
Theoretical Computer Science 1054 (2025) 115450

Available online 9 July 2025
0304-3975/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Bit-array-based alternatives to HyperLogLog
Svante Janson a, Jérémie Lumbroso b, Robert Sedgewick c,∗

a Department of Mathematics, Uppsala University, Uppsala, Sweden
b Computer and Information Science Department, University of Pennsylvania, Philadelphia, PA, USA
c Department of Computer Science, Princeton University, Princeton, NJ, USA

A R T I C L E I N F O A B S T R A C T

Section Editor: Paul G. Spirakis

Handling Editor: Sebastian Wild

Keywords:

Cardinality estimation
Sketching
HyperLogLog

We present a family of algorithms for the problem of estimating the number of distinct items
in an input stream that are simple to implement and are appropriate for practical applications.
Our algorithms are a logical extension of the series of algorithms developed by Flajolet and his
coauthors starting in 1983 that culminated in the widely used HyperLogLog algorithm. These
algorithms divide the input stream into 𝑀 substreams and lead to a time-accuracy tradeoff where
a small number of bits per substream are saved to achieve a relative accuracy proportional to
1∕

√
𝑀 . Our algorithms use just one or two bits per substream. Their effectiveness is demonstrated

by a proof of approximate normality, with explicit expressions for standard errors that inform
parameter settings and allow proper quantitative comparisons with other methods. Performance
hypotheses are validated through experiments using a realistic input stream, with the general
conclusion that our algorithms are significantly more accurate than HyperLogLog when using the
same amount of memory, and they use significantly less memory than HyperLogLog to achieve
a given accuracy.

1. Introduction

Counting the number of distinct items in a data stream is a classic computational challenge with many applications. As an example,
consider the stream of strings taken from a web log shown in the left column of Table 1 (we will use 1 million strings from this log
of which 𝑁 = 368,217 are distinct values as a running example in this paper). There is no bound on the length of the stream, but
maintaining an estimate of the number of different strings found in the stream is useful for many purposes.

One classic application is for computer networks. The ability to estimate the number of different visitors of a website is certainly
of interest, and can be critical in maintaining the integrity of the site. For example, a significant drop in the percentage of different
visitors in a given time period might be an indication that the site is under a denial-of-service attack.

Another classic application is for database systems, where estimating the number of different strings having each attribute is a
critical piece of knowledge in implementing certain common data base operations. In this case, the length of the streams is available,
but may be very large, and a rough estimate suffices, so using a streaming algorithm is appropriate.

Elementary algorithms for solving the problem are standard in introductory computer science classes. Perhaps the simplest is to
use a hash table, but that requires saving all the items in memory, which is far too high a cost to be useful in typical applications. In

* Corresponding author.
E-mail address: rs@cs.princeton.edu (R. Sedgewick).

https://doi.org/10.1016/j.tcs.2025.115450
Received 31 January 2025; Received in revised form 27 June 2025; Accepted 2 July 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:rs@cs.princeton.edu
https://doi.org/10.1016/j.tcs.2025.115450
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115450&domain=pdf
https://doi.org/10.1016/j.tcs.2025.115450
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 1054 (2025) 115450

2

S. Janson, J. Lumbroso and R. Sedgewick

Table 1
Computing a sketch for HyperBitT (with 𝑀 = 8 and 𝑇 = 1).

s x k r(x) sketch[]
81.95.186.98.freenet.com.ua 111. . . 1011110011101011 7 2 00000001
lsanca.dsl-w.verizon.net 011. . . 0001111110100000 3 0 00000001
117.222.48.163 110. . . 0000111011101101 6 1 00000001
1.23.193.58 100. . . 1000011101100011 4 2 00001001
188.134.45.71 101. . . 0101101000111001 5 1 00001001
gsearch.CS.Princeton.EDU 010. . . 1000011010000100 2 0 00001001
81.95.186.98.freenet.com.ua 011. . . 1110000111010000 3 0 00001001
81.95.186.98.freenet.com.ua 111. . . 1011110011101011 7 2 00001001
1.23.193.58 000. . . 1111101011100111 0 3 10001001
lnse3.cht.bigpond.net.au 111. . . 1011011101001110 7 0 10001001
117.211.88.36 000. . . 0100010010111010 0 0 10001001
1.23.193.58 000. . . 1111101011100111 0 3 10001001
lsanca.dsl-w.verizon.net 011. . . 0001111110100000 3 0 10001001
81.95.186.98.freenet.com.ua 111. . . 1011110011101011 7 2 10001001
gsearch.seas.upenn.edu 000. . . 1011010100001000 0 0 10001001
109.108.229.102 010. . . 1010110110011111 2 5 10101001
msnbot.search.msn.com 001. . . 0111001001101100 1 0 10101001

fact, any method for computing an exact count must save all the items in memory (trivial proof: any item not saved might or might
not be different from all the others, and that fact cannot be known until the last item is seen).

Accordingly, we focus on estimating the count. In typical applications, exact counts are actually not needed—the estimates are
being used to make relative decisions that do not require full accuracy.

Since the seminal research by Flajolet and Martin in the 1980s [1][2] it has been known that we actually can get by with a
surprisingly small amount of processing time and memory space. To be more specific, the practical cardinality estimation problem is to
estimate the number of distinct items in a data stream under the following constraints:

• Each item is examined only once.
• The time to process each item is a small constant multiple of its size.
• The space used is small, and independent of the length of the stream.
• The estimate is expected to be very close to the real count.

A solution to this problem typically is defined by an implementation that makes clear its time and space requirements and an analysis
that provides a precise characterization of how the estimate compares to the actual value. In the context of this paper, we refer to an
algorithm satisfying the first three constraints as a ``streaming algorithm.''

For many years, the state of the art in solving the practical cardinality estimation problem has been HyperLogLog, the last in the
series of algorithms developed by Flajolet and colleagues from the 1980s through the 2000s [3] [4] [5] [6]. HyperLogLog is based
on four main ideas:

• Hashing is used to convert each item in the stream into a fixed-length binary number.
• The position of the rightmost zero is computed, taking the maximum value found as an estimate of the binary logarithm of the

count.
• A technique known as stochastic averaging splits the stream into 𝑀 independent substreams and averages the counts in the

substreams.
• The harmonic mean is used to properly handle outlying values.

One reason HyperLogLog is so widely used is that precise analysis of the bias in the estimate provides the basis for formulating
hypotheses about how the algorithm will perform in practical situations, and the results of experiments that validate the hypotheses
are presented. The analysis exposes a space-accuracy tradeoff, allowing practitioners to choose with confidence the amount of memory
needed to achieve a given accuracy or the accuracy achieved for a given amount of memory use: For a stream with 𝑁 distinct values
and using 𝑀 substreams, HyperLogLog uses 𝑀 lg lg𝑁 bits and typically produces an estimate with a relative standard error of
𝑐∕
√
𝑀 where 𝑐 ≐ 1.04.

A series of theory papers have proven that 𝑂(𝑀) bits are necessary and sufficient to achieve estimates with asymptotic accuracy
on the same order as HyperLogLog, an important and significant accomplishment [7][8][9]. However, these papers lack implemen
tations, likely because the implied constants in the proofs are much too large for the methods to be viable in practice. Some also use
theoretical devices that would never be used in practice, like reprocessing the stream in the (low probability) event of a bad estimate.

Papers in the theory literature also typically make the implicit assumption that strong assumptions on the hash functions are
necessary. This dates back to the 1996 paper by Alon, Matias and Szegedy [7] where the work of Flajolet and Martin in [2] is dismissed
with a mischaracterization that leaves the incorrect impression that the algorithms rely on the availability of hash functions with very
strong random properties. To the contrary, Flajolet and Martin simply observed that using such hash functions would be prohibitively

Theoretical Computer Science 1054 (2025) 115450

3

S. Janson, J. Lumbroso and R. Sedgewick

expensive, so they invented stochastic averaging (which is extremely efficient), did a precise analysis to develop the hypothesis that
using it would have similar performance to the idealized algorithm in practice, and ran experiments to validate that hypothesis. And
this conclusion has been further validated for decades by countless implementations and applications (see, for example, [5]).

Using idealized models to state and prove theorems that are sufficiently precise that they can lead to practical algorithms and
hypotheses about performance that can be validated through experimentation is the basis of algorithm science, dating back to Knuth’s
pioneering study of linear probing in 1963, which precisely characterizes the performance of the algorithm under the assumption
that all hash sequences are equally likely (see [10]). It is interesting to note that not even Knuth explicitly states that his theorem is
a reasonable basis for forming hypotheses about real-world performance. The fact remains that any practical application of hashing,
however perfect in theory, must assume, at least, that random bits exist, and therefore rests on some hypothesis connecting the theory
and the real world. See, for example, [11] for further discussion of this issue. Moreover, a precise mathematical model is a necessity
in situations where multiple parameters are involved. Choosing the best values of parameters can be done within the model, while
doing so via experimentation would be expensive or infeasible.

In this paper, we focus on algorithms with the potential to be useful in practice, (using hash functions that have been widely
used for myriad applications for decades), develop mathematical models and use them to set parameter values, hypothesize that
any differences from ideal models needed to prove theorems are relatively insignificant, and describe experiments that validate such
hypotheses.

HyperLogLog uses 5 bits per substream�-5𝑀 bits for 𝑁 < 232. Much higher values of 𝑁 are typical in modern applications,
but it is safe to assume that 𝑁 < 264, so HyperLogLog demonstrates that 6𝑀 bits suffice for the practical cardinality estimation
problem. Some improvements to HyperLogLog and some interesting new approaches to the problem have been studied in recent
years [12] [13] [14] [15] [16] but still leave the following question: Is there a practical algorithm as simple as HyperLogLog with
comparable accuracy that uses 𝑐𝑀 bits for some constant 𝑐 that is significantly less than 6?

This paper is an extended version of our conference paper [17] that provides answers to this question, with more thorough and
detailed explanations and a more logical and complete narrative than is possible within the strict requirements for conference papers.

The algorithms we present have the same structure as HyperLogLog but use much less memory. In Section 2, instead of recording
the maximum number of trailing ones, we focus on one bit per sub-stream indicating whether a threshold has been hit. Then we use
a rough estimate of the cardinality as an input parameter in order to set the threshold to be the logarithm of the estimated number of
distinct items per substream and then compute a precise estimate of the cardinality of the stream. While not a streaming algorithm,
the resulting algorithm is useful in its own right, admits a precise analysis, and serves as a basis for the streaming algorithms in
Section 3 and Section 4 that do solve the practical cardinality estimation problem, using just two bits per substream. Section 5 covers
details of developing real-world implementations that keep costs low by using low-level machine operations (see also [18]). Section 6
is a discussion of how these algorithms match up against others in the literature, and Section 7 concludes the paper with a discussion
of possible further improvements and directions for further research.

2. HyperBitT

Our first algorithm uses the standard technique of starting with a rough estimate of the cardinality and is therefore not properly
a streaming algorithm, as no fixed estimate can remain accurate as the cardinality grows without bound. Still, as we will see, it can
play an important role in some practical applications. More important, it admits a precise analysis that we can use to develop the
streaming algorithms in Section 3 and Section 4. One of the primary contributions of this paper is this analysis, presented in this
section.

We start with hashing and stochastic averaging with 𝑀 substreams precisely in the same manner as HyperLogLog, but use just
one bit per substream, as follows. Of course, we expect each substream to have about 𝑁∕𝑀 distinct values, and it has been known at
least since the original work of Flajolet and Martin [1] that the maximum number of trailing 1s found among the items in a stream is
a good estimator of the logarithm of the number of distinct items in the stream. Indeed, this is the same as the length of the rightmost
path in a random trie, a quantity that was studied in the 1970s (see [10]). In this spirit, we use a parameter 𝑇 as an estimate of
lg(𝑁∕𝑀). That is, 2𝑇 is an estimate of 𝑁∕𝑀 , and 2𝑇𝑀 is an estimate of the cardinality 𝑁 . Now, we maintain a sketch comprising
an array of 𝑀 bits, one per substream, and set the bit corresponding to a substream to 1 when an item from that substream has more
than T trailing 1s. When we want to estimate the number of distinct values in the stream, it turns out that we can use a simple function
of the number of 0 bits in the sketch to improve our estimate. The algorithm may produce an inaccurate result or fail completely if
the rough estimate T is poorly chosen, but, as we will see, it is remarkably forgiving.

Implementation We start with a bit array sketch[] with one bit per substream, initialized to all 0s. For clarity, we use a bit[]
type to describe our algorithms—although few programming languages support an explicit bit[] type, the abstraction is easily
implemented. For small 𝑀 , we can use integer values; for large 𝑀 , we can use shifting and masking on arrays of integers (see
Section 5). We typically take 𝑀 to be a power of two for convenience.

For each new item s in the stream, we compute a hash value x to represent it and a second hash value k to identify its substream
(typically, one might compute a 64-bit hash and use the leading lg𝑀 bits for k and the rest for x). Then we compute r(x), the number
of trailing 1s in x. As described in Section 5, this operation can be implemented with only a few machine-language instructions. If
r(x) is larger than T, we set sketch[k] to 1. Table 1 is a trace of the process for a small sequence of hash values with 𝑀 = 8 and
𝑇 = 1.

Theoretical Computer Science 1054 (2025) 115450

4

S. Janson, J. Lumbroso and R. Sedgewick

Algorithm 1. HyperBitT.
p u b l i c s t a t i c i n t e s t i m a t e H B T (I t e r a b l e < S t r i n g > s t r e a m ,

i n t M , i n t T)
{

b i t [] s k e t c h [M] ;
f o r (S t r i n g s : s t r e a m)
{

l o n g x = h a s h 1 (s) ; / / 6 4 -b i t h a s h
i n t k = h a s h 2 (s , M) ; / / (l g M) -b i t h a s h
i f (r (x) > T) s k e t c h [k] = 1 ; / / > T t r a i l i n g 1 s ?

}
d o u b l e b e t a = 1 . 0 - 1 . 0 * p (s k e t c h) / M ; / / f r a c t i o n o f 0 s
r e t u r n (i n t) (M a t h . p o w (2 , T) * M * M a t h . l o g (1 . 0 / b e t a)) ;

}

When the stream is exhausted, we compute a correction to the rough estimate of 𝑁 = 2𝑇𝑀 that takes into account some bias, as
a function of the bit values in the sketch. Specifically, we are interested in the parameter 𝛽, the proportion of 0s in the sketch. As
indicated by the analysis below, the appropriate correction factor is ln(1∕𝛽). If the sketch is small enough to fit in a computer word,
computing the number of 1s in the sketch is a classic machine-language programming exercise and is actually a single instruction
in many modern machine architectures. For clarity, we use the function p(sketch); for large 𝑀 it is preferable to just increment
a counter each time a sketch bit is changed from 0 to 1, as described in Section 5. The implementation in Algorithm 1 follows
immediately and is easily translated to any programming language.

If 𝑇 is too small or too large, the algorithm fails because the estimate cannot be reasonably corrected (when 𝛽 is close to 0 or 1,
the correction factor is too large or too small to be useful). But, as we shall see, the algorithm does produce accurate results for a
remarkably large range of cardinality values, and we can precisely characterize that range and the accuracy.

Analysis As a basis for developing an intuition about the problem, we start with an approximate analysis for the mean value of
the number of distinct values in the stream. After 𝑁 distinct values have been processed from the input stream, we have seen an
average of 𝑁∕𝑀 distinct values in each substream. As an approximation, assume that exactly 𝑁∕𝑀 values go to each substream.
The probability that a given value has at least 𝑇 trailing 1s is 1∕2𝑇 so the probability that a given bit in sketch[] remains 0 after
𝑁∕𝑀 values are processed in its corresponding substream is given by a Poisson approximation(

1 − 1
2𝑇

)𝑁∕𝑀
∼ 𝑒−𝑁∕(𝑀2𝑇)

(see for example, [19]). The number of 0s in sketch[] is a binomially distributed random variable, so this value is also (approxi
mately) 𝛽, the expected proportion of 0s in sketch[] after 𝑁 values have been processed. Thus, 𝑁∕𝑀 ∼ 2𝑇 ln(1∕𝛽) and the expected
number of values processed is 𝑁 ∼𝑀2𝑇 ln(1∕𝛽). In other words, we need to correct our rough estimate of the number of values per
stream by the factor ln(1∕𝛽).

A full detailed analysis provides much more information, which is critical for studying the performance of the algorithm. Specifi
cally, we are able to approximate the distribution of the reported cardinality, which gives us the information needed to estimate how
accurate it will be for given values of 𝑀 .

The proof is based on the idea of Poissonization�-instead of assuming that we have a fixed given number 𝑁 of distinct items, we
assume that the number is random with a Poisson distribution. It uses two technical lemmas from probability theory:

Lemma 2.1. Suppose that 𝑋𝑛 ≥ 0 are random variables and 𝑎𝑛, 𝑏𝑛, and 𝜎2 numbers such that, as 𝑛→ ∞, we have a𝑛 → 𝑎 > 0, 𝑏𝑛 →

0, and (𝑋𝑛 − 𝑎𝑛)∕𝑏𝑛
𝑑

⟶ ℕ(0, 𝜎2). If f is a continuously differentiable function on (0,∞) with 𝑓 ′(𝑎) ≠ 0, then (𝑓 (𝑋𝑛) − 𝑓 (𝑎𝑛))∕𝑏𝑛
𝑑

⟶
ℕ(0, 𝑓 ′(𝑎)2𝜎2).

Proof. This is well known, but we include this proof for completeness. By the mean value theorem,

𝑓 (𝑋𝑛) − 𝑓 (𝑎𝑛)
𝑏𝑛

= 𝑓 ′(𝑋∗
𝑛
)
𝑋𝑛 − 𝑎𝑛
𝑏𝑛

(1)

for some 𝑋∗
𝑛

with 𝑋𝑛 ≤𝑋∗
𝑛
≤ 𝑎𝑛 or 𝑎𝑛 ≤𝑋∗

𝑛
≤𝑋𝑛. Since (𝑋𝑛 − 𝑎𝑛)∕𝑏𝑛

𝑑
⟶ ℕ(0, 𝜎2) and 𝑏𝑛 → 0, we have 𝑋𝑛 − 𝑎𝑛

𝑝
⟶ 0. Furthermore,

𝑎𝑛 → 𝑎, and hence 𝑋𝑛
𝑝

⟶ 𝑎. Consequently, also 𝑋∗
𝑛

𝑝
⟶ 𝑎. Thus, since 𝑓 ′ is continuous, 𝑓 ′(𝑋∗

𝑛
)

𝑝
⟶ 𝑓 ′(𝑎). The result follows from

(1) and the assumption. □

Lemma 2.2. Let 𝑋 ∼ Binomial(𝑛, 𝑝) and let 𝑌 ∈ Poisson(𝑛𝑝) where 𝑛 > 0 and 𝑝 ∈ [0,1]. Then the total variation distance between them,
𝑑𝑇𝑉 (𝑋,𝑌), is no greater than 𝑝; in other words, there exists a coupling of 𝑋 and 𝑌 such that ℙ(𝑋 ≠ 𝑌) ≤ 𝑝.

Proof. See Theorem 2.M and pages 1--8 in [20]. □

Theoretical Computer Science 1054 (2025) 115450

5

S. Janson, J. Lumbroso and R. Sedgewick

Theorem 2.1. Suppose that a stream 𝑆 has 𝑁 distinct items and that HyperBitT processes 𝑆 using 𝑀 substreams with parameter 𝑇 ,
terminates with 𝛽𝑀 0s left in the sketch. If the hash functions return each possible value with equal probability, then the statistic 𝑀2𝑇 ln(1∕𝛽)
is approximately Gaussian with mean 𝑁 and relative standard error 𝑐(𝛽)

/√
𝑀 where 𝑐(𝛽) =

√
1∕𝛽 − 1

/
ln(1∕𝛽). Formally,√

𝑀

𝑐(𝛽)

(
𝑀2𝑇 ln(1∕𝛽)

𝑁
− 1

)
𝑑

⟶ℕ(0,1) (2)

as 𝑁,𝑀,𝑇 →∞ with 𝑁 =Θ(𝑀2𝑇).

Proof. Assume first that 𝑁 ∼ 𝑎𝑀2𝑇 for some 𝑎 ∈ (0,∞). Pretend that the distinct items in the stream arrive according to a Poisson
process with rate 1. We then may consider the process at a given time 𝑁̃ . If we keep 𝑁̃ fixed, then the number of distinct items seen
so far is a random variable obeying a Poisson distribution Poisson(𝑁̃). We let 𝑁̃ ∼𝑁 ∼ 𝑎𝑀2𝑇 . For reference, we summarize here the
notations used in this proof:

• 𝑁 ∼ 𝑎𝑀2𝑇 , the cardinality of the stream seen by Algorithm 1,
• 𝑎, a positive number,
• 𝑁̂ =𝑀2𝑇 ln(1∕𝛽), the reported estimate of 𝑁 , and
• 𝑁̃ ∼ 𝑎𝑀2𝑇 , the Poisson parameter.

Our goal is to approximate the distribution of 𝑁̂ .
We begin by finding, in the Poisson model, the distribution of 𝛽𝑀 , the number of 0s in the sketch. Since a randomly thinned

Poisson process is a new Poisson process, it follows that each of the 𝑀 substreams is a Poisson process with rate 1∕𝑀 , and thus
the number of distinct items in each of them is Poisson(𝑁̃∕𝑀). These random numbers are independent, and each item in the 𝑘th
substream has probability 2−𝑇 to set sketch[k] to 1. It follows that if the number of such items is 𝑌𝑘 , then 𝑌𝑘 is also Poisson, with
𝑌𝑘 ∈ Poisson(2−𝑇 𝑁̃∕𝑀) = Poisson

(
𝑁̃∕(𝑀2𝑇)

)
. Now, let 𝑞 be the probability that sketch[k]=0 (which is the same for all 𝑘). Then

𝑞 = ℙ(𝑌𝑘 = 0) = exp
(
− 𝑁̃

𝑀2𝑇
)
→ 𝑒−𝑎. (3)

Since the numbers 𝑌𝑘 are independent, the number of 0s in the sketch is

𝛽𝑀 ∈ Binomial(𝑀,𝑞), (4)

with mean 𝑀𝑞 and variance 𝑀𝑞(1 − 𝑞).
As 𝑀 →∞, we have the normal approximation to the binomial:√

𝑀(𝛽 − 𝑞) = 𝑀𝛽 −𝑀𝑞√
𝑀

𝑑
⟶ℕ

(
0, 𝑒−𝑎(1 − 𝑒−𝑎)

)
. (5)

Now, applying Lemma 2.1 with the function 𝑓 (𝑥) = ln(1∕𝑥) gives√
𝑀

(
ln(1∕𝛽) − ln(1∕𝑞)

) 𝑑
⟶ℕ(0, 𝑒𝑎 − 1). (6)

Consequently, since 𝑁̂ =𝑀2𝑇 ln(1∕𝛽), 𝑀2𝑇 ∕𝑁̃ → 1∕𝑎, and ln(1∕𝑞) = 𝑁̃∕𝑀2𝑇 , we have:

√
𝑀

(
𝑁̂

𝑁̃
− 1

)
=
√
𝑀
𝑀2𝑇

𝑁̃

(
ln 1
𝛽
− ln 1

𝑞

)
𝑑

⟶ℕ
(
0, 𝑎−2(𝑒𝑎 − 1)

)
. (7)

Furthermore, (6) implies ln(1∕𝛽) − ln(1∕𝑞)
𝑝

⟶ 0, and thus, using (3), ln(1∕𝛽)
𝑝

⟶ 𝑎; hence (7) implies (2) (with 𝑁̃ instead of 𝑁).
This is the desired result for the Poisson model. To prove the result for a given number 𝑁 of items, we use Lemma 2.2. We may

assume that we start by selecting all items with at least T trailing 1s. Since each item is selected with probability 2−𝑇 , the number of
selected items is Binomial(𝑁,2−𝑇). Similarly, if we consider the Poisson model with Poisson(𝑁) items (thus choosing 𝑁 = 𝑁̃ above)
then the number of selected items is Poisson(𝑁2−𝑇). By Lemma 2.2. We may couple the two versions such that the number of selected
items agree with probability no less than 1 − 2−𝑇 → 1. Hence, (2) for a fixed 𝑁 follows from the Poisson version.

We have proved that (2) holds when 𝑁∕(𝑀2𝑇) converges to a limit in (0,∞). The more general assumption 𝑁 =Θ(𝑀2𝑇) implies
that every subsequence has a subsubsequence such that 𝑁∕(𝑀2𝑇) converges, and thus (2) holds for the subsubsequence. As is well
known, this implies that the full sequence converges (see Section 5.7 in [21]). □

In summary, the goal of HyperBitT is to compute an estimate of 𝑁 , the cardinality of the input stream. To do so, it takes two
parameters:

• 𝑀 , the number of substreams (and the number of bits used),
• 𝑇 , a rough estimate of lg(𝑁∕𝑀),

and, using an 𝑀 -bit sketch, computes a value

Theoretical Computer Science 1054 (2025) 115450

6

S. Janson, J. Lumbroso and R. Sedgewick

Fig. 1. This plot shows the coefficient of 1∕
√
𝑀 in the relative standard error 𝑐(𝛽) =

√
1∕𝛽 − 1

/
ln(1∕𝛽) (𝑦-coordinate) for 𝛽 (fraction of 0s in the sketch) between 0

and 1 (𝑥-coordinate). The value of 𝑐(𝛽) goes to infinity as 𝛽 approaches 0 or 1, but it is relatively small when 𝛽 is not close to these extremes. For example, 𝑐(𝛽)< 1.5
when .043 < 𝛽 < .541, 𝑐(𝛽)< 2 when .014< 𝛽 < .748, and 𝑐(𝛽)< 3 when .0035< 𝛽 < .888.

• 𝛽, the fraction of 0s in the sketch.

Theorem 2.1 provides formulas for two important pieces of information, as functions of 𝛽:

• the bias correction ln(1∕𝛽) that gives the estimate 2𝑇𝑀 ln(1∕𝛽) for 𝑁 ,

• the coefficient 𝑐(𝛽) =
√
1∕𝛽 − 1

/
ln(1∕𝛽) that gives the relative standard error 𝑐(𝛽)∕

√
𝑀 .

This is the information that we need to properly choose the value of 𝑇 . Of most interest is the fact that 𝑐(𝛽) is relatively small and is
large only when 𝛽 is close to 0 or 1 (see Fig. 1). If 𝑇 is too small, then the sketch will be predominately 1s, and 𝛽 will be close to 0;
if 𝑇 is too large, the sketch will be predominantly 0s and 𝛽 will be close to 1.

As an example, suppose that we take 𝑀 = 1024 and aim to keep 𝑐(𝛽) < 1.5, which is the case when .043 < 𝛽 < .541 (see Fig. 1).
As indicated in this table, each value of 𝑇 leads to an accurate answer for a rather large range of values of 𝑁 .

𝑇 𝑀2𝑇 ln(1∕𝛽) for 𝛽 = .541 𝑀2𝑇 ln(1∕𝛽) for 𝛽 = .043

6 40,261 206,212
7 80,522 412,425
8 161,044 824,850
9 322,088 1,649,701
10 644,177 3,299,402
11 1,288,355 6,598,804

Validation The purpose of our analysis is to enable us to hypothesize that the cardinality returned by HyperBitT behaves as
described by Theorem 2.1 and to set parameter values that keep the error low. As with any scientific study, our confidence in the
result grows with the number of experiments that validate it, so we can only give an initial indication. (For example, practitioners
have confidence in a similar hypothesis for HyperLogLog because it has been used in a wide variety of practical situations for years.)

The hypothesis rests on three main assumptions. First, we assume that the data we have and that the hash functions we use have
the idealized properties stipulated in the analysis, or that deviations from this ideal are relatively insignificant. Second, we assume
that the second hash function splits the stream into each substream with equal probability, or that deviations from this ideal are
relatively insignificant. Third, we assume that deviations from approximations in the analysis are relatively insignificant.

For example, suppose that we wish to use HyperBitT to estimate the number of distinct strings in the web log described in
Section 1. To do so, we need to specify the values of the two parameters: 𝑀 (the number of bits of memory we need to use to achieve
the accuracy that we want) and 𝑇 (where 2𝑇𝑀 is our rough guess of the cardinality).

First, we choose the value of 𝑀 . As an example, suppose that we are looking for an accurate answer, say with 5% relative error.
Referring to Fig. 1, if 𝛽 is in the range (.043, .541), then 𝑐(𝛽) < 1.5 and 𝑀 = 1024 will do the trick, because 1.5∕

√
1024≐ .0469. This

is a conservative choice because 𝑐(𝛽) is usually much smaller than 1.5 in that range.
Next, we choose the value of 𝑇 . Suppose we decide that it is a reasonable guess that the unique values comprise somewhere

between 20% and 80% of the stream (a rather wide range). This leads to the choice 𝑇 = 8 because 𝑀2𝑇 ln(1∕𝛽) is between 161,044
and 824,851 (and 𝑐(𝛽) < 1.5) when 𝛽 is between .541 and .043.

Table 2 shows experimental results that constitute a quick validation check. Fig. 2 describes two experiments that each run it
10 thousand times, which both are strong evidence of the validity of our analysis and our hypotheses about the performance of
HyperBitT.

It is important to reiterate that HyperBitT is not a streaming algorithm. For example, it could not be used without some periodic
adjustments for our web log example, where the log may be monitored for weeks, months, or even years, and therefore could consist

Theoretical Computer Science 1054 (2025) 115450

7

S. Janson, J. Lumbroso and R. Sedgewick

Table 2
Since it is based on hash values, HyperBitT produces a different result every time
it is run. This table shows the result of five consecutive runs of HyperBitT for our
sample web log with 𝑀 = 1024 and 𝑇 = 8. The first column is the observed number
of 0s in sketch[] when the run terminates. Dividing by 𝑀 gives the values of 𝛽 in
the second column. The formula 2𝑇𝑀 ln(1∕𝛽) gives the estimate of the cardinality
in the third column, and the formula 𝑐(𝛽)∕

√
𝑀 where 𝑐(𝛽) =

√
1∕𝛽 − 1∕ ln(1∕𝛽)

gives the estimated relative standard error for each run in the fourth column. The
actual error (comparing the estimated cardinality with the actual value 368,217) is
in the fifth column. Since our estimate of the standard error is conservative (𝑐(𝛽) is
usually smaller than 1.5), four of the five runs produced estimates well within the
desired 5%. Since the distribution is Gaussian, the outlier in the first experiment is
not unexpected.

observed 0s observed 𝛽 estimated 𝑁 estimated error actual error
228 .2226 393,773 3.9% 6.9%
253 .2470 366,498 3.9% 0.4%
257 .2509 362,386 3.9% 1.6%
261 .2548 358,338 3.9% 2.7%
265 .2587 354,351 3.9% 3.8%

Fig. 2. Results of estimating cardinalities in a web log, each with 10,000 trials, taking 𝑀 = 1024 and 𝑇 = 8 as discussed in the text. In Fig. 2(a) HyperBitT was run
100 times for the first 10,000, 20,000, 30,000, . . . items in the log, up to 1 million. Each grey dot shows the result of one experiment and the colored dots are the
average of the values for each set of 100 experiments. A black line that shows the actual number of distinct items in the stream is completely hidden by the colored
dots. The histogram in Fig. 2(b) plots the estimates returned by HyperBitT for 10,000 runs on the first 1 million strings in the web log. The distribution matches a
Gaussian, centered on the true number of distinct values, with relative standard deviation about 1.25∕

√
𝑀 ≐ 0.039 (plotted in color), thus validating Theorem 2.1

and our hypothesis that the estimated cardinality is likely to be within 5% of the true value. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

of billions or trillions of strings or more. But there are many situations where HyperBitT may be useful because the estimate need
not be very accurate and there are reasonable approaches to coming up with one. In a database or similar application, one might take
a random sample. In a web log or similar application, one might take a small sample from initial values, or run multiple offsetting
streams, using the estimate from one as the rough guess for another. For example, in protecting against a denial-of-service attack, the
whole point might be to just set off an alarm when the cardinality deviates significantly from an expected range.

3. HyperBitBit and HyperBitBitBit

In this section, we describe variants of the algorithm that can adapt as the number of unique values grows, by making T a variable
and then increasing it as needed. We are faced with two choices: (i) when do we increase T, and (ii) by how much? Theorem 2.1
gives us precisely the information we need to make intelligent choices.

As the sketch becomes full, the percentage of 0s decreases and the standard error increases. Consider these values for 𝑀 = 64:

Theoretical Computer Science 1054 (2025) 115450

8

S. Janson, J. Lumbroso and R. Sedgewick

1s in sketch 56 57 58 59 60 61 62 63
𝛽 .125 .109 .093 .078 .062 .047 .031 .016
𝑐(𝛽) 1.27 1.29 1.31 1.35 1.40 1.47 1.60 1.90

For example, we can ensure that the relative standard error stays below 1.60∕
√
𝑀 if we take action before the sketch has 63 1 bits.

Obviously, T needs to increase at that point. The first approach that comes to mind is to plan to increase T by one when the sketch
becomes nearly full and to maintain a second sketch with 1 bits corresponding to whether or not an item with at least T+1 trailing
1s has been seen. Then, when the sketch is nearly full, we can increment T and replace the first sketch with the second one. But then
we need to replace the second sketch. We could use a third sketch (and we will, when 𝑀 is not small), but then do we need a fourth
sketch? Moreover, when the sketch for T is nearly full of 1s, so is the sketch for T+1, so incrementing T by 1 does not help much.

So we want to increment T by more than one. But by how much? We are faced with a delicate balance because a small value leads
to too many sketches to maintain and a large increment corresponds to too many 0s in the first sketch (which implies too large a
value of 𝑐(𝛽)).

Continuing our specific example, take 𝑀 = 64 and suppose that we limit the sketch to at most 62 1s. Now, we want to choose an
increment i for T�-we will maintain a second sketch for T+i and increment T by i when the 63rd 1 bit arrives to the sketch for T.
At that point the value of 𝛽 is 2∕64 ≐ .031. Our goal is to choose i such that we do not need to maintain a third sketch.

Let 𝛽𝑖 be the fraction of 0s in the sketch for T+i. Because the estimated value of 𝑁 is the same, we have ln(1∕𝛽0) ≈ ln(1∕𝛽𝑖)∕2𝑖.
Solving for 𝛽𝑖 gives 𝛽𝑖 ≈ exp(− ln(1∕𝛽0)∕2𝑖). For 𝑖 from 0 to 8 we have these values:

𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8
.031 .177 .420 .648 .805 .898 .947 .973 .987

These values tell us that if we plan to increment T by 2, we can expect the sketch for T+2 to have about 27 0s (64 × 𝛽2) and the
sketch for T+4 to have about 52 0s (64 × 𝛽4); if we plan to increment T by 3, we can expect the sketch for T+3 to have about 41 0s
(64 × 𝛽3) and the sketch for T+6 to have about 61 0s (64 × 𝛽6); and if we plan to increment T by 4, we can expect the sketch for T+4
to have about 12 0s (64 × 𝛽4) and the sketch for T+8 to have about 63 0s (64 × 𝛽8); Specifically, these calculations tell us something
very important: for increments 4 or greater, there is no need to maintain a third sketch, because it would be nearly all zeros. If we choose
to increment T by 4 when the sketch has 2 0s, we can do so, update our sketch for T using the sketch for T+4, and update the sketch
for T+4 to all 0s (the implicit value of the sketch for T+8).

We may possibly be ignoring a few 1s that would be in the sketch for T+8 had we maintained it, but this is unlikely to noticeably
affect the final estimate. Even in the worst case (all items distinct), the discrepancy can be bounded by a small constant factor; on
typical data it is likely to be zero or exceedingly small. If one wants to be very conservative, another alternative is to maintain the
indices of these 1s, at a very small (if not negligible) extra cost, but few practitioners would bother doing this.

This discussion brings us to HyperBitBit64 (Algorithm 2). It uses 𝑀 = 64, maintains two sketches, increments T by 4, and
updates the sketches when the 63rd 1 bit arrives to the first sketch. The implementation also illustrates how to use 64-bit words
for the sketches, which eliminates the overhead of maintaining bit arrays and leads to very simple and efficient code in typical
programming environments, even machine language. For clarity, Algorithm 2 uses the call p(sketch) to count the number of 1s in
the sketch. If this is not available as an atomic operation, one might choose the alternative of counting as the bits are set, as described in
Section 5. (Note: A preliminary version of this algorithm found in earlier talks that uses heuristic bias correction has occasionally been
referenced as ‘HyperBitBit.’ The fully developed version in Algorithm 2 appears only in this paper and its conference predecessor.)

Estimating the error From the above discussion, it is reasonable to hypothesize that when Algorithm 2 terminates, sketch0 is the
same as the sketch when Algorithm 1 is used with the current value of T. In other words, Theorem 2.1 applies throughout. As we have
discussed, just before incrementing T, sketch0 has about 97% 1s and sketch1 has about 20% 1s. Thus, the fraction of 0s in the
sketches stays in the range .03 < 𝛽 < .80 and the value of 𝑐(𝛽) is in the flat part of its curve (see Fig. 1). Just after T is incremented
the value of 𝑐𝛽 starts at 𝑐(.80) ≐ 1.27, then decreases to the flat part of the curve (moving from right to left in the figure), staying
there until increasing to 𝑐(.03) ≐ 1.61 just before the next increment �-the value is always less than 2.27 with average value about
1
.77 ∫

.80
.03 𝑐(𝛽)d𝛽 ≐ 1.48. This is conservative—for 80% of the range the average value is smaller, about 1

.69 ∫
.72
.11 𝑐(𝛽)d𝛽 ≐ 1.42.

The end result is that HyperBitBit64 is a true streaming algorithm that uses just 128 bits (plus six bits for T) to achieve an
expected standard error which is usually lower than 1.48∕

√
64 ≐ 18.5% even for streams having billions or trillions or more distinct

items. As we will see in Section 6, this accuracy is substantially better than that achieved by HyperLogLog for the same number of
bits. The cost of processing each element is the cost of hashing plus a few machine-language instructions. In applications where 18.5%
accuracy suffices (and developing a rough guess that would enable use of HyperBitT is infeasible), HyperBitBit64 is likely to be
the method of choice because of these low costs. For example, it would be quite useful in an application where maintaining large
number of different cardinality counters are needed, each responding to some different filter of the input stream (for an example, see
[22]).

Larger values of 𝑀 For 𝑀 = 128 or 𝑀 = 256 we can use two or four 64-bit integers, respectively, to implement HyperBitBit
using the following strategy: Set the cutoff to increment T when the relative standard error for the new value is equal to the current relative
standard error. That is, with 𝑎= ln(1∕𝛽) and 𝑐(𝑎) =

√
𝑒𝑎 − 1∕𝑎, we increment T by 4 when 𝑐(𝑎) = 𝑐(𝑎∕16). The solution to this equation

Theoretical Computer Science 1054 (2025) 115450

9

S. Janson, J. Lumbroso and R. Sedgewick

Algorithm 2. HyperBitBit64.
p u b l i c s t a t i c i n t e s t i m a t e H B B 6 4 (I t e r a b l e < S t r i n g > s t r e a m)
{

i n t T = 1 ;
i n t M = 6 4 ;
l o n g s k e t c h 0 ;
l o n g s k e t c h 1 ;
f o r (S t r i n g s : s t r e a m)
{

l o n g x = h a s h 1 (s) ; / / 6 4 -b i t h a s h
i n t k = h a s h 2 (s , M) ; / / 6 -b i t h a s h
i f (r (x) > T) s k e t c h 0 = s k e t c h 0 | 1 L < < k ;
i f (r (x) > T + 4) s k e t c h 1 = s k e t c h 1 | 1 L < < k ;
i f (p (s k e t c h 0) > . 9 7 * M) / / > 6 2 1 s ?
{ s k e t c h 0 = s k e t c h 1 ; s k e t c h 1 = 0 ; T + = 4 ; }

}
d o u b l e b e t a = 1 . 0 - 1 . 0 * p (s k e t c h 0) / M ;
r e t u r n (i n t) (M a t h . p o w (2 , T) * M * M a t h . l o g (1 . 0 / b e t a)) ;

}

is 𝑎 = ln(1∕𝛽) ≐ 4.41 so 𝛽 = 𝑒−𝑎 ≐ .012. That is, we should increment T by 4 and update the sketches when sketch0 has .988𝑀 1 bits
(about 126 for 𝑀 = 128 and 253 for 𝑀 = 256). At that point, the proportion of 0s in the sketch for T+4 will be about 𝑒−𝑎∕24 ≐ .759.
The proportion of 0s in the sketch for T+8 would be about 𝑒−𝑎∕28 ≐ .983, so we are ignoring (2, 4) 1 bits for (128, 256) respectively,
which is likely tolerable. The fraction of 0s in the sketches stays in the range .012< 𝛽 < .759, so the value of 𝑐(𝛽) is always less than
2.05 with average value about 1

.747 ∫
.759
.012 𝑐(𝛽)d𝛽 ≐ 1.46. For 𝑀 = 128 the relative standard error is approximately 1.46∕

√
128≐ 13%;

for 𝑀 = 256 it is approximately 1.46∕
√
256 ≐ 9%.

HyperBitBitBit For even larger values of 𝑀 , we can go to a third sketch, marking the subarrays with at least T, T+4, and T+8 trailing
1s and define HyperBitBitBit in a straightforward manner. The implementation is omitted because we present a significant
improvement in Section 4. The proportion of 0s in the sketch for T+12 would be about 𝑒−𝑎∕212 ≐ .9989, so we are ignoring (1, 1, 2,
4) 1 bits for (512, 1024, 2048, and 4096) respectively, again likely tolerable.

As just noted for HyperBitBit, the fraction of 0s in the sketches stays in the range .012 < 𝛽 < .759, so the value 𝑐(𝛽) is always less
than 2.05 with average value about 1

.747 ∫
.759
.012 𝑐(𝛽)d𝛽 ≐ 1.46. In summary, HyperBitBitBit is a true streaming algorithm, effective

for 𝑀 up to at least 4096, that uses 3𝑀 bits and achieves relative standard error of about 1.46∕
√
𝑀 .

4. HyperTwoBits

Remarkably, we can produce the same result as HyperBitBitBit but using just 2𝑀 bits. The trick is to note that if a bit is set
in the sketch for T+4, the bit in the corresponding position in the sketch for T must be set, and if a bit is set in the sketch for T+8,
the bits in the corresponding positions in the sketches for both T+4 and T must be set. That is, there are only four possibilities for the
values in the corresponding position in the sketches. This observation means that we can represent the three sketches with an array
of two-bit values that encode in binary the number of 1s in each position in the three sketches in HyperBitBitBit, as illustrated
in the example below. Maintaining the array of two-bit values while streaming is simple: for each data item, we identify its stream
and set its value as appropriate. Then when the number of nonzero values reaches the threshold, we increment T by 4 and simply
decrement the nonzero values in the array.

before resetting sketches

sketch for T 111111111110111011111111111111111111101110111111001111
sketch for T+4 000100111010000000000001000011001011000000111100001000
sketch for T+8 000000010000000000000000000000000001000000001100001000
two-bit values 111211232120111011111112111122112123101110223311003111

after resetting sketches and incrementing

sketch for T 000100111010000000000001000011001011000000111100001000
sketch for T+4 000000010000000000000000000000000001000000001100001000
sketch for T+8 00
two-bit values 000100121010000000000001010011001012000000112200002000

From this description, the implementation in Algorithm 3 is immediate. For clarity, we use a twobit[] type to describe the
algorithm—although no programming languages support an explicit twobit[] type, the abstraction can be implemented with shift
ing and masking on arrays of integers, an amusing exercise in bit logic (see Section 5). For clarity, we use a method pnz() to count the
nonzero entries in the array—its implementation is omitted because it is better to maintain the count dynamically (also see Section 5).

Theoretical Computer Science 1054 (2025) 115450

10

S. Janson, J. Lumbroso and R. Sedgewick

Algorithm 3. HyperTwoBits.
p u b l i c s t a t i c i n t e s t i m a t e H T B (I t e r a b l e < S t r i n g > s t r e a m , i n t M)
{ / / f o r M = 1 0 2 4 , 2 0 4 8 , o r 4 0 9 6

i n t T = 1 ;
t w o b i t [] s k e t c h = n e w t w o b i t [M] ;
f o r (S t r i n g s : s t r e a m)
{

l o n g x = h a s h 1 (s) ; / / 6 4 -b i t h a s h
i n t k = h a s h 2 (s , M) ; / / (l g M) -b i t h a s h
i f (r (x) > = T) i f (s k e t c h [k] < 1) s k e t c h [k] = 1 ;
i f (r (x) > = T + 4) i f (s k e t c h [k] < 2) s k e t c h [k] = 2 ;
i f (r (x) > = T + 8) i f (s k e t c h [k] < 3) s k e t c h [k] = 3 ;
i f (p n z (s k e t c h) > . 9 8 8 * M)
{

T = T + 4 ;
f o r (i n t i = 0 ; i < M ; i + +)

i f (s k e t c h [i] > 0) s k e t c h [i] --;
}

}
d o u b l e b e t a = 1 . 0 - 1 . 0 * p n z (s k e t c h) / M ;
r e t u r n (l o n g) (M a t h . p o w (2 , T) * M * M a t h . l o g (1 / b e t a)) ;

}

Fig. 3. Results of estimating cardinalities in a web log using Algorithm 3 with 𝑀 = 1024, for comparison with Fig. 2 (where the details of the experiments are
described). Given the same inputs (and the same random numbers), the figures for HyperBitBitBit would be identical.

In summary, HyperTwoBits is a true streaming algorithm, effective for 𝑀 up to at least 4096, that uses 2𝑀 bits (plus six bits
for 𝑇) and achieves relative standard error of about 1.46∕

√
𝑀 . As described in Section 5, it can be implemented such that processing

each item in a stream requires only a few machine-language operations.
Fig. 3 presents the results of two experiments for Algorithm 3 corresponding to those presented for Algorithm 1 in Fig. 2, which

validate our hypothesis that the relative accuracies of the algorithms are comparable and are strong evidence of the utility of the
algorithm in practice.

5. Implementation details

The abstract operations we have used in expressing our algorithms can be implemented efficiently on most computers, as described
in the following paragraphs. Our code makes liberal use of Java’s left and right shift operators << and >> and bitwise logical operations
(&, |, and ~) for bitwise (AND, OR, and NOT) respectively.

Sketches As we have noted, few programming languages support an efficient bit[] type (even Java does not guarantee that boolean
arrays use one bit per entry). As we saw in HyperBitBit64 (Algorithm 2), shifting and masking on 64-bit long values is an easy

Theoretical Computer Science 1054 (2025) 115450

11

S. Janson, J. Lumbroso and R. Sedgewick

way to implement the abstraction. For larger values of M, we use arrays of 64-bit values. In Java, for example, we maintain the sketch
as an array of long values:

long[] sketch = new long [M/64];

Then the Java code

if ((sketch[k/64] & (1L < < (k % 64))) != 0)

tests whether the kth bit in the sketch is 1, and the Java code

sketch[k/64] = sketch[k/64] | (1L < < (k % 64));

sets the kth bit in the sketch to 1.

Trailing 1s The key abstract operation in our implementations involves computing the function r(x), so that we can test whether
a 64-bit value x has at least T trailing 1s. Rather than maintaining the parameter 𝑇 , we maintain 𝑈 = 2𝑇 . The reason for doing so is
that the value U-1 has T trailing 1s, which enables us to test whether a value x has at least T trailing ones with the bitwise logical
operation (x & (U-1)) == (U-1), which is easy to implement with a few machine-language instructions.

Population count The second abstract operation in our implementations is the function p(x), the so-called ``population count''—the
number of 1 bits in a binary value. This function has a long and interesting history, but, for our purposes, it is easy to avoid, by
maintaining a count of the number of 1 bits in the sketches, incrementing when each bit is set.

Two-bit counters Again, we use shifting and masking on arrays of 64-bit long values. We keep one long array s1 for the more
significant bit and a second long array s0 for the less significant bit. To make the code more readable, we define the following
methods to get and set the bit corresponding to bit k:

public static long get(long[] s1 , long[] s0 , int k)
{ return 2 * ((s1[k/64] > > (k % 64)) & 1L)

+ ((s0[k/64] > > (k % 64)) & 1L); }

public static void set(long[] s1 , long[] s0 , int k , long v)
{

s1[k/64] = (s1[k/64] & ~(1L < < (k % 64)))
| ((v/2) & 1L) < < (k % 64);

s0[k/64] = (s0[k/64] & ~(1L < < (k % 64)))
| (v & 1L) < < (k % 64);

}

In a tightly efficient or machine-code version, this code would be used inline.
The final abstract operation to consider is to decrement all the non-zero counters. Consider the following tables, which give all

possibilities for a given bit position, where 𝑠1𝑠0 is the value before incrementing and 𝑡1𝑡0 is the value after decrementing.

before after
value s1 s0 value t1 t0

0 0 0 0 0 0
1 0 1 0 0 0
2 1 0 1 0 1
3 1 1 2 1 0

Considering these as truth tables on boolean values, it is easy to check that t1 = s1 AND s0 and t0 = s1 AND NOT s0. Further
more, we can eliminate the temporary variables by doing the operations in the order s0 = s1 AND NOT s0 and then s1 = s1
AND NOT s0. Implementing these operations with bitwise operations on our arrays of long values is straightforward.

Algorithm 4 is a full low-level implementation of HyperTwoBitsthat uses these techniques to solve the practical cardinality
estimation problem.

6. Performance comparisons

Comparing the performance of our algorithms with each other and with cardinality estimation algorithms in the literature needs
to be done carefully for several reasons.

Theoretical Computer Science 1054 (2025) 115450

12

S. Janson, J. Lumbroso and R. Sedgewick

Algorithm 4. HyperTwoBits (full low-level implementation).
p u b l i c s t a t i c i n t e s t i m a t e H T B (I t e r a b l e < S t r i n g > s t r e a m , i n t M)
{

i n t U = 2 ; / / 2 ̂ T
l o n g [] s 0 = n e w l o n g [M / 6 4] ;
l o n g [] s 1 = n e w l o n g [M / 6 4] ;
i n t c o u n t = 0 ;
f o r (S t r i n g s : s t r e a m)
{

l o n g x = h a s h 1 (s) ; / / 6 4 -b i t h a s h
i n t k = h a s h 2 (s , M) ; / / (l g M) -b i t h a s h
i f ((x & (U -1)) = = (U -1)) / / > T t r a i l i n g 1 s ?

i f (g e t (s 1 , s 0 , k) = = 0)
{ c o u n t + + ; s e t (s 1 , s 0 , k , 1) ; }

i f ((x & (1 6 * U -1)) = = (1 6 * U -1)) / / > T + 4 ?
i f (g e t (s 1 , s 0 , k) < 2) s e t (s 1 , s 0 , k , 2) ;

i f ((x & (2 5 6 * U -1)) = = (2 5 6 * U -1)) / / > T + 8 ?
i f (g e t (s 1 , s 0 , k) < 3) s e t (s 1 , s 0 , k , 3) ;

i f (c o u n t > = . 9 8 8 * M)
{

f o r (i n t j = 0 ; j < M / 6 4 ; j + +) / / D e c r e m e n t c o u n t s
{ s 0 [j] = s 1 [j] & ~ s 0 [j] ; s 1 [j] = s 1 [j] & ~ s 0 [j] ; }
c o u n t = 0 ;
f o r (i n t j = 0 ; j < M ; j + +) / / C o u n t t h e n o n -0 s

i f (g e t (s 1 , s 0 , j) > 0) c o u n t + + ;
U = 1 6 * U ; / / T + = 4

}
}
d o u b l e b e t a = 1 . 0 - 1 . 0 * c o u n t / M ; / / f r a c t i o n o f 0 s
r e t u r n (i n t) (U * M * M a t h . l o g (1 . 0 / b e t a)) ;

}

First, many papers from the theoretical computer science literature study algorithms implemented in pseudocode (or just described
in English). While these papers often introduce interesting ideas, they cannot be evaluated as solutions to the practical cardinality
estimation problem for two reasons:

(i) The methods described have never been implemented (and are sufficiently complicated that implementing them is not likely to
be worthwhile) so the time required to process each item while streaming cannot be determined.

(ii) The analyses generally define complexity results that use O-notation and are not sufficiently precise to enable comparison of the
relative accuracy with other methods.

Generally, such methods are not potentially feasible for practical applications.
Second, even among methods that have been implemented and tested, practitioners might prefer algorithms that are much simpler

to implement and maintain over more complicated methods that perform slightly better. And the time required to process each item
is a critical factor in many typical applications. Some methods are sufficiently complicated to implement that practitioners might shy
away from (or may not be able to afford) actually doing so. For example, HyperLogLog is easy to implement with 8-bit bytes, but
6-bit bytes are sufficient. Implementing a 6-bit byte array with arrays of 64-bit words is not difficult, but may be too cumbersome
from the point of view of some practitioners.

Third, many papers use the parameter 𝑀 to count the number of bytes or words (of varying length) of memory used, and ignore
constant factors when citing accuracy results. Proper comparisons require taking constant factors into account and reckoning with
the total number of bits of memory in all cases (see [23] for a discussion of this point with regard to another streaming problem).
This reflects the broader reality that much of the literature focuses on scaling in terms of 𝑀 , the number of substreams, rather than
the total bit budget, which is what ultimately governs practical space usage. One of the contributions of this paper is to highlight
and explicitly control for this dimension, allowing fair comparisons and more precise memory-performance tradeoffs. As an extreme
example, suppose that two algorithms achieve standard error 2∕

√
𝑀 but one uses 𝑀 bits and the other uses 𝑀 64-bit words. The

first is eight times more accurate for a given number of bits of memory. In general, if we know that the accuracy of an algorithm is
𝑐∕
√
𝑀 and that it stores 𝑀𝑏 bits, we express the accuracy in terms of 𝑀⋆ , the total number of bits used, or 𝑐

√
𝑏∕
√
𝑀⋆. Inverting

this equation gives the number of bits needed to achieve a given accuracy 𝑥: 𝑀⋆ = 𝑏(𝑐∕𝑥)2.
Fourth, few papers actually prove anything about the distribution of the reported values, with the notable exception of [24].

Typically, normality is instead presented as a reasonable hypothesis, which may often be the case, but our proof of asymptotic
normality of the reported cardinalities is significant.

Fifth, the accuracy of our algorithms depend on the coefficient 𝑐(𝛽) of 1∕
√
𝑀 in the relative standard error, which varies. We

use the average value of 𝑐(𝛽) over the interval of values 𝛽 might take on during the execution of the algorithm. For HyperBitT we
(somewhat arbitrarily) use the interval where 𝑐(𝛽) < 1.5; our other algorithms calculate an appropriate interval. As we have noted,
the shape of the curve in Fig. 1 tells us that it is likely that the value encountered in practice is smaller than the value cited.

Theoretical Computer Science 1054 (2025) 115450

13

S. Janson, J. Lumbroso and R. Sedgewick

Table 3
Performance of cardinality estimation algorithms: Adaptive sampling [1] (AS),
Probabilistic counting [2] (PC), LogLog[3] (LL), HyperLogLog 8-bit and 6-bit
versions [4] (HLL8 and HLL), Extended HyperLogLog[12] (EHLL), HyperBitT
(HBT), HyperBitBit (HBB), HyperBitBitBit (HBBB), and HyperTwoBits
(HTB). We emphasize normalization by total bits used (𝑀⋆), not just the number
of substreams (𝑀), to ensure fair comparisons.

𝑀⋆ = 𝑏(𝑐∕𝑥)2 𝑐
√
𝑏∕
√
𝑀⋆

bits needed for accuracy with
algorithm 𝑏 𝑐 𝑐

√
𝑏 2% 20% 128 bits 8K bits

AS 64 1.20 9.60 230400 2304 85% 10.6%
PC 64 0.78 6.24 97344 973 55% 6.9%
LL 6 1.05 2.57 16538 165 23% 3.5%

HLL8 8 1.04 2.94 21632 216 26% 3.3%
HLL 6 1.02 2.55 16224 162 23% 2.8%
EHLL 7 0.88 2.33 13552 136 21% 2.6%

HBT 1 1.32 1.32 4356 44 12% 1.5%
HBB 2 1.46 2.06 �- 128 18% �-

HBBB 3 1.46 2.53 15987 128 22% 2.8%
HTB 2 1.46 2.06 10658 128 18% 2.3%

Sixth, it is important to remember that we are dealing with random fluctuations and approximate analyses. It may be tempting
to use more precision, but any differences indicated would not be noticed in practice. For example, one might conclude that Hyper
LogLog with 6-bit bytes should be very slightly better than LogLog with 6-bit bytes because its standard error of 1.02∕

√
𝑀 is very

slightly better than 1.05∕
√
𝑀 , but it would be extremely challenging to develop experimental validation of that hypothesis.

Seventh, we ignore relatively inconsequential small fixed costs such as the memory required to store the value of T. In theory,
our algorithms all require lg lg𝑁 bits to represent 𝑇 . This is inconsequential in practice because six bits suffice to represent lg lg𝑁 in
any conceivable application, but it is worthwhile noting that we are not claiming that the algorithms use 𝑂(1) memory for fixed 𝑀 .

With all these caveats, Table 3 presents a comparison of the algorithms we have discussed. HyperBitT is the best by far when
starting with a rough estimate is feasible. Among the streaming algorithms, our simplest and perhaps most useful implementation
is HyperBitBit64, which achieves 18.5% accuracy on a stream on any length with just 128 bits (two 64-bit words) and can be
implemented with a few dozen machine instructions. The 256-bit and 512-bit versions referred to in Section 3 are also simple and likely
useful, as they achieve 13% and 9% accuracy, respectively. For better accuracy, a larger value of 𝑀 (and more memory) is needed.
If a straightforward and easy-to-maintain implementation is desired, HyperBitBit and HyperBitBitBit are arguably simpler
than the 8-bit version of HyperLogLog and substantially more efficient. If a careful implementation with improved efficiency is
desired, HyperTwoBits is substantially better than the 6-bit version of HyperLogLog. Generally, our algorithms provide much better
accuracy for the same number of bits as HyperLogLog and use significantly fewer bits to achieve the same accuracy. These results
underscore the importance of evaluating accuracy with respect to total bit usage (not just register count) as we have systematically
done throughout this paper.

Further validation may be found in the work by Geis [25], a thorough implementation derived from the conference version of
this paper [17].

7. Further improvements

We conclude by briefly mentioning some opportunities that may lead to variants of our algorithms that may be worthy of study
in various particular situations.

• Small cardinalities. In many practical applications, the cardinality is often likely to be small, in which case users prefer exact
values. For this reason, using a simpler algorithm that returns exact values for small cardinalities is typical [5]. Our accuracy
estimates hold even for small cardinalities, so the switch from exact to approximate is an application-dependent decision.

• Sparse arrays. Precise characterization of the situation just after incrementing T (when the sketches are mostly 0s) may lead to
slightly better accuracy estimates.

• Use both sketches. The second sketch contains information that may lead to a better accuracy estimate. Analyzing this effect is
tractable, but not likely to improve the estimate by more than a percentage point or two.

• HyperThreeBits. Using 3-bit counters instead of the 2-bit counters in HyperTwoBits allows implementation of seven layers
of bit arrays and may be useful for specialized applications needing very high accuracy (requiring huge values of 𝑀) for the
kinds of truly huge streams seen in modern computing.

• Mergeability. Many applications can benefit from being able to merge sketches built from two different streams. Our sketches are
not difficult to merge, as indicated by the following argument for HyperBitBit. A sketch is a triple (T, sketch0, sketch1).
To merge the two sketches (T𝐴,sketch0𝐴,sketch1𝐴) and (T𝐵,sketch0𝐵,sketch1𝐵) consider the following four cases:
(i) If T𝐴 = T𝐵 = T use (T,sketch0𝐴|sketch0𝐵,sketch1𝐴|sketch1𝐵).

Theoretical Computer Science 1054 (2025) 115450

14

S. Janson, J. Lumbroso and R. Sedgewick

(ii) If the values of T differ by 8 or more, use the larger value and its sketches.
(iii) If 𝑇𝐴 = 𝑇𝐵 + 4, use (T𝐴,sketch0𝐴|sketch1𝐵,sketch1𝐴).
(iv) If 𝑇𝐵 = 𝑇𝐴 + 4, use (T𝐵,sketch0𝐵|sketch1𝐴,sketch1𝐵).
In all cases, check whether the first sketch is nearly full. If so, increment T (by 4) and update the sketches as usual. This result
is not precisely the same as if the two streams had actually been merged, but the difference is likely acceptably small in many
practical situations. The argument for HyperBitT is similar, but simpler; the argument for HyperBitBitBit is similar, but
more complicated. All of these approaches require alignment of the hash functions, which may present practical challenges.

As a final remark, we note that we have studied many approaches to developing a true HyperBit algorithm, by modifying HyperBitT
to just increment T, reset the sketch to 0s, and then characterizing the error due to the transition. Despite some promising empirical
results with heuristic bias corrections, the problem of developing a mathematical model admitting proper comparison of such an
algorithm with the ones described here remains open.

CRediT authorship contribution statement

Svante Janson: Writing -- original draft, Validation, Investigation, Formal analysis, Conceptualization. Jérémie Lumbroso: Writ
ing -- review & editing, Writing -- original draft, Validation, Methodology, Investigation, Formal analysis, Conceptualization. Robert
Sedgewick: Writing -- review & editing, Writing -- original draft, Supervision, Methodology, Investigation, Formal analysis, Concep
tualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Svante Janson reports financial support was provided by Knut and Alice Wallenberg Foundation. Svante Janson reports
financial support was provided by Swedish Research Council. If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is dedicated to the memory of Philippe Flajolet.
These results were developed over a period of several years through talks and discussions at AofA (International Meetings on

Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms), Schloss Dagstuhl -- Leibniz Center for Infor
matics, and Banff International Research Station conferences, seminars, and workshops. We are indebted to these institutions and the
organizers of these meetings for their work in supporting this research.

We would like to thank Martin Pépin and two anonymous reviewers for their helpful comments on our initial submission; and
Seth Pettie and Jelani Nelson for feedback on this paper. Thanks are due to Heinz Geis for pointing out a bug in HyperBitT in the
conference version of the paper. We would also like to thank our colleagues, Conrado Martínez, Sampath Kannan, Val Tannen, and
Pedro Paredes for their interest and feedback; and our students, Alex Iriza and Alex Baroody for their discussions and implementation
work on earlier versions of these algorithms.

References

[1] P. Flajolet, G.N. Martin, Probabilistic counting, in: 24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, USA, IEEE Computer Society,
1983, pp. 76--82.

[2] P. Flajolet, G.N. Martin, Probabilistic counting algorithms for data base applications, J. Comput. Syst. Sci. 31 (2) (1985) 182--209, https://doi.org/10.1016/
0022-0000(85)90041-8.

[3] M. Durand, P. Flajolet, Loglog counting of large cardinalities (extended abstract), in: G.D. Battista, U. Zwick (Eds.), Algorithms - ESA 2003, 11th Annual European
Symposium, Budapest, Hungary, September 16-19, 2003, Proceedings, in: Lecture Notes in Computer Science, vol. 2832, Springer, 2003, pp. 605--617.

[4] P. Flajolet, Éric Fusy, O. Gandouet, F. Meunier, Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm, in: P. Jacquet (Ed.), AofA 07�- Pro
ceedings of the 2007 Conference on Analysis of Algorithms, Juan-les-pins, France, June 18-22, 2007, DMTCS Proceedings volume AH, DMTCS, 2007, pp. 127--146.

[5] S. Heule, M. Nunkesser, A. Hall, Hyperloglog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm, in: G. Guerrini, N.W.
Paton (Eds.), Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, ACM, 2013, pp. 683--692.

[6] J. Lumbroso, How Flajolet processed streams with coin flips, CoRR, arXiv:1805.00612, 2018, arXiv:1805.00612.
[7] N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency moments, in: G.L. Miller (Ed.), Proceedings of the Twenty-Eighth Annual

ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, ACM, 1996, pp. 20--29.
[8] P. Indyk, D.P. Woodruff, Tight lower bounds for the distinct elements problem, in: 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14

October 2003, Cambridge, MA, USA, Proceedings, IEEE Computer Society, 2003, pp. 283--288.
[9] D.M. Kane, J. Nelson, D.P. Woodruff, An optimal algorithm for the distinct elements problem, in: J. Paredaens, D.V. Gucht (Eds.), Proceedings of the Twenty-Ninth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, ACM, 2010, pp. 41--52.
[10] D.E. Knuth, The Art of Computer Programming, Volume III, 2nd edition, Addison-Wesley, 1998.
[11] K. Chung, M. Mitzenmacher, S.P. Vadhan, Why simple hash functions work: exploiting the entropy in a data stream, Theory Comput. 9 (2013) 897--945, https://

doi.org/10.4086/TOC.2013.V009A030.
[12] T. Ohayon, Extendedhyperloglog: analysis of a new cardinality estimator, CoRR, arXiv:2106.06525, 2021, arXiv:2106.06525.
[13] D. Wang, S. Pettie, Better cardinality estimators for hyperloglog, pcsa, and beyond, in: F. Geerts, H.Q. Ngo, S. Sintos (Eds.), Proceedings of the 42nd ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, ACM, 2023, pp. 317--327.

http://refhub.elsevier.com/S0304-3975(25)00388-3/bibE45913BEF02507449B25A3643C28E253s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibE45913BEF02507449B25A3643C28E253s1
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1016/0022-0000(85)90041-8
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibEBD87FF4A3D95DC382236F6EA26BC928s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibEBD87FF4A3D95DC382236F6EA26BC928s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibB4AB26BF2B4EC2F8ABDC4439C5E82BCEs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibB4AB26BF2B4EC2F8ABDC4439C5E82BCEs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib768A51E241816BB9542CDFB221662C20s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib768A51E241816BB9542CDFB221662C20s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib01272EE345DFE578ECD2C29B9BDD549As1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib2CFB54FBE48E84185197ABC374401A62s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib2CFB54FBE48E84185197ABC374401A62s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib8B07B8E4CFE9478B85321621B08672D3s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib8B07B8E4CFE9478B85321621B08672D3s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibFB316B01132F96A8500CA3AE235D6563s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibFB316B01132F96A8500CA3AE235D6563s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibE07A80D65E657732F9995E21709BEDD7s1
https://doi.org/10.4086/TOC.2013.V009A030
https://doi.org/10.4086/TOC.2013.V009A030
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib297A737BC47EC133FB5E9A1D949188A2s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib8219C188BB785DE1264FB467B727E416s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib8219C188BB785DE1264FB467B727E416s1

Theoretical Computer Science 1054 (2025) 115450

15

S. Janson, J. Lumbroso and R. Sedgewick

[14] J. Lumbroso, C. Martínez, Affirmative sampling: theory and applications, in: M.D. Ward (Ed.), 33rd International Conference on Probabilistic, Combinatorial
and Asymptotic Methods for the Analysis of Algorithms (AofA 2022), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 225, Schloss Dagstuhl --
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022, pp. 12:1--12:17.

[15] M. Karppa, R. Pagh, Hyperlogloglog: cardinality estimation with one log more, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2022, pp. 753--761.

[16] S. Pettie, D. Wang, Information theoretic limits of cardinality estimation: Fisher meets Shannon, in: Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, 2021, pp. 556--569.

[17] S. Janson, J. Lumbroso, R. Sedgewick, Bit-array-based alternatives to HyperLogLog, in: C. Mailler, S. Wild (Eds.), 35th International Conference on Probabilistic,
Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 302, Schloss
Dagstuhl -- Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2024, pp. 5:1--5:19.

[18] S. Janson, J. Lumbroso, R. Sedgewick, Hyperbitt, hyperbitbit64 and hypertwobits, https://github.com/robert-sedgewick/hyperbitbit, 2024.
[19] R. Sedgewick, P. Flajolet, An Introduction to the Analysis of Algorithms, second edition, Addison-Wesley-Longman, 2013.
[20] A.D. Barbour, L. Holst, S. Janson, Poisson Approximation, Oxford University Press, 1992.
[21] A. Gut, Probability: A Graduate Course, 2nd edition, Springer Texts in Statistics, vol. 75, 2013.
[22] P. Boldi, M. Rosa, S. Vigna, Hyperanf: approximating the neighbourhood function of very large graphs on a budget, in: Proceedings of the 20th International

Conference on World Wide Web, WWW ’11, Association for Computing Machinery, New York, NY, USA, 2011, pp. 625--634.
[23] Q. Ma, S. Muthukrishnan, M. Sandler, Frugal streaming for estimating quantiles: one (or two) memory suffices, arXiv:1407.1121, 2014.
[24] J. Lumbroso, An optimal cardinality estimation algorithm based on order statistics and its full analysis, Discrete Math. Theor. Comput. Sci. AM (2010).
[25] H. Geis, Hypertwobits implementation, https://github.com/axiomhq/hypertwobits, 2024.

http://refhub.elsevier.com/S0304-3975(25)00388-3/bib58FCD476589F249B09E8830213DA716Fs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib58FCD476589F249B09E8830213DA716Fs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib58FCD476589F249B09E8830213DA716Fs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib17A543CD5934AD67CBE5F3D2985A1ECFs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib17A543CD5934AD67CBE5F3D2985A1ECFs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib72FF4CD1484E2A097EDD252CA46D2FBAs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib72FF4CD1484E2A097EDD252CA46D2FBAs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib8F4935BBA2243185BA4745BC99CA93FAs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib8F4935BBA2243185BA4745BC99CA93FAs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib8F4935BBA2243185BA4745BC99CA93FAs1
https://github.com/robert-sedgewick/hyperbitbit
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibDF03DE4FC263018B96893E4418262D36s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib8F3B99BFFDDD816D318BFA908432A3A4s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib1823431F727894BDC364772726CAB0A4s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib6D770909BEE8BCEB5F04C2931B15F502s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib6D770909BEE8BCEB5F04C2931B15F502s1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bib9D71FDA100BAC6DF389CA3FEF9E56CFFs1
http://refhub.elsevier.com/S0304-3975(25)00388-3/bibA986F3BCFD7A0A24F9D4C90ECE6D6334s1
https://github.com/axiomhq/hypertwobits

	Bit-array-based alternatives to HyperLogLog
	1 Introduction
	2 HyperBitT
	3 HyperBitBit and HyperBitBitBit
	4 HyperTwoBits
	5 Implementation details
	6 Performance comparisons
	7 Further improvements
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

