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Abstract. We give a simple proof of a generalization of an inequality for homo-
morphism counts by Sidorenko [11]. A special case of our inequality says that if
dv denotes the degree of a vertex v in a graph G and hom∆(H,G) denotes the
number of homomorphisms from a connected graph H on h vertices to G which
map a particular vertex of H to a vertex v in G with dv > ∆, then

hom∆(H,G) 6
∑
v∈G

dh−1
v 1dv>∆.

We use this inequality to study the minimum sample size needed to estimate the
number of copies of H in G by sampling vertices of G at random.

1. Introduction

This paper consists of two main parts. In Section 2 we present a simple proof of
an inequality that generalizes Sidorenko’s inequality on homomorphism counts. Our
motivation for this result comes from an application to estimating global subgraph
counts by sampling, which is discussed in Section 3.

Acknowledgement. Much of this research was done during the 28th Nordic Con-
gress of Mathematicians at Aalto University, Helsinki, Finland in August 2022, where
the authors met. We thank the organizers for making this possible.

2. The inequality

Let H and G be graphs. We let Hom(H,G) denote the set of homomorphisms
H → G, and hom(H,G) := |Hom(H,G)| the number of them.

Sidorenko [11] proved the following theorem:

Theorem 1 (Sidorenko, 1994). For any connected graph H on h > 1 vertices and
any graph G,

hom(H,G) 6 hom(K1,h−1, G). (2.1)

In fact, Sidorenko [11] showed this for trees H, but this is immediately equivalent
to our formulation, since hom(H,G) 6 hom(T,G) for any spanning tree T of H.

If H is a rooted graph, with root o, and ∆ > 0, we also define

hom∆(H,G) :=
∣∣{ϕ ∈ Hom(H,G) : dϕ(o) > ∆}

∣∣, (2.2)

where dv here and below denotes the degree of a vertex v in a graph. (The graph
will be clear from the context; in this section it is always G.) We show the following
extension of Theorem 1.
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Theorem 2. For any connected rooted graph H on h > 1 vertices, any graph G,
and any ∆ > 0,

hom∆(H,G) 6
∑
v∈G

dh−1
v 1dv>∆. (2.3)

Note that Sidorenko’s theorem is the special case ∆ = 0 of our theorem.
We will use induction to prove a more general statement. Let α := (αw)w∈H be a

vector of non-negative real numbers αw indexed by the vertices in H, and let

hom∆,α(H,G) :=
∑

ϕ∈Hom(H,G)

1{dϕ(o)>∆}
∏
w∈H

dαwϕ(w). (2.4)

In particular, taking all αw = 0, we have hom∆,0(H,G) = hom∆(H,G). Hence,
Theorem 2 is a special case of the following result.

Theorem 3. For any connected rooted graph H on h > 1 vertices, any graph G,
any ∆ > 0, and any non-negative vector α = (αw)w∈H ,

hom∆,α(H,G) 6
∑
v∈G

dh−1+|α|
v 1dv>∆, (2.5)

where

|α| :=
∑
w∈H

αw. (2.6)

Proof. To prove (2.5), we use a double induction over the number of vertices h in H
and the number of non-root vertices w such that the weight αw > 0. Hence, we may
assume that (2.5) holds if we replace the pair (H,α) by a pair (H ′,α′) such that
either

(i) H ′ has fewer vertices than H, or
(ii) H ′ has the same number of vertices as H, but there are fewer non-root vertices

w ∈ H ′ with α′w > 0 than non-root w ∈ H with αw > 0.

The base case h = 1 is trivial, since in this case (2.5) is an identity. To prove the
induction step, we consider three cases separately.

Case 1: H has a leaf w 6= o with αw = 0. Let v be the unique neighbour of w in H.
Define H ′ := H \{w}, and let α′v := αv + 1, and α′u := αu for all other u ∈ H ′. Then
hom∆,α(H,G) = hom∆,α′(H

′, G), and thus (2.5) follows by the induction hypothesis,
since H ′ has one vertex less than H.

Case 2: H has (at least) two (distinct) non-roots v and w with αv, αw > 0. Here
we use Hölder’s inequality, in a way that is essentially the same as in Sidorenko [11]
(although he does it in a more general way).

By decomposing the sum in (2.4) according to the values of ϕ(v) and ϕ(w), we
obtain

hom∆,α(H,G) =
∑
x,y∈G

µx,yd
αv
x dαwy , (2.7)

for some numbers µx,y > 0 that do not depend on αv and αw. We regard the numbers
µx,y as a measure µ on the finite set V (G)× V (G), and rewrite (2.7) as

hom∆,α(H,G) =

∫∫
V (G)×V (G)

dαvx dαwy dµ(x, y). (2.8)
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Hölder’s inequality now yields

hom∆,α(H,G)

6

(∫∫
V (G)×V (G)

dαv+αw
x dµ(x, y)

) αv
αv+αw

(∫∫
V (G)×V (G)

dαv+αw
y dµ(x, y)

) αw
αv+αw

= hom∆,α′(H,G)
αv

αv+αw hom∆,α′′(H,G)
αw

αv+αw , (2.9)

where

α′v := αv + αw, α′′v := 0, (2.10)

α′w := 0, α′′w := αv + αw, (2.11)

α′u := α′′u := αu for u 6∈ {v, w}. (2.12)

Hence (2.5) follows from the induction hypothesis, since both α′ and α′′ have one
less non-root vertex with positive weight than α.

Case 3: The remaining case. If none of the cases above applies, then every non-
root leaf has positive weight, and there is at most one non-root vertex with positive
weight. In particular, there is at most one non-root leaf. If also |V (H)| > 2, then H
must have exactly one non-root leaf, say v, and thus H is a path with end vertices o
and v. Furthermore, only v and (possibly) the root o can have positive weight. Thus

hom∆,α(H,G) =
∑

ϕ∈Hom(H,G)

1{dϕ(o)>∆}d
αo
ϕ(o)d

αv
ϕ(v). (2.13)

In this case, we use a variant of an argument that has been used to show other
inequalities (see, e.g., [7, Theorems 43 and 236] and [6, Theorem 2.4]). We write, for
x ∈ G,

f(x) := dαox 1dx>∆, g(x) := dαvx . (2.14)

Then both f(x) and g(x) are (weakly) increasing functions of dx, and thus, for all
x, y ∈ G, (

f(x)− f(y)
)(
g(x)− g(y)

)
> 0. (2.15)

Consequently, using also the symmetry of H interchanging o and v,

0 6
∑

ϕ∈Hom(H,G)

(
f(ϕ(o))− f(ϕ(v))

)(
g(ϕ(o))− g(ϕ(v))

)
= 2

∑
ϕ∈Hom(H,G)

f(ϕ(o))g(ϕ(o))− 2
∑

ϕ∈Hom(H,G)

f(ϕ(o))g(ϕ(v))

= 2 hom∆,α′(H,G)− 2 hom∆,α(H,G), (2.16)

where

α′o := αo + αv, (2.17)

α′w := 0 for w 6= o. (2.18)

Thus hom∆,α(H,G) 6 hom∆,α′(H,G), and thus (2.5) follows by induction, since α′

has one less non-root vertex with positive weight than α. �

Proof of Theorem 2. As mentioned above, this is the special case α = 0 of Theo-
rem 3. �
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3. Applications

Let now H be a fixed connected graph on h vertices and G an arbitrary (large)
graph on n vertices. Let Emb(H,G) denote the set of embeddings (injective homo-
morphisms) H → G; we will be interested in estimating the number emb(H,G) :=
|Emb(H,G)| by sampling a rather small number of vertices of G and exploring small
neighbourhoods of them.

A similar problem for sequences of graphs with a weak local limit has been studied
in [8]; there a uniform integrability condition on the (h− 1)th power of the random
vertex degree was used. Uniform integrability of graph degrees or their powers is
natural for sequences of graphs, and has been used both in theoretical work and
in applications, see, e.g., [1; 2]. In our setting, we use instead the related (3.3)
below. The general problem of estimating small subgraph counts in a given graph
has been considered by many authors for a variety of applications, see, e.g., the
survey paper [10].

To estimate emb(H,G), we may assume that H is a rooted graph with a root o
(o can be chosen arbitrarily). For a vertex v ∈ G, let X(v) = X(H,G, v) denote the
number of embeddings σ ∈ Emb(H,G) such that σ(o) = v. We may then estimate
emb(H,G) from the numbers X(v∗i ) for some randomly sampled vertices v∗i in G.
However, since vertices of high degree in G may give outliers with exceptionally high
numbers of such embeddings, we use truncation in order to obtain our error bounds.

Choose an arbitrary rooted spanning tree T of H with the same root o. Say that
a vertex u ∈ T is internal if dTu > 1 or u = o (where dTu denotes the degree of u in T ).
Denote by iT the number of internal vertices in T . Choose also a positive integer ∆.
For a vertex v ∈ G, let X̄(v) = X̄(H,G, v, T,∆) denote the number of embeddings
σ ∈ Emb(H,G) such that σ(o) = v and dσ(u) < ∆ for all internal vertices u ∈ T .

Let N > 1 and let v∗1, . . . , v
∗
N be drawn from V (G) independently and uniformly

at random. Consider the following estimate for n−1 emb(H,G):

X̂N :=
1

N

(
X̄(v∗1) + · · ·+ X̄(v∗N )

)
. (3.1)

Note that the random variable X̄(v∗1) is bounded, since for every v ∈ G,

0 6 X̄(v) 6 (∆− 1)h−1. (3.2)

Its mean can be estimated by X̂N , with an error that can be bounded using, for
example, Hoeffding’s bound, which we do to prove the following result.

Theorem 4. Let H be a connected graph on h > 1 vertices with a rooted spanning
tree T , let G be a graph on n > 1 vertices, and let D be the degree of a uniformly
random vertex in G. Suppose a positive integer ∆ and a non-negative λ satisfy

E
[
Dh−11D>∆

]
6 λ. (3.3)

Let s > 0 and p ∈ (0, 1]. If

N >
(∆− 1)2(h−1)

2s2
ln

2

p
, (3.4)

then

P
(
X̂N − s 6 n−1 emb(H,G) 6 X̂N + s+ iTλ

)
> 1− p. (3.5)
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Proof. We have

emb(H,G) =
∑

v∈V (G)

X̄(v) +

∣∣∣∣⋃
u

{σ ∈ Emb(H,G) : dσ(u) > ∆}
∣∣∣∣, (3.6)

where the union is over the internal vertices of T .
The first term on the right is equal to nE X̄(v∗1). By the union bound and Theo-

rem 2 applied to each tree that can be obtained from T by rerooting at an internal
vertex, the second term is at most iTnE [Dh−11D>∆] 6 iTλn. Therefore

E X̄(v∗1) 6 n−1 emb(H,G) 6 E X̄(v∗1) + iTλ. (3.7)

Hoeffding’s classical inequality says that for a sum of independent random vari-
ables X1, . . . , XN with values in [0, 1] and µ = N−1 E(X1 + · · ·+XN ) we have

P(|N−1(X1 + · · ·+XN )− µ| > t) 6 2 exp
(
−2Nt2

)
. (3.8)

The claim follows by applying this to the random variables Xi := X̄(v∗i )/(∆− 1)h−1

and using (3.7) (or using X̄(v∗i ) = 0 if ∆ = 1). �

In particular, we obtain by choosing s = εEDh−1 in Theorem 4 the following
corollary. (Choosing s in this way makes sense when n−1 emb(H,G) is of the same
order as its upper bound n−1 hom(K1,h−1, G) = EDh−1, which often may be reason-
able to expect in practice.)

Corollary 5. With notation as above, assume that (3.3) holds. If ε > 0, p ∈ (0, 1],
and

N >
(∆− 1)2(h−1)

2ε2(EDh−1)2
ln

2

p
, (3.9)

then

P
(
X̂N − εEDh−1 6 n−1 emb(H,G) 6 X̂N + εEDh−1 + iTλ

)
> 1− p. (3.10)

If we are able to draw edges K2, wedges P3 or other small subgraphs in G uniformly
at random, we can estimate certain small subgraph densities using a much smaller
sample size using the following generalization of Theorem 4. Other authors have used
other methods to obtain some practical results in estimating densities of graphs H
on h 6 5 vertices using algorithms which sample random paths on up to 5 vertices
as their first step, see, e.g., [10, Section 4.3].

To state the generalization, let now O be a non-empty subgraph of H. Let, as
above, T be a spanning tree of H. We declare that a vertex v ∈ T is O-internal if
either v ∈ T \ V (O) and dTv > 2, or v ∈ O and there is an edge uv ∈ T with u 6∈ O.
We let iOT denote the number of O-internal vertices in T . Note that for h > 2 if O
consists of a single vertex o, this agrees with the previous definition.

Assume emb(O,G) > 1 and let ν ∈ Emb(O,G). Let X̄O(ν) denote the number of
embeddings σ ∈ Emb(H,G) such that ν is the restriction of σ to O, and dσ(u) < ∆ for
all O-internal vertices u. Let ν∗1 , . . . , ν

∗
N be independent, uniformly random elements

of Emb(O,G). Consider the estimate

X̂O
N :=

1

N

(
X̄O(ν∗1) + · · ·+ X̄O(ν∗N )

)
. (3.11)

Similarly as above we have:
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Theorem 6. With notation and assumptions as above and in Theorem 4, including
(3.3), assume also emb(O,G) > 1 and, instead of (3.4),

N >
(∆− 1)2(h−|V (O)|)

2s2
ln

2

p
. (3.12)

Then

P
(
X̂O
N − s 6

emb(H,G)

emb(O,G)
6 X̂O

N + s+
iOT λn

emb(O,G)

)
> 1− p. (3.13)

Proof. Using the same argument as for (3.7) we get by Theorem 2:

emb(O,G)E X̄O(ν∗1) 6 emb(H,G) 6 emb(O,G)E X̄O(ν∗1) + iOT λn. (3.14)

Note that 0 6 X̄O(ν) 6 (∆ − 1)h−|V (O)|. To finish the proof, we again apply
Hoeffding’s inequality. �

For a simple example, let H = Kh and T = O = K1,h−1; then |V (O)| = h and

iOT = 0. Thus the values of ∆ and λ are irrelevant; we take ∆ = n and λ = 0 so that

(3.3) holds. Theorem 6 shows that N > 2−1s−2 ln 2
p suffices. (In this simple case

with V (O) = V (H), this follows without invoking Theorem 2 in the proof.)
When we are only able to draw uniform embeddings of O with |V (O)| < h, if (3.3)

holds with non-trivial values of ∆ and λ, we can apply Theorem 6, for example, with
s = εEDh−1 as in Corollary 5 not only to reduce N but also to bound the steps
needed to compute X̄O(ν).

Finally, we note that Theorem 2 allows us to generalize (the difficult part of) The-
orem 2.1 of [8], with a simpler proof that does not require the local weak convergence
assumption of [8].

Theorem 7. Let H be a fixed connected graph on h vertices, and pick an arbitrary
vertex o ∈ H as its root. Let (Gn, n ∈ {1, 2, . . . , }) be a sequence of graphs. Let Vn
be a uniformly random vertex from V (Gn) and let Dn := dVn be its degree in Gn.

If X(H,Gn, Vn) converges in distribution to a random variable X∗ as n→∞,
and Dh−1

n is uniformly integrable, then

|V (Gn)|−1 emb(H,Gn)→ EX∗. (3.15)

Proof. Write Xn := X(H,Gn, Vn). Clearly

EXn = |V (Gn)|−1 emb(H,Gn). (3.16)

Hence we need to prove that EXn → EX∗. Since Xn
d−→ X∗, we have EX∗ 6

lim infn→∞ EXn by Fatou’s lemma.
To show the opposite inequality, fix a rooted spanning tree T of H and a positive

integer ∆, and write X̄n := X̄(H,Gn, Vn, T,∆). By (3.16) and (3.6) (with Gn instead
of G), Theorem 2 implies, as above for (3.7),

EXn 6 E X̄n + iT E [Dh−1
n 1Dn>∆]. (3.17)

Furthermore, by (3.2), writing x ∧ y := min(x, y),

X̄n 6 Xn ∧ (∆− 1)h−1. (3.18)

Since Xn converges in distribution to X∗, we have

lim
n→∞

E [Xn ∧ (∆− 1)h−1] = E [X∗ ∧ (∆− 1)h−1] 6 EX∗. (3.19)
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Write ε∆ := lim supn→∞ E [Dh−1
n 1Dn>∆]. Then, by (3.17)–(3.19) and iT 6 h,

lim sup
n→∞

EXn 6 lim sup
n→∞

E X̄n + hε∆ 6 EX∗ + hε∆. (3.20)

This holds for every ∆ > 0, and lim∆→∞ ε∆ = 0 by the uniform integrability as-
sumption; thus lim supn→∞ EXn 6 EX∗, which completes the proof. �

4. Concluding remarks

We extended Sidorenko’s inequality and used it to derive bounds on the sample
size needed to estimate the number of small subgraphs in a large graph using only
the weak assumption (3.3).

Like Hoeffding’s bound, our estimate works for worst case graphs; therefore the
lower bound from Theorem 4 may be too pessimistic for specific real-world graphs.
Nevertheless it would be interesting to better understand if our results and assump-
tions of type (3.3) can be useful in practice.

It would also be interesting to find an interpretation or applications of the general
case of our inequality (2.5).
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Appendix A. A note on real-world experiments

During the preparation of this paper we tested Corollary 5 with some real-world
degree distributions. For our first experiment, we considered survey data on self-
reported human contact count distributions during a single day in the USA in 4
COVID-19 pandemic waves [5]. For our second experiment, we considered degree
distributions of more than 500 empirical networks of various types and sizes made
available as part of the supporting code of [3].

Although the lower bounds in our first experiment seem to be interesting for fur-
ther exploration, we believe that the survey sizes in [5] (several thousand respondents
in each of the COVID-19 waves) were too small to determine if there exists a practi-
cally useful choice of λ and ∆ in (3.3), even for h = 3. In the second case for 75% of
degree distributions we got a lower bound for N exceeding the underlying network
size.

We believe that in the first case establishing a better understanding on the degree
tails, simply collecting more data or applying the adaptive mean estimation methods
[4; 9] might help. In the second case, since the full network data is available, the
methods mentioned in [10] and Theorem 6 seem to be more suitable.

The code and the results of our experiments are available at https://github.

com/valentas-kurauskas/subgraph-counts-hoeffding.
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