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1 Introduction and main results24

In this paper, we consider fringe trees of random plane trees with given vertex statistics, i.e.,25

a given number of vertices of each degree. As an application, we also give corresponding26

result for random simply generated trees (or conditioned Galton–Watson trees). The main27

results are laws of large numbers and central limit theorems for the number of fringe trees of28

a given type.29

Let T be the set of all (finite) plane rooted trees (also called ordered rooted trees); see30

e.g., [9]. Denote the size, i.e. the number of vertices, of a tree T by |T |. The (out)degree of a31

vertex v ∈ T , denoted dT (v), is its number of children in T ; thus leaves have degree 0 and32

all other vertices have strictly positive degree. The degree statistic of a rooted tree T is the33

sequence nT = (nT (i))i≥0, where nT (i) := |{v ∈ T : dT (v) = i}| is the number of vertices of34

T with i children. We have35

|T | =
∑
i≥0

nT (i) = 1 +
∑
i≥0

inT (i). (1)36

A sequence n = (n(i))i≥0 is the degree statistic of some tree if and only if
∑
i≥0 n(i) =37

1 +
∑
i≥0 in(i). For such sequences, we let |n| :=

∑
i≥0 n(i) be the size of n, and we write Tn38

for the set of plane rooted trees with degree statistic n. We let Tn be a uniformly random39

element of the set Tn, and we denote this by Tn ∼ Unif(Tn). It is also well known that the40
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23:2 Fringe trees for random trees with given vertex degrees

total number of plane rooted trees with degree statistic n is given by (see [23, Exercise 6.2.1])41

|Tn| =
1
|n|

(
|n|
n

)
= 1
|n|

|n|!∏
i≥0 n(i)! . (2)42

For T ∈ T and a vertex v ∈ T , let Tv be the subtree of T rooted at v consisting of v and43

all its descendants. We call Tv a fringe (sub)tree of T . We regard Tv as an element of T and44

let, for T, T ′ ∈ T,45

NT ′(T ) := |{v ∈ T : Tv = T ′}| =
∑
v∈T

1{Tv=T ′}, (3)46

i.e., the number of fringe subtrees of T that are equal (i.e., isomorphic to) to T ′. A random47

fringe subtree T fr of T ∈ T is the random rooted tree obtained by taking the fringe subtree48

Tv at a uniform random vertex v ∈ T . Thus, the distribution of T fr is given by49

P(T fr = T ′) = NT ′(T )
|T |

, for T ′ ∈ T. (4)50

51

We prove an asymptotic result on the distribution of a random fringe subtree in a random52

rooted plane tree with a given degree statistic. In order to state the theorem, we need a little53

more terminology. (See also Section 1.2 for some notation.) For a degree statistic n, denote54

by p(n) = (pi(n))i≥0 its (empirical) degree distribution, i.e.,55

pi(n) := n(i)
|n| , for i ≥ 0. (5)56

57

In this paper, we assume for convenience the following condition.58

I Condition 1. nκ = (nκ(i))i≥0, κ ≥ 1, are degree statistics such that as κ→∞:59

(i) |nκ| → ∞,60

(ii) For every i ≥ 0, we have pi(nκ)→ pi, where p = (pi)i≥0 is a probability distribution on61

N0.62

I Remark 2. The condition that p is a probability distribution is no restriction. In fact, the63

degree distribution p(nκ) has mean64 ∑
i≥0

ipi(nκ) = 1
|nκ|

∑
i≥0

inκ(i) = |nκ| − 1
|nκ|

< 1, (6)65

66

and thus the sequence of distributions p(nκ) is always tight. Hence, if pi(nκ)→ pi, for every67

i ≥ 0, then p = (pi)i≥0 is a probability distribution. Note also that (ii) says that p(nκ)68

converges weakly to p, as κ→∞. (As is well known, this is equivalent to convergence in69

total variation.)70

By (6) and Fatou’s lemma, if Condition 1 holds, then
∑
i≥0 ipi ≤ 1. Conversely, it is71

easily seen that any such probability distribution p is the limit of p(nκ) for some sequence72

of degree statistics nκ. In other words, the set of probability distributions p that can appear73

as limits in Condition 1 is precisely the set of probability distributions p on N0 with mean74 ∑
i≥0 ipi ≤ 1; we denote this set by P1(N0).75

For a probability distribution p = (pi)i≥0 ∈ P1(N0), let Tp be a Galton–Watson tree with76

offspring distribution p, and define πp as the distribution of Tp, i.e., (with 00 := 1 as usual)77

πp(T ) := P(Tp = T ) =
∏
i≥0

p
nT (i)
i =

∏
i∈D(T )

p
nT (i)
i , for T ∈ T, (7)78

79
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where80

D(T ) := {i : nT (i) > 0} = {dT (v) : v ∈ T}, (8)81
82

the set of degrees that appear in T . Note that πp(T ) = 0 ⇐⇒ pi = 0 for some i ∈ D(T ).83

In particular, if nκ and p are as in Condition 1, then πp(T ) = 0 if and only if nκ(i) = o(|nκ|)84

for some i ∈ D(T ).85

We first give a law of large numbers for the number of fringe trees of a given type in a86

random rooted plane tree with a given degree statistic. The proofs of this and the following87

theorem are given in later sections.88

I Theorem 3. Let nκ, κ ≥ 1, be some degree statistics that satisfy Condition 1, and let89

Tnκ ∼ Unif(Tnκ). For every fixed T ∈ T, as κ→∞:90

(i) (Annealed version) P(T fr
nκ = T ) = E[NT (Tnκ)]

|nκ|
→ πp(T ).91

(ii) (Quenched version) P(T fr
nκ = T | Tnκ) = NT (Tnκ)

|nκ|
→ πp(T ) in probability.92

In other words, the random fringe tree converges in distribution as κ → ∞: (i) says93

T fr
nκ

d−→ Tp, or equivalently L(T fr
nκ) → L(Tp), and (ii) is the conditional version L

(
T fr

nκ |94

Tnκ
) p−→ L(Tp).95

I Remark 4. Similar results are known for several other models of random trees. In particular,96

a version of Theorem 3 was proved by Aldous [2] for conditioned Galton–Watson trees with97

finite offspring variance; this was extended to general simply generated trees in [19, Theorem98

7.12]. In those cases, the degree statistic is random, but Condition 1 holds in probability,99

with a non-random limiting probability distribution p. We return to simply generated trees100

in Section 5. Another standard example is family trees of Crump–Mode–Jagers branching101

processes (which includes e.g. random recursive trees, binary search trees and preferential102

attachment trees); see e.g. [2] and [17, Theorem 5.14].103

Theorem 3 is thus a law of large numbers for the number of fringe trees of a given type.104

In this work, we also study the fluctuations and prove a central limit theorem for this number;105

we furthermore show that this holds jointly for different types of fringe trees.106

For a probability distribution p = (pi)i≥0 ∈ P1(N0) and T, T ′ ∈ T, let107

ηp(T, T ′) := (|T | − 1)(|T ′| − 1)−
∑
i≥0

nT (i)nT ′(i)
pi

, (9)108

109

where we interpret 0/0 := 0, and, for T 6= T ′,110

γp(T, T ) := πp(T ) + ηp(T, T )(πp(T ))2, (10)111

γp(T, T ′) := NT ′(T )πp(T ) +NT (T ′)πp(T ′) + ηp(T, T ′)πp(T )πp(T ′). (11)112
113

Note that ηp(T, T ′) = −∞ if pi = 0 for some i ∈ D(T ) ∩ D(T ′). In this case, πp(T ) =114

πp(T ′) = 0, and we interpret ∞ · 0 := 0 in (10)–(11); thus γp(T, T ′) is always finite.115

I Theorem 5. Let nκ, κ ≥ 1, be some degree statistics that satisfy Condition 1 and let116

Tnκ ∼ Unif(Tnκ). For a fixed m ≥ 1, let T1, . . . , Tm ∈ T be a fixed sequence of rooted plane117

trees. Then, as κ→∞,118

ENTi(Tnκ) = πp(Ti)|nκ|+ o(|nκ|), (12)119

Var(NTi(Tnκ)) = γp(Ti, Ti)|nκ|+ o(|nκ|), (13)120

Cov
(
NTi(Tnκ), NTj (Tnκ)

)
= γp(Ti, Tj)|nκ|+ o(|nκ|), (14)121

122

CVIT 2016



23:4 Fringe trees for random trees with given vertex degrees

for 1 ≤ i, j ≤ m, and123 (
NTj (Tnκ)− E[NTj (Tnκ)]√

|nκ|

)m
j=1

d−→ N(0,Γp), (15)124

125

where the covariance matrix is defined by Γp := (γp(Ti, Tj))mi,j=1. Furthermore, in (15), we126

can replace E[NTi(Tnκ)] by |nκ|πp(nκ)(Ti).127

If T ∈ T with πp(T ) > 0 and |T | > 1, then γp(T, T ) > 0 and thus (13) and (15) (with128

m = 1) show that NT (Tnκ) is asymptotically normal, with129

NT (Tnκ)− E[NT (Tnκ)]√
Var(NT (Tnκ))

d−→ N(0, 1), κ→∞. (16)130

131

The case |T | = 1 is trivial, with NT (Tnκ) = nκ(0) non-random. Ignoring this case,132

Theorem 5 shows that NT (Tnκ) is asymptotically normal when πp(T ) > 0. On the other133

hand, if πp(T ) = 0, then also γp(T, T ) = 0, and the theorems above do not give precise134

information on the asymptotic distribution of NT (Tnκ). In this case, [3, Theorem 1.7] in the135

full version is more precise.136

In the case of critical conditioned Galton–Watson trees with finite offspring variance,137

(joint) normal convergence of the subtree counts in analogy to (15) was proved in [20,138

Corollary 1.8] (together with convergence of mean and variance). Indeed, [20, Theorem 1.5]139

proved, more generally, asymptotic normality of additive functionals that are defined via toll140

functions (under some conditions); see [3, Section 8] in the full version for further discussion141

on additive functionals.142

I Remark 6. Results on asymptotic normality for fringe tree counts have also been proved143

earlier for several other classes of random trees. For example, for binary search trees see [7],144

[8], [6], [12], [16]; for random recursive trees see [11], [16]; for increasing trees see [13]; for145

m-ary search trees and preferential attachment trees see [18]; for random tries see [21].146

Our approach relies on a multivariate version of the Gao–Wormald theorem [14, Theorem147

1]; see [3, Theorem A.1]. The original Gao–Wormald theorem [14] provides a way to show148

asymptotic normality by analysing the behaviour of sufficiently high factorial moments.149

(Typically, factorial moments are more convenient than standard moments in combinatorics.)150

The multivariate version [3, Theorem A.1] extends this by considering joint factorial moments.151

In our framework, this is very convenient since we can precisely compute the joint factorial152

moments of the subtree counts in (3) for random trees with given degree statistics. (Another,153

closely related, multivariate version of the Gao–Wormald theorem has independently been154

shown recently by Hitczenko and Wormald [15].)155

The (one dimensional) Gao–Wormald theorem has been used before by Cai and Devroye156

[5] to study large fringe trees in critical conditioned Galton–Watson trees with finite offspring157

variance. Indeed, they considered fringe subtree counts of a sequence of trees instead of a158

fixed tree. In particular, they showed that asymptotic normality still holds in some regimes,159

while in others there is a Poisson limit. In a forthcoming work, we will study the case of not160

fixed fringe trees in the framework of random trees with given degrees.161

1.1 Organization of the paper162

In Section 2 we provide exact formulas for factorial moments of NT (Tn). These formulas163

are then used in Sections 3–4 to prove our main results. An application to simply generated164

trees is given in Sections 5.165
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1.2 Some notation166

In addition to the notation introduced above, we use the following standard notation.167

We let Z := {. . . ,−1, 0, 1, . . . }, N := {1, 2, . . . }, N0 := {0, 1, 2, . . . }. We let 0 denote also168

vectors and matrices with all elements 0 (the dimension will be clear from the context). We169

use standard o and O notation, for sequences and functions of a real variable.170

1E is the indicator function of an event E , and δij := 1{i=j} is Kronecker’s delta.171

For x ∈ R and q ∈ N0, we let (x)q := x(x−1) · · · (x−q+1) denote the qth falling factorial172

of x. (Here (x)0 := 1. Note that (x)q = 0 whenever x ∈ N0 and x− q + 1 ≤ 0.)173

We interpret 0/0 = 0 and 0 · ∞ = 0.174

We use d−→ for convergence in distribution, and p−→ for convergence in probability, for175

a sequence of random variables in some metric space. Also, L(X) denotes the distribution176

of X, and d= means equal in distribution. We write N(0,Γ) for the multivariate normal177

distribution with mean vector 0 and covariance matrix Γ := (γij)mi,j=1, for m ∈ N. (This178

includes the case Γ = 0; in this case X ∼ N(0,Γ) means that X = 0 ∈ Rm a.s.)179

Unspecified limits are as κ→∞.180

2 Moment computations181

In this section, we compute the joint factorial moments of NT1(Tn), . . . , NTm(Tn), for m ≥ 1182

and a sequence of distinct rooted plane trees T1, . . . , Tm ∈ T, where Tn is a uniformly random183

tree of Tn, for a degree statistic n. Before that, we need to introduce some notation. For184

1 ≤ i, j ≤ m, let185

τij := NTi(Tj)1{i 6=j} (17)186
187

be the number of proper fringe subtrees of Tj that are equal to Ti. (Note that many of188

these terms are 0. In particular, if we order T1, . . . , Tm according to their sizes, the matrix189

(τij)mi,j=1 is strictly triangular.)190

For q1, . . . , qm ∈ N0, note that the product (NT1(Tn))q1 · · · (NTm(Tn))qm is the number of191

sequences of q := q1 + · · ·+ qm distinct fringe subtrees of Tn, where the first q1 are copies of192

T1, the next q2 are copies of T2, and so on. Given such a sequence of fringe subtrees, we say193

that these fringe subtrees are marked. Furthermore, for each such sequence of marked fringe194

subtrees of Tn, say that a tree in the sequence is bound if it is a fringe subtree of another195

tree in the sequence; otherwise it is free. Note that the free trees are disjoint. Furthermore,196

each bound tree in the sequence is a fringe subtree of exactly one free tree. For a sequence197

b = (b1, . . . , bm) ∈ Nm0 , let Sb(Tn) be the number of such sequences of q fringe trees such that198

exactly bi of the fringe trees Ti are bound, for 1 ≤ i ≤ m. We thus have199

E
[
(NT1(Tn))q1 · · · (NTm(Tn))qm

]
=
∑
b∈Nm0

E[Sb(Tn)]. (18)200

201

The sum is really only over b = (b1, . . . , bm) ∈ Nm0 such that 0 ≤ bi ≤ qi for 1 ≤ i ≤ m, since202

otherwise Sb(Tn) = 0. This sum can be computed by the following lemma.203

I Lemma 7. Let n be a degree statistic and let Tn ∼ Unif(Tn). For m ≥ 1 and q1, . . . , qm ∈ N,204

let T1, . . . , Tm ∈ T be a sequence of distinct rooted plane trees such that |n| ≥
∑m
j=1(qj −205

bj)(|Tj | − 1) + 1. Then E[Sb(Tn)] is equal to206

|n|
(|n|)1+

∑m

j=1
(qj−bj)(|Tj |−1)

∏
i≥0

(n(i))∑m

j=1
(qj−bj)nTj (i)

m∏
j=1

(qj)bj (
∑m
k=1(qk − bk)τjk)

bj

bj !
,

(19)

207

208

CVIT 2016



23:6 Fringe trees for random trees with given vertex degrees

for every b = (b1, . . . , bm) ∈ Nm0 such that 0 ≤ bi ≤ qi, for 1 ≤ i ≤ m.209

Proof. If
∑m
j=1(qj − bj)nTj (i) > n(i) for some i ≥ 0, then both E[Sb(Tn)] and (19) are 0.210

We may thus assume that
∑m
j=1(qj − bj)nTj (i) ≤ n(i) for all i ≥ 0.211

First, let us consider the case when all fringe trees are free, that is, the case b = 0 =212

(0, . . . , 0) ∈ Nm0 . Replace each marked fringe subtree in Tn by a single leaf; moreover, mark213

this leaf and order all marked leaves into a sequence, corresponding to the order of the fringe214

subtrees. This yields another tree T̃ , which we call a reduced tree, with a sequence of q215

marked leaves. Since Tn has n(i) vertices of degree i, for i ≥ 0, and we have replaced qj216

copies of Tj by leaves, the degree statistic ñ = (ñ(i))i≥0 of T̃ is given by217

ñ(i) :=
{
n(i)−

∑m
j=1 qjnTj (i), i ≥ 1,

n(0)−
∑m
j=1 qjnTj (0) +

∑m
j=1 qj , i = 0,

(20)218

219

and has size220

|ñ| :=
∑
i≥0

ñ(i) = |n| −
m∑
j=1

qj(|Tj | − 1). (21)221

222

There is a one-to-one correspondence between trees in Tn with a sequence of marked fringe223

subtrees as above, and reduced trees with the degree statistic (20) and a sequence of q marked224

leaves. If we ignore the marks, the number of possible reduced trees is given by (2) with the225

degree statistic ñ in (20). In each unmarked reduced tree, the number of ways to choose226

sequences of marked leaves is (ñ(0))q1+···+qm . Thus, the number of trees in Tn with marked227

sequences of free fringe subtrees is the product of these numbers, i.e.,228

(|ñ| − 1)!∏
i≥0 ñ(i)! (ñ(0))∑m

j=1
qj

= (|ñ| − 1)!∏
i≥0(n(i)−

∑m
j=1 qjnTj (i))!

. (22)229

230

By dividing with |Tn|, which is given by (2), and using (21), we find231

E[S0(Tn)] = 1
(|n| − 1)∑m

j=1
qj(|Tj |−1)

∏
i≥0

(n(i))∑m

j=1
qjnTj (i). (23)232

233

Now consider the general case with a sequence b = (b1, . . . , bm) telling the number of234

bound fringe subtrees. There are thus qj − bj free trees of type Tj . The number of ways to235

choose the positions of the bound trees in the sequences of fringe trees is
∏m
j=1

(
qj
bj

)
, and for236

each choice of free trees, there are
∑m
k=1(qk − bk)τjk possible bound trees of type Tj ; thus237

the number of choices of the bound trees is238

m∏
j=1

(qj)bj (
∑m
k=1(qk − bk)τjk)

bj

bj !
. (24)239

240

The number of trees in Tn with sequences of qj − bj free trees Tj , for 1 ≤ j ≤ m, is given by241

replacing qj by qj − bj in (20)–(22). Hence, we obtain (19), extending (23). J242

We record two important special cases of Lemma 7 (see the proof of [3, Lemma 3.3] in243

the full version for details).244

I Lemma 8. Let n be a degree statistic and let Tn ∼ Unif(Tn).245

(i) For q ∈ N and T ∈ T such that |n| ≥ q|T | − q + 1,246

E[(NT (Tn))q] = |n|
(|n|)q|T |−q+1

∏
i≥0

(n(i))qnT (i). (25)247

248
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(ii) For distinct T, T ′ ∈ T such that |n| ≥ |T |+ |T ′| − 1,249

E[NT (Tn)NT ′(Tn)] = NT (T ′)E[NT ′(Tn)] +NT ′(T )E[NT (Tn)]250

+ |n|
(|n|)|T |+|T ′|−1

∏
i≥0

(n(i))nT (i)+nT ′ (i). (26)251

252

3 Proof of Theorems 3253

In this section we prove Theorem 3. In what follows we will frequently use the following254

well-known estimate (see for example, [3, Lemma 4.1]).255

I Lemma 9. If x ≥ 1 is a real number and 0 ≤ k ≤ x/2 is an integer, then256

(x)k = xk exp
(
−k(k − 1)

2x +O

(
k3

x2

))
. (27)257

258

We start by proving the following theorem.259

I Theorem 10. Let T ∈ T be a fixed tree. Then, uniformly for all degree statistics n =260

(n(i))i≥0,261

ENT (Tn) = |n|πp(n)(T ) +O(1), (28)262

VarNT (Tn) = |n|γp(n)(T, T ) +O(1). (29)263
264

More generally, if T, T ′ ∈ T, then265

Cov
(
NT (Tn), NT ′(Tn)

)
= |n|γp(n)(T, T ′) +O(1). (30)266

267

Proof. Note first the trivial bound268

NT (Tn) ≤ n(i)
nT (i) ≤ n(i), i ∈ D(T ), (31)269

270

since the copies of T in Tn are distinct. Furthermore, by (7) and (5),271

|n|πp(n)(T ) ≤ |n|pi(n) = n(i), i ∈ D(T ). (32)272
273

Hence, (28) is trivial if n(i) = O(1) for some i ∈ D(T ). In particular, we may in the sequel274

assume n(i) ≥ 2nT (i) for every i ≥ 0, and thus |n| ≥ 2|T |. Then, by (25) (with q = 1) and275

Lemma 9,276

ENT (Tn) = |n|1−|T |
∏

i∈D(T )

n(i)nT (i)
277

× exp

 |T |(|T | − 1)
2|n| −

∑
i∈D(T )

nT (i)(nT (i)− 1)
2n(i) +O

( ∑
i∈D(T )

1
n(i)2

)278

= |n|πp(n)(T )279

× exp

 |T |(|T | − 1)
2|n| −

∑
i∈D(T )

nT (i)(nT (i)− 1)
2n(i) +O

( ∑
i∈D(T )

1
n(i)2

) ,

(33)

280

281

which implies (28) by (32).282

CVIT 2016



23:8 Fringe trees for random trees with given vertex degrees

Similarly, taking q = 2 in (25), and now assuming as we may n(i) ≥ 4nT (i) for every283

i ≥ 0,284

E(NT (Tn))2 = |n|
(|n|)2|T |−1

∏
i∈D(T )

(n(i))2nT (i)285

= |n|2−2|T |
∏

i∈D(T )

n(i)2nT (i)
286

× exp

 (2|T | − 1)(2|T | − 2)
2|n| −

∑
i∈D(T )

2nT (i)(2nT (i)− 1)
2n(i) +O

( ∑
i∈D(T )

1
n(i)2

)287

=
(
|n|πp(n)(T )

)2
288

× exp

 (2|T | − 1)(|T | − 1)
|n| −

∑
i∈D(T )

nT (i)(2nT (i)− 1)
n(i) +O

( ∑
i∈D(T )

1
n(i)2

) ,

(34)

289

290

Hence, using also (33),291

E(NT (Tn))2 =
(
ENT (Tn)

)2
292

× exp

 (|T | − 1)2

|n| −
∑

i∈D(T )

nT (i)2

n(i) +O
( ∑
i∈D(T )

1
n(i)2

) . (35)293

294

Consequently, using (28) and noting that ENT (Tn) = O(n(i)) for i ∈ D(T ) by (28) and (32),295

Var[NT (Tn)] = E(NT (Tn))2 + ENT (Tn)−
(
ENT (Tn)

)2
296

=
(
ENT (Tn)

)2

 (|T | − 1)2

|n| −
∑

i∈D(T )

nT (i)2

n(i)

+ ENT (Tn) +O(1)297

=
(
|n|πp(n)(T )

)2

 (|T | − 1)2

|n| −
∑

i∈D(T )

nT (i)2

n(i)

+ |n|πp(n)(T ) +O(1),

(36)

298

299

which yields (29) by the definitions (10), (9) and (5).300

For the proof of (30) we use (26). The first two terms are handled by (28), and the final301

term is treated as in (34)–(36) with mainly notational differences; we omit the details. J302

Proof of Theorem 3. By Condition 1, we have pi(nκ) → pi for every i ≥ 0, and thus303

πp(nκ)(T )→ πp(T ). Hence, (i) follows from (28).304

Moreover, it follows from (9)–(10) that γp(nκ)(T, T ) = O(1) (for a fixed T ), and thus (29)305

yields VarNT (Tnκ) = O(|nκ|). Therefore, (ii) follows from (i) and Chebyshev’s inequality. J306

4 Proof of Theorems 5307

We have now all the ingredients to prove Theorem 5.308

Proof of Theorem 5. First note that Condition 1 implies309

πp(nκ)(Ti)→ πp(Ti) and γp(nκ)(Ti, Tj)→ γp(Ti, Tj), for 1 ≤ i, j ≤ m. (37)310
311
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Hence, (12)–(14) follow from (28)–(30) in Theorem 10.312

We next prove the asymptotic normality result in (15). Note first that (28) implies that313

it does not matter whether we use E[NTi(Tnκ)] or314

µnκ(T ) := |nκ|πp(nκ)(T ) = |nκ|
∏
i≥0

pi(nκ)nT (i) = |nκ|
∏

i∈D(T )

pi(nκ)nT (i). (38)315

316

in (15).317

If πp(Ti) = 0, for some 1 ≤ i ≤ m, then it follows from (10) that γp(Ti, Ti) = 0, and thus318

(13) yields Var[NTi(Tnκ)] = o(|nκ|); consequently, (28) and Chebyshev’s inequality yield, as319

κ→∞,320

NTi(Tnκ)− E[NTi(Tnκ)]√
|nκ|

p−→ 0. (39)321

322

Hence, convergence of the i-th component in (15) is trivial in this case. Furthermore,323

πp(Ti) = 0 also implies γp(Ti, Tj) = 0 for every 1 ≤ j ≤ m by (11), noting that if324

NTi(Tj) > 0 then also πp(Tj) = 0. Thus, we may ignore all i in (15) with πp(Ti) = 0 and325

show (joint) convergence for the remaining ones, because then (15) in general will follow326

from [4, Theorem 3.9 in Chapter 1]. Consequently, we henceforth assume that πp(Ti) > 0327

for all 1 ≤ i ≤ m. Equivalently, pk > 0 for every k ∈
⋃m
i=1D(Ti). We may also assume that328

T1, . . . , Tm are distinct.329

To see the main idea of the proof, we consider only the univariate case m = 1. The330

general case follows similarly by a multidimensional version of the Gao–Wormald theorem331

[3, Theorem A.1] in the full version. The main complication in the multivariate case is332

the possibility that fringe trees of type Tj may contain fringe trees of type Tk for some333

1 ≤ j, k ≤ m; we thus use the decomposition in (18) and estimate the terms separately; we334

refer to the proof of [3, Theorem 1.5] in the full version for details.335

We then consider m = 1 and omit the index 1 and write T instead of T1. In this case,336

we can use the Gao–Wormald theorem [14, Theorem 1] and the following estimate. For any337

qκ = O(|nκ|1/2), (25) and Lemma 9 yield, recalling the definitions (5), (7), (9), (10), and338

(38) of pi(n), πp(T ), ηp(T, T ), γp(T, T ), and µnκ(T ),339

E[(NT (Tnκ))qκ ] =
∏
i≥0 nκ(i)qκnT (i)

|nκ|qκ(|T |−1) exp

(qκ(|T | − 1)
)2

2|nκ|
−
∑
i≥0

(
qκnT (i)

)2

2nκ(i) + o(1)

340

= |nκ|qκ
∏
i≥0

pi(nκ)qκnT (i) exp

(qκ(|T | − 1)
)2

2|nκ|
−
∑
i≥0

(
qκnT (i)

)2

2nκ(i) + o(1)

341

=
(
|nκ|πp(nκ)(T )

)qκ exp
(

q2
κ

2|nκ|
ηp(nκ)(T, T ) + o(1)

)
342

= µnκ(T )qκ exp
( (γp(nκ)(T, T )− πp(nκ)(T ))|nκ|

2µnκ(T )2 q2
κ + o(1)

)
343

= µnκ(T )qκ exp
(
γp(T, T )|nκ| − µnκ(T )

2µnκ(T )2 q2
κ + o(1)

)
. (40)344

345

If γp(T, T ) > 0, we may now apply the Gao–Wormald theorem [14, Theorem 1] with346

µκ := µnκ(T ) and σ2
κ := γp(T, T )|nκ| and conclude (16), which by (13) is equivalent to (15)347

(with m = 1). The case γp(T, T ) = 0 is trivial, since then (13) implies (39). Alternatively,348

for any γp(T, T ), we may take the same µκ but σ2
κ := |nκ| in the case m = 1 of our version349

[3, Theorem A.1] of the Gao–Wormald theorem. J350
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5 Application to simply generated trees351

Let Tn denote the (finite) subset of all plane rooted trees of size n ∈ N. Let w = (wi)i≥0 be352

a sequence of non-negative real weights with w0 > 0 and wi > 0 for at least one i ≥ 2. For a353

finite rooted plane tree T ∈ T, we define the weight of T to be354

w(T ) :=
∏
v∈T

wdT (v) =
∏
i≥0

w
nT (i)
i . (41)355

356

For n ∈ N, let Zn(w) =
∑
T∈Tn w(T ). If Zn(w) > 0, then we define the random tree Tw,n357

by picking an element of Tn at random with probability proportional to its weight, i.e.,358

P(Tw,n = T ) = w(T )
Zn(w) , for T ∈ Tn. (42)359

360

The random tree Tw,n is called simply generated tree of size n and weight sequence w;361

see e.g. [9] and [19]. If w is a probability distribution (i.e.,
∑
i≥0 wi = 1), then Tw,n is a362

Galton–Watson tree with offspring distribution w conditioned to have n vertices.363

Let Φw(z) =
∑
i≥0 wiz

i be the generating function of the weight sequence w, and let364

ρw ∈ [0,∞] be its radius of convergence. For 0 ≤ s < ρw, we let365

Ψw(s) := sΦ′w(s)
Φw(s) =

∑
i≥0 iwis

i∑
i≥0 wis

i
. (43)366

Furthermore, if Φw(ρw) <∞, we define also Ψw(ρw) by (43); if Φw(ρw) =∞ then we define367

Ψw(ρw) := lims↑ρw Ψw(s); the limit exists by [19, Lemma 3.1 (i)]. Let νw := Ψw(ρw) ∈ [0,∞],368

and define369

τw =
{
ρw if νw < 1,
Ψ−1

w (1) if νw ≥ 1.
(44)370

371

It follows from [19, Lemma 3.1] that372

ρw > 0 ⇐⇒ νw > 0 ⇐⇒ τw > 0. (45)373
374

The following result from [19] shows that simply generated trees satisfy Condition 1 in375

probability.376

I Theorem 11 ([19, Theorem 7.1 and Theorem 7.11]). Let w be a sequence of non-negative377

real weights with w0 > 0 and wi > 0 for at least one i ≥ 2. Define378

θi(w) = wiτ
i
w

Φw(τw) , for i ≥ 0. (46)379

380

Then, θ(w) = (θi(w))i≥0 is a probability distribution with expectation µw = min(1, νw) and381

variance σ2
w = τwΨ′w(τw) ∈ [0,∞]. Moreover, for n ∈ N with Zn(w) > 0, let Tw,n be a simply382

generated tree of size n and weight sequence w. Then, the (empirical) degree distribution383

p(nTw,n) of Tw,n satisfies, for every i ≥ 0, pi(nTw,n) p−→ θi(w), as n→∞ (along integers n384

such that Zn(w) > 0).385

Note that if ρw = 0, then θ0(w) = 1 and θi(w) = 0 for i ≥ 1; otherwise, τw > 0 and (46)386

shows that θi(w) > 0 ⇐⇒ wi > 0 for i ≥ 0.387

Using Theorem 11, we can show that Theorem 5 implies the following version for388

conditioned Galton–Watson trees. The asymptotic normality (49) was proved in case (i) by389

different methods in [20, Corollary 1.8]; (ii) and (iii) are new.390
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I Theorem 12 (partly [20]). Let w be a sequence of non-negative real weights with w0 > 0391

and wi > 0 for at least one i ≥ 2. Moreover, for n ∈ N with Zn(w) > 0, let Tw,n be a simply392

generated tree of size n and weight sequence w. For fixed m ≥ 1, let T1, . . . , Tm ∈ T be a fixed393

sequence of rooted plane trees. Then, as n→∞ (along integers n such that Zn(w) > 0),394 (
NTj (Tw,n)− E[NTj (Tw,n) | nTw,n ]

√
n

)m
j=1

d−→ N(0,Γθ(w)), (47)395

396

where the covariance matrix Γθ(w) is defined by (10)–(11), and for 1 ≤ j ≤ m,397

E[NTj (Tw,n) | nTw,n ] = n

(n)|Tj |

∏
i≥0

(nTw,n(i))nTj (i). (48)398

399

Furthermore, suppose that the weight sequence w satisfies one of the following conditions:400

(i) νw ≥ 1 and σ2
w ∈ (0,∞).401

(ii) νw ≥ 1, σ2
w =∞ and θ(w) belongs to the domain of attraction of a stable law of index402

α ∈ (1, 2]. (The last condition is equivalent to that there exists a slowly varying function403

L : R+ → R+ such that
∑k
i=0 i

2θi(w) = k2−αL(k), as k →∞ [10, Theorem XVII.5.2].)404

(iii) 0 < νw < 1 and θi(w) = ci−β + o(i−β), as i→∞, with fixed c > 0 and β > 2.405

Then, as n→∞ (along integers n such that Zn(w) > 0),406 (
NTj (Tw,n)− nπθ(w)(Tj)√

n

)m
j=1

d−→ N(0, Γ̃θ(w)), (49)407

408

where the covariance matrix Γ̃θ(w) = (γ̃θ(w)(Ti, Tj))mi,j=1 is given by, for T, T ′ ∈ T such that409

T 6= T ′,410

γ̃θ(w)(T, T ) = πθ(w)(T )−
(
2|T | − 1 + ς−2

w
)

(πθ(w)(T ))2, (50)411

γ̃θ(w)(T, T ′) = NT ′(T )πθ(w)(T ) +NT (T ′)πθ(w)(T ′)412

−
(
|T |+ |T ′| − 1 + ς−2

w
)
πθ(w)(T )πθ(w)(T ′), (51)413

414

with ς2
w = σ2

w in case (i), and ς2
w =∞ in cases (ii) and (iii).415

I Remark 13. Recall that for any weight sequence w and any constants a, b > 0, the weight416

sequence ŵ = (ŵi)i≥0 with ŵi := abiwi is equivalent to w, i.e., it satisfies that Tw,n
d= Tŵ,n,417

for all n for which either (and thus both) of the random trees are defined; this is a consequence418

of (42). In the setting of Theorem 11, if ρw > 0, then the weight sequence w is equivalent to419

the weight sequence θ(w) = (θi(w), i ≥ 0), which is a probability distribution with mean420

µw = min(1, νw); see further [19, Section 7]. Thus, if ρw > 0 we can regard Tw,n as a421

Galton–Watson tree Tθ(w),n with offspring distribution θ(w) conditioned to have n vertices.422

This explains the appearance of θ(w) in Theorem 12, and it shows that there is no real loss of423

generality to consider (as is often done) only the case τw = 1 when θ(w) = w. Note that the424

conditioned Galton–Watson tree Tθ(w),n is critical if νw ≥ 1, and subcritical if 0 < νw < 1.425

The complete proof of Theorem 12 is given in [3, Section 7] of the full version. Here, we only426

comment on the main ideas. Indeed, for any fixed degree statistic n with P(nTw,n = n) > 0,427

(42) implies that conditionally given nTw,n = n, Tw,n ∼ Unif(Tn); see e.g., [1, Proposition 8].428

By the Skorohod coupling theorem [22, Theorem 4.30], we can assume that the convergence429

in Theorem 11 holds a.s.; in other words, Condition 1 holds a.s. for the degree statistics nTw,n ,430

with p = θ(w). Moreover, e.g. by resampling Tw,n conditioned on nTw,n , we may assume431
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that also conditioned on the entire sequence of degree statistics (nTw,n)∞n=1, the random trees432

Tw,n, n ≥ 1, have the (conditional) distributions Unif(TnTw,n
). It follows that we may apply433

Theorem 5 conditioned on the sequence of degree statistics (nTw,n)∞n=1; this shows that (47)434

holds conditioned on (nTw,n)∞n=1. Then, (47) also holds unconditionally by the dominated435

convergence theorem. Furthermore, (48) follows from Lemma 8 (with q = 1). On the other436

hand, the central idea to obtain the unconditional limit (49) is by combining the conditional437

limit (47) with a limit result for the conditional expectations in (48). For this, one uses a438

theorem on asymptotic normality of the degree statistics, which is proved in [20] and [24]439

(see also [3, Theorem 7.6] for a different approach).440

Theorem 12 gives a partial solution to [19, Problem 21.4], but the general case remains441

open.442

I Problem 14. Does (49) in Theorem 12 hold for any weight sequence w, with some443

covariance matrix Γ̃θ(w) = (γ̃θ(w)(Ti, Tj))mi,j=1?444
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