
Bit-array-based alternatives to HyperLogLog1

Svante Janson1 #Ñ2

Department of Mathematics, Uppsala University, Sweden3

Jérémie Lumbroso #Ñ4

Department of Computer Science, University of Pennsylvania, USA5

Robert Sedgewick2 # Ñ6

Department of Computer Science, Princeton University, USA7

Abstract8

We present a family of algorithms for the problem of estimating the number of distinct items in9

an input stream that are simple to implement and are appropriate for practical applications. Our10

algorithms are a logical extension of the series of algorithms developed by Flajolet and his coauthors11

starting in 1983 that culminated in the widely used HyperLogLog algorithm. These algorithms divide12

the input stream into M substreams and lead to a time-accuracy tradeoff where a constant number13

of bits per substream are saved to achieve a relative accuracy proportional to 1/
√

M . Our algorithms14

use just one or two bits per substream. Their effectiveness is demonstrated by a proof of approximate15

normality, with explicit expressions for standard errors that inform parameter settings and allow16

proper quantitative comparisons with other methods. Hypotheses about performance are validated17

through experiments using a realistic input stream, with the conclusion that our algorithms are18

more accurate than HyperLogLog when using the same amount of memory, and they use two-thirds19

as much memory as HyperLogLog to achieve a given accuracy.20

2012 ACM Subject Classification Theory of computation → Sketching and sampling21

Keywords and phrases Cardinality estimation, sketching, Hyperloglog22

Digital Object Identifier 10.4230/LIPIcs.AofA.2024.0023

Acknowledgements This work is dedicated to the memory of Philippe Flajolet24

1 Introduction25

Counting the number of distinct items in a data stream is a classic computational challenge26

with many applications. As an example, consider the stream of strings taken from a web27

log shown in the left column of Table 1 (we will use 1 million strings from this log of which28

N = 368, 217 are distinct values as a running example in this paper). There is no bound on29

the length of the stream, but maintaining an estimate of the number of different strings is30

useful for many purposes.31

One classic application is in computer networks. The ability to estimate the number of32

different visitors of a website is certainly of interest, and can be critical in maintaining the33

integrity of the site. For example, a significant drop in the percentage of distinct visitors in34

a given time period might be an indication that the site is under a denial-of-service attack.35

Another classic application is found in database systems, where estimating the number of36

different strings having each attribute is a critical piece of knowledge in implementing certain37

common data base operations. In this case, the length of the streams is available, but may38

be very large, and a rough estimate suffices, so using a streaming algorithm is appropriate.39

Elementary algorithms for solving the problem are standard in introductory computer40

science classes. Perhaps the simplest is to use a hash table, but that requires saving all the41

1 Supported by the Knut and Alice Wallenberg Foundation and the Swedish Research Council.
2 Corresponding author

© Svante Janson, Jérémie Lumbroso, and Robert Sedgewick;
licensed under Creative Commons License CC-BY 4.0

35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms.
Editors: Cécile Mailler and Sebastian Wild; Article No. 00; pp. 00:1–00:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:svante.janson@math.uu.se
https://www.katalog.uu.se/profile/?id=XX2949
https://orcid.org/0000-0002-9680-2790
mailto:lumbroso@seas.upenn.edu
https://github.com/jlumbroso/
https://orcid.org/0000-0002-5563-687X
mailto:rs@cs.princeton.edu
https://sedgewick.io
https://orcid.org/0009-0001-7238-7860
https://doi.org/10.4230/LIPIcs.AofA.2024.00
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

00:2 Bit-array-based alternatives to HyperLogLog

s x k r(x) sketch[]
81.95.186.98.freenet.com.ua 111...1111101111011110011101011 7 2 00000001
lsanca.dsl-w.verizon.net 011...1010100010001111110100000 3 0 00000001
117.222.48.163 110...0111001100000111011101101 6 1 00000001
1.23.193.58 100...0100101001000011101100011 4 2 00001001
188.134.45.71 101...0101111000101101000111001 5 1 00001001
gsearch.CS.Princeton.EDU 010...1010011011000011010000100 2 0 00001001
81.95.186.98.freenet.com.ua 011...1011110001110000111010000 3 0 00001001
81.95.186.98.freenet.com.ua 111...1111101111011110011101011 7 2 00001001
1.23.193.58 000...0100111001111101011100111 0 3 10001001
lnse3.cht.bigpond.net.au 111...0110011001011011101001110 7 0 10001001
117.211.88.36 000...1001100010100010010111010 0 0 10001001
1.23.193.58 000...0100111001111101011100111 0 3 10001001
lsanca.dsl-w.verizon.net 011...1010100010001111110100000 3 0 10001001
81.95.186.98.freenet.com.ua 111...1111101111011110011101011 7 2 10001001
gsearch.seas.upenn.edu 000...1000100011011010100001000 0 0 10001001
109.108.229.102 010...1010111101010110110011111 2 5 10101001
msnbot.search.msn.com 001...1001110110111001001101100 1 0 10101001

Table 1 Computing a sketch for HyperBitT (with M = 8 and T = 1)

items in memory, which is far too high a cost to be useful in typical applications. In fact,42

any method for computing an exact count must save all the items in memory (trivial proof:43

any item not saved might or might not be distinct from all the others, and that fact cannot44

be known until the last item is seen).45

Accordingly, we focus on estimating the count. In typical applications, exact counts are46

actually not needed—the estimates are being used to make relative decisions that do not47

require full accuracy.48

Since the seminal research by Flajolet and Martin in the 1980s [5][6] it has been known49

that we actually can get by with a surprisingly small amount of memory. The practical50

cardinality estimation problem is to estimate the number of distinct items in a data stream51

under the following constraints:52

Each item is examined only once.53

The time to process each item is a very small constant multiple of the size of the item.54

The amount of memory used is very small, no matter how large the stream.55

The estimate is expected to be within a small percentage of the real count.56

A solution to this problem typically is defined by an implementation that makes clear its57

time and space requirements and an analysis that provides a precise characterization of how58

the estimate compares to the actual value.59

60

For many years, the state of the art in solving the practical cardinality estimation problem61

has been HyperLogLog, the last in the series of algorithms developed by Flajolet and colleagues62

from the 1980s through the 2000s [4] [7] [9] [14]. HyperLogLog is based on four main ideas:63

Hashing is used to convert each item in the stream into a fixed-length binary number; the64

position of the rightmost zero is computed, taking the maximum value found as an estimate65

of the binary logarithm of the count; a technique known as stochastic averaging splits the66

stream into M independent substreams so that an average of experimental results can be67

S. Janson, J. Lumbroso, and R. Sedgewick 00:3

computed; and the harmonic mean is used to properly handle outlying values. One reason68

HyperLogLog is so widely used is that precise analysis of the bias in the estimate provides69

the basis for formulating hypotheses about how the algorithm will perform in practical70

situations, and the results of experiments that validate the hypotheses are presented. The71

analysis exposes a space-accuracy tradeoff, allowing practitioners to choose with confidence72

the amount of memory needed to achieve a given accuracy or the accuracy achieved for a73

given amount of memory use: For a stream with N distinct values and using M substreams,74

HyperLogLog uses M lg lg N bits and typically produces an estimate with a relative standard75

error of c/
√

M where c
.= 1.04.76

A series of theory papers have proven that O(M) bits are necessary and sufficient to77

achieve estimates with asymptotic accuracy on the same order as HyperLogLog, but these78

papers lack implementations, likely because the implied constants in the proofs are much79

too large for the methods to be viable in practice [1][10][11]. They also make the implicit80

assumption that strong assumptions on the hash functions are necessary (even to the point81

of dismissing algorithms like HyperLogLog as illegitimate). Strong hash functions add to the82

expense of processing each item, and the idea that using one makes any difference at all in83

practice is tenuous at best (see, for example, [3] for a discussion of this issue). In this paper,84

we focus on algorithms with the potential to be useful in practice—we use hash functions85

that are widely used in practice and hypothesize that any differences from the ideal are86

relatively insignificant. Any practical application of hashing, however perfect in theory, must87

assume, at least, that random bits exist, and therefore requires such a hypothesis.88

HyperLogLog uses 5M bits for N < 232, but much higher values are typical in modern89

applications. Since it is safe to assume that N < 264, HyperLogLog demonstrates that90

6M bits suffice for the practical cardinality estimation problem. Some improvements to91

HyperLogLog and some interesting new approaches to the problem have been studied in92

recent years [16] [19] [15] [12] [17] but we are still left with the following question: can we93

find a practical algorithm as simple as HyperLogLog with comparable accuracy that uses cM94

bits for some constant c that is significantly less than 6?95

In this paper, we provide answers to this question. The algorithms we present have96

the same structure as HyperLogLog but use much less memory—instead of recording the97

maximum number of trailing ones, we focus on one bit per sub-stream indicating whether a98

threshold has been hit. In Section 2, we use a rough estimate of the cardinality as an input99

parameter in order to set the threshold to be the logarithm of the extimated number of100

distinct items per substream. As such, the resulting algorithm is not a streaming algorithm,101

but it serves as a basis for the streaming algorithms in Section 3 and Section 4 that do solve102

the practical cardinality estimation problem, using just two bits per substream. In Section 5103

we conclude by discussing how these algorithms match up against those in the literature.104

2 HyperBitT105

Our first algorithm uses the standard technique of starting with a rough estimate of the106

cardinality and is therefore not properly a streaming algorithm, as no fixed estimate can107

remain accurate as the cardinality grows without bound. We consider this algorithm because,108

as we will see, it is sometimes useful in its own right, and it admits a precise analysis that109

we can use to develop the streaming algorithms in Section 3 and Section 4.110

We start with hashing and stochastic averaging with M substreams precisely as does111

HyperLogLog, but use just one bit per substream, as follows. Of course, we expect each112

substream to have about N/M distinct values, and it has been known since the original113

AofA 2024

00:4 Bit-array-based alternatives to HyperLogLog

Algorithm 1 HyperBitT.
public static int estimateHBT (Iterable <String > stream , int M, int T)
{

bit [] sketch [M];
for (String s : stream)
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // (lg M)-bit hash
if (r(x) > T) sketch [k] = 1; // more than T trailing 1s?

}
double beta = 1.0 - 1.0*p(sketch)/M; // fraction of 0s in sketch
return (int) (Math.pow (2, T)*M*Math.log (1.0/ beta));

}

work of Flajolet and Martin [5] that the maximum number of trailing 1s found among the114

items in a stream is a good estimator of the logarithm of the number of distinct items in the115

stream. (Indeed, this is the same as the length of the rightmost path in a random trie, a116

quantity that was studied in the 1970s.) In this spirit, we use a parameter T as an estimate117

of lg(N/M). That is, 2T is an estimate of N/M , and 2T M is an estimate of the cardinality118

N . Now, we maintain a sketch comprising an array of M bits, one per substream, and set119

the bit corresponding to a substream to 1 when an item from that substream has more than120

T trailing 1s. When we want to estimate the number of distinct values in the stream, it turns121

out that we can use a simple function of the number of 0 bits in the sketch to improve our122

estimate. The algorithm may produce an inaccurate result or fail completely if the rough123

estimate T is poorly chosen, but, as we will see, it is remarkably forgiving.124

Implementation125

We start with a bit array sketch[] with one bit per substream, initialized to all 0s. For126

clarity, we use a bit[] type to describe our algorithms—although few programming languages127

support an explicit bit[] type, the abstraction is easily implemented. For small M , we can128

use integer values; for large M , we can use shifting and masking on arrays of integers (see129

Appendix B). We typically use a power of two for convenience.130

For each new item s in the stream, we compute a hash value x to represent it and a131

second hash value k to identify its substream (typically, one might compute a 64-bit hash132

and use the leading lg M bits for k and the rest for x). Then we compute r(x), the number133

of trailing 1s in x. As described in Appendix B, this operation can be implemented with134

only a few machine-language instructions. If r(x) is larger than T, we set sketch[k] to 1.135

Table 1 is a trace of the process for a small sequence of hash values with M = 8 and T = 1.136

When the stream is exhausted, we compute a correction to the rough estimate of N = 2T M137

that takes into account some bias, as a function of the bit values in the sketch. Specifically,138

we are interested in the parameter β, the proportion of 0s in the sketch. As indicated139

by the analysis below, the appropriate correction factor is ln(1/β). If the sketch is small140

enough to fit in a computer word, computing the number of 1s in the sketch is a classic141

machine-language programming exercise and is actually a single instruction in many modern142

machine architectures. For clarity, we use the function p(sketch); for large M it is preferable143

to just increment a counter each time a sketch bit is changed from 0 to 1, as described in144

Appendix B. The implementation in Algorithm 1 follows immediately and is easily translated145

to any programming language.146

S. Janson, J. Lumbroso, and R. Sedgewick 00:5

If T is too small or too large, the algorithm fails because the estimate cannot be reasonably147

corrected (when β is close to 0 or 1, the correction factor is too large or too small to be useful).148

But, as we shall see, the algorithm does produce accurate results for a remarkably large149

range of cardinality values, and we can precisely characterize that range and the accuracy.150

Analysis.151

As a basis for developing an intuition about the problem, we start with an approximate152

analysis for the mean value of the number of distinct values in the stream. After N distinct153

values have been processed from the input stream, we have seen an average of N/M distinct154

values in each substream. As an approximation, assume that exactly N/M values go to155

each substream. The probability that a given value has at least T trailing 1s is 1/2T so the156

probability that a given bit in sketch[] remains 0 after N/M values are processed in its157

corresponding substream is given by a Poisson approximation158 (
1 − 1

2T

)N/M

∼ e−N/(M2T)
159

(see for example, [18]). The number of 0s in sketch[] is a binomially distributed random160

variable, so this value is also (approximately) β, the expected proportion of 0s in sketch[]161

after N values have been processed. Thus, N/M ∼ 2T ln(1/β) and the expected number of162

values processed is N ∼ M2T ln(1/β). In other words, we need to correct our rough estimate163

of the number of values per stream by the factor ln(1/β).164

A full detailed analysis provides much more information, which is critical for studying165

the performance of the algorithm. Specifically, we are able to approximate the distribution166

of the reported cardinality, which gives us the information needed to estimate how accurate167

it will be for given values of M .168

The proof is based on the idea of Poissonization—instead of assuming that we have a169

fixed given number N of distinct items, we assume that the number is random with a Poisson170

distribution. It uses two technical lemmas from probability theory:171

▶ Lemma 1. Suppose that Xn ≥ 0 are random variables and an, bn, and σ2 numbers such that,172

as n → ∞, we have an → a > 0, bn → 0, and (Xn−an)/bn
d−→ N(0, σ2). If f is a continuously173

differentiable function on (0, ∞) with f ′(a) ̸= 0, then (f(Xn) − f(an))/bn
d−→ N(0, f ′(a)2σ2).174

Proof. See Appendix A. ◀175

▶ Lemma 2. Let X ∼ Binomial(n, p) and let Y ∈ Poisson(np) where n > 0 and p ∈ [0, 1].176

Then the total variation distance between them dT V (X, Y) is no greater than p; in other177

words there exists a coupling of X and Y such that P(X ̸= Y) ≤ p.178

Proof. See Theorem 2.M and pages 1–8 in [2]. ◀179

▶ Theorem 3. Suppose that a stream S has N distinct items and that HyperBitT processes180

S using M substreams with parameter T and terminates with βM 0s left in the sketch. Then181

the statistic M2T ln(1/β) is approximately Gaussian with mean N and relative standard error182

cβ

/√
M where cβ =

√
1/β − 1

/
ln(1/β). Formally,183

√
M

cβ

(
M2T ln(1/β)

N
− 1

)
d−→ N(0, 1) (1)184

as N, M, T → ∞ with N = Θ(M2T).185

AofA 2024

00:6 Bit-array-based alternatives to HyperLogLog

Proof. Assume first that N ∼ aM2T for some a ∈ (0, ∞). Pretend that the distinct items186

in the stream arrive according to a Poisson process with rate 1. We then may consider the187

process at a given time Ñ . If we keep Ñ fixed, then the number of distinct items seen so far188

is a random variable obeying a Poisson distribution Poisson(Ñ). We let Ñ ∼ N ∼ aM2T .189

For reference, we summarize here the notations used in this proof:190

N ∼ aM2T , the cardinality of the stream seen so far when Algorithm 1 terminates191

a, a positive number192

N̂ = M2T ln(1/β), the reported estimate of N193

Ñ ∼ aM2T , the Poisson parameter194

Our goal is to approximate the distribution of N̂ .195

We begin by finding, in the Poisson model, the distribution of βM , the number of 0s in the196

sketch. Since a randomly thinned Poisson process is a new Poisson process, it follows that each197

of the M substreams is a Poisson process with rate 1/M , and thus the number of distinct items198

in each of them is Poisson(Ñ/M). These random numbers are independent, and each item in199

the kth substream has probability 2−T to set sketch[k] to 1. It follows that if the number of200

such items is Yk, then Yk is also Poisson, with Yk ∈ Poisson(2−T Ñ/M) = Poisson
(
Ñ/(M2T)

)
.201

Now, let q be the probability that sketch[k]=0 (which is the same for all k). Then202

q = P(Yk = 0) = exp
(

− Ñ

M2T

)
→ e−a. (2)203

Since the numbers Yk are independent, the total number of 0s in the sketch is204

βM ∈ Binomial(M, q). (3)205

with mean Mq and variance Mq(1 − q).206

As M → ∞, we have the normal approximation to the binomial:207

√
M(β − q) = Mβ − Mq√

M

d−→ N
(
0, e−a(1 − e−a)

)
. (4)208

Now, applying Lemma 1 with the function f(x) = ln(1/x) gives209

√
M

(
ln(1/β) − ln(1/q)

) d−→ N(0, ea − 1). (5)210

Consequently, since N̂ = M2T ln(1/β), M2T /Ñ → 1/a, and ln(1/q) = Ñ/M2T , we have211

√
M

(N̂

Ñ
− 1

)
=

√
M

M2T

Ñ

(
ln 1

β
− ln 1

q

)
d−→ N

(
0, a−2(ea − 1)

)
. (6)212

Furthermore, (5) implies ln(1/β) − ln(1/q) p−→ 0, and thus, using (2), ln(1/β) p−→ a; hence213

(6) implies (1) (with Ñ instead of N).214

This is the desired result for the Poisson model. To prove the result for a given number N215

of items, we use Lemma 2. We may assume that we start by selecting all items with at least T216

trailing 1s. Since each item is selected with probability 2−T , the number of selected items is217

Binomial(N, 2−T). Similarly, if we consider the Poisson model with Poisson(N) items (thus218

choosing N = Ñ above) then the number of selected items is Poisson(N2−T). By Lemma 2.219

we may couple the two versions such that the number of selected items agree with probability220

no less than 1 − 2−T → 1. Hence, (1) for a fixed N follows from the Poisson version.221

We have proved that (1) holds when N/(M2T) converges to a limit in (0, ∞). The more222

general assumption N = Θ(M2T) implies that every subsequence has a subsubsequence such223

that N/(M2T) converges, and thus (1) holds for the subsubsequence. As is well known, this224

implies that the full sequence converges (see Section 5.7 in [8]).225

◀226

S. Janson, J. Lumbroso, and R. Sedgewick 00:7

Figure 1 This plot shows the coefficient of 1/
√

M in the relative standard error cβ =√
1/β − 1

/
ln(1/β) (y-coordinate) for β (fraction of 0s in the sketch) between 0 and 1 (x-coordinate).

The value of cβ goes to infinity as β approaches 0 or 1, but it is relatively small when β is not close
to these extremes. For example, cβ < 1.5 when .043 < β < .541, cβ < 2 when .014 < β < .748, and
cβ < 3 when .0035 < β < .888.

To summarize, the goal of HyperBitT is to compute an estimate of N , the cardinality of227

the input stream. To do so, it takes two parameters228

M , the number of substreams (and the number of bits used)229

T , a rough estimate of lg(N/M)230

and, using an M -bit sketch, computes a value231

β, the fraction of 0s in the sketch.232

Theorem 3 provides formulas for two important pieces of information, as functions of β:233

the correction factor ln(1/β), leading to the estimate 2T M ln(1/β) for N234

the coefficient of 1/
√

M in the relative standard error cβ =
√

1/β − 1
/

ln(1/β)235

This is the information that we need to properly choose the value of T . Of most interest is236

the fact that cβ is relatively small and is large only when β is close to 0 or 1 (see Figure 1).237

If T is too small, then the sketch will be predominately 1s, and β will be close to 0; if T is238

too large, the sketch will be predominantly 0s and β will be close to 1.239

As an example, suppose that we take M = 1024 and aim to keep cβ < 1.5, which is the240

case when .043 < β < .541 (see Figure 1). As indicated in this table, each value of T leads241

to an accurate answer for a rather large range of values of N .242

T 6 7 8 9 10 11
M2T ln(1/β) for β = .541 40,261 80,522 161,044 322,089 644,177 1,288,356
M2T ln(1/β) for β = .043 206,212 412,425 824,850 1,649,701 3,299,402 6,598,804

243

Validation244

The purpose of our analysis is to enable us to hypothesize that the cardinality returned by245

HyperBitT behaves as described by Theorem 3 and to set parameter values that keep the246

error low. As with any scientific study, our confidence in the result grows with the number247

of experiments that validate it, so we can only give an initial indication. (For example,248

practitioners have confidence in a similar hypothesis for HyperLogLog because it has been249

used in a wide variety of practical situations for years.)250

AofA 2024

00:8 Bit-array-based alternatives to HyperLogLog

of 0s in sketch[] Mβ 228 253 257 261 265

estimated cardinality 2T M ln(1/β) 393,773 366,498 362,386 358,338 354,351

estimated relative accuracy cβ/
√

M 3.9% 3.9% 3.9% 3.9% 3.9%

actual relative accuracy 6.9% 0.5% 1.6% 2.7% 3.8%

Table 2 Since it is based on hash values, HyperBitT produces a different result every time it is
run. The following table shows the result of five consecutive runs of HyperBitT for our sample web
log with these parameter values. The last line compares the estimated cardinality with the actual
value 368,217. Since our estimate of the standard error is conservative (cβ is usually smaller than
1.5), four of the five runs produced estimates well within the desired 5%. Since the distribution is
Gaussian, the outlier in the first experiment is not unexpected.

The hypothesis rests on three main assumptions. First, we assume that the data we have251

and that the hash functions we use have the idealized properties stipulated in the analysis,252

or that deviations from this ideal are relatively insignificant. Second, we assume that the253

second hash function splits the stream into each substream with equal probability, or that254

deviations from this ideal are relatively insignificant. Third, we assume that deviations from255

approximations in the analysis are relatively insignificant.256

For example, suppose that we wish to use HyperBitT to estimate the number of distinct257

strings in the web log described in Section 1. To do so, we need to specify the values of the258

two parameters: M (the number of bits of memory we need to use to achieve the accuracy259

that we want) and T (where 2T M is our rough guess of the cardinality).260

First, we choose the value of M . As an example, suppose that we are looking for an261

accurate answer, say with 5% relative error. Referring to Figure 1, if β is in the range262

(.043, .541), then cβ < 1.5 and M = 1024 will do the trick, because 1.5/
√

1024 .= .0469 . This263

is a conservative choice because cβ is usually much smaller than 1.5 in that range.264

Next, we choose the value of T . Suppose we decide that it is a reasonable guess that265

the unique values comprise somewhere between 20% and 80% of the stream (a rather wide266

range). This leads to the choice T = 8 because M2T ln(1/β) is between 161,044 and 824,851267

(and cβ < 1.5) when β is between .541 and .043.268

Table 2 shows the experimental results that constitute a quick validation check. Figure 2269

describes two experiments that each run it 10 thousand times, which both are strong evidence270

of the validity of our analysis and our hypotheses about the performance of HyperBitT.271

272

It is important to reiterate that HyperBitT is not a streaming algorithm. For example, it273

could not be used without some periodic adjustments for our web log example, where the log274

may be monitored for weeks, months, or even years, and therefore could consists of billions275

or trillions of strings or more. But there are many situations where HyperBitT may be useful276

because the estimate need not be very accurate and there are reasonable approaches to277

coming up with one. In a database or similar application, one might take a random sample.278

In a web log or similar application, one might take a small sample from initial values, or run279

multiple offsetting streams, using the estimate from one as the rough guess for another. For280

example, in protecting against a denial-of-service attack, the whole point might be to just281

set off an alarm when the cardinality deviates significantly from an expected range.282

S. Janson, J. Lumbroso, and R. Sedgewick 00:9

(a) 100 trials every 10,000 inputs up to 1 million (b) 10,000 trials with 1 million inputs

Figure 2 Results of estimating cardinalities in a web log, each with 10,000 trials. In Figure 2(a)
HyperBitT was run 100 times for the first 10,000, 20,000, 30,000, . . . items in the log, up to 1 million.
Each grey dot shows the result of one experiment and the colored dots are the average of the values
for each set of 100 experiments. A black line that shows the actual number of distinct items in the
stream is completely hidden by the colored dots. The histogram in Figure 2(b) plots the estimates
returned by HyperBitT for 10,000 runs on the first 1 million strings in the web log. The distribution
matches a Gaussian, centered on the true number of distinct values, with relative standard deviation
about 1.25/

√
M

.= 0.039 (plotted in color), thus validating Theorem 3 and our hypothesis that the
estimated cardinality is likely to be within within 5% of the true value.

3 HyperBitBit and HyperBitBitBit283

In this section, we describe variants of the algorithm that can adapt as the number of unique284

values grows, by making T a variable and then increasing it as needed.285

Obviously, T needs to increase when the sketch becomes nearly full of 1s. The first286

approach that comes to mind is to plan to increase T by one when the sketch becomes nearly287

full and to maintain a second sketch with 1 bits corresponding to whether or not an item288

with at least T+1 trailing 1s has been seen. Then, when the sketch is nearly full, we can289

increment T and replace the first sketch with the second one. But then we need to replace290

the second sketch. We could use a third sketch (and we will, when M is not small), but then291

do we need a fourth sketch? Moreover, when the sketch for T is nearly full of 1s, so is the292

sketch for T+1, so incrementing T by 1 does not help much.293

So we want to increment T by more than one. But by how much? Recall that our294

analysis indicates that the accuracy degrades as the number of 0s in the sketch grows, and295

incrementing T corresponds to increasing the number of 0s. Eventually we can stop when296

we encounter sketches that are all 0s, but we are faced with a delicate balance between the297

amount by which we increment T and the number of sketches we might need. Theorem 3298

gives us precisely the information we need to make an intelligent choice.299

To fix ideas, take M = 64 and suppose that we consider the sketch to be “nearly full”300

when 62 of its bits are 1 (and therefore β = 2/62 .= 0.032). Now, we want to choose an301

increment i for T—we will maintain a second sketch for T+i and increment T by i when the302

sketch for T is 97% full of 1s. Our goal is to choose i such that we do not need to maintain303

a third sketch.304

AofA 2024

00:10 Bit-array-based alternatives to HyperLogLog

i 0 1 2 3 4 5 6 7 8
βi = exp(− ln(1/β)/2i) .03 .17 .42 .64 .80 .90 .95 .97 .99

Table 3 Fraction of zeros in sketches for T+i when the sketch for T is 97% full. The sketch for T
is 3% 0s, the sketch for T+4 is 80% 0s and the sketch for T+8 is 99% 0s.

Let βi be the fraction of 0s in the sketch for T+i. Because the estimated value of N does305

not change, we must have ln(1/β) = ln(1/βi)/2i. Solving for βi gives βi = exp(− ln(1/β)/2i).306

Table 3 shows these values for possible increments up to 8 (after that point, the sketches are307

increasingly likely to be all 0s).308

Specifically, Table 3 tells us something very important: for increments 4 or greater, there309

is no need to maintain a third sketch, because it would be nearly all zeros. With our choice310

to increment T by 4 when the sketch is 97% 0s, we know that at that time the sketch for311

T+4 is about 80% 0s and the sketch for T+8 would be about 99% 0s, so we can increment T,312

update our sketch for T using the sketch for T+4, and set the sketch for T+4 to all 0s. We313

may be ignoring a few 1s that would be in the sketch for T+8 had we maintained it, but the314

likelihood that ignoring them would noticeably affect the final estimate is very small. If we315

want to be very conservative, we could maintain the indices of these 1s, at a very small (if316

not negligible) extra cost, but few practitioners would bother.317

This discussion brings us to HyperBitBit64 (Algorithm 2). It uses M = 64, main-318

tains two sketches, increments T by 4, and updates the sketches when the first sketch319

becomes 97% full of 1s. The implementation also illustrates how to use 64-bit words320

for the sketches, which eliminates the overhead of maintaining bit arrays and leads to321

very simple and efficient code in typical programming environments, even machine lan-322

guage. For clarity, Algorithm 2 uses the call p(sketch) to count the number of 1s in the323

sketch. If this is not available as an atomic operation, one might choose the alternative324

of counting as the bits are set, as described in Appendix B and illustrated in the code at325

https://github.com/robert-sedgewick/hyperbitbit.326

From the above discussion, it is reasonable to hypothesize that when Algorithm 2327

terminates, sketch0 is the same as the sketch when Algorithm 1 is used with the current328

value of T. In other words, Theorem 3 applies throughout. As we saw in Table 3, just329

before incrementing T, sketch0 has about 97% 1s and sketch1 has about 20% 1s. Thus,330

the fraction of 0s in the sketches stays in the range .03 < β < .80, so the value of cβ is in331

the flat part of its curve (see Figure 1)—it is always less than 2.25 with average value about332

1
.77

∫ .80
.03 cβdβ

.= 1.48 . This is conservative—the number of 0s quickly increases when it is333

small, so cβ is more often than not less than this average.334

The end result is that HyperBitBit64 is a true streaming algorithm that uses just 128335

bits (plus six bits for T) to achieve an expected standard error which is usually lower than336

1.48/
√

64 .= 18.5% even for streams having billions or trillions or more distinct items. As we337

will see in Section 5, this accuracy is substantially better than that achieved by HyperLogLog338

for the same number of bits. The cost of processing each element is the cost of hashing plus339

a few machine-language instructions. In applications where 18.5% accuracy suffices (and340

developing a rough guess that would enable use of HyperBitT is infeasible), HyperBitBit64341

is likely to be the method of choice because of these low costs. For example, it would be quite342

useful in an application where maintaining large number of different cardinality counters are343

needed, each responding to some different filter of the input stream.344

For larger values of M (say 128 or 256) we can implement HyperBitBit with a bit array345

(perhaps implemented with an array of 64-bit integers as described in Appendix B) and do346

S. Janson, J. Lumbroso, and R. Sedgewick 00:11

Algorithm 2 HyperBitBit64.
public static int estimateHBB64 (Iterable <String > stream)
{

int T = 1;
int M = 64;
long sketch0 ;
long sketch1 ;
for (String s : stream)
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // 6-bit hash
if (r(x) > T) sketch0 = sketch0 | 1L << k; // >T trailing 1s?
if (r(x) > T+4) sketch1 = sketch1 | 1L << k;
if (p(sketch0) > .97*M) // >62 1s?
{ sketch0 = sketch1 ; sketch1 = 0; T += 4; }

}
double beta = 1.0 - 1.0*p(sketch0)/M; // fraction of 0s
return (int) (Math.pow (2, T)*M*Math.log (1.0/ beta));

}

even better. Specifically, it makes sense to set the cutoff to increment T when the relative347

standard error for the new value is equal to the current relative standard error. That is, with348

a = ln(1/β) and c(a) =
√

ea − 1/a, we increment T by 4 when c(a) = c(a/16). The solution349

to this equation is a = ln(1/β) .= 4.41 so β = e−a .= .012 That is, we should increment T by350

4 and update the sketches when sketch0 has .988M 1 bits. At that point, the proportion of351

0s in the sketch for T+4 will be about e−a/24 .= .75912. The proportion of 0s in the sketch352

for T+8 would be about e−a/28 .= .983, so we are ignoring (2, 4, 9) 1 bits for (128, 256,353

512) respectively, which is likely tolerable. The fraction of 0s in the sketches stays in the354

range .012 < β < .759, so the value of cβ is always less than 2.05 with average value about355

1
.747

∫ .759
.012 cβdβ

.= 1.46.356

HyperBitBitBit357

For even larger values of M , we can go to a third sketch, marking the subarrays with at least358

T, T+4, and T+8 trailing 1s and define HyperBitBitBit in a straightforward manner. The359

implementation is omitted because we present a significant improvement in Section 4. The360

proportion of 0s in the sketch for T+12 would be about e−a/212 .= .996, so we are ignoring (1,361

2, 4) 1 bits for (1024, 2048, and 4096) respectively, again likely tolerable.362

As just noted for HyperBitBit, the fraction of 0s in the sketches stays in the range .012 <363

β < .759, so the value cβ is always less than 2.05 with average value about 1
.747

∫ .759
.012 cβdβ

.=364

1.46. In summary, HyperBitBitBit is a true streaming algorithm, effective for M up to at365

least 4096, that uses 3M bits and achieves relative standard error of about 1.46/
√

M .366

4 HyperTwoBits367

Remarkably, we can produce the same result as HyperBitBitBit but using just 2M bits.368

The trick is to note that if a bit is set in the sketch for T+4, the bit in the corresponding369

position in the sketch for T must be set, and if a bit is set in the sketch for T+8, the bits in370

the corresponding positions in the sketches for both T+4 and T must be set. This observation371

means that we can represent the three sketches with an array of two-bit values that encode372

AofA 2024

00:12 Bit-array-based alternatives to HyperLogLog

Algorithm 3 HyperTwoBits.
public static int estimateHTB (Iterable <String > stream , int M)
{ // for M = 1024 , 2048 , or 4096

int T = 1;
twobit [] sketch = new twobit [M];
for (String s : stream)
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // (lg M)-bit hash
if (r(x) >= T) if (sketch [k] < 1) sketch [k] = 1;
if (r(x) >= T+4) if (sketch [k] < 2) sketch [k] = 2;
if (r(x) >= T+8) if (sketch [k] < 3) sketch [k] = 3;
if (pnz(sketch) > .988*M)
{

T = T+4;
for (int i = 0; i < M; i++)

if (sketch [i] > 0) sketch [i]--;
}

}
double beta = 1.0 - 1.0* pnz(sketch)/M;
return (long) (Math.pow (2, T)*M*Math.log (1/ beta));

}

in binary the number of 1s in each position in the three sketches in HyperBitBitBit, as373

shown in this example:374

sketch for T 11111111111011101111111111111111111110111011111100111111111
before sketch for T+4 00010011101000000000000100001100101100000011110000100000000

sketch for T+8 00000001000000000000000000000000000100000000110000100000000
two-bit values 11121123212011101111111211112211212310111022331100311111111

sketch for T 00010011101000000000000100001100101100000011110000100000000
after sketch for T+4 00000001000000000000000000000000000100000000110000100000000
T+=4 sketch for T+8 000

two-bit values 00010012101000000000000101001100101200000011220000200000000

375

Maintaining this array while streaming is simple: for each data item, we identify its stream376

and set its value as appropriate. Then when the number of nonzero values reaches the377

threshold, we increment T by 4 and simply decrement the nonzero values in the array.378

From this description, the implementation in Algorithm 3 is immediate. For clarity, we379

use a twobit[] type to describe the algorithm—although no programming languages support380

an explicit twobit[] type, the abstraction can be implemented with shifting and masking381

on arrays of integers, an amusing exercise in bit logic (see Appendix B). For clarity, we use382

a method pnz()) to count the nonzero entries in the array—its implementation is omitted383

because it is better to maintain the count dynamically (also see Appendix B).384

In summary, HyperTwoBits is a true streaming algorithm, effective for M up to at least385

4096, that uses 2M bits and achieves relative standard error of about 1.46/
√

M . As described386

in Appendix B, it can be implemented such that processing each item in a stream requires387

only a few machine-language operations.388

Figure 3 presents the results of two experiments for Algorithm 3 corresponding to those389

presented for Algorithm 1 in Figure 2, which validate our hypothesis that the relative390

S. Janson, J. Lumbroso, and R. Sedgewick 00:13

accuracies of the algorithms are comparable and are strong evidence of the utility of the391

algorithm in practice.392

(a) 100 trials every 10,000 inputs up to 1 million (b) 10,000 trials with 1 million inputs

Figure 3 Results of estimating cardinalities in a web log using Algorithm 3 with M = 1000, for
comparison with Figure 2 (where the details of the experiments are described). Given the same
inputs (and the same random numbers), the figures for HyperBitBitBit would be identical.

5 Performance comparisons393

Comparing the performance of our algorithms with each other and with cardinality estimation394

algorithms in the literature needs to be done carefully for several reasons.395

First, many papers from the theoretical computer science literature study algorithms396

implemented in pseudocode (or just described in English). While these papers often introduce397

interesting ideas, they cannot be evaluated as solutions to the practical cardinality estimation398

problem for two reasons. First, the methods described have never been implemented (and are399

sufficiently complicated that implementing them is not likely to be worthwhile) so the time400

required to process each item while streaming cannot be determined. Second, the analyses401

generally define complexity results that use O-notation and are not sufficiently precise to402

compare the relative accuracy with other methods.403

Second, even among methods that have been implemented and tested, practitioners might404

prefer algorithms that are much simpler to implement and maintain over more complicated405

methods that perform slightly better. Some methods are sufficiently complicated to implement406

that practitioners might shy away from (or may not be able to afford) actually doing so. For407

example, HyperLogLog is easy to implement with 8-bit bytes, but 6-bit bytes are sufficient.408

Implementing a 6-bit byte array with arrays of 64-bit words is not difficult, but may be too409

cumbersome from the point of view of some practitioners.410

Third, many papers use the parameter M to count the number of bytes or words (of411

varying length) of memory used. Proper comparisons necessitate counting total number of412

bits of memory in all cases. As an extreme example, suppose that two algorithms achieve413

standard error 2/
√

M but one uses M bits and the other uses M 64-bit words. The first is414

eight times more accurate for a given number of bits of memory. In general, if we know that415

AofA 2024

00:14 Bit-array-based alternatives to HyperLogLog

the accuracy of an algorithm is c/
√

M and that it stores Mb bits, we express the accuracy in416

terms of M⋆, the total number of bits used, or c
√

b/
√

M⋆. Inverting this equation gives the417

number of bits needed to achieve a given accuracy x : M⋆ = b(c/x)2. We ignore relatively418

inconsequential small fixed costs such as the six bits required to store the value of T in our419

adaptive algorithms.420

Fourth, few papers actually prove anything about the distribution of the reported values,421

with the notable exception of [13]. Typically, normality is instead presented as a reasonable422

hypothesis, which may often be the case, but our proof of asymptotic normality of the423

reported cardinalities is significant.424

Fifth, the accuracy of our algorithms depend on the coefficient cβ of 1/
√

M in the relative425

standard error, which varies. We use the average value of cβ over the interval of values426

β might take on during the execution of the algorithm. For HyperBitT we (somewhat427

arbitrarily) use the interval where cβ < 1.5; our other algorithms calculate an appropriate428

interval. As we have noted, the curve in Figure 1 is quite flat, so it is likely that the value429

encountered in practice is smaller than the value cited.430

Sixth, it is important to remember that we are dealing with random fluctuations and431

approximate analyses. It may be tempting to use more precision, but any differences indicated432

would not be noticed in practice. For example, one might conclude that HyperLogLog with433

6-bit bytes should be very slightly better than LogLog with 6-bit bytes because its standard434

error of 1.02/
√

M is very slightly better than 1.05/
√

M , but it would be extremely challenging435

to develop experimental validation of that hypothesis.436

M⋆ = b(c/x)2 c
√

b/M⋆

bits needed for accuracy with
algorithm range for M b c c

√
b 2% 20% 128 bits 8K bits

Adaptive sampling[5] 64 1.20 9.60 230400 2304 85% 10.6%
Prob. counting[6] 64 0.78 6.24 97344 973 55% 6.9%

LogLog[4] 6 1.05 2.57 16538 165 23% 3.5%
HyperLogLog8[7] 8 1.04 2.94 21632 216 26% 3.3%
HyperLogLog[7] 6 1.02 2.55 16224 162 23% 2.8%

ExtHyperLogLog[16] 7 0.88 2.33 13552 136 21% 2.6%
HyperBitT 1 1.32 1.32 4356 44 12% 1.5%

HyperBitBit64 64 2 1.48 2.09 — 128 19% —
HyperBitBit 64–512 2 1.46 2.06 — 128 18% —

HyperBitBitBit 128–4096 3 1.46 2.53 15987 128 22% 2.8%
HyperTwoBits 128–4096 2 1.46 2.06 10658 128 18% 2.3%

Table 4 Performance of cardinality estimation algorithms

With all these caveats, Table 4 presents a comparison of the algorithms we have discussed.437

Our simplest and perhaps most useful implementation is HyperBitBit64, which achieves438

18.5% accuracy on a stream on any length with just two 64-bit words and can be implemented439

with a few dozen machine instructions. HyperBitT is the best by far when starting with440

a rough estimate is feasible. More generally, if a straightforward and easy to maintain441

implementation is desired, HyperBitBit and HyperBitBitBit are arguably simpler than the442

8-bit version of HyperLogLog and substantially more efficient. If a careful implementation443

with improved efficiency is desired, HyperTwoBits is substantially more efficient than the444

6-bit version of HyperLogLog. In both cases our algorithms provide much better accuracy445

S. Janson, J. Lumbroso, and R. Sedgewick 00:15

for the same number of bits and use two-thirds as many bits to achieve the same accuracy.446

6 Further Improvements447

We conclude by briefly mentioning some opportunities that may lead to variants of our448

algorithms that may be worthy of study in various particular situations.449

Sparse arrays. Precise characterization of the “transition cost” just after incrementing T450

(when the sketches are mostly 0s) may lead to slight performance improvements.451

Use two sketches. The second sketch contains information that may lead to a more452

accurate estimate. Analyzing this effect is tractable, but not likely to improve the453

accuracy by more than a percentage point or two.454

HyperThreeBits. Using 3-bit counters instead of the 2-bit counters in HyperTwoBits455

allows implementation of seven layers of bit arrays and may be useful for specialized456

applications needing very high accuracy (requiring huge values of M) for the kinds of457

truly huge streams seen in modern computing.458

HyperBit. We have studied many approaches to modifying HyperBitT to just increment459

T, reset the sketch to 0s, and then characterizing the error due to the “transition cost”.460

Despite some promising empirical results, the problem of developing a mathematical461

model admitting proper comparison of such an algorithm with the ones described here462

remains open.463

Mergeability. Many applications can benefit from being able to merge sketches built464

from two different streams. Our sketches are not difficult to merge, as indicated by the465

following argument for HyperBitBit. A sketch is a triple (T, sketch0, sketch1). To466

merge (TA, sketch0A, sketch1A) with (TB , sketch0B , sketch1B) consider the following467

three cases:468

If TA = TB = T use (T, sketch0A|sketch0B , sketch1A|sketch1B).469

If the values of T differ by 8 or more, use the larger value and its sketches.470

Otherwise, suppose wlog that TA = TB + 4. Use (TA, sketch0A|sketch1B , sketch1A).471

In the first and third cases, check whether the first sketch is nearly full. If so, increment472

T (by 4) and update the sketches as usual. This result is not precisely the same as if473

the two streams had actually been merged, but the difference is likely acceptably small474

in many practical situations. The argument for HyperBitT is similar, but simpler; the475

argument for HyperBitBitBit is similar, but more complicated.476

7 Acknowledgements477

We would like to thank Martin Pépin and two anonymous reviewers for their helpful comments478

on our initial submission. We would also like to thank our colleagues, Conrado Martínez,479

Sampath Kannan, and Val Tannen, for their interest and feedback; and our students, Alex480

Iriza and Alex Baroody for their discussions and implementation work on earlier versions of481

these algorithms. Finally, we would like to thank the editors, Cécile Mailler and Sebastian482

Wild, for their service to the community.483

AofA 2024

00:16 Bit-array-based alternatives to HyperLogLog

References484

1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the485

frequency moments. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM486

Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,487

pages 20–29. ACM, 1996. doi:10.1145/237814.237823.488

2 A. D. Barbour, Lars Holst, and Svante Janson. Poisson Approximation. Oxford University489

Press, 1992.490

3 Kai-Min Chung, Michael Mitzenmacher, and Salil P. Vadhan. Why simple hash functions491

work: Exploiting the entropy in a data stream. Theory Comput., 9:897–945, 2013. URL:492

https://doi.org/10.4086/toc.2013.v009a030, doi:10.4086/TOC.2013.V009A030.493

4 Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (extended494

abstract). In Giuseppe Di Battista and Uri Zwick, editors, Algorithms - ESA 2003, 11th495

Annual European Symposium, Budapest, Hungary, September 16-19, 2003, Proceedings, volume496

2832 of Lecture Notes in Computer Science, pages 605–617. Springer, 2003. doi:10.1007/497

978-3-540-39658-1_55.498

5 Philippe Flajolet and G. Nigel Martin. Probabilistic counting. In 24th Annual Symposium on499

Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 76–82.500

IEEE Computer Society, 1983. doi:10.1109/SFCS.1983.46.501

6 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applic-502

ations. J. Comput. Syst. Sci., 31(2):182–209, 1985. doi:10.1016/0022-0000(85)90041-8.503

7 Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the504

analysis of a near-optimal cardinality estimation algorithm. In Philippe Jacquet, editor, AofA505

07— Proceedings of the 2007 Conference on Analysis of Algorithms, Juan-les-pins, France,506

June 18-22, 2007, DMTCS Proceedings volume AH, pages 127–146. DMTCS, 2007. URL:507

https://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf.508

8 Allan Gut. Probability: A Graduate Course (2nd edition). Springer Texts in Statistics, 75,509

2013.510

9 Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: algorithmic511

engineering of a state of the art cardinality estimation algorithm. In Giovanna Guerrini and512

Norman W. Paton, editors, Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings,513

Genoa, Italy, March 18-22, 2013, pages 683–692. ACM, 2013. doi:10.1145/2452376.2452456.514

10 Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.515

In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003,516

Cambridge, MA, USA, Proceedings, pages 283–288. IEEE Computer Society, 2003. doi:517

10.1109/SFCS.2003.1238202.518

11 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the519

distinct elements problem. In Jan Paredaens and Dirk Van Gucht, editors, Proceedings of520

the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database521

Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, pages 41–52. ACM, 2010.522

doi:10.1145/1807085.1807094.523

12 Matti Karppa and Rasmus Pagh. Hyperlogloglog: cardinality estimation with one log more. In524

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,525

pages 753–761, 2022.526

13 Jérémie Lumbroso. An optimal cardinality estimation algorithm based on order statistics and527

its full analysis. Discrete Mathematics & Theoretical Computer Science, AM, 2010. URL:528

https://doi.org/10.46298/dmtcs.2780.529

14 Jérémie Lumbroso. How Flajolet processed streams with coin flips. CoRR, abs/1805.00612,530

2018. URL: http://arxiv.org/abs/1805.00612, arXiv:1805.00612.531

15 Jérémie Lumbroso and Conrado Martínez. Affirmative Sampling: Theory and Applications.532

In Mark Daniel Ward, editor, 33rd International Conference on Probabilistic, Combinatorial533

and Asymptotic Methods for the Analysis of Algorithms (AofA 2022), volume 225 of Leibniz534

International Proceedings in Informatics (LIPIcs), pages 12:1–12:17, Dagstuhl, Germany, 2022.535

https://doi.org/10.1145/237814.237823
https://doi.org/10.4086/toc.2013.v009a030
https://doi.org/10.4086/TOC.2013.V009A030
https://doi.org/10.1007/978-3-540-39658-1_55
https://doi.org/10.1007/978-3-540-39658-1_55
https://doi.org/10.1007/978-3-540-39658-1_55
https://doi.org/10.1109/SFCS.1983.46
https://doi.org/10.1016/0022-0000(85)90041-8
https://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1109/SFCS.2003.1238202
https://doi.org/10.1109/SFCS.2003.1238202
https://doi.org/10.1109/SFCS.2003.1238202
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.46298/dmtcs.2780
http://arxiv.org/abs/1805.00612
https://arxiv.org/abs/1805.00612

S. Janson, J. Lumbroso, and R. Sedgewick 00:17

Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/536

entities/document/10.4230/LIPIcs.AofA.2022.12, doi:10.4230/LIPIcs.AofA.2022.12.537

16 Tal Ohayon. Extendedhyperloglog: Analysis of a new cardinality estimator. CoRR,538

abs/2106.06525, 2021. URL: https://arxiv.org/abs/2106.06525, arXiv:2106.06525.539

17 Seth Pettie and Dingyu Wang. Information theoretic limits of cardinality estimation: Fisher540

meets shannon. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of541

Computing, pages 556–569, 2021.542

18 Robert Sedgewick and Philippe Flajolet. An introduction to the analysis of algorithms, second543

edition. Addison-Wesley-Longman, 2013.544

19 Dingyu Wang and Seth Pettie. Better cardinality estimators for hyperloglog, pcsa, and beyond.545

In Floris Geerts, Hung Q. Ngo, and Stavros Sintos, editors, Proceedings of the 42nd ACM546

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2023, Seattle,547

WA, USA, June 18-23, 2023, pages 317–327. ACM, 2023. doi:10.1145/3584372.3588680.548

AofA 2024

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2022.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2022.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2022.12
https://doi.org/10.4230/LIPIcs.AofA.2022.12
https://arxiv.org/abs/2106.06525
https://arxiv.org/abs/2106.06525
https://doi.org/10.1145/3584372.3588680

00:18 Bit-array-based alternatives to HyperLogLog

A Proof of Lemma 1549

Suppose that Xn ≥ 0 are random variables and an, bn, and σ2 numbers such that, as n → ∞,550

we have an → a > 0, bn → 0, and (Xn − an)/bn
d−→ N(0, σ2). If f is a continuously551

differentiable function on (0, ∞) with f ′(a) ̸= 0, then (f(Xn) − f(an))/bn
d−→ N(0, f ′(a)2σ2)552

Proof. This is well known, but we include this proof for completeness.553

By the mean value theorem,554

f(Xn) − f(an)
bn

= f ′(X∗
n)Xn − an

bn
(7)555

for some X∗
n with Xn ≤ X∗

n ≤ an or an ≤ X∗
n ≤ Xn. Since (Xn − an)/bn

d−→ N(0, σ2) and556

bn → 0, we have Xn − an
p−→ 0. Furthermore, an → a, and hence Xn

p−→ a. Consequently,557

also X∗
n

p−→ a. Thus, since f ′ is continuous, f ′(X∗
n) p−→ f ′(a). The result follows from (7)558

and the assumption. ◀559

560

S. Janson, J. Lumbroso, and R. Sedgewick 00:19

B Implementation details561

The abstract operations we have used in expressing our algorithms can be implemented562

efficiently on most computers, as described in the following paragraphs. Our code makes563

liberal use of Java’s left and right shift operators > > and > > and bitwise logical operations564

(&, |, and ~) for bitwise (AND, OR, and NOT) respectively. Algorithm 4 is a full low-level565

implementation of HyperBitBit64 that solves the practical cardinality estimation problem.566

Sketches567

As we have noted, few programming languages support an efficient bit[] type (even Java568

does not guarantee that boolean arrays use one bit per entry). As we saw in HyperBitBit64569

(Algorithm 2), shifting and masking on 64-bit long values is an easy way to implement the570

abstraction. For larger values of M, we use arrays of 64-bit values. In Java, for example, we571

maintain the sketch as an array of long values:572

long[] sketch = new long [M/64];573

Then the Java code574

if ((sketch[k/64] & (1L < < (k % 64))) != 0)575

tests whether the kth bit in the sketch is 1 and the Java code576

sketch[k/64] = sketch[k/64] | (1L < < (k % 64));577

sets the kth bit in the sketch to 1.578

Trailing 1s579

The key abstract operation in our implementations involves computing the function r(x), so580

that we can test whether a 64-bit value x has at least T trailing 1s. Rather than maintaining581

the parameter T , we maintain U = 2T . The reason for doing so is that the value U-1 has582

T trailing 1s, which enables us to test whether a value x has at least T trailing ones with583

the bitwise logical operation (x & (U-1)) == (U-1), which is easy to implement with a few584

machine-language instructions.585

Population count586

The second abstract operation in our implementations is the function p(x), the so-called587

“population count”—the number of 1 bits in a binary value. This function has a long and588

interesting history, but, for our purposes, it is easy to avoid, by maintaining a count of the589

number of 1 bits in the sketches, incrementing when each bit is set.590

Two-bit counters591

Again, we use shifting and masking on arrays of 64-bit long values. We keep one long592

array s1 for the more significant bit and a second long array s0 for the less significant bit.593

To make the code more readable, we define the following methods to test and set the bit594

corresponding to bit k:595

public static long val(long[] s1, long[] s0, int k)596

{ return 2*((s1[k/64] > > (k % 64)) & 1L)+((s0[k/64] > > (k % 64)) & 1L); }597

AofA 2024

00:20 Bit-array-based alternatives to HyperLogLog

public static void setval(long[] s1, long[] s0, int k, long v)598

{599

s1[k/64] = (s1[k/64] & ~(1L < < (k % 64))) | ((v/2) & 1L) < < (k % 64);600

s0[k/64] = (s0[k/64] & ~(1L < < (k % 64))) | (v & 1L) < < (k % 64);601

}602

603

In a tightly efficient or machine-code version, this code would be used inline.604

The final abstract operation to consider is to decrement all the non-zero counters. Consider605

the following table, which gives all possibilities for a given bit position, where s1s0 is the606

value before incrementing and t1t0 is the value after decrementing.607

before after
value s1 s0 value t1 t0

0 0 0 0 0 0
1 0 1 0 0 0
2 1 0 1 0 1
3 1 1 2 1 0

608

609

Considering these as truth tables on boolean values, it is easy to check that t1 = s1 AND610

s0 and t0 = s1 AND NOT s0. Furthermore, we can eliminate the temporary variables by611

doing the operations in the order s0 = s1 AND NOT s0 and then s1 = s1 AND NOT s0.612

Implementing these operations with bitwise operations on our arrays of long values is613

straightforward.614

S. Janson, J. Lumbroso, and R. Sedgewick 00:21

Algorithm 4 HyperTwoBits (full low-level implementation).

public static int estimateHTB (String [] stream , int N, int M)
{

int U = 2;
double alpha = .988;
long [] s0 = new long [M/64];
long [] s1 = new long [M/64];
int count = 0;
for (int i = 0; i < N; i++)
{

long x = hash1(s); // 64- bit hash
int k = hash2(s, M); // (lg M)-bit hash
if ((x & (U -1)) == (U -1)) count ++;
if ((x & (U -1)) == (U -1))

if (val(s1 , s0 , k) < 1) setval (s1 , s0 , k, 1);
if ((x & (16*U -1)) == (16*U -1))

if (val(s1 , s0 , k) < 2) setval (s1 , s0 , k, 2);
if ((x & (256*U -1)) == (256*U -1))

if (val(s1 , s0 , k) < 3) setval (s1 , s0 , k, 3);
if (count >= alpha*M)
{

for (int j = 0; j < M/64; j++)
{ s0[j] = s1[j] & ~s0[j]; s1[j] = s1[j] & ~s0[j]; }
count = 0;
for (int j = 0; j < M; j++)

if (val(s1 , s0 , j) > 0) count ++;
U = 16*U;

}
}
double beta = 1.0 - 1.0* count/M;
double bias = Math.log (1.0/ beta);
return (int) (U*M*bias);

}

AofA 2024

	1 Introduction
	2 HyperBitT
	3 HyperBitBit and HyperBitBitBit
	4 HyperTwoBits
	5 Performance comparisons
	6 Further Improvements
	7 Acknowledgements
	A Proof of Lemma 1
	B Implementation details

