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Abstract

This paper introduces a nonparametric framework for the setting where multiple networks are
observed on the same set of nodes, also known as multiplex networks. Our objective is to provide a
simple parameterization which explicitly captures linear dependence between the different layers of
networks. For non-Euclidean observations, such as shapes and graphs, the notion of “linear” must
be defined appropriately. Taking inspiration from the representation of stochastic processes and the
analogy of the multivariate spectral representation of a stochastic process with joint exchangeability
of Bernoulli arrays, we introduce the notion of edge coherence as a measure of linear dependence in
the graph limit space. Edge coherence is defined for pairs of edges from any two network layers
and is the key novel parameter. We illustrate the utility of our approach by eliciting simple models
such as a correlated stochastic blockmodel and a correlated inhomogeneous graph limit model.

Keywords: Graph Limits; Multiple Networks; Measures of Dependence

1 Introduction

Graphs describe the interaction of objects. More recent work in statistics has acknowledged that
graphs are fundamentally random objects and studied their random variation (Kolaczyk et al., 2020).
If we can understand the variability of graphs, then it is natural to ask what different moments may
be defined to characterise the dependence between graphs. For example (Kolaczyk et al., 2020) has
already addressed what the mean network of a set of networks corresponds to, which was also addressed
by (Lunagómez et al., 2020) and others, for example (Nielsen and Witten, 2018; Newman, 2018; Pamfil
et al., 2020). The question then naturally arises as to how one summarizes multiple networks when
more than one network is under study. It is a question related to characterising multiplex and multilayer
networks (Pamfil et al., 2020; MacDonald et al., 2020; Bianconi, 2018), or two graphs that are subject
to graph matching (Lyzinski et al., 2015).
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There is already a growing popularity of multiplex and dynamic network data structures (e.g. Lei
et al., 2020; Lunagómez et al., 2020; Zhang and Cao, 2017, to name a few) where two or more networks
are observed. A variety of parametric probabilistic models and estimation methods have been proposed
in the literature, e.g. latent space approaches such as Arroyo et al. (2021), Gollini and Murphy (2016)
and more recently MacDonald et al. (2020). While it is extremely important to develop models which
can sufficiently capture the complex structure observed in such data, it is equally important to quantify
dependence between pairs of networks and have a framework which allows for the empirical description
of correlated networks.

The closest areas of statistics to take inspiration from when studying dependence measures for
graphs are dependence measures for other non-Euclidean objects such as in statistical shape analy-
sis (Dryden and Mardia, 2016), summary statistics of random matrices (Ramsay et al., 1984) as well as
representations of stochastic processes
(Adler and Taylor, 2009). Most stochastic processes admit a representation in terms of a suitable
representation theorem, such as the spectral representation theorem (Adler and Taylor, 2009), or the
chaotic representation property (Nualart and Schoutens, 2000). The spectral representation of stochastic
processes will inspire our choice of joint representation of multiple networks. In the case of networks
we have to make some decisions about a suitable measure of correlation–and determine if we want to
make connections with linear filtering of stochastic processes (a superficial similarity that will in general
break down as linear operations on adjacency matrices do not produce new adjacency matrices of simple
graphs), or whether we want a measure that relates to conditional probability of observing an edge
in one graph, given we did so in another graph. We resolve these issues by studying the multivariate
Bernoulli distribution with the graph limit representation of networks, (Lovász, 2012).

The key to specifying dependence measures is their ability to characterise the intrinsic structure
of the objects they describe. We discuss the notion of dependence from a perspective of defining
appropriate fundamental representations, which, we believe is crucial to the study of multiple networks.
To specify dependence between two (or more) binary networks, we study the bivariate (or multivariate)
Bernoulli distribution (Teugels, 1990) with a view to understand how this, in general, is linked to the
notion of graph limits (Lovász, 2012) obtained under the framework of joint exchangeability. For the
sake of interpretation, joint exchangeability may be considered analogous to joint locally stationary
stochastic processes (Tong, 1973), that require a representation in the same locally oscillatory family.
This naturally yields a dependence measure that we refer to as edge coherence arising as a notion of
correlation directly from the graph limit representation of a network. For a pair of networks on the same
set of n nodes, edge coherence is an n× n matrix with the ijth entry quantifying linear dependence
between edges in the corresponding adjacency matrices.

Our intuition for multivariate analysis is based on the Gaussian case, which in turn relies on
Isserlis’ (Isserlis, 1918) formula. This no longer holds for Bernoulli random variables and has a number
of consequences. For example, to ensure that d Bernoullis are independent, one has to prescribe
that the coefficients of the interaction functions are all zero; unlike in the Gaussian case, this is a
hierarchy of interaction coefficients (Dai et al., 2013, Theorem 3.1) involving cross-product ratios,
that are directly interpretable in terms of log-odds ratios (Whittaker, 1990). Further, the validity of a
multivariate Bernoulli model is much harder to determine (Lovison, 2006; Teugels, 1990; Huber and
Maric, 2017), and cannot simply be built up from a bivariate understanding. Our derivations show that
the assumption of a common latent vector underlying all graphs, is key to ensuring a simple and valid
joint representation, as is the case in the study of non-stationary processes. Further, we establish links
with decorated graphs (Lovász and Szegedy, 2010) and directed graphs (Diaconis and Janson, 2008), as
such data also corresponds to two Bernoulli random variables per prospective edge.

To illustrate the properties and utility of the proposed framework, we discuss how some simple
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network models generate dependence. Specifically, we describe a correlated stochastic blockmodel and
more generally, a correlated graph limit model with suitable parameterizations, and note how the com-
monly used choice of scaling for sparse networks, has important implications. Our proposed approach
not only builds on classical multivariate methods for network analysis but also aids in interpretation of
linear dependence between graphs under the widely used framework of joint exchangeability.

2 Notation and the Bivariate Bernoulli Distributions

We shall start by assuming that we observe two graphs G1 and G2 with the same set of nodes denoted
as {1, . . . , n} or [n]. Let {A(1)

ij } and {A(2)
ij } denote the two sets of edge variables representing two

symmetric arrays and let Aij =
(
A

(1)
ij A

(2)
ij

)
, where (i, j) ∈ [n] × [n] denote the corresponding

two-vector valued observation. In general, we may simultaneously consider d networks and likewise
define the corresponding d–variate vector for each (i, j) as Aij =

(
A

(1)
ij A

(2)
ij . . . A

(d)
ij

)
.

From the characterization of any bivariate Bernoulli vector studied by (Teugels, 1990), we know
that three parameters, specifically, two (marginal) success probabilities of observing an edge in either
graph that is E{A(1)

ij } and E{A(2)
ij }, in combination with a co-dependence measure (which may or may

not be centered), are required for full specification. If we observe d-variate Bernoullis, then Teugels
observes that 2d − 1 (centered or non-centred) parameters must be specified to provide the distribution
(a parameter per probability of the possible outcomes, with one degree of freedom removed since all
distributions are normalized to area 1). To specify co-dependence between the two random variables
that are marginally Bernoullis we need to understand an appropriately chosen moment. A simple
unnormalized co-dependence measure is obtained by studying the element-wise (Hadamard) matrix
product of A(1) and A(2) given by(

A(1) ◦A(2)
)
ij

= A
(1)
ij A

(2)
ij , (i, j) ∈ [n]× [n].

It is clear that the expectation of the Hadamard product corresponds to a joint probability, i.e.

E

{(
A(1) ◦A(2)

)
ij

}
= Pr

{
A

(1)
ij = 1 and A

(2)
ij = 1

}
. (1)

This trivial observation yields two (statistical) interpretations of the Hadamard product of adjacency
matrices; either as a joint probability of two events occurring (which could easily be manipulated to
conditional probabilities, say what is the probability G2 has an edge between i and j given G1 does) or
as an uncentred second moment, naturally transformed into a correlation of edge variables by centering
and normalising.

A correlation requires the subtraction of the product of first moments, but both the expectation of
the centred and uncentred product naturally satisfy the Cauchy–Schwarz inequality, this leading in each
case to a natural choice of normalization. To progress beyond recognizing the moments of (1) we need
to introduce a model, and here we shall progress in the framework of scaled graph limits (Bickel and
Chen, 2009; Bollobás and Riordan, 2009).

3 Scaled Graph Limits

3.1 Joint exchangeability

A key early assumption to allow for the study of sparse graphs is to posit a model of a scaled graph limit
for the observations. To start from our understanding of dense graphs (a graph where the probability of
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observing a randomly selected edge remains order one even as we observe larger graphs), let us recall
the definition of an exchangeable array (Lauritzen, 2008), namely that an (infinite) array A is jointly
exchangeable if for any permutation π it satisfies (Aπ(i)π(j))

d
= (Aij), where d

= denotes equivalence
in distribution. This definition is normally posed for infinite arrays, as otherwise we need to use the
notion of finite exchangeability, rather like a stationary stochastic process is related to a cyclostationary
stochastic process (this describing the behaviour of the “boundary” of any array). A consequence of
joint exchangeability is the Aldous–Hoover representation theorem (Kallenberg, 2006, Thm 7.22). It
states that if (Aij) is jointly exchangeable then there exists a graph limit f(x, y;α), and independent
latent variables α and {ξi}, so that

Aij |α, ξ
ind∼ Bernoulli{f(ξi, ξj ;α)}, i < j, (2)

and the array is completed symmetrically setting Aii = 0 to correspond to a simple graph. The
{Aij} are conditionally independent given ξ and α, as we indicate using ind. The assumption of joint
exchangeability for a vector-valued binary array which we denote as A likewise implies distributional
invariance under permutation of labels i.e. for any permutation π it follows that

(Aπ(i)π(j))
d
= (Aij). (3)

The Aldous–Hoover theorem (Kallenberg, 2006, Thm 7.22) applies in this setting too, and shows
that for an infinite array of d-vectors satisfying (3), there exist independent latent variables α and
{ξi}, so that (generalizing (2)) the vectors Aij are conditionally independent with d-variate Bernoulli
distributions depending on α, ξi and ξj , i.e.

Aij |α, ξ
ind∼ MultBernd

{
f(ξi, ξj ;α); f (12)(ξi, ξj ;α), . . . , f (d−1 d)(ξi, ξj ;α), . . .

}
, (4)

where MultBernd{} is the d-variate Bernoulli distribution (Teugels, 1990), here specified by the 2d − 1
cross-moments f (m1,...,ml), which are enumerated by the set of non-empty subsets {m1, . . . ,ml} of
{1, . . . , d}, and we write

f(x, y;α) =
(
f (1)(x, y;α) . . . f (d)(x, y;α)

)T
, (5)

for the vector of the d means. To construct a model for sparse graphs for a finite n-node sample,
following (Bickel and Chen, 2009; Bollobás and Riordan, 2009), we modify (2) by introducing a scale
factor ρn > 0, and let the distribution be specified by

Aij |α, ξ
ind∼ Bernoulli{ρnf(ξi, ξj ;α)}, 1 ≤ i < j ≤ n. (6)

Here it is assumed that f(x, y) is a non-negative symmetric function. It is often convenient to further
assume that ‖f‖1 = 1, since it ensures that ρn is a marginal edge probability and makes ρn identifiable
from the observed graphs. If ρn is shrinking with n, then if f(x, y) is bounded, eventually ρn‖f‖∞ will
be less than unity; various other fixes can be discussed (cf. e.g. Bollobás et al., 2007, (2.3) and Remark
2.4). Given this, we will simply assume that f(x, y) is bounded and that ρn‖f‖∞ ≤ 1. In what follows,
we shall suppress the indexing on the random variable α. This corresponds to assuming that we observe
dissociated random variables.
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3.2 Multiplex graphs with d ≥ 2 layers

To elicit a model for d layers of sparse graphs on a finite number of n nodes, we take inspiration from (4)
and (6) and assume that for each (i, j) with 1 ≤ i < j ≤ n, a vector Aij is generated such that

Aij | ξ
ind∼ MultBernd{ρnf(ξi, ξj); ρ

2
nf

(12)(ξi, ξj), . . . , ρ
2
nf

(d−1 d)(ξi, ξj), . . . }, (7)

where the d-variate Bernoulli distribution MultBernd{} is specified by 2d − 1 parameters, which we
separate into a mean vector ρnf(ξi, ξj) and a higher order structure. The choice of scaling of the second
order structure, which in general may be denoted as ργn for γ ∈ Q≥0 is defined for networks with an
increasing number of nodes n. By assuming a square power of ρn as n increases i.e. with γ = 2 we
expect covariant behavior of the covariance i.e. the joint probability of an edge in (any) two networks
scales as the product of edge probabilities in each network. This is natural for Gaussian data but can be
problematic for sparse networks. Alternatively, γ may be chosen to be one to allow concurrent edges at
the same rate as in the individual networks. Note that if the moments f (m1,...,ml) are compatible, then
so are the scaled moments ρlnf

(m1,...,ml), since we may obtain the sparse version by first generating a
dense array satisfying (4) and then obtain the distribution in (7) by thinning, i.e., (in this case) multiply
all A(m)

ij by independent Bern(ρn) random variables. Such thinning is independent across layers; we
could also use a single thinning operation across all layers. This does not matter marginally and will
only make a difference in terms of co-dependence. Also, note that the latent variables are chosen to
be common across the d graph layers. Let p(m)

ij = p(m)(ξi, ξj) = ρnf
(m)(ξi, ξj), denote the edge

probability for node pair (i, j) in the mth graph, where m ∈ {1, . . . , d}.
The first thing to note in this setting is that for Bernoulli random variables, the distribution is

not specified by the d first order moments and
(
d
2

)
covariances, as it is for Gaussians where then any

cross-moment can be computed using Isserlis’ theorem (Isserlis, 1918). Care of course needs to be
taken not to under-specify (or over-specify) a given distribution. For Bernoulli random variables, in
addition to the means and covariances, an additional 2d − 1− d−

(
d
2

)
moments need to be specified.

Of course, when d = 2, the total number of parameters 2d − 1 = 3 = d+
(
d
2

)
and thus, no additional

parameters are required. The second key observation is that (7) specifies a homogeneous scaling across
edge probabilities in the d graph layers. Scaled graphons were introduced in (Bollobás and Riordan,
2009) so that the behaviour of finite sized networks could be studied. For very sparse graphs, much
of the structural behaviour is determined by their degree of sparsity. We chose to use a single scaling
across all graph layers to simplify the modelling, but fully acknowledge that this is a constraint.

Now, from (7) we note that the marginal correlation of A(m1)
ij with A(m2)

kl is specified through
forward modelling and using the theorem of total covariance it follows that

cov{A(m1)
ij , A

(m2)
kl } = covξ{EA|ξ{A

(m1)
ij }, EA|ξ{A

(m2)
kl }}+ Eξ{covA|ξ{A

(m1)
ij , A

(m2)
kl }},

where 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n, as well as 1 ≤ m2, m2 ≤ d. We see that this decomposition
directly allows us to characterise two types of dependence; dependence that is intrinsically bivariate
specified from the latent variables ξ, but also dependence specified conditionally on the latent variables.
If we observe only one array then one can use this decomposition to show that if the array is dissociated
then Aij and Ail have non-negative covariance bounded above by (1/2)var{Aij}; this limits also the
correlation of this variable. If the array is associated, then the covariance of Aij and Ail is strictly
positive (Aldous, 1985; Bassan and Scarsini, 1998). Furthermore, for two arrays, requiring that
covA|ξ{A

(1)
ij , A

(2)
ij } = 0 is equivalent to requiring f (12)(x, y) = f (1)(x, y)f (2)(x, y). This may be

realistic in some scenarios, but as an assumption pushes all correlation between processes into the latent
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process. This may constrain what marginal probability functions we can use, not to mention what
correlations are achievable.

Why does this matter? The problem of covariance is that while forward modelling of the dependence
of Aij is trivial, inverse specification of an arbitrary correlation for marginally Bernoulli variables is
not (Chaganty and Joe, 2006), and at times we will wish to achieve a negative correlation between
edges, especially if edges require the same resource to form. For the purposes of estimation with only
one realization of Aij for 1 ≤ i < j ≤ n where n ∈ N we can only implement conditional inference,
conditionally on the realized value of α, no matter if n� 1. This is consistent with recent results in
estimating subgraph densities from noisy networks (Chang et al., 2020).

We note that the model elicited above can alternatively be specified in terms of centred moments, or
directly by the vector of the 2d (conditional) probabilities as

Pr{Aij = a | ξ} = pa(ξi, ξj), a = (a1, . . . , ad) ∈ {0, 1}d, (8)

where a denotes the presence or absence of an edge between nodes i and j in graphs {1, . . . , d},
see (Teugels, 1990), where conversion formulas are given. The functions f (m1,...,ml)(x, y) are symmetric
in (x, y) i.e. f (m1,...,ml)(x, y) = f (m1,...,ml)(y, x), and similarly for pa in (8). Moreover, the moments
f (m1,...,ml) must be consistently specified (Huber and Maric, 2017; Chaganty and Joe, 2006, e.g.). Other
discussions of the multivariate Bernoulli distribution can be found in (Joe, 1997; Whittaker, 1990).

For simplicity, we turn our focus to multiplex networks in the simplest setting of d = 2 layers. In
this case we have for 1 ≤ i < j ≤ n,

Aij | ξi, ξj
ind∼ MultBern2{ρnf(ξi, ξj); ρ

2
nf

(12)(ξi, ξj)}, (9)

where MultBern2{} is denoting the two-vector distribution, and f(x, y) =
(
f (1)(x, y) f (2)(x, y)

)T
.

This distribution for a fixed i and j is specified by three moments, chosen as the two means, and
the cross-moment as a co-dependence measure. In some settings log odds ratio are advised for this
modelling (Whittaker, 1990). Alternatively, we may specify the distribution by four functions pa as
in (8); these sum to 1, so we only have to specify three of them. There are simple algebraic relations
between these functions and the functions in (9) given by

ρnf
(1)(x, y) = p10(x, y) + p11(x, y) (10)

ρnf
(2)(x, y) = p01(x, y) + p11(x, y) (11)

ρ2nf
(12)(x, y) = p11(x, y). (12)

This representation allows us to further note linkages between (7) and the representation of directed
graphs (Diaconis and Janson, 2008). Here directed graphs are parameterized via three independent
measurable functions, that we shall denote g00(x, y;α), g01(x, y;α) and g10(x, y;α) where a fourth
function is defined by the theorem of total probability implicitly as g11(x, y;α) = 1− g00(x, y;α)−
g01(x, y;α)−g10(x, y;α). These functions correspond to the functions pkl(x, y;α) above; however, the
symmetry requirements on the functions gkl(x, y;α) are different than those imposed on pkl(x, y;α),
because directed edges correspond to a kind of antisymmetric relations between nodes rather than
symmetric relations, (e.g. see Diaconis and Janson (2008) for details).

4 Edge Coherence

We should start by noting that the terminology “coherence” has been used in another context for
networks (Ding et al., 2015; Patterson and Bamieh, 2011) and has a different meaning. Our motivation
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for re-using the term comes from stochastic processes, especially time series. Some care must be used
in understanding the analogy but not over-interpreting it. For a time series, coherence captures linear
dependence between zero-mean stochastic processes, and convolutions (“filtering”) in the temporal
domain, correspond to linear relationships in the frequency domain. Of course we cannot entertain
linear relationships between networks–as linear combinations of adjacency matrices of simple graphs
do not yield adjacency matrices of simple graphs. Linear combinations of graph limits with positive
weights do yield new graph limit functions, as long as overall scaling is treated carefully and the graph
limit does not when scaled exceed unity. To write down an appropriate definition of a dependence
measure we need to determine what we are quantifying. The marginal correlation between edges in two
networks is given by

σij =
E{A(1)

ij A
(2)
ij } − E{A

(1)
ij }E{A

(2)
ij }

[var{A(1)
ij }var{A(2)

ij }]1/2
. (13)

Of course estimating this quantity will require some additional assumptions, and we need to specify
what expectations we are calculating. Calculating the expectations conditionally on ξ, we get the
conditional correlation

r(ξi, ξj) =
EA|ξ{A

(1)
ij A

(2)
ij } − EA|ξ{A

(1)
ij }EA|ξ{A

(2)
ij }

[varA|ξ{A
(1)
ij }varA|ξ{A

(2)
ij }]1/2

=
ρn
[
f (12)(ξi, ξj)− f (1)(ξi, ξj)f (2)(ξi, ξj)

]
[f (1)(ξi, ξj)

{
1− ρnf (1)(ξi, ξj)

}
f (2)(ξi, ξj)

{
1− ρnf (2)(ξi, ξj)

}
]1/2

. (14)

Note that, in eliciting the multiplex model with two layers in (7), we had chosen the cross-moment
ρ2nf

(12) as the co-dependence measure. Equivalently, we may use the coherence function as defined
above.

We now ask, what does it mean if r(ξi, ξj) = 0 or if |r(ξi, ξj)| = 1? In the former case the
conditional (on ξ) probability of an edge in both the layers simply corresponds to the product of
the marginal probabilities, as would be expected. On the other hand, perfect correlation between
Bernoulli variables means that they coincide. This means that the marginal probabilities are the
same, so that f (1)(ξi, ξj) = f (2)(ξi, ξj) = f(ξi, ξj), and, moreover, that the expected value of the
Hadamard product is the same as the expected value of either of the two individual adjacencies, i.e.,
ρ2nf

(12)(ξi, ξj) = ρnf(ξi, ξj), or

ρnf
(12)(ξi, ξj) = f(ξi, ξj).

Similarly, r(ξi, ξj) = −1 is possible only if A(1)
ij = 1 − A

(2)
ij a.s., and thus ρn

(
f (1)(ξi, ξj) +

f (2)(ξi, ξj)
)

= 1, which is impossible in the sparse case (for large n and thus small ρn).
In general, for a bivariate Bernoulli vector to be well-defined, the moments characterizing it must

satisfy certain inequalities. Specifically, we can only specify (ρn, f(x, y), r(x, y)) such that (Chaganty
and Joe, 2006)

max

{
−
(

ρ2nf
(1)(x, y)f (2)(x, y)

(1− ρnf (1)(x, y))(1− ρnf (2)(x, y))

)1/2

,−
(

(1− ρnf (1)(x, y))(1− ρnf (2)(x, y))

ρ2nf
(1)(x, y)f (2)(x, y)

)1/2
}

≤ r(x, y) ≤

min

{(
f (1)(x, y)(1− ρnf (2)(x, y))

f (2)(x, y)(1− ρnf (1)(x, y))

)1/2

,

(
(1− ρnf (1)(x, y))f (2)(x, y)

f (1)(x, y)(1− ρnf (2)(x, y))

)1/2
}
, ∀ (x, y) ∈ [0, 1]2. (15)
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Therefore, not all possible choices can be realized in (9). Negative correlation can be problematic, as
observed in other settings, see for example McKenzie (2003) or Andel and Dosla (2010).

For a sparse graph, r(ξi, ξj) is not an order one quantity, which will continue to decrease with n,
that should eventually be estimated as zero. We therefore define the edge coherence function to be given
by

r0(ξi, ξj) = r(ξi, ξj)/ρn, (16)

as a proper object behaving consistently with increasing n as long the homogeneous scaling assumption
in ρn is correct. Alternatively, if cross-moments in (7) were chosen to scale as ρ i.e. γ = 1, then r(ξi, ξj)
is an O(1) quantity, and we define edge coherence by r0(ξi, ξj) = r(ξi, ξj) instead of (16).

Note that our choice of coherence in (16) is centred, i.e., we chose to remove a product of the
means of both arrays {A(1)

ij } and {A(2)
ij }, and study fluctuations around this product of means, suitably

standardized. If ρn → 0 then

r0(ξi, ξj) =
f (12)(ξi, ξj)− f (1)(ξi, ξj)f (2)(ξi, ξj)
{f (1)(ξi, ξj)f (2)(ξi, ξj)}1/2

{1 + o(1)}, (17)

and apart from the mean correction, this form resembles the coherence for a stochastic process (Adler
and Taylor, 2009). There are other ratios we could have defined in (17). Notice that EA|ξ{A

(1)
ij A

(2)
ij } =

Pr{A(1)
ij = 1 ∩ A

(2)
ij = 1 | ξ}, and so when ρn is appreciable, and the marginal probabilities are the

same, then (17) before the mean was subtracted can be interpreted as a mean (and sparsity) corrected
partial correlation between edges. For stochastic processes, the interpretation of coherence is in terms
of linear prediction of zero-mean random variables, which is not the case for networks, where the mean
structure is important.

Finally, we might ask, how do we deal with the notion of coherence for more than two graphs?
We can collect any of the

(
d
2

)
pairwise measures of dependence and collect them in a data structure.

This will not completely characterise the multivariate structure of the d variables, but will provide a
simple summary of their dependence structure, like using correlation for non-Gaussian but Euclidean
data structures.

5 Models That Generate Correlated Graphs

5.1 Correlated Stochastic Blockmodel

We elicit the correlated stochastic blockmodel (CSBM) for the simplest case of d = 2 layers. The
general case follows by applying the definitions here to all possible pairs of graphs. Let K denote the
number of blocks in each graph and let zi ∈ {1, . . . ,K} where |{i, zi = a}| = ha, provide the block
label to which node i belongs. Normally {zi} are unobserved and part of the inference problem is
determining how to cluster the observed network (e.g. Olhede and Wolfe (2014)). Let Θ(1) = (θ

(1)
ab )

and likewise Θ(2) = (θ
(2)
ab ) where (a, b) ∈ [K]× [K], denote the K × K edge-probability matrix

corresponding to A(1) and A(2), respectively, i.e.

P (A
(l)
ij = 1|zi = a, zj = b) = θ

(l)
ab , l ∈ {1, 2}. (18)

Given nodes i and j such that zi = a and zj = b, let rab denote the coherence between blocks a and
b, i.e. rab = {rij |zi = a, zj = b}, where rij ≡ r(ξi, ξj) given by (14) is the conditional correlation
between A

(1)
ij and A

(2)
ij . Then R = (rab), denotes the full K × K coherence matrix specifying

conditional correlation between the two network layers. Thus, given K, the correlated stochastic
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blockmodel is parameterized via (z,Θ(1),Θ(2), R) where following the time series terminology, we
refer to Θ(l), l = 1, 2 as the two auto-interaction parameters and R as the coherence parameter.
Alternatively, we may parameterize the model via the uncentred joint moment %ab = E{A(1)

ij A
(2)
ij },

(e.g. as in Pamfil et al., 2020). This is naturally linked to the coherence parameter since rab =

(%ab − θ
(1)
ab θ

(2)
ab )/(θ

(1)
ab {1− θ

(1)
ab }θ

(2)
ab {1− θ

(2)
ab })

1/2.
Given the model parameters as described above, a pair of correlated SBM networks may be generated

easily following (Lunn and Davies, 1998). For simplicity, assume that Θ(1) = Θ(2) = (θab). Then
(A(1), A(2)) are networks from the corresponding bivariate SBM, if for i < j independently, we set

A
(1)
ij = {1− V (1)

ij }U
(1)
ij + V

(1)
ij Wij

A
(2)
ij = {1− V (2)

ij }U
(2)
ij + V

(2)
ij Wij

U
(k)
ij | z

d
= Bern{θzizj}, V

(k)
ij | z

d
= Bern{rzizj}, k = 1, 2,

Wij | z
d
= Bern{θzizj}, (19)

where Uij = (U
(1)
ij , U

(2)
ij )T and Vij = (V

(1)
ij , V

(2)
ij )T each contain two (independent) Bernoullis and W

is a scalar Bernoulli. The label vector z = (z1, . . . , zn)T follows a multinomial distribution (as in the
standard one-dimensional SBM). Note that we can only generate Bernoullis for V (k)

ij if the specified
mean rab is non-negative. Now, clearly, conditionally on zi = a and zj = b, the above mechanism leads
to

E{A(1)
ij | z} = {1− rab}θab + rabθab = θab

E{A(2)
ij | z} = {1− rab}θab + rabθab = θab

cov{A(1)
ij , A

(2)
ij | z} = cov{{1− V (1)

ij }U
(1)
ij + V

(1)
ij Wij , {1− V (2)

ij }U
(2)
ij + V

(2)
ij Wij}.

To understand second moments we note that

cov{A(1)
ij , A

(2)
ij | z} = var{Wij}E{V (1)

ij }E{V
(2)
ij }

= θab{1− θab}r2ab.

This allows us to generate positively correlated random variables, as if we assume that zi = a and zj = b,
then corr{A(1)

ij , A
(2)
ij } = r2ab. Generating negatively correlated Bernoullis is relatively challenging but

possible, and requires a different scheme to realize (e.g. Andel and Dosla, 2010), already adressed in
time series.

5.2 Correlated Homogeneous Graph Limit Model

The correlated stochastic blockmodel clearly provides a simplified description for a pair of networks
via a block-constant coherence matrix R. In this coherence matrix, the diagonal and off-diagonal
blocks correspond to coherence between graphs, for pairs of node within blocks and across blocks,
respectively. The easiest extension to graph limits is to directly follow the stochastic blockmodel
and replace the blockmodel specification by the graph limit functions f (1)(x, y) and f (2)(x, y) and
a scale factor ρn as in (6), coupled with a coherence function r0(x, y) as defined by (16). As in our
specification of the correlated stochastic blockmodel, assume that f (1)(x, y) = f (2)(x, y) = f(x, y),
so that marginally A(l)

ij | ξ ∼ Bern {ρnf(ξi, ξj)}, l = 1, 2. Then given a (positive) correlation function
r(x, y), the corresponding correlated pair of networks follow via the scheme given in (19), except with ξ
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instead of z; ρnf(ξi, ξj) instead of θzizj and ρn
√
r(ξi, ξj) instead of rzizj . This then produces a 2-layer

correlated homogeneous graph limit model with the appropriate graph limits (please refer to calculations
of the previous section).

5.3 Blockmodel to graph limits

The general 2-layer correlated stochastic blockmodel may be studied as it is or via a graph limit
parameterization. To construct the corresponding graph limit objects we proceed as follows. Define
H0 = 0, and iteratively the set of constants Ha =

∑a
k=1 hk, a ∈ {1, . . . ,K}. Then for l ∈ {1, 2}, we

define

f (l)(x, y) =
k∑

a,b=1

θ
(l)
ab 1 (x ∈ (Ha−1/n,Ha/n])1 (y ∈ (Hb−1/n,Hb/n]) , (20)

as the (marginal) graph limit associated with graph l. The Hadamard product has expectation %ab. To
ensure a well-defined coherence quantity, we assume that 0 ≤ %ab. This cross-moment leads us to the
cross-graph limit, which is given by

f (12)(x, y) =
k∑

a,b=1

%ab1 (x ∈ (Ha−1/n,Ha/n])1 (y ∈ (Hb−1/n,Hb/n]) .

This corresponds to a bivariate representation of the blockmodel. To go from %ab to the coherence we
define

r(x, y) =

k∑
a,b=1

%ab − θ
(1)
ab θ

(2)
ab√

θ
(1)
ab θ

(2)
ab (1− θ(1)ab )(1− θ(2)ab )

1 (x ∈ (Ha−1/n,Ha/n])1 (y ∈ (Hb−1/n,Hb/n]) .

5.4 Correlated Inhomogeneous Graph Limit Model

Given a pair of graphs (G1,G2), observed on the same set of nodes, a common question of interest is the
similarity between them, or more generally, whether the presence of an edge between nodes i and j in
G1 implies the corresponding edge in G2. With this in mind, and proceeding in an analogy with what is
known in signal processing, as an “input–output” relationship, we consider the following approach to
modeling relationship between two graphs:

A
(2)
ij |α, ξ, A

(1)
ij ∼ Bern

{
h(ξi, ξj)A

(1)
ij

}
, 1 ≤ j < i ≤ n, (21)

where we may interpret A(1)
ij as an input to obtain an output A(2)

ij . This may also be viewed as
“modulation” as it is similar to amplitude and frequency modulation in signal processing, being a
multiplicative process. Note that (21) implies that A(2)

ij = 1 =⇒ A
(1)
ij = 1, so G2 ⊆ G1.

Let f (1)(x, y) and f (2)(x, y) denote graph limit functions corresponding to A(1) and A(2) (e.g. (6))
and let r(x, y) denote the limiting correlation function. Let ρnf (1)(ξi, ξj) = p

(1)
ij . To parameterize A(2)

ij

given A(1)
ij , we calculate its expectation using the law of iterated expectation, which is given by

E{A(2)
ij | ξ} = E

A
(1)
ij | ξ
{E{A(2)

ij | ξ, A
(1)
ij }} = E

A
(1)
ij | ξ
{h(ξi, ξj)A

(1)
ij }

= E
A

(1)
ij | ξ
{ρnh(ξi, ξj)f

(1)(ξi, ξj)} = ρnh(ξi, ξj)f
(1)(ξi, ξj)

= h(ξi, ξj)p
(1)
ij = p

(2)
ij ,
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where we defined p(2)ij as a pointwise product of h and p(1)ij . Furthermore we find that the expected value
of the Hadamard product under (21) is given by

E

{(
A(1) ◦A(2)

)
ij
| ξ
}

= E{h(ξi, ξj)A
(1)
ij | ξ} = ρnh(ξi, ξj)f

(1)(ξi, ξj) ≡ p(12)ij ,

= Pr{A(1)
ij = 1 ∩A(2)

ij = 1}. (22)

Clearly, p(12)ij = p
(2)
ij , and thus, the probability of an edge in G2 is equal to the probability of the

corresponding edge occuring in both G1 and G2. Thus, A(2)
ij = 1 with a high probability implies a high

probability of the edge occuring in both the layers or A(1)
ij = 1. Also, clearly p(1)ij = 0, implies p(2)ij = 0.

Further implications can be understood by noting the the probabilities associated with the four possible
outcomes, as follows

Pr{A(1)
ij = 0 ∩A(2)

ij = 1} = Pr{A(2)
ij = 1} − Pr{A(1)

ij = 1 ∩A(2)
ij = 1}

= ρnh(ξi, ξj)f
(1)(ξi, ξj)− ρnh(ξi, ξj)f

(1)(ξi, ξj)

= 0

Pr{A(1)
ij = 1 ∩A(2)

ij = 0} = Pr{A(1)
ij = 1} − Pr{A(1)

ij = 1 ∩A(2)
ij = 1}

= ρnf
(1)(ξi, ξj)− ρnh(ξi, ξj)f

(1)(ξi, ξj)

= ρnf
(1)(ξi, ξj){1− h(ξi, ξj)}

Pr{A(1)
ij = 0 ∩A(2)

ij = 0} = 1− ρnh(ξi, ξj)f
(1)(ξi, ξj)− ρnf (1)(ξi, ξj){1− h(ξi, ξj)}

= 1− ρnf (1)(ξi, ξj).

Note that the scaling in this model is not homogeneous as the probability of an edge in the second graph
will scale like the probability of having the corresponding edge in both the graphs, which the generating
mechanism in a sense is regulating. The conditional correlation under this model, takes the form

r(ξi, ξj) =
p
(12)
ij − p(1)ij p

(2)
ij

[var{A(1)
ij }var{A(2)

ij }]1/2
, 1 ≤ j < i ≤ n,

=

[
h(ξi, ξj){1− ρnf (1)(ξi, ξj)}
1− ρnh(ξi, ξj)f (1)(ξi, ξj)

]1/2
. (23)

Clearly, as ρn → 0, this is a finite order one quantity with the leading term given by h(ξi, ξj)
1/2. Thus,

coherence r0(ξi, ξj) under this model is set equal to the conditional correlation r(ξi, ξj). This is in
contrast to what we observed under the general model described in Section 3 and shows that the choice
of scaling has important implications. Naturally still the Cauchy–Schwartz inequality applies in this
setting and so the magnitude of r(ξi, ξj) is bounded.

6 Discussion

Introducing correlation between graphs is a natural next step in modelling graphs, thereby acknowledging
dependence also in this non-Euclidean setting. This clearly goes beyond the mean of a graph, a topic
with significant interest (Lunagómez et al., 2020). Graphs can naturally also be dependent without being
perfectly replicated. In graph theory the notion of graph limits were partially introduced to use tools
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from analysis in a combinatorics setting. Our framework shows how simple ‘linear’ operations may be
interpreted in the space of graph limits. Further, we note that marginally the edge variables in a single
graph are correlated when one of the indices are fixed to be the same. Edges in exchangeable models,
and scaled exchangeable arrays, can only exhibit positive correlation inside a single exchangeable
graph (Aldous, 1985, p.133). Once we move between two “layers” or graphs on the same nodes,
negative correlation can be generated. One simple way of doing so would be to take f (1)(x, y) = g(x, y)
and f (2)(x, y) = 1− c · g(x, y) for some positive c and function g(x, y), (e.g. Chaganty and Joe, 2006).
Of course as the dimension of the Bernoulli vector increases data structures become more difficult to
characterise (Huber and Maric, 2017). Given this, for multiplex networks with more than two layers, one
may proceed by applying the proposed framework to all possible pairs of network layers. Thus, reducing
a d-dimensional model to d(d− 1)/2 two-dimensional models parameterized by edge coherence. Edge
coherence between a pair of networks is a weighted graph itself. It summarizes their dependence
structure and may be used for key applications such as detecting changes in second-order dependence
structure across network layers observed over time or space.
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