
ON A CENTRAL LIMIT THEOREM IN RENEWAL THEORY

SVANTE JANSON

Abstract. Serfozo (2009, Theorem 2.65) gives a useful central limit theorem for
processes with regenerative increments. Unfortunately, there is a gap in the proof.
We fill this gap, and at the same time we weaken the assumptions. Furthermore,
we give conditions for moment convergence in this setting. We give also further
results complementing results in Serfozo (2009) on the law of large numbers and
estimates for the mean; in particular, we show that there is a gap between condi-
tions for the weak and strong laws of large numbers.

1. Introduction

The standard setting in renewal theory is that we have a stochastic process (in
continuous or discrete time) such that some event occurs at random times 0 ă T1 ă
T2 ă . . . , and the process “starts again” at each such event. Formally this means
that the times between renewals ξn :“ Tn ´ Tn´1, n ě 1, (where we define T0 :“ 0)
are i.i.d. (independent and identically distributed) random variables. We thus have

Tn :“
n
ÿ

i“1

ξi, n ě 0. (1.1)

with pξiq
8
1 i.i.d., where ξ1 may be any (strictly) positive random variable. We then

define, for t ě 0,

Nptq :“ maxtn : Tn ď tu “
8
ÿ

n“1

1tTn ď tu, (1.2)

τptq :“ mintn : Tn ą tu “ Nptq ` 1. (1.3)

It is well-known that Tn Ñ8 a.s. as nÑ8, and thus Nptq and τptq are well defined
for any t ě 0. Note that by the definitions,

TNptq ď t ă TNptq`1 “ Tτptq. (1.4)

In applications it is common to study the values of another stochastic process at
the renewal times Tn. One common version of this is to let pηiq

8
1 be another sequence

of random variables such that the random vectors pξi, ηiq, i ě 1, are i.i.d., and define
their partial sums

Vn :“
n
ÿ

i“1

ηi; (1.5)

we then may consider VNptq or Vτptq, which can be interpreted as the values of a
stochastic process at the time TNptq or Tτptq. Asymptotic results such as a law of
large numbers and a central limit theorem for VNptq or Vτptq are well known, see e.g.
[2, Section 4.2, including Remark 4.2.10].
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A version of this is that we are given another (real-valued) stochastic process Zptq
defined for all times t ě 0 such that Zptq also “starts again” at each renewal time
Tn. We are interested in asymptotic results for Zptq as tÑ8, and by (1.4), we may
under suitable assumptions approximate Zptq by VNptq or Vτptq (with ηn given below)
and obtain results for Zptq from results of the type just mentioned. To make this
formal, Serfozo [4, Definition 2.52, Section 2.10] makes the following definition:

Definition 1.1. The process Zptq has regenerative increments over the times Tn if
Zp0q “ 0 and the increments

ζn :“
`

ξn, tZpt` Tn´1q ´ ZpTn´1q : 0 ď t ď ξnu
˘

, n ě 1, (1.6)

are i.i.d.

Remark 1.2. Note that the second component of ζn is a stochastic process, defined
over the random interval r0, ξns; we may for the purpose of this definition regard it
as a process on r0,8q stopped at ξn, i.e., equal to Zpξn ` Tn´1q ´ ZpTn´1q for all
t ě ξn. In general we may regard this process as an element of the product space
Rr0,8q but we will also need some regularity property. We assume, for convenience,
that Zptq is càdlàg (right-continuous with left limits, also written Z P Dr0,8q); then
the second component of ζn is also càdlàg. 4

Remark 1.3. The definition given in [4, Definition 2.52] actually differs slightly
from the one above, using only the interval 0 ď t ă ξn instead of 0 ď t ď ξn in (1.6).
This is obviously a typo, and should be interpreted as in (1.6), since otherwise the
definition would be trivially satisfied by the process Zptq :“ XNptq for any random
sequence pXnq

8
0 with X0 “ 0; this evidently cannot imply any limit results. 4

Suppose that Zptq has regenerative increments over Tn, and define

ηn :“ ZpTnq ´ ZpTn´1q, n ě 1. (1.7)

It follows from the definition above, taking t “ ξn in (1.6), that the sequence of pairs
pξn, ηnq, n ě 1, is i.i.d. Hence, we may define Vn by (1.5), and note that (1.7) yields

Vn “ ZpTnq. (1.8)

Consequently, using (1.4), we have for any t ě 0

Zptq “ VNptq `
`

Zpt1 ` TNptqq ´ ZpTNptqq
˘

, (1.9)

where t1 :“ t´ TNptq P r0, ξNptq`1q. We define, following [4],

Mn :“ sup
Tn´1ďtďTn

|Zptq ´ ZpTn´1q|, n ě 1. (1.10)

In particular,

M1 :“ sup
0ďtďT1

|Zptq|. (1.11)

Note that it follows from Definition 1.1 that the random variables Mn are i.i.d.
It is clear from (1.9) that with suitable conditions on Mn, asymptotic results for

ZpT q follow from results for VNptq. In particular, Serfozo [4] gives the following
central limit theorem, which is well suited for applications.

Theorem 1.4 ([4, Theorem 2.65]). Suppose Zptq is a stochastic process with re-
generative increments over Tn such that µ :“ E rT1s, a :“ E rZpT1qs{µ, and σ2 :“
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VarrZpT1q ´ aT1s are finite. In addition, let M1 be defined by (1.11), and assume
M1 ă 8 a.s. Then

Zptq ´ at
?
t

d
ÝÑ Np0, σ2{µq, as tÑ8. (1.12)

We include the case σ2 “ 0, letting Np0, 0q denote (the distribution of) 0.

Remark 1.5. The theorem stated in [4] also assumes EM1 ă 8, but the proof
below shows that it suffices to assume M1 ă 8 a.s., as done here. 4

Unfortunately, there is a gap in the proof given in [4], see Remark 2.1, so we give
a proof filling that gap (under our, weaker, conditions) in Section 2.

In Section 3, we give conditions for moment convergence in Theorem 1.4. Further-
more, we give in Section 4 a weak law of large numbers, complementing the strong
law in [4]; we show that the weak law holds under weaker conditions than the strong
law. Finally, Section 5 gives further estimates for the mean under various moment
conditions.

Remark 1.6. We let throughout the paper the time parameter t P r0,8q be a
continuous variable. Results for a discrete time parameter t P N follow immediately,
by assuming that the times Tn are integer-valued and then considering only t P N. 4

1.1. Some notation. We use the notation introduced above throughout the paper.
In particular, µ, a, and σ2 have the same meanings as in Theorem 1.4. We also use
the renewal function

Uptq :“
8
ÿ

n“0

P
`

Tn ď t
˘

“ ENptq ` 1. (1.13)

We let
d
ÝÑ,

p
ÝÑ, and

a.s.
ÝÑ denote convergence in distribution, probability, and

almost surely, respectively. Unspecified limits are as tÑ8.
For real x, y, we let x^ y :“ mintx, yu and x_ y :“ maxtx, yu.
“Decreasing” is interpreted in the weak sense.

2. Proof of Theorem 1.4

We basically follow the proof in [4, pp. 136–137]. We define as there

Z 1ptq :“
ZpTNptqq ´ aTNptq

?
t

“ t´1{2
Nptq
ÿ

i“1

`

ηi ´ aξi
˘

, (2.1)

where we used (1.7) and (1.1), and note that Xi :“ ηi´aξi are i.i.d. random variables
with EXi “ EX1 “ E rZpT1qs´aE rT1s “ 0 and VarXi “ σ2. Hence it follows from
Anscombe’s theorem [4, Theorem 2.64] (see also [2, Section 1.3]; alternatively, use
instead Donsker’s theorem [3, Theorem 7.7.13]), together with the (weak) law of

large numbers Nptq{t
p
ÝÑ 1{µ, [4, Corollary 2.11] that

Z 1ptq
d
ÝÑ N

`

0, σ2{µ
˘

, as tÑ8. (2.2)

(The case σ2 “ 0 is trivial since then Xi “ 0 and thus Z 1ptq “ 0 a.s.)
Hence, by Cramér–Slutsky’s theorem [3, Theorem 5.11.4], it suffices to show that

Zptq ´ at
?
t

´ Z 1ptq
p
ÝÑ 0. (2.3)
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We have, by (2.1),

Zptq ´ at
?
t

´ Z 1ptq “
Zptq ´ ZNptq ´ apt´ TNptqq

?
t

(2.4)

and thus, recalling (1.4), (1.10), and (1.1),∣∣∣∣Zptq ´ at?
t

´ Z 1ptq

∣∣∣∣ ď MNptq`1 ` |a|ξNptq`1
?
t

“:
YNptq`1
?
t

, (2.5)

where we let

Yn :“Mn ` |a|ξn. (2.6)

Consequently, to show (2.3), and thus Theorem 1.4, it suffices to show that

YNptq`1

t1{2
p
ÝÑ 0, (2.7)

or, equivalently,

YNptq`1

Nptq1{2
p
ÝÑ 0, (2.8)

By (2.6), (1.10) and Definition 1.1, the random vectors pξn, Ynq are i.i.d., and thus

(2.7) follows from Lemma 2.2 below (with δptq :“ t´1{2), which completes the proof
of Theorem 1.4. �

Remark 2.1. The gap in the proof in [4] is the claim n´1{2Yn
d
“ n´1{2Y1

a.s.
ÝÑ 0

as nÑ8 made there; although Yn
d
“ Y1 and n´1{2Y1

a.s.
ÝÑ 0 as nÑ8, this only

shows Yn{n
1{2 p
ÝÑ 0, which in general is not enough to imply (2.8). In fact, it is

a well-known consequence of the Borel–Cantelli lemmas (see [3, Proposition 6.1.1])

that, for any i.i.d. sequence Yn, we have Yn{n
1{2 a.s.
ÝÑ 0 as nÑ8 (which does imply

(2.8)) if and only if EY 2
1 ă 8, which requires the stronger assumption EM2

1 ă 8

(and also ET 2
1 ă 8 unless a “ 0). 4

We used in the proof the following lemma. (For related results under moment
assumptions, see [2, Theorem 1.8.1].) Recall that a family pXαqαPA of random vari-
ables is tight (a.k.a. stochastically bounded) if for every ε ą 0, there exists c ą 0
such that Pp|Xα| ą cq ă ε for all α P A. Recall also that (the distribution of) ξ1 is
arithmetic if there exists d ą 0 such that ξ1 P dN “ td, 2d, . . . u a.s.; then the largest
such d is called the span of ξ1.

Lemma 2.2. With the notations above, let Tn be a sequence of renewal times with
ET1 “ E ξ1 ă 8, and let Yn, n ě 1, be another sequence of random variables
such that the random vectors pξn, Ynq are i.i.d. Then the family of random variables
tYNptq`1 : t ě 0u is tight. In particular, if δptq is any positive function such that
δptq Ñ 0 as tÑ8, then

δptqYNptq`1
p
ÝÑ 0 as tÑ8. (2.9)

Proof. By replacing Yn with |Yn|, we may for convenience assume that Yn ě 0.
Moreover, if ξ1 is arithmetic, with span d ą 0, then it suffices to consider t P dN.
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Let c ą 0. Then, since pξn`1, Yn`1q is independent of Tn and further pξn`1, Yn`1q
d
“

pξ1, Y1q,

P
`

YNptq`1 ą c
˘

“ E
8
ÿ

n“0

1tTn ď t ă Tn`1, Yn`1 ą cu

“ E
8
ÿ

n“0

P
`

Tn ď t ă Tn`1, Yn`1 ą c | Tn
˘

“ E
8
ÿ

n“0

P
`

0 ď t´ Tn ă ξn`1, Yn`1 ą c | Tn
˘

“ E
8
ÿ

n“0

hcpt´ Tnq, (2.10)

where

hcpsq :“ 1ts ě 0uP
`

ξ1 ą s, Y1 ą c
˘

“ 1ts ě 0uP
`

T1 ą s, Y1 ą c
˘

. (2.11)

Using the renewal function Uptq defined in (1.13), we can write (2.10) as

P
`

YNptq`1 ą c
˘

“ U ˚ hcptq :“

ż 8

0
hpt´ uq dUpuq. (2.12)

Note that hcpsq ě 0 and that hcpsq is decreasing on r0,8q with
ż 8

0
hcpsqds ď

ż 8

0
Ppξ1 ą sq ds “ E ξ1 “ µ ă 8. (2.13)

Hence, hcpsq is directly Riemann integrable, and thus the key renewal theorem (see
[4, Theorems 2.35–37] or [2, Theorem 2.4.3]) yields (in both the arithmetic and
non-arithmetic cases)

lim
tÑ8

P
`

YNptq`1 ą c
˘

“
1

µ

ż 8

0
hcpsqds “

1

µ

ż 8

0
P
`

ξ1 ą s, Y1 ą c
˘

ds “: λc. (2.14)

Since P
`

ξ1 ą s, Y1 ą c
˘

ď P
`

ξ1 ą s
˘

and
ż 8

0
P
`

ξ1 ą s
˘

ds “ E ξ1 ă 8, (2.15)

dominated convergence yields

lim
cÑ8

λc “ lim
cÑ8

1

µ

ż 8

0
P
`

ξ1 ą s, Y1 ą c
˘

ds “
1

µ

ż 8

0
lim
cÑ8

P
`

ξ1 ą s, Y1 ą c
˘

ds “ 0.

(2.16)

Let ε ą 0. Then (2.16) shows that we may choose c ą 0 such that λc ă ε, and
then (2.14) shows that for all sufficiently large t, we have

P
`

YNptq`1 ą c
˘

ă ε. (2.17)

This is enough to imply (2.9), since for large t we also have cδptq ă ε, and conse-
quently

P
`

δptqYNptq`1 ą ε
˘

ď P
`

δptqYNptq`1 ą δptqc
˘

“ P
`

YNptq`1 ą c
˘

ă ε. (2.18)
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Moreover, we have shown that for every ε ą 0, there exists c and t0 such that
(2.17) holds for t ě t0. There exists n0 such that PpNpt0q ` 1 ą n0q ă ε{2, and we
may increase c so that PpYn ą cq ă ε{p2n0q for all n ď n0. Then, for every t ď t0,

PpYNptq`1 ą cq ď P
`

Nptq ` 1 ą n0
˘

`

n0
ÿ

n“1

P
`

Yn ą c
˘

ă ε. (2.19)

Hence, there exists c such that (2.17) holds for all t ě 0, which proves that the family
tYNptq`1 : t ě 0u is tight. �

3. Moment convergence

If we assume further moment conditions, we also have convergence of moments in
Theorem 1.4.

Theorem 3.1. Let r ě 2, and assume in addition to the assumptions of Theorem 1.4
that E rT r1 s ă 8 and E rM r

1 s ă 8. Then the family of random variables
"∣∣∣∣Zptq ´ at?

t

∣∣∣∣r : t ě 1

*

(3.1)

is uniformly integrable, and consequently (1.12) holds with convergence of all mo-
ments (absolute and ordinary) of orders ď r.

Proof. It will be convenient to use τptq “ Nptq ` 1 instead of Nptq, since τptq is a
stopping time. We thus define, similarly to (2.1),

Z2ptq :“
ZpTτptqq ´ aTτptq

?
t

“ t´1{2
τptq
ÿ

i“1

`

ηi ´ aξi
˘

. (3.2)

Since |ηn| ďMn by (1.7) and (1.10), we have, using also (2.1) and (2.6),

|Z2ptq ´ Z 1ptq| “

∣∣∣∣ητptq ´ aξτptq?
t

∣∣∣∣ ď Mτptq ` |a|ξτptq
?
t

“
Yτptq
?
t
, (3.3)

Thus (2.5) yields ∣∣∣∣Zptq ´ at?
t

´ Z2ptq

∣∣∣∣ ď 2Yτptq
?
t

(3.4)

and consequently ∣∣∣∣Zptq ´ at?
t

∣∣∣∣ ď ∣∣Z2ptq∣∣` 2Yτptq
?
t
. (3.5)

Since ZpTτptqq “ Vτptq by (1.8), the uniform integrability of
 

|Z2ptq|r : t ě 1
(

follows by [2, Theorem 4.2.3(ii)] applied to
řτptq
i“1 pηi with pηi :“ ηi ´ aξi; note that

E |η1|r ď E rM r
1 s ă 8 and thus also E |pη1|r ă 8.

Furthermore, recalling ξ1 “ T1, the assumptions and (2.6) yield E |Y1|r ă 8. The
family tτptq{t : t ě 1u is uniformly integrable by [2, (2.5.6), see also the more general
Theorem 3.7.1], and τptq are stopping times, and thus [2, Theorem 1.8.1] shows that
the family

 

|Yτptq|
r{t : t ě 1

(

is uniformly integrable. Since r ě 2, this implies that

also the family
 `

|Yτptq|{
?
t
˘r

: t ě 1
(

is uniformly integrable.
The uniform integrability of (3.1) now follows by (3.5). As is well known, this

implies moment convergence in (1.12), see e.g. [3, Theorem 5.5.9]. �
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Corollary 3.2. Suppose Zptq is a stochastic process with regenerative increments

over Tn such that E rT 2
1 s and E rM2

1 s are finite, and Var rZpT1q ´
EZpT1q
ET1 T1s ą 0.

Then

Zptq ´ E rZptqs
a

VarrZptqs

d
ÝÑ Np0, 1q, as tÑ8. (3.6)

Proof. Note that
∣∣ZpT1q∣∣ ď M1 by (1.11), and thus E rZpT1q2s ă 8. It follows that

the assumptions of Theorem 1.4 hold, and so do the assumptions of Theorem 3.1
with r “ 2.

Hence, (1.12) holds, with

E rZptqs “ at` o
`
?
t
˘

, (3.7)

Var rZptqs “
`

σ2{µ` op1q
˘

t. (3.8)

The result (3.6) follows from (1.12) and (3.7)–(3.8) by Cramér–Slutsky’s theorem.
�

4. Law of large numbers

As a complement to the results on asymptotic normality, we give both weak and
strong laws of large numbers for processes with regenerative increments. The strong
law is given in [4], but repeated here for completeness.

Theorem 4.1. Suppose Zptq is a stochastic process with regenerative increments
over Tn such that µ :“ E rT1s and a :“ E rZpT1qs{µ are finite. In addition, let M1 be
defined by (1.11).

(i) (Weak LLN.) If M1 ă 8 a.s., then Zptq{t
p
ÝÑ a as tÑ8.

(ii) (Strong LLN [4, Theorem 2.54].) If EM1 ă 8, then Zptq{t
a.s.
ÝÑ a as tÑ8.

Proof. By [2, Theorem 4.2.1], we have the strong law of large numbers

ZpTτptqq

t
“
Vτptq

t
a.s.
ÝÑ

E rZpT1qs
E rT1s

“ a. (4.1)

Moreover, τptq{t
a.s.
ÝÑ 1{µ by [2, Theorem 2.5.1(i)], and thus [2, Theorem 1.2.3(i)]

(with r “ 1) shows that
ητptq

t
a.s.
ÝÑ 0. (4.2)

Consequently,

ZpTNptqq

t
“
ZpTτptqq ´ ητptq

t
a.s.
ÝÑ a. (4.3)

Hence, the weak and strong laws in (i) and (ii) are equivalent to, respectively,

Zptq ´ ZpTNptqq

t

p
ÝÑ 0, (4.4)

Zptq ´ ZpTNptqq

t
a.s.
ÝÑ 0. (4.5)

The proof is completed as follows.
(i): We have, by (1.10) and (1.4),

MNptq`1 “ sup
TNptqďsďTNptq`1

∣∣Zpsq ´ ZpTNptqq∣∣ ě ∣∣Zptq ´ ZpTNptqq∣∣. (4.6)
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Lemma 2.2 with Yn :“Mn shows that MNptq`1{t
p
ÝÑ 0, and thus (4.4) follows from

(4.6).

(ii): Since Nptq{t
a.s.
ÝÑ 1{µ ą 0 [2, Theorem 2.5.1(i)], (4.5) is equivalent to

Zptq ´ ZpTNptqq

Nptq
a.s.
ÝÑ 0, as tÑ8, (4.7)

and thus to

sup
TnďtăTn`1

|Zptq ´ ZpTnq|
n

a.s.
ÝÑ 0, as nÑ8. (4.8)

Define

M 1
n :“ sup

Tn´1ďtăTn

|Zptq ´ ZpTn´1q|, n ě 1; (4.9)

cf. (1.10) and note that

Mn “M 1
n _ |ZpTnq ´ ZpTn´1q|. (4.10)

We can write (4.8) as

M 1
n`1

n
a.s.
ÝÑ 0, as nÑ8. (4.11)

Since the sequence tM 1
nu is i.i.d., (4.11) is equivalent to

EM 1
1 ă 8, (4.12)

see [3, Proposition 6.1.1]. Furthermore, E |ZpT1q| ă 8 by assumption, and thus
(4.10) shows that (4.12) is equivalent to

EM1 “ E rM 1
1 _ |ZpT1q|s ă 8. (4.13)

The chain of equivalences above shows that (4.5) is equivalent to (4.13). �

Remark 4.2. The proof shows that, under the assumption that E rT1s and E rZpT1qs
are finite, the strong law of large numbers Zptq{t

a.s.
ÝÑ a holds if and only if E rM1s ă

8. The gap between the conditions in (i) and (ii) is thus not an artefact of the
proof. 4

5. The mean

We add also some further results for the mean. First, we note the estimate (3.7)
obtained above when T1 and M1 have finite second moments can be improved. In
fact, [4, Theorem 2.85] shows the following. (The assumptions in [4] are slightly
more general. Also, [4] states only the non-arithmetic case, but the arithmetic case
is similar.) For completeness, we give a proof later.

Theorem 5.1 (Essentially [4, Theorem 2.85]). Suppose Zptq is a stochastic process
with regenerative increments over Tn such that E rT 2

1 s, E rM1s, and E rT1M1s are
finite. (In particular, this holds if E rT 2

1 s and E rM2
1 s are finite.) Then

E rZptqs “ at`Op1q. (5.1)

More precisely,

(i) If the distribution of T1 is non-arithmetic, then, as tÑ8,

E rZptqs “ at` a
E rT 2

1 s

2µ
`

1

µ
E
„
ż T1

0
Zpsqds´ T1ZpT1q



` op1q. (5.2)
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(ii) If the distribution of T1 is arithmetic with span d, then

E rZptqs “ at` a
E rT 2

1 s

2µ
`
ad

2
`

1

µ
E

»

–d

T1{d´1
ÿ

k“1

Zpkdq ´ T1ZpT1q

fi

fl` op1q

“ at` a
E rT 2

1 s

2µ
´
ad

2
`

1

µ
E

»

–d

T1{d
ÿ

k“1

Zpkdq ´ T1ZpT1q

fi

fl` op1q. (5.3)

as tÑ8 with t P dN.

Remark 5.2. In the special case Zptq :“ VNptq for some sequence Vn as in (1.5), i.e.,
in the case Zptq “ ZpTnq for Tn ď t ă Tn`1, (5.1) is a special case of [2, Theorem
4.2.4(i) with Remark 4.2.10], and the proof given there shows also (5.2) and (5.3).

The even more special case Zptq :“ Nptq is classical, see [2, Theorem 2.5.2] and
[4, Proposition 2.84]. 4

Under weaker moment assumptions (where asymptotic normality does not nec-
essarily hold), we have the following results. (Proofs are given below.) First, we
assume only finite expectations.

Theorem 5.3. Suppose Zptq is a stochastic process with regenerative increments
over Tn such that E rT1s and E rM1s are finite. Then

E rZptqs “ at` optq, as tÑ8. (5.4)

More generally, we have the following theorem that “interpolates” between The-
orems 5.1 and 5.3. Note that the case r “ 1 is Theorem 5.3 (which we have stated
separately for emphasis), and that Theorem 5.1 is a substitute for the excluded case
r “ 0.

Theorem 5.4. Suppose Zptq is a stochastic process with regenerative increments
over Tn. Let 0 ă r ď 1.

(i) If E rT 2´r
1 s, E rM1s, and E rT 1´r

1 M1s are finite, then

E rZptqs “ at` optrq, as tÑ8. (5.5)

(ii) In particular, (5.5) holds if there exist p ě 2 ´ r and q ě 1 such that E rT p1 s
and E rM q

1 s are finite, and

p
´

1´
1

q

¯

ě 1´ r. (5.6)

Remark 5.5. In the special case Zptq :“ VNptq as in Remark 5.2, (5.4) follows from

[2, Theorem 4.2.1 with Remark 4.2.10]. Moreover, in this case and for r P p12 , 1q,
under somewhat stronger moment assumptions, (5.5) follows from [2, Theorem 4.2.2
with Remark 4.2.10]. These theorems in [2] yield also estimates for higher moments
of Zptq ´ at; we leave it to the reader to extend those results to general processes
with regenerative increments.

The special case Zptq “ Nptq of (5.4) is the elementary renewal theorem. Fur-
thermore, in this special case, (5.5) was proved in [5]. 4

Proof of Theorem 5.3. Consider pZptq :“ Zptq ´ at, which also is a process with re-

generative increments over Tn; we have E r pZpT1qs “ E rZpT1qs ´ aE rT1s “ 0 and

xM1 :“ sup
0ďtďT1

| pZptq| ďM1 ` |a|T1. (5.7)
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Hence, by replacing Zptq with pZptq, it follows that we may without loss of generality
assume E rZpT1qs “ 0 and thus a “ 0. (We could have done so also in earlier proofs,
but we preferred to stay close to [4].)

Thus assume a “ 0. Recall that τptq is a stopping time, and note that E rτptqs ă 8
for every t ě 0, see e.g. [2, Theorem 2.3.1(ii) or Theorem 2.4.1]. Hence Wald’s
equation [2, Theorem 1.5.3(i)], [4, Proposition 2.53] applies to ZpTτptqq “ Vτptq,
which yields

E
“

ZpTτptqq
‰

“ E rτptqs ¨ E rZpT1qs “ 0. (5.8)

Furthermore, it follows from (1.4), (1.10), and τptq “ Nptq ` 1 that∣∣Zptq ´ ZpTτptqq∣∣ ď ∣∣Zptq ´ ZpTNptqq∣∣` ∣∣ZpTτptqq ´ ZpTNptqq∣∣ ď 2Mτptq. (5.9)

Consequently,∣∣E rZptqs∣∣ “ ∣∣E “

Zptq ´ ZpTτptqq
‰∣∣ ď E

∣∣Zptq ´ ZpTτptqq∣∣ ď 2EMτptq. (5.10)

Moreover, τptq are stopping times, with τptq{tÑ 1{µ a.s. as tÑ8, and the random
variables tτptq{t : t ě 1u are uniformly integrable, see [2, Theorem 2.5.1 and (2.5.6)
(or Theorem 3.7.1)]. Hence, [2, Theorem 1.8.1] shows that the assumption E rM1s ă

8 implies

E
“

Mτptq

‰

“ optq, (5.11)

and the result follows from (5.10) �

Proof of Theorem 5.4. We note first that (ii) follows from (i) and Hölder’s inequality.
In fact, suppose that the assumptions of (ii) hold. If q ą 1, let q1 be the conjugate
exponent defined by 1{q1 “ 1´ 1{q; then

E
“

T 1´r
1 M1

‰

ď E
“

T
q1p1´rq
1

‰1{q1 E
“

M q
1

‰1{q
ă 8, (5.12)

since (5.6) says p{q1 ě 1 ´ r and thus p ě q1p1 ´ rq. Hence, the assumptions of (i)
hold. The case q “ 1 occurs by (5.6) only for r “ 1, and then the result immediately
follows from (i).

It thus suffices to prove (i). As in the proof of Theorem 5.3, we may assume a “ 0.
Then (5.10) holds, and the result follows from the following lemma. �

Lemma 5.6. As in Lemma 2.2, let Tn be a sequence of renewal times and let Yn,
n ě 1, be another sequence of random variables such that the random vectors pξn, Ynq
are i.i.d. Let 0 ă r ď 1 and assume that E rT1s, E rY1s and E rT 1´r

1 Y1s are finite.
Then

EYτptq “ optrq as tÑ8. (5.13)

Proof. The case r “ 1 follows by [2, Theorem 1.8.1] as for (5.11) in the proof of
Theorem 5.3. Hence, we may assume 0 ă r ă 1. We may also assume that Yn ě 0,
by otherwise replacing Yn by |Yn|.

With these assumptions, we argue similarly to the proof of Lemma 2.2. We have

E
“

Yτptq
‰

“ E
8
ÿ

n“0

1tTn ď t ă Tn`1u ¨ Yn`1

“ E
8
ÿ

n“0

E
“

Yn`1 ¨ 1tTn ď t ă Tn`1u | Tn
‰
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“ E
8
ÿ

n“0

E
“

Yn`1 ¨ 1t0 ď t´ Tn ă ξn`1u | Tn
‰

“ E
8
ÿ

n“0

hpt´ Tnq, (5.14)

where now

hpsq :“ 1ts ě 0uE
“

Y11tξ1 ą su
‰

“ 1ts ě 0uE
“

Y11tT1 ą su
‰

. (5.15)

Define, for r, ε ą 0,

hr,εpsq :“ ps´r ^ εqhpsq. (5.16)

If t ě tε :“ ε´1{r, then t´r ď s´r ^ ε for every s P r0, ts, and thus (5.14) implies

t´r E
“

Yτptq
‰

“ E
8
ÿ

n“0

t´rhpt´ Tnq ď E
8
ÿ

n“0

hr,εpt´ Tnq

“

ż 8

0
hr,εpt´ uq dUpuq. (5.17)

By (5.15)–(5.16), hr,εpsq is decreasing on r0,8q with, using Fubini’s theorem,
ż 8

0
hr,εpsqds ď

ż 8

0
s´rhpsqds “

ż 8

0
E
“

Y11tT1 ą sus´r
‰

ds

“ E
ż 8

0
Y11tT1 ą sus´r ds “

1

1´ r
E
“

Y1T
1´r
1

‰

ă 8. (5.18)

Hence, hr,εpsq is directly Riemann integrable, and thus (5.17) and the key renewal
theorem yield, in the non-arithmetic case, for every ε ą 0,

lim sup
tÑ8

t´r E
“

Yτptq
‰

ď lim
tÑ8

ż 8

0
hr,εpt´ uqdUpuq “

1

µ

ż 8

0
hr,εpsq ds “: λr,ε. (5.19)

Moreover, hr,εpsq Ñ 0 as ε Ñ 0 for every fixed s by (5.16), and the inequality
hr,εpsq ď s´rhpsq together with (5.18) allows us to use the dominated convergence
theorem and conclude that

lim
εÑ0

λr,ε “
1

µ
lim
εÑ0

ż 8

0
hr,εpsq ds “ 0. (5.20)

Hence, (5.13) follows from (5.19).
The case when T1 is arithmetic is similar; if d is the span of T1, then it suffices to

consider n P dN, and we then have (5.19) with

λr,ε :“
d

µ

8
ÿ

n“0

hr,εpndq. (5.21)

Again, λr,ε Ñ 0 as εÑ 0 by dominated convergence, and (5.13) follows. �

The following example shows that the condition (5.6) is best possible.

Example 5.7. Let α ą 1 and β ą 0. Let the renewal times Tn be given by (1.1)
where ξi are i.i.d. and have the Pareto distribution with Prξn ą ts “ t´α for t ě 1.
(Thus ET1 “ E ξ1 ă 8, since α ą 1.) Let Zptq be the process

Zptq :“ ξβτptq1tt ě TNptq ` 1u. (5.22)
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Recall (1.4), and note that Zptq is càdlàg and that ZpTnq “ 0 for all n; consequently
E rZpT1qs “ 0 and a “ 0. Then, for any t ě 1,

PrZptq ą tβs “
8
ÿ

n“0

P
“

Tn ` 1 ď t ă Tn`1, ξn`1 ą t
‰

“

8
ÿ

n“0

PrTn ` 1 ď tsPrξn`1 ą ts

“

8
ÿ

n“0

PrTn ď t´ 1st´α

“ Upt´ 1qt´α. (5.23)

Since Uptq{t Ñ 1{µ ą 0 as tÑ8, and Uptq ě Up0q “ 1, we have Upt ´ 1q ą ct for
some c ą 0 and all t ě 1. Hence, for t ě 1,

PrZptq ą tβs ą ct1´α (5.24)

and thus

E rZptqs ą ct1`β´α. (5.25)

Consequently, (5.4) does not hold for r :“ 1` β ´ α.
If we are given p, q ě 1 and 0 ă r ă 1 such that (5.6) does not hold, i.e.,

p
´

1´
1

q

¯

ă 1´ r, (5.26)

choose β :“ p{q and α :“ β ` 1´ r. Note that α ą 1 since (5.26) yields

p´ β ă 1´ r (5.27)

and thus

α ą p ě 1. (5.28)

This also implies E rT p1 s ă 8. Furthermore, M1 ď ξβ1 “ T β1 and thus E rM q
1 s “

E rT p1 s ă 8. We have seen that (5.4) does not hold. 4

Finally, we give a proof of Theorem 5.1, since the statement and proof in [4] do
not explicitly include the arithmetic case. (We find it illustrative to include both
cases in our proof. The ideas are similar to the proof in [4], although the details
differ.)

Proof of Theorem 5.1. First, the two expressions in (5.3) are equal, since their dif-
ference is ad´ 1

µ E rdZpT1qs “ ad´ da “ 0.

Next, note that in the case Zptq “ at, simple calculations show that (5.2) and (5.3)
hold (without the remainder term). Hence, we may again replace Zptq by Zptq ´ at
and thus assume that a “ 0.

We then have E rZpTτptqqs “ 0 by (5.8). We argue as in (5.14) and obtain, recalling
that ζn`1 in (1.6) is independent of Tn and noting that absolute convergence holds
by (5.9) and (5.14) (with Yn :“Mn),

E rZptqs “ E
“

Zptq ´ ZpTτptqq
‰

“ E
8
ÿ

n“0

1tTn ď t ă Tn`1u ¨
`

Zptq ´ ZpTn`1q
˘
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“ E
8
ÿ

n“0

E
“`

Zptq ´ ZpTn`1q
˘

¨ 1tTn ď t ă Tn`1u | Tn
‰

“ E
8
ÿ

n“0

E
“`

Zptq ´ ZpTn`1q
˘

¨ 1t0 ď t´ Tn ă ξn`1u | Tn
‰

“ E
8
ÿ

n“0

gpt´ Tnq, (5.29)

where

gpsq :“ 1ts ě 0uE
“`

Zpsq ´ ZpT1q
˘

1tT1 ą su
‰

. (5.30)

We have by (5.9), for s ě 0,

|gpsq| ď E
“`

Zpsq ´ ZpT1q
˘

1tT1 ą su
‰

ď E
“

2M11tT1 ą su
‰

“ 2hpsq, (5.31)

where we let hpsq be as in (5.15) with Y1 :“ M1. Then hpsq is decreasing on r0,8q
and

ż 8

0
hpsq ds “ E rM1T1s ă 8 (5.32)

by the calculation in (5.18) with r “ 0, and thus hpsq is directly Riemann integrable.
Furthermore, since Zpsq is assumed to be càdlàg, it follows from (5.30), using (5.9)
and dominated convergence, that gpsq also is càdlàg, and in particular a.e. continu-
ous. Hence, using (5.31), gpsq too is directly Riemann integrable, see [4, Proposition
2.88(c)]. In the non-arithmetic case, (5.29)–(5.30) and the key renewal theorem now
yield, using Fubini’s theorem justified by (5.31) and (5.32),

E rZptqs Ñ
1

µ

ż 8

0
gpsq ds “

1

µ

ż 8

0
E
“`

Zpsq ´ ZpT1q
˘

1tT1 ą su
‰

ds

“
1

µ
E
„
ż T1

0
Zpsqds´ T1ZpT1q



. (5.33)

(This also follows by [4, Theorem 2.45], applied to Xptq :“ Zptq ´ ZpTτptqq.) In the
arithmetic case, with span d, we obtain instead, as tÑ8 with t P dN,

E rZptqs Ñ
d

µ

8
ÿ

k“0

gpkdq “
d

µ

8
ÿ

k“0

E
“`

Zpkdq ´ ZpT1q
˘

1tT1 ą kdu
‰

“
1

µ
E

»

–d

T1{d´1
ÿ

k“0

Zpkdq ´ T1ZpT1q

fi

fl . (5.34)

Since we have assumed a “ 0, these results (5.33) and (5.34) show (5.2) and (5.3),
which completes the proof. �
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