Then
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Ip1q “ 0 and, in analogy with (7),

Ipt` 1q “
`

Iptq ` ηt ´ 1´ ξt
˘`
, 1 ď t ă n, (74)

where ξt is the number of arcs leading to already seen vertices before we find a new one; we
have Ppξ “ kq “ p1´ t

n qp
t
n q
k and thus ξt „ Gep1´ t{nq.

In analogy with (9), we define also

rIptq :“
t´1
ÿ

i“1

pηi ´ 1´ ξiq “
t´1
ÿ

i“1

ζi, (75)

where we define ζt :“ ηt ´ ξt ´ 1. Then, as in (10),

Iptq “ rIptq ´ min
1ďjďt

rIpjq. (76)

Note that

E ζt “ E ηt ´ E ξt ´ 1 “ λ´
t{n

1´ t{n
´ 1 “ λ´

1

1´ t{n
. (77)

Hence, uniformly in t{n ď θ˚ for any fixed θ˚ ă 1,

E rIptq “
t´1
ÿ

i“1

E ζi “ pt´ 1qλ´
t´1
ÿ

i“1

1

1´ t{n
“ nrιpt{nq `Op1q, (78)

where

rιpθq :“

ż θ

0

´

λ´
1

1´ τ

¯

dτ “ λθ ` logp1´ θq. (79)

Let

rι`pθq :“ rrιpθqs` “

#

λθ ` logp1´ θq, 0 ď θ ď θ1,

0, θ1 ď θ ď 1,
(80)

where again θ1 is the largest root in r0, 1q of (18), now with λ “ E η1, the mean of P. The
proof of Theorem 5 applies with very minor differences, and yields:

Theorem 15. Suppose that the outdegree distribution has finite variance. Then

max
1ďtďn

∣∣Iptq ´ nrι`pt{nq∣∣ “ OL2pn1{2q. (81)

Moreover, vt`1 is a root if and only if Iptq ` ζt “ Iptq ` η1 ´ 1 ´ ξt ă 0, cf. (74). The
arguments in the proof of Theorem 9 apply with minor differences, and show:

Theorem 16. Theorems 9 and 10 hold for any outdegree distribution with finite variance,
with ψ :“ 1´ θ1 ´

λ
2 p1´ θ1q

2.

Figure 3 shows the parameter ψ as a function of the average degree λ.
Moreover, we have:

Theorem 17. Theorem 11(i) holds for any outdegree distribution with mean λ “ 1 and
positive, finite variance Var η.

Theorem 11(ii) holds for any outdegree distribution with mean 0 ă λ ă 1 and some finite
exponential moment E ex0η ă 8 for some x0 ą 0.

Remark 18. Theorem 11(i) does not hold for the non-random η “ 1, i.e., when the digraph
is a random mapping; in this case the largest trees have sizes of orders n1{2, not n2{3. (See
also [5, Exercise 36 (preliminary number)].)

Moreover, we can use the stack index to find the depth of the nodes, which leads to
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Figure 3. ψ, as function of λ.

Theorem 19. Let ρpθq be the survival probability of a Galton–Watson process with offspring
distribution obtained from P by thinning, killing each child with probability θ. Let

r``pθq :“

$

’

&

’

%

r`pθq “
şθ

0
ρpxqdx, 0 ď θ ď θ0,

r`pqθq, where qθ P p0, θ0q and rιpqθq “ rιpθq, θ0 ă θ ă θ1,

0, θ1 ď θ ď 1.

(82)

Then, we have

max
1ďtďn

∣∣dptq ´ nr``pt{nq∣∣ “ oL2pnq, (83)

For the geometric and shifted geometric distributions in Section 2 and 3, we see from

(17), (66) and (79) that r`pθq and rιpθq are proportional, and thus the expected stack size

E rIptq and depth E rdptq asymptotically are proportional by a fixed factor independent of t

for t P p0, θ1q. However, although r`pθq and rιpθq always have the same root θ1, they are in
general not proportional; in fact, assuming λ ą 1, this happens only when the outdegree
distribution is geometric, or a geometric distribution with Ppηi “ 0q modified.

Using the stack index Iptq, we can extend many of the results from Section 2 to arbitrary
outdegree distributions with finite variance, but not all. Thus some results for geometric
distributions remain conjectures in general. In particular, we mention the following. (See
the comment after Corollary 6.)

Conjecture 20. We conjecture that as in the geometric case, the height Υ is asymptotically
normally distributed for any supercritical outdegree distribution with finite variance.
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