
CENTRAL LIMIT THEOREM FOR COMPONENTS IN MEANDRIC SYSTEMS
THROUGH HIGH MOMENTS

SVANTE JANSON AND PAUL THÉVENIN

Abstract. We investigate here the behaviour of a large typical meandric system, proving

a central limit theorem for the number of components of given shape. Our main tool is a

theorem of Gao and Wormald, that allows us to deduce a central limit theorem from the

asymptotics of large moments of our quantities of interest.

1. Model and main result

1.1. Definitions and some notation. Let n ≥ 1 be an integer. A meandric system of size n
is a collection of non-crossing loops in the plane that intersect the horizontal axis exactly
at the points [2n] := {1, . . . ,2n}, we call these points the vertices of the meandric system;
two meandric systems that differ only by a continuous deformation of the plane that
fixes the horizontal axis are regarded as the same. Meandric systems were introduced,
to our knowledge, by Di Francesco, Golinelli and Guitter [1], and have recently become
again a topic of interest [6, 4, 2]. A meandric system can be regarded as a set of n
non-crossing arcs with endpoints [2n] in the upper half-plane, and another such set in
the lower half-plane; a meandric system thus determines two non-crossing matchings
(pair-partitions) of [2n], one for each half-plane, and it is easily seen that this yields a
bijection between meandric systems of size n and pairs of two non-crossing matchings
of [2n]. In particular, since the number of non-crossing matchings of [2n] is the Catalan
number

Catn :=
(2n)!

n! (n+ 1)!
,(1.1)

see e.g. [7, item 61], the number of meandric systems of size n is Cat2
n.

Each connected component of a meandric system is a single loop, intersecting the
horizontal axis in a subset of [2n], say {i1 < · · · < i2k}, which we call the support of the
loop. Note that necessarily there is an even number of vertices in the support, and an
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even number of integers in each gap (ij , ij+1), i.e., ij+1 − ij is odd for 1 ≤ j < 2k. We say
that two such loops have the same shape if they differ only by a translation. Thus we
may normalize each shape to have leftmost vertex 1, and make the following formal
definition:

Definition 1.1. A shape is a (connected) non-crossing loop S with support a set of integers
{i1 = 1 < i2 < · · · < i2k = 2`}, for some k,` ≥ 1, such that ij+1 − ij is odd for all 1 ≤ j ≤ 2k − 1.

Let M be a meandric system and C a connected component of M. We say that C has shape
S if C and S differ only by a translation.

Our main theorem in the following. We prove two special cases as Theorems 3.1 and
4.4, and prove the remaining, more difficult, case in Section 4.2.

Theorem 1.2. Fix a shape S. Let Mn be a uniformly random meandric system of size n (that
is, on J1,2nK) and denote by XS,n the number of connected components of Mn with shape S.
Then, XS,n satisfies a central limit theorem: there exist µS ,σS > 0 such that

XS,n −nµS
σS
√
n

(d)
−→
n→∞

N (0,1),(1.2)

whereN (0,1) denotes the standard normal distribution.

Observe that the convergence XS,n
n

P→
n→∞

µS for some constant µS was already obtained

in [4], with an explicit expression for µS .

2. Preliminaries

2.1. More notation. For integers m ≤ n, Jm,nK denotes the integer interval [m,n]∩Z.
The size of Jm,nK is its number of points, i.e., n−m+ 1. Note that [n] = J1,nK.

For a component C of a meandric system, we denote by LC (RC), the leftmost (right-
most) point in the support of C. Furthermore, we say that the base of C is the interval
JLC ,RCK and let `(C) denote the half-length of C, defined as half the size of its base, i.e.,
`(C) := 1

2(RC −LC +1). (Note that `(C) always is an integer.) We use the same definitions
for a shape S; then LS = 1 and thus RC = 2`(S).

For integers N ≥ k ≥ 0, we let

(N )k :=N (N − 1) · · · (N − k + 1) =
N !

(N − k)!
= k!

(
N
k

)
,(2.1)

the k-th descending factorial of N .
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We use standard o and O notation. Furthermore, for two (positive) sequences an and
bn, an ∼ bn means an/bn→ 1 as n→∞, i.e., an = bn(1 + o(1)), and an = Θ(bn) means that
there exist constants c > 0 and C such that c ≤ an/bn ≤ C for sufficiently large n. Note
that, for example, an,r ∼ bn,r for r = O(

√
n) means that this holds for every sequence

r = r(n) =O(
√
n), which is equivalent to an,r ∼ bn,r uniformly for r ≤ C

√
n, for any C <∞;

uniformity in r is thus automatic in such cases. We write “uniformly for r =O(
√
n)” for

“uniformly for r ≤ C
√
n, for any C <∞”. Unspecified limits are as n→∞.

2.2. The key tool: Gao and Wormald’s theorem. Our proof relies on a theorem due to
Gao and Wormald [5], stating that we can deduce a central limit theorem for a sequence
of variables from the asymptotic behaviour of their high (factorial) moments. Let us
recall this result.

Theorem 2.1 (Gao & Wormald [5]). Let µnsn > −1 and set σn :=
√
µn +µ2

nsn, where 0 <

µn → ∞. Suppose that σn = o(µn), µn = o(σ3
n ), and that a sequence {Xn} of nonnegative

random variables satisfies as n→∞:

E [(Xn)r] ∼ µrn exp
(
r2sn

2

)
.(2.2)

uniformly for all integers r in the range cµn/σn ≤ k ≤ Cµn/σn, for some constants C > c > 0.
Then (Xn −µn)/σn converges in distribution to the standard normal as n→∞.

In other words, if high factorial moments of a variable asymptotically match those of
a normal distribution, then convergence to the normal distribution holds.

2.3. Some lemmas. We state some simple lemmas that will be used later. The first is a
well known estimate that we often will use in the sequel.

Lemma 2.2. (i) If 0 ≤ k ≤ n/2, then

(n)k = nk exp
(
− k

2

2n
+O

(k3

n2 +
k
n

))
.(2.3)

(ii) In particular, if k =O(
√
n), then

(n)k = nk exp
(
− k

2

2n
+ o(1)

)
∼ nk exp

(
− k

2

2n

)
.(2.4)

(iii) More generally, if 0 ≤ k ≤m with m =O(
√
n), then

(n−m+ k)k ∼ nk exp
(
−m

2 − (m− k)2

2n

)
= nk exp

(
−k(2m− k)

2n

)
.(2.5)
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Proof. (i), (ii): This follows easily from a Taylor expansion of log(1− i/n) for 0 ≤ i < k; we
omit the details.

(iii): This follows from (ii) and (n−m+ k)k = (n)m/(n)m−k. �

As one consequence, we obtain the following asymptotics.

Lemma 2.3. Let n→∞ and 0 ≤ r =O(
√
n). Then

Catn−r
Catn

∼ 2−2r .(2.6)

Proof. The definition (1.1) and Lemma 2.2 yield

Catn−r
Catn

=
(n)r(n+ 1)r

(2n)2r
∼ (n)2

r

(2n)2r
=

n2r

(2n)2r exp
(
−2
r2

2n
+

(2r)2

4n
+ o(1)

)
∼ 2−2r .(2.7)

�

We end this section with another elementary and well known result.

Lemma 2.4. Let m,n,k ≥ 1. The number of unordered k-tuples of disjoint intervals of size m
in [n] is given by (

n− k(m− 1)
k

)
.(2.8)

Proof. By deleting all points except the leftmost in each chosen interval, we obtain a
bijection between the set of such k-tuples of intervals and the set of k-tuples of distinct
points in [n− k(m− 1)]. �

3. A first example: components of half-length 1.

As a warm-up, we consider first the simple case where S is the loop of half-length 1.
For any i ∈ [2n], we let Yi be the indicator that the following holds:

i i + 1

Then,

XS,n =
2n−1∑
i=1

Yi(3.1)

and thus, for every r ≥ 1, summing over 1 ≤ i1 < · · · < ir < 2n,

E [(XS,n)r] = E

[
r!

∑
i1<···<ir

Yi1 · · ·Yir

]
= r!

∑
i1<···<ir

E

[
Yi1 · · ·Yir

]
.(3.2)
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The expectation in the last sum is non-zero if and only if the r subintervals Jij , ij + 1K of
J1,2nK are disjoint, so by Lemma 2.4 there are

(2n−r
r

)
non-zero terms. Each of the non-

zero terms is 1/Cat2
n times the number of meandric systems of size n that contain r given

loops of half-length 1; by deleting these loops (and the vertices in them), we obtain a
bijection between such meandric systems and the meandric systems of size n − r, and
hence the number of them is Cat2

n−r . Consequently, (3.2) yields

E [(XS,n)r] = (2n− r)r
Cat2

n−r
Cat2

n

=
(2n)2r

(2n)r
· Cat2

n−r
Cat2

n

.(3.3)

In particular, using Lemmas 2.2 and 2.3, if r =O(
√
n), then

E [(XS,n)r] ∼ (2n)2r−r exp
(
−4r2

4n
+
r2

4n

)
2−4r =

(n
8

)r
exp

(
−3r2

4n

)
.(3.4)

In other words, (2.2) holds (uniformly) for 0 ≤ r ≤ C
√
n, for any fixed C <∞, with

µn :=
n
8
,(3.5)

sn := − 3
2n
.(3.6)

We have µnsn = −3/16 > −1, and thus

σn :=
√
µn(1 +µnsn) =

√
13

128
n.(3.7)

We thus have σn = o(µn) and µn = o(σ3
n ), and consequently Theorem 2.1 applies and

yields:

Theorem 3.1. If S is a simple loop of half-length 1, then

XS,n −n/8√
13n/128

(d)
−→
n→∞

N (0,1).(3.8)

This is Theorem 1.2 for this particular choice of S, with µS = 1/8 and σ2
S = 13/128.

4. Extension to any fixed shape

Let us now show how we can extend this result to any fixed shape S. We now let Yi
be the indicator that there is a component C of shape S such that LC = i; note that (3.1)
and (3.2) still hold.
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Recall that `(S) is the half-length of S, so S has base J1,2`(S)K. We also define here
three other constants K(S), c+(S), c−(S) depending on S. To avoid heavy notation, we
will drop the argument S in what follows, and only denote them by K,c+, c−.

Definition 4.1. (See an example in Figure 1.) Observe that a component C of shape S, taken
along with the horizontal axis, splits the plane into two unbounded faces, each belonging to
one of the half-planes, and a certain number of bounded faces. Let F+ denote the unbounded
face in the upper half-plane, F− the one in the lower half-plane, and F (C) the set of bounded
faces. For a face F, let ν(F) be the number of vertices in JLC ,RCK that lie on the boundary of
F but not on C, and observe that necessarily ν(F) is even. We then set

K(S) :=
∏

F∈F (C)

Catν(F)/2,(4.1)

c+(S) := ν(F+)/2,(4.2)

c−(S) := ν(F−)/2.(4.3)

Note that these constants do not depend on the set of vertices on which C is defined, but
only on its shape S.

F+

F−

F3

F1
F2

F4

Figure 1. A component C with four bounded faces F1,F2,F3,F4. In this
example, we have K(S) = Cat2

1 Cat2 Cat3 = 10, c+(S) = 1 and c−(S) = 0,
where S is the shape of C.

4.1. Strong shapes. We say that two components overlap if their bases overlap. Hence,
if the components have the same shape S, and the leftmost points in their supports are
i and j, they overlap if |j − i| < 2`(S).
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For simplicity, we study first the case when this cannot happen. We say that a shape
S is strong if two different components of a meandric system that both have shape S
cannot overlap. Thus, if S is strong, then YiYj = 0 when |j − i| < 2`(S). The simple loop
in Section 3 and the loop in Figure 1 are examples of strong shapes. A shape that is not
strong is called weak; an example is given in Figure 2.

Proposition 4.2. Let S be a strong shape of half-length `(S). Then, for all r ≥ 1, we have

(4.4) E [(XS,n)r] =
(
2n− 2r`(S) + r

)
r
K r

Catn−r`(S)+rc+ Catn−r`(S)+rc−

Cat2
n

.

Proof. We argue as in Section 3. As noted above, (3.2) still holds, and since S is strong,
we have YiYj = 0 when |j − i| < 2`(S). Hence, the number of non-zero terms in (3.2)

is
(2n−r(2`(S)−1)

r

)
by Lemma 2.4. Again, all non-zero terms have the same value, which is

1/Cat2
n times the number of ways that r given disjoint loops of shape S can be completed

to a meandric system of size n. We can fill in the bounded faces of each component in K
ways, and there are 2n− 2r`(S) + 2rc± vertices left in the upper and lower components,
respectively, so they may be filled in in Catn−r`(S)+rc± ways. This yields (4.4). �

By Lemmas 2.2 and 2.3, it follows from (4.4) that, (uniformly) for r =O(
√
n), we have

E [(XS,n)r] ∼n→∞

( 2nK
42`(S)−c+−c−

)r
exp

(
− r

2

4n

[
(2`(S))2 − (2`(S)− 1)2

])
.(4.5)

This is (2.2) with

µn :=
2nK

42`(S)−c+−c−
,(4.6)

sn := −(2`(S))2 − (2`(S)− 1)2)
2n

= −4`(S)− 1
2n

.(4.7)

In order to apply Theorem 2.1, we need to check that µnsn > −1, which boils down to
the following.

Lemma 4.3. We have

(4.8) K(4`(S)− 1) < 42`(S)−c+−c− .

Proof. Observe that we can bound K using the fact that Catn ≤ 4n
n+1 for all n: It is easy to

see that for given c±, K is largest if there is only one bounded face in each half-plane,
and thus,

K ≤ Cat`(S)−c+−1 Cat`(S)−c−−1 ≤
42`(S)−c+−c−−2

(`(S)− c+)(`(S)− c−)
≤ 42`(S)−c+−c−−2

`(S)
,(4.9)
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Figure 2. Two components of same shape overlapping. Here, E [Y1Y7] > 0,
while 2`(S) = 10.

since c++c− ≤ `(S)−1 (to see this, observe that a vertex cannot belong to both unbounded
faces of S, and that at least two vertices belong to C). This yields (4.8) directly. �

It is clear that µn →∞. Furthermore, we have just proved that 1 + µnsn is a positive
constant. Thus σn = Θ(

√
µn), and hence σn = o(µn) and µn = o(σ3

n ). We can therefore
apply Theorem 2.1 to obtain the central limit theorem in this case too:

Theorem 4.4. Let S be a strong shape. Then

XS,n −nµS
σS
√
n

(d)
→

n−→∞
N (0,1),(4.10)

where

µS =
2K

42`(S)−c+−c−
and σS =

√
2K

42`(S)−c+−c−

(
1− K(4`(S)− 1)

42`(S)−c+−c−

)
.(4.11)

This proves Theorem 1.2 in the case when S is a strong shape, with explicit formulas
for µS and σS .

4.2. Weak shapes. Finally, we study the case of a weak shape S. Thus, now there may
be overlaps between two components of shape S, that is, two indices i < j such that
|j − i| < 2`(S) and YiYj = 1, where Yi is defined as before. See Figure 2 for an example.

Let Ar be the set of all r-tuples E := {i1, . . . , ir} with 1 ≤ i1 < · · · < ir ≤ 2n, For any
such r-tuple E, define an equivalence relation ∼E on {1, . . . , r} as the smallest one (for the
inclusion of the equivalence classes) satisfying: for all 1 ≤ k1, k2 ≤ r such that |ik1

− ik2
| <

2`(S), k1 ∼E k2. We call the equivalence classes of ∼E blocks. Furthermore, for 1 ≤ j ≤ r,
we let Arj be the set of r-tuples E ∈ Ar that have exactly j blocks. Thus Ar =

⋃r
j=1A

r
j .
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Note that Arr is the set of r-tuples E such that all blocks are singletons. An r-tuple E
corresponds to a collection (Ck)

r
1 of loops of shape S, shifted such that Ck has LCk = ik.

In particular, E ∈ Arr if and only if these loops are non-overlapping.
Define, for all 1 ≤ u ≤ r:

Fu :=
(
2n− 2u`(S) +u

u

)
Ku

Catn−u`(S)+uc+ Catn−u`(S)+uc−

Cat2
n

.(4.12)

By the argument in the proof of Proposition 4.2, u!Fu is the contribution to E [(XS,n)u]
from u-tuples of non-overlapping components.

We have the following estimates:

Lemma 4.5. Let S be a weak shape.

(i) For all r ≥ 1,

(4.13) E [(XS,n)r] ≥ r!Fr .

(ii) For all 1 ≤ u ≤ r, ∑
E∈Aru

E

∏
i∈E

Yi

 ≤ (
r − 1
u − 1

)
(2`(S))r−uFu .(4.14)

(iii) For each fixed M ≥ 0, uniformly for r =O(
√
n) with r ≥ 2M,∑

E∈Arr−M

E

∏
i∈E

Yi

 = Θ
(
rMFr−M

)
(4.15)

and, if also r→∞,∑
E∈Arr−M (1,2)

E

∏
i∈E

Yi

 = (1− o(1))
∑

E∈Arr−M

E

∏
i∈E

Yi

 ,(4.16)

where Arr−M(1,2) is the subset of Arr−M made only of blocks of sizes 1 or 2.

Proof of Lemma 4.5. (i): We rewrite (3.2) as

E

[
(XS,n)r

]
= r!

∑
E∈Ar

E

∏
i∈E

Yi

 = r!
r∑

u=1

∑
E∈Aru

E

∏
i∈E

Yi

 .(4.17)

The term with u = r yields the contribution from r-tuples of non-overlapping compo-
nents, which as noted after (4.12) is r!Fr .
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(ii): For each r-tuple E ∈ Aru , keep in the product only the leftmost point of each block,
observing that, for any sets A ⊆ B ⊆ J1,2nK, we have E [

∏
i∈BYi] ≤ E [

∏
i∈AYi]. Note that

this set of leftmost points belongs to Auu . If the size of the i-th leftmost block is ji , then
for each set of leftmost points, the number of possible positions of the other ji−1 points
in the block is at most (2`(S))ji−1, since each point after the first is within 2`(S) of the
preceding one. Hence,

∑
E∈Aru

E

∏
i∈E

Yi

 ≤ ∑
j1+...+ju=r
j1,...,ju≥1

u∏
i=1

(2`(S))ji−1 ·
∑
E′∈Auu

E

∏
i∈E′

Yi

 =
∑

j1+...+ju=r
j1,...,ju≥1

u∏
i=1

(2`(S))ji−1 ·Fu .

(4.18)

Finally, this yields (4.14), since the number of allowed sequences (j1, . . . , ju) is
(r−1
u−1

)
, and∏u

i=1(2`(S))ji−1 = (2`(S))r−u for all of them.
(iii): We partition the set Arr−M as follows. Consider an (r−M)-tuple T := (T1, . . . ,Tr−M)

of integers ≥ 1, of sum r, and consider also a function J which, to each 1 ≤ i ≤ r −M,
associates a Ti-tuple Ji of integers 1 =: ji,1 < ji,2 < . . . < ji,Ti such that, for all 1 ≤ k ≤ Ti −1,
ji,k+1 − ji,k < 2`(S), and, furthermore, the Ti loops of shape S that start at the vertices jk
(k = 1, . . . ,Ti) are disjoint so that they may occur together as components in a meandric
system. (We call such pairs (T ,J) admissible.) Denote by AT ,J the subset of Arr−M made
of r-tuples E such that the i-th leftmost block of E has size Ti , and if this block is{
a1
i , . . . , a

Ti
i

}
, then we have ak+1

i − aki = ji,k+1 − ji,k for all 1 ≤ k ≤ Ti − 1. In other words,
AT ,J accounts for all r-tuples of components with r −M blocks, where the sizes of the
blocks are given, as well as the intervals between the starting points of each component
of shape S in each block. Hence, Arr−M is the union

⋃
AT ,J over all admissible pairs

(T ,J).
Since we only consider (r −M)-tuples T such that

r =
r−M∑
i=1

Ti = r −M +
r−M∑
i=1

(Ti − 1),(4.19)

there at most M indices i with Ti > 1, and thus at least r − 2M indices with Ti = 1.
Note also that if Ti = 1, then trivially Ji = (1). Given an admissible pair (T ,J), we define
the reduced pair (T̂ , Ĵ) by deleting all Ti and Ji such that Ti = 1 from T and J ; thus
T̂ := (Ti : 1 ≤ i ≤ r −M and Ti > 1) and similarly for Ĵ . Consequently, T̂ and Ĵ are both
sequences of (the same) length ≤M. Since (4.19) implies that their entries are bounded
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(for a fixed M), there is only a finite set T of reduced pairs (T̂ , Ĵ), where T depends on
M and S but not on r.

Conversely, given an admissible reduced pair (T̂ , Ĵ), with T̂ = (T̂1, . . . , T̂k), we can ob-
tain (T̂ , Ĵ) from

(r−M
k

)
different (admissible) pairs (T ,J). Note that here, by (4.19), since

each T̂i ≥ 2,

k ≤
k∑
i=1

(T̂i − 1) =
r−M∑
i=1

(Ti − 1) =M,(4.20)

with equality if and only if T̂i = 2 for all i ≤ k.
We now want to understand the behaviour of

∑
E∈AT ,J E [

∏
i∈E Yi] for an admissible

pair (T ,J). In a way similar to Proposition 4.2 (using an extension of Lemma 2.4 to
intervals of different lengths), we obtain∑

E∈AT ,J

E

∏
i∈E

Yi

 =
(
2n− 2˜̀+ (r −M)

r −M

)
K̃

Catn−d+
Catn−d−

Cat2
n

,(4.21)

where, for any E ∈ AT ,J , ˜̀ is the sum of the half-lengths of the blocks, K̃ accounts for
the bounded faces defined by the horizontal axis and the loops defined by E, and d+,d−
for the unbounded faces. (Note that these constants are the same for all E ∈ AT ,J so they
depend only on T and J .) Moreover, since at least r − 2M of these blocks are singletons,
and the remaining blocks are determined by T̂ and Ĵ , we can write

K̃ = K r−2MK ′,(4.22)

for some K ′ > 0 depending only on (T̂ , Ĵ). Similarly,˜̀= (r −M)`(S) + `′,(4.23)

d+ = (r −M)(`(S)− c+) + e+,(4.24)

d− = (r −M)(`(S)− c−) + e−(4.25)

for some `′, e+, e− depending only on (T̂ , Ĵ). In particular, for a fixed M, it follows that
K ′, `′, e+, e− can only take a fixed number of values independently of n and r.
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We compare (4.21) and Fr−M given by (4.12). First, by Lemma 2.2(iii),(2n−2˜̀+(r−M)
r−M

)(2n−2(r−M)`(S)+(r−M)
r−M

) =

(
2n− 2˜̀+ (r −M)

)
r−M(

2n− 2(r −M)`(S) + (r −M)
)
r−M

(4.26)

∼ exp
(
−r −M

4n

(
(4˜̀− r +M)− (4(r −M)`(S)− r +M)

))
= exp

(
o(1)

)
,

since ˜̀= r`(S) +O(1) by (4.23) and r = o(n). Similarly, as a consequence of Lemma 2.3
and (4.24)–(4.25),

Catn−d±
Catn−(r−M)(`(S)−c±)

∼ 4−d±+(r−M)(`(S)−c±) = 4−e± .(4.27)

Consequently, using also (4.22), we obtain from (4.21) and (4.12),∑
E∈AT ,J E [

∏
i∈E Yi]

Fr−M
= CT ,J (1 + o(1)),(4.28)

whereCT ,J > 0 only depends on (T̂ , Ĵ), and therefore only takes a finite number of values.
In particular, ∑

E∈AT ,J

E

∏
i∈E

Yi

 = Θ
(
Fr−M

)
,(4.29)

and this holds uniformly for r =O(
√
n) and all admissible (T ,J).

By (4.20) and the discussion before it, there are
(r−M
k

)
= Θ(rk) admissible pairs (T ,J)

for each (T̂ , Ĵ), where k ≤ M, with equality when all T̂i = 2. Note that since we as-
sume that the shape S is weak, there exists at least one such admissible (T̂ , Ĵ) with
T̂ = (2, . . . ,2). Hence, summing (4.29) over all (T ,J) yields (4.15).

Moreover, Arr−M \A
r
r−M(1,2) is the union

⋃′AT ,J where we only sum over admissible
pairs (T ,J) with some Ti ≥ 3; these correspond to reduced pairs (T̂ , Ĵ) with some T̂i ≥
3, and we see from (4.20) that each such reduced pair has length ≤ M − 1, and thus
corresponds to O(rM−1) admissible pairs. Consequently, summing (4.29) over all (T ,J)
of this type yields ∑

E∈Arr−M\A
r
r−M (1,2)

E

∏
i∈E

Yi

 =O
(
rM−1Fr−M

)
= o

(
rMFr−M

)
,(4.30)

which yields (4.16) by (4.15). �
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The next proposition shows that, in order to get the asymptotic behaviour of E [(XS,n)r],
we only need to take into account the configurations whose number of blocks that are
not singletons is a given constant.

Proposition 4.6. Fix a weak shape S. Then, there exists η > 0 such that, for any ε > 0, there
exists M > 0 such that we have, uniformly for r ≤ η

√
n,∑

u≤r−M

∑
E∈Aru

E

∏
i∈E

Yi

 ≤ εFr ≤ ε 1
r!
E [(XS,n)r].(4.31)

Remark 4.7. For convenience, we assume here that r/
√
n is small. In fact, Proposi-

tion 4.6 can easily be extended to r ≤ C
√
n for any C (with M depending on C and ε),

but we have no need for this.

To prove this, we start with a lemma:

Lemma 4.8. There exists Q > 0 depending only on the shape S such that, for n large enough,
for all u ≤

√
n:

Fu+1

Fu
≥Qn

u
.(4.32)

Proof. We just compute the ratio term by term, recalling (4.12). We have Ku+1

Ku = K .
The ratio of the ratios of Catalan numbers converges uniformly to a positive constant.
Finally, the ratio of binomial coefficients is, using Lemma 2.2,

u!
(u + 1)!

·

(
2n− (u + 1)(2`(S)− 1)

)
u+1(

2n−u(2`(S)− 1)
)
u

=
1

u + 1
· (2n)u+1

(2n)u
exp

(
O(1)

)
≥ cn

u
(4.33)

for some c > 0 and all large n and u ≤
√
n. The result follows. �

Proof of Proposition 4.6. Using Lemma 4.5(ii), we have for all M ≥ 0:∑
u≤r−M

∑
E∈Aru

E

∏
i∈E

Yi

 ≤ r−M∑
u=1

(
r − 1
u − 1

)
(2`(S))r−uFu .(4.34)

Letting

Br,u :=
(
r − 1
u − 1

)
(2`(S))r−uFu ,(4.35)



14 SVANTE JANSON AND P. THÉVENIN

we get from Lemma 4.8 that, for r ≤
√
n and any u ≤ r − 1:

Br,u+1

Br,u
=

1
2`(S)

r −u
u

Fu+1

Fu
≥ Q

2`(S)
n(r −u)
u2 ≥ Q

2`(S)
n

u2 .(4.36)

Hence, there exists η > 0 small enough such that, for all u < r ≤ η
√
n, we have Br,u+1 ≥

2Br,u , and thus by backward induction,

Br,u ≤ 2−(r−u)Br,r .(4.37)

Then, for r ≤ η
√
n, (4.34) yields∑
u≤r−M

∑
E∈Aru

E

∏
i∈E

Yi

 ≤ r−M∑
u=1

Br,u ≤ 21−MBr,r = 21−MFr .(4.38)

This yields (4.31) if we choose M such that 21−M ≤ ε, since r!Fr ≤ E [(XS,n)r] by the
comment after (4.12). �

Proposition 4.6 shows that we only need to understand the asymptotic behaviour of
the configurations with a number of blocks r −M for given M ≥ 0, and Lemma 4.5(iii)
that we can focus on configurations with blocks of size 1 or 2. To actually prove our final
result, we need to refine Lemma 4.5(iii) and obtain the explicit constants that appear.
We define another set of constants, which will account for the cases with blocks of size
2, i.e., cases when two components of shape S overlap.

Definition 4.9. Let S be a shape. There is a finite set of integers i ≥ 1 such that E [Y1Yi] > 0
and i − 1 < 2`(S). Let I(S) be this set, and i1, . . . , ik its elements. For i ∈ I(S), let `i , Ki ,
c+(i) and c−(i) be the equivalents of `(S),K,c+, c− in this case of two components C,C′ that
overlap and start at positions 1 and i. In particular, `i = `(S)+(i−1)/2 is the total half-length
of the block made of two components of shape S started at positions 1 and i. Furthermore,
C and C′ together with the horizontal axis define two unbounded faces (F+ in the upper
half-plane and F− in the lower half-plane), and several bounded faces; let F (C,C′) be the
set of bounded faces. For each face F, let ν(F) be the number of integers in JL(C),R(C)K ∪
JL(C′),R(C′)K = JL(C),R(C′)K that are incident to F but do not belong to C nor to C′. We set
Ki :=

∏
F∈F (C,C′) Catν(F)/2. Finally, we define c±(i) := ν(F±)/2. Observe again that all these

constants only depend on S and i.

Note that i ∈ I(S) may be even; in this case 2`i , ν(F+) and ν(F−) are odd, and thus `i
and c±(i) are half-integers.
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Lemma 4.10. Let r =O(
√
n) with r→∞. Then, for every fixed M ≥ 0,∑

E∈Arr−M

E

∏
i∈E

Yi

 ∼n→∞ Fr ∑
gi≥0,i∈I(S)∑

i gi=M

∏
i∈I(S)

(
bi
r2

2n

)gi
gi !

,(4.39)

where

bi := 44`(S)−2`i+c+(i)−2c++c−(i)−2c− Ki
K2 .(4.40)

Note that bi measures (in a specific way) how much two overlapping components of
shape S differ from two non-overlapping ones.

Proof. For each I(S)-tuple G = (gi)i∈I(S) of integers with sum M, let Arr−M,G be the set of
r-tuples 1 ≤ i1 < . . . < ir ≤ 2n with r − 2M blocks of size 1 and M blocks of size 2, such
that for each i ∈ I(S), there are gi blocks of type {ik , ik+1 = ik + i − 1} with k < r. Then
Arr−M,G is the union of some classes AT ,J from the proof of Lemma 4.5, with all Ti ∈ {1,2}
and a specified number gi of k such that Jk = (1, i). Hence, we obtain from (4.21), where
the multinomial coefficient is the number of (T ,J) that are included in Arr−M,G,∑

E∈Arr−M,G

E

∏
i∈E

Yi

 =
(

r −M
gi1 , . . . , gik , r − 2M

)(
2n− 2˜̀+ (r −M)

r −M

)
K̃

Catn−d+
Catn−d−

Cat2
n

,(4.41)

where, by (4.22)–(4.25) and the argument yielding them:

K̃ = K r−2M
∏
i∈I(S)

K
gi
i ,(4.42)

˜̀= (r − 2M)`(S) +
∑
i∈I(S)

gi`i ,(4.43)

d± = ˜̀− (r − 2M)c± −
∑
i∈I(S)

gic±(i).(4.44)

We now argue similarly as in the proof of Lemma 4.5, but this time we compare to Fr .
We have (

r −M
g1, . . . , gk , r − 2M

)
∼ rM

∏
i∈I(S)

1
gi !
,(4.45)
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r−M

)(2n−2r`(S)+r
r

) =
r!

(r −M)!
·

(
2n− 2˜̀+ (r −M)

)
r−M(

2n− 2r`(S) + r
)
r

(4.46)

∼ rM(2n)−M exp
(
− 1

4n

(
(r −M)(4˜̀− r +M)− r(4r`(S)− r)

))
∼ rM(2n)−M ,

K̃
K r

= K−2M
∏
i∈I(S)

K
gi
i ,(4.47)

Catn−d±
Catn−r`(S)+rc±

∼ 4−d±+r(`(S)−c±) = 42M(`(S)−c±)−
∑
i∈I(S)(`i−c±(i))gi .(4.48)

and thus, from (4.41) and (4.12), recalling that
∑
i∈I(S) gi =M,

∑
E∈Arr−M,G

E [
∏
i∈E Yi]

Fr

(4.49)

∼
n→∞

r2M(2nK2)−M42(`(S)−c+)M−
∑
i∈I(S)(`i−c+(i))gi42(`(S)−c−)M−

∑
i∈I(S)(`i−c−(i))gi

∏
i∈I(S)

1
gi !
K
gi
i

=
(
B
r2

2n

)M ∏
i∈I(S)

q
gi
i

gi !
=

∏
i∈I(S)

(
Bqi

r2

2n

)gi
gi !

,

where

B :=
44`(S)−2c+−2c−

K2 ,(4.50)

qi := 4−2`i+c+(i)+c−(i)Ki .(4.51)

The set Arr−M(1,2) defined in Lemma 4.5(iii) is the union of Arr−M,G over all G with
sum M. Hence, (4.49) implies, noting that there is only a finite number of such G,∑

E∈Arr−M (1,2)

E

∏
i∈E

Yi

 ∼n→∞ Fr ∑
gi≥0,i∈I(S)∑

i gi=M

∏
i∈I(S)

(
Bqi

r2

2n

)gi
gi !

.(4.52)

The result (4.39) now follows from (4.52) and (4.16), using Bqi = bi . �

Proof of Theorem 1.2 for weak shapes. Let r →∞ with r ≤ η
√
n, where η is as in Proposi-

tion 4.6.
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We may sum (4.39) over all M ≥ 0 (with Arr−M := ∅ for M > r), since Proposition 4.6
shows that we may approximate the sum by a finite sum with a fixed number of terms.
Consequently, recalling (4.17),

E

[
(XS,n)r

]
= r!

∞∑
M=0

∑
E∈Arr−M

E

∏
i∈E

Yi

∼r!Fr ∞∑
M=0

∑
gi≥0,i∈I(S)∑

i gi=M

∏
i∈I(S)

(
bi
r2

2n

)gi
gi !

(4.53)

= r!Fr
∏
i∈I(S)

exp
(
bi
r2

2n

)
.

By Lemmas 2.2 and 2.3, (4.12) implies (similarly to (4.5))

r!Fr ∼
( 2nK
42`(S)−c+−c−

)r
exp

(
− r

2

4n

(
4`(S)− 1

))
.(4.54)

Finally, (4.53) and (4.54) yield, for r→∞ with r ≤ η
√
n,

E

[
(XS,n)r

]
∼

n→∞

( 2nK
42`(S)−c+−c−

)r
exp

− r2

4n
(4`(S)− 1) +

r2

2n

∑
i∈I(S)

bi

 .(4.55)

This is (2.2), with

µn :=
2nK

42`(S)−c+−c−
,(4.56)

sn :=
−(4`(S)− 1) + 2

∑
i∈I(S) bi

2n
.(4.57)

In particular, (2.2) thus holds for r = r(n) with η
2
√
n ≤ r ≤ η

√
n; as noted in Section 2.1,

it then automatically holds uniformly in this range. Furthermore,

µnsn ≥ −
K(4`(S)− 1)
42`(S)−c+−c−

> −1(4.58)

by Lemma 4.3, and we have again µn = Θ(n) and σn = Θ(
√
n). It follows that Theorem 2.1

applies in this case too, which yields (1.2). �

We obtain from (4.56)–(4.57)

σ2
S =

2K
42`(S)−c+−c−

(
1 +

K

42`(S)−c+−c−

(
1− 4`(S) + 2

∑
i∈I(S)

bi

))
,(4.59)

with bi given by (4.40). Note that this formula holds also for strong shapes (when I(S) =
∅) by (4.11).
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5. Open problems

We list here some open problems concerning possible extensions of our results.

1. It seems possible to extend the arguments above to joint factorial moments

E

[
(XS1,n)r1 · · · (XSk ,n)rk

]
(5.1)

for several shapes S1, . . . ,Sk, and then obtain a multivariate version of Theo-
rem 1.2 using a multivariate version of Gao and Wormald’s theorem [3], [8].
However, we have not checked the details. Such a multivariate theorem would
immediately imply, for example, a central limit theorem for the number of com-
ponents of a given half-length.

2. Considering shapes that are similar, can we obtain a central limit theorem for the
number of components that only cross the horizontal axis twice (i.e., the support
has size 2, but the half-length is arbitrary)?

3. Is is true, as Kargin [6] has conjectured, that the total number of components is
asymptotically normal?
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