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We present a family of algorithms for the problem of estimating the number of distinct items 
in an input stream that are simple to implement and are appropriate for practical applications. 
Our algorithms are a logical extension of the series of algorithms developed by Flajolet and his 
coauthors starting in 1983 that culminated in the widely used HyperLogLog algorithm. These 
algorithms divide the input stream into 𝑀 substreams and lead to a time-accuracy tradeoff where 
a small number of bits per substream are saved to achieve a relative accuracy proportional to 
1∕

√
𝑀 . Our algorithms use just one or two bits per substream. Their effectiveness is demonstrated 

by a proof of approximate normality, with explicit expressions for standard errors that inform 
parameter settings and allow proper quantitative comparisons with other methods. Performance 
hypotheses are validated through experiments using a realistic input stream, with the general 
conclusion that our algorithms are significantly more accurate than HyperLogLog when using the 
same amount of memory, and they use significantly less memory than HyperLogLog to achieve 
a given accuracy.

1. Introduction

Counting the number of distinct items in a data stream is a classic computational challenge with many applications. As an example, 
consider the stream of strings taken from a web log shown in the left column of Table 1 (we will use 1 million strings from this log 
of which 𝑁 = 368,217 are distinct values as a running example in this paper). There is no bound on the length of the stream, but 
maintaining an estimate of the number of different strings found in the stream is useful for many purposes.

One classic application is for computer networks. The ability to estimate the number of different visitors of a website is certainly 
of interest, and can be critical in maintaining the integrity of the site. For example, a significant drop in the percentage of different 
visitors in a given time period might be an indication that the site is under a denial-of-service attack.

Another classic application is for database systems, where estimating the number of different strings having each attribute is a 
critical piece of knowledge in implementing certain common data base operations. In this case, the length of the streams is available, 
but may be very large, and a rough estimate suffices, so using a streaming algorithm is appropriate.

Elementary algorithms for solving the problem are standard in introductory computer science classes. Perhaps the simplest is to 
use a hash table, but that requires saving all the items in memory, which is far too high a cost to be useful in typical applications. In 
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Table 1
Computing a sketch for HyperBitT (with 𝑀 = 8 and 𝑇 = 1).

s x k r(x) sketch[] 
81.95.186.98.freenet.com.ua 111. . . 1011110011101011 7 2 00000001 
lsanca.dsl-w.verizon.net 011. . . 0001111110100000 3 0 00000001 
117.222.48.163 110. . . 0000111011101101 6 1 00000001 
1.23.193.58 100. . . 1000011101100011 4 2 00001001 
188.134.45.71 101. . . 0101101000111001 5 1 00001001 
gsearch.CS.Princeton.EDU 010. . . 1000011010000100 2 0 00001001 
81.95.186.98.freenet.com.ua 011. . . 1110000111010000 3 0 00001001 
81.95.186.98.freenet.com.ua 111. . . 1011110011101011 7 2 00001001 
1.23.193.58 000. . . 1111101011100111 0 3 10001001 
lnse3.cht.bigpond.net.au 111. . . 1011011101001110 7 0 10001001 
117.211.88.36 000. . . 0100010010111010 0 0 10001001 
1.23.193.58 000. . . 1111101011100111 0 3 10001001 
lsanca.dsl-w.verizon.net 011. . . 0001111110100000 3 0 10001001 
81.95.186.98.freenet.com.ua 111. . . 1011110011101011 7 2 10001001 
gsearch.seas.upenn.edu 000. . . 1011010100001000 0 0 10001001 
109.108.229.102 010. . . 1010110110011111 2 5 10101001 
msnbot.search.msn.com 001. . . 0111001001101100 1 0 10101001 

fact, any method for computing an exact count must save all the items in memory (trivial proof: any item not saved might or might 
not be different from all the others, and that fact cannot be known until the last item is seen).

Accordingly, we focus on estimating the count. In typical applications, exact counts are actually not needed—the estimates are 
being used to make relative decisions that do not require full accuracy.

Since the seminal research by Flajolet and Martin in the 1980s [1][2] it has been known that we actually can get by with a 
surprisingly small amount of processing time and memory space. To be more specific, the practical cardinality estimation problem is to 
estimate the number of distinct items in a data stream under the following constraints:

• Each item is examined only once.
• The time to process each item is a small constant multiple of its size.
• The space used is small, and independent of the length of the stream.
• The estimate is expected to be very close to the real count.

A solution to this problem typically is defined by an implementation that makes clear its time and space requirements and an analysis 
that provides a precise characterization of how the estimate compares to the actual value. In the context of this paper, we refer to an 
algorithm satisfying the first three constraints as a ``streaming algorithm.''

For many years, the state of the art in solving the practical cardinality estimation problem has been HyperLogLog, the last in the 
series of algorithms developed by Flajolet and colleagues from the 1980s through the 2000s [3] [4] [5] [6]. HyperLogLog is based 
on four main ideas:

• Hashing is used to convert each item in the stream into a fixed-length binary number.
• The position of the rightmost zero is computed, taking the maximum value found as an estimate of the binary logarithm of the 

count.
• A technique known as stochastic averaging splits the stream into 𝑀 independent substreams and averages the counts in the 

substreams.
• The harmonic mean is used to properly handle outlying values.

One reason HyperLogLog is so widely used is that precise analysis of the bias in the estimate provides the basis for formulating 
hypotheses about how the algorithm will perform in practical situations, and the results of experiments that validate the hypotheses 
are presented. The analysis exposes a space-accuracy tradeoff, allowing practitioners to choose with confidence the amount of memory 
needed to achieve a given accuracy or the accuracy achieved for a given amount of memory use: For a stream with 𝑁 distinct values 
and using 𝑀 substreams, HyperLogLog uses 𝑀 lg lg𝑁 bits and typically produces an estimate with a relative standard error of 
𝑐∕
√
𝑀 where 𝑐 ≐ 1.04.

A series of theory papers have proven that 𝑂(𝑀) bits are necessary and sufficient to achieve estimates with asymptotic accuracy 
on the same order as HyperLogLog, an important and significant accomplishment [7][8][9]. However, these papers lack implemen
tations, likely because the implied constants in the proofs are much too large for the methods to be viable in practice. Some also use 
theoretical devices that would never be used in practice, like reprocessing the stream in the (low probability) event of a bad estimate.

Papers in the theory literature also typically make the implicit assumption that strong assumptions on the hash functions are 
necessary. This dates back to the 1996 paper by Alon, Matias and Szegedy [7] where the work of Flajolet and Martin in [2] is dismissed 
with a mischaracterization that leaves the incorrect impression that the algorithms rely on the availability of hash functions with very 
strong random properties. To the contrary, Flajolet and Martin simply observed that using such hash functions would be prohibitively 
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expensive, so they invented stochastic averaging (which is extremely efficient), did a precise analysis to develop the hypothesis that 
using it would have similar performance to the idealized algorithm in practice, and ran experiments to validate that hypothesis. And 
this conclusion has been further validated for decades by countless implementations and applications (see, for example, [5]).

Using idealized models to state and prove theorems that are sufficiently precise that they can lead to practical algorithms and 
hypotheses about performance that can be validated through experimentation is the basis of algorithm science, dating back to Knuth’s 
pioneering study of linear probing in 1963, which precisely characterizes the performance of the algorithm under the assumption 
that all hash sequences are equally likely (see [10]). It is interesting to note that not even Knuth explicitly states that his theorem is 
a reasonable basis for forming hypotheses about real-world performance. The fact remains that any practical application of hashing, 
however perfect in theory, must assume, at least, that random bits exist, and therefore rests on some hypothesis connecting the theory 
and the real world. See, for example, [11] for further discussion of this issue. Moreover, a precise mathematical model is a necessity 
in situations where multiple parameters are involved. Choosing the best values of parameters can be done within the model, while 
doing so via experimentation would be expensive or infeasible.

In this paper, we focus on algorithms with the potential to be useful in practice, (using hash functions that have been widely 
used for myriad applications for decades), develop mathematical models and use them to set parameter values, hypothesize that 
any differences from ideal models needed to prove theorems are relatively insignificant, and describe experiments that validate such 
hypotheses.

HyperLogLog uses 5 bits per substream�-5𝑀 bits for 𝑁 < 232. Much higher values of 𝑁 are typical in modern applications, 
but it is safe to assume that 𝑁 < 264, so HyperLogLog demonstrates that 6𝑀 bits suffice for the practical cardinality estimation 
problem. Some improvements to HyperLogLog and some interesting new approaches to the problem have been studied in recent 
years [12] [13] [14] [15] [16] but still leave the following question: Is there a practical algorithm as simple as HyperLogLog with 
comparable accuracy that uses 𝑐𝑀 bits for some constant 𝑐 that is significantly less than 6?

This paper is an extended version of our conference paper [17] that provides answers to this question, with more thorough and 
detailed explanations and a more logical and complete narrative than is possible within the strict requirements for conference papers.

The algorithms we present have the same structure as HyperLogLog but use much less memory. In Section 2, instead of recording 
the maximum number of trailing ones, we focus on one bit per sub-stream indicating whether a threshold has been hit. Then we use 
a rough estimate of the cardinality as an input parameter in order to set the threshold to be the logarithm of the estimated number of 
distinct items per substream and then compute a precise estimate of the cardinality of the stream. While not a streaming algorithm, 
the resulting algorithm is useful in its own right, admits a precise analysis, and serves as a basis for the streaming algorithms in 
Section 3 and Section 4 that do solve the practical cardinality estimation problem, using just two bits per substream. Section 5 covers 
details of developing real-world implementations that keep costs low by using low-level machine operations (see also [18]). Section 6
is a discussion of how these algorithms match up against others in the literature, and Section 7 concludes the paper with a discussion 
of possible further improvements and directions for further research.

2. HyperBitT

Our first algorithm uses the standard technique of starting with a rough estimate of the cardinality and is therefore not properly 
a streaming algorithm, as no fixed estimate can remain accurate as the cardinality grows without bound. Still, as we will see, it can 
play an important role in some practical applications. More important, it admits a precise analysis that we can use to develop the 
streaming algorithms in Section 3 and Section 4. One of the primary contributions of this paper is this analysis, presented in this 
section.

We start with hashing and stochastic averaging with 𝑀 substreams precisely in the same manner as HyperLogLog, but use just 
one bit per substream, as follows. Of course, we expect each substream to have about 𝑁∕𝑀 distinct values, and it has been known at 
least since the original work of Flajolet and Martin [1] that the maximum number of trailing 1s found among the items in a stream is 
a good estimator of the logarithm of the number of distinct items in the stream. Indeed, this is the same as the length of the rightmost 
path in a random trie, a quantity that was studied in the 1970s (see [10]). In this spirit, we use a parameter 𝑇 as an estimate of 
lg(𝑁∕𝑀). That is, 2𝑇 is an estimate of 𝑁∕𝑀 , and 2𝑇𝑀 is an estimate of the cardinality 𝑁 . Now, we maintain a sketch comprising 
an array of 𝑀 bits, one per substream, and set the bit corresponding to a substream to 1 when an item from that substream has more 
than T trailing 1s. When we want to estimate the number of distinct values in the stream, it turns out that we can use a simple function 
of the number of 0 bits in the sketch to improve our estimate. The algorithm may produce an inaccurate result or fail completely if 
the rough estimate T is poorly chosen, but, as we will see, it is remarkably forgiving.

Implementation We start with a bit array sketch[] with one bit per substream, initialized to all 0s. For clarity, we use a bit[] 
type to describe our algorithms—although few programming languages support an explicit bit[] type, the abstraction is easily 
implemented. For small 𝑀 , we can use integer values; for large 𝑀 , we can use shifting and masking on arrays of integers (see 
Section 5). We typically take 𝑀 to be a power of two for convenience.

For each new item s in the stream, we compute a hash value x to represent it and a second hash value k to identify its substream 
(typically, one might compute a 64-bit hash and use the leading lg𝑀 bits for k and the rest for x). Then we compute r(x), the number 
of trailing 1s in x. As described in Section 5, this operation can be implemented with only a few machine-language instructions. If 
r(x) is larger than T, we set sketch[k] to 1. Table 1 is a trace of the process for a small sequence of hash values with 𝑀 = 8 and 
𝑇 = 1.



Theoretical Computer Science 1054 (2025) 115450

4

S. Janson, J. Lumbroso and R. Sedgewick 

Algorithm 1. HyperBitT. 
p u b l i c s t a t i c i n t e s t i m a t e H B T ( I t e r a b l e < S t r i n g > s t r e a m , 

i n t M , i n t T ) 
{ 

b i t [ ] s k e t c h [ M ] ; 
f o r ( S t r i n g s : s t r e a m ) 
{ 

l o n g x = h a s h 1 ( s ) ; / / 6 4 -b i t h a s h 
i n t k = h a s h 2 ( s , M ) ; / / ( l g M ) -b i t h a s h 
i f ( r ( x ) > T ) s k e t c h [ k ] = 1 ; / / > T t r a i l i n g 1 s ? 

} 
d o u b l e b e t a = 1 . 0 - 1 . 0 * p ( s k e t c h ) / M ; / / f r a c t i o n o f 0 s 
r e t u r n ( i n t ) ( M a t h . p o w ( 2 , T ) * M * M a t h . l o g ( 1 . 0 / b e t a ) ) ; 

} 

When the stream is exhausted, we compute a correction to the rough estimate of 𝑁 = 2𝑇𝑀 that takes into account some bias, as 
a function of the bit values in the sketch. Specifically, we are interested in the parameter 𝛽, the proportion of 0s in the sketch. As 
indicated by the analysis below, the appropriate correction factor is ln(1∕𝛽). If the sketch is small enough to fit in a computer word, 
computing the number of 1s in the sketch is a classic machine-language programming exercise and is actually a single instruction 
in many modern machine architectures. For clarity, we use the function p(sketch); for large 𝑀 it is preferable to just increment 
a counter each time a sketch bit is changed from 0 to 1, as described in Section 5. The implementation in Algorithm 1 follows 
immediately and is easily translated to any programming language.

If 𝑇 is too small or too large, the algorithm fails because the estimate cannot be reasonably corrected (when 𝛽 is close to 0 or 1, 
the correction factor is too large or too small to be useful). But, as we shall see, the algorithm does produce accurate results for a 
remarkably large range of cardinality values, and we can precisely characterize that range and the accuracy.

Analysis As a basis for developing an intuition about the problem, we start with an approximate analysis for the mean value of 
the number of distinct values in the stream. After 𝑁 distinct values have been processed from the input stream, we have seen an 
average of 𝑁∕𝑀 distinct values in each substream. As an approximation, assume that exactly 𝑁∕𝑀 values go to each substream. 
The probability that a given value has at least 𝑇 trailing 1s is 1∕2𝑇 so the probability that a given bit in sketch[] remains 0 after 
𝑁∕𝑀 values are processed in its corresponding substream is given by a Poisson approximation(

1 − 1 
2𝑇

)𝑁∕𝑀
∼ 𝑒−𝑁∕(𝑀2𝑇 )

(see for example, [19]). The number of 0s in sketch[] is a binomially distributed random variable, so this value is also (approxi
mately) 𝛽, the expected proportion of 0s in sketch[] after 𝑁 values have been processed. Thus, 𝑁∕𝑀 ∼ 2𝑇 ln(1∕𝛽) and the expected 
number of values processed is 𝑁 ∼𝑀2𝑇 ln(1∕𝛽). In other words, we need to correct our rough estimate of the number of values per 
stream by the factor ln(1∕𝛽).

A full detailed analysis provides much more information, which is critical for studying the performance of the algorithm. Specifi
cally, we are able to approximate the distribution of the reported cardinality, which gives us the information needed to estimate how 
accurate it will be for given values of 𝑀 .

The proof is based on the idea of Poissonization�-instead of assuming that we have a fixed given number 𝑁 of distinct items, we 
assume that the number is random with a Poisson distribution. It uses two technical lemmas from probability theory:

Lemma 2.1. Suppose that 𝑋𝑛 ≥ 0 are random variables and 𝑎𝑛, 𝑏𝑛, and 𝜎2 numbers such that, as 𝑛→ ∞, we have a𝑛 → 𝑎 > 0, 𝑏𝑛 →

0, and (𝑋𝑛 − 𝑎𝑛)∕𝑏𝑛
𝑑

⟶ ℕ(0, 𝜎2). If f is a continuously differentiable function on (0,∞) with 𝑓 ′(𝑎) ≠ 0, then (𝑓 (𝑋𝑛) − 𝑓 (𝑎𝑛))∕𝑏𝑛
𝑑

⟶
ℕ(0, 𝑓 ′(𝑎)2𝜎2).

Proof. This is well known, but we include this proof for completeness. By the mean value theorem,

𝑓 (𝑋𝑛) − 𝑓 (𝑎𝑛)
𝑏𝑛

= 𝑓 ′(𝑋∗
𝑛
)
𝑋𝑛 − 𝑎𝑛
𝑏𝑛

(1)

for some 𝑋∗
𝑛

with 𝑋𝑛 ≤𝑋∗
𝑛
≤ 𝑎𝑛 or 𝑎𝑛 ≤𝑋∗

𝑛
≤𝑋𝑛. Since (𝑋𝑛 − 𝑎𝑛)∕𝑏𝑛

𝑑
⟶ ℕ(0, 𝜎2) and 𝑏𝑛 → 0, we have 𝑋𝑛 − 𝑎𝑛

𝑝 
⟶ 0. Furthermore, 

𝑎𝑛 → 𝑎, and hence 𝑋𝑛
𝑝 

⟶ 𝑎. Consequently, also 𝑋∗
𝑛

𝑝 
⟶ 𝑎. Thus, since 𝑓 ′ is continuous, 𝑓 ′(𝑋∗

𝑛
)

𝑝 
⟶ 𝑓 ′(𝑎). The result follows from 

(1) and the assumption. □

Lemma 2.2. Let 𝑋 ∼ Binomial(𝑛, 𝑝) and let 𝑌 ∈ Poisson(𝑛𝑝) where 𝑛 > 0 and 𝑝 ∈ [0,1]. Then the total variation distance between them, 
𝑑𝑇𝑉 (𝑋,𝑌 ), is no greater than 𝑝; in other words, there exists a coupling of 𝑋 and 𝑌 such that ℙ(𝑋 ≠ 𝑌 ) ≤ 𝑝.

Proof. See Theorem 2.M and pages 1--8 in [20]. □
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Theorem 2.1. Suppose that a stream 𝑆 has 𝑁 distinct items and that HyperBitT processes 𝑆 using 𝑀 substreams with parameter 𝑇 , 
terminates with 𝛽𝑀 0s left in the sketch. If the hash functions return each possible value with equal probability, then the statistic 𝑀2𝑇 ln(1∕𝛽)
is approximately Gaussian with mean 𝑁 and relative standard error 𝑐(𝛽)

/√
𝑀 where 𝑐(𝛽) =

√
1∕𝛽 − 1

/
ln(1∕𝛽). Formally,√

𝑀

𝑐(𝛽) 

(
𝑀2𝑇 ln(1∕𝛽)

𝑁
− 1

)
𝑑

⟶ℕ(0,1) (2)

as 𝑁,𝑀,𝑇 →∞ with 𝑁 =Θ(𝑀2𝑇 ).

Proof. Assume first that 𝑁 ∼ 𝑎𝑀2𝑇 for some 𝑎 ∈ (0,∞). Pretend that the distinct items in the stream arrive according to a Poisson 
process with rate 1. We then may consider the process at a given time 𝑁̃ . If we keep 𝑁̃ fixed, then the number of distinct items seen 
so far is a random variable obeying a Poisson distribution Poisson(𝑁̃). We let 𝑁̃ ∼𝑁 ∼ 𝑎𝑀2𝑇 . For reference, we summarize here the 
notations used in this proof:

• 𝑁 ∼ 𝑎𝑀2𝑇 , the cardinality of the stream seen by Algorithm 1,
• 𝑎, a positive number,
• 𝑁̂ =𝑀2𝑇 ln(1∕𝛽), the reported estimate of 𝑁 , and
• 𝑁̃ ∼ 𝑎𝑀2𝑇 , the Poisson parameter.

Our goal is to approximate the distribution of 𝑁̂ .
We begin by finding, in the Poisson model, the distribution of 𝛽𝑀 , the number of 0s in the sketch. Since a randomly thinned 

Poisson process is a new Poisson process, it follows that each of the 𝑀 substreams is a Poisson process with rate 1∕𝑀 , and thus 
the number of distinct items in each of them is Poisson(𝑁̃∕𝑀). These random numbers are independent, and each item in the 𝑘th 
substream has probability 2−𝑇 to set sketch[k] to 1. It follows that if the number of such items is 𝑌𝑘 , then 𝑌𝑘 is also Poisson, with 
𝑌𝑘 ∈ Poisson(2−𝑇 𝑁̃∕𝑀) = Poisson

(
𝑁̃∕(𝑀2𝑇 )

)
. Now, let 𝑞 be the probability that sketch[k]=0 (which is the same for all 𝑘). Then

𝑞 = ℙ(𝑌𝑘 = 0) = exp
(
− 𝑁̃

𝑀2𝑇
)
→ 𝑒−𝑎. (3)

Since the numbers 𝑌𝑘 are independent, the number of 0s in the sketch is

𝛽𝑀 ∈ Binomial(𝑀,𝑞), (4)

with mean 𝑀𝑞 and variance 𝑀𝑞(1 − 𝑞).
As 𝑀 →∞, we have the normal approximation to the binomial:√

𝑀(𝛽 − 𝑞) = 𝑀𝛽 −𝑀𝑞√
𝑀

𝑑
⟶ℕ

(
0, 𝑒−𝑎(1 − 𝑒−𝑎)

)
. (5)

Now, applying Lemma 2.1 with the function 𝑓 (𝑥) = ln(1∕𝑥) gives√
𝑀

(
ln(1∕𝛽) − ln(1∕𝑞)

) 𝑑
⟶ℕ(0, 𝑒𝑎 − 1). (6)

Consequently, since 𝑁̂ =𝑀2𝑇 ln(1∕𝛽), 𝑀2𝑇 ∕𝑁̃ → 1∕𝑎, and ln(1∕𝑞) = 𝑁̃∕𝑀2𝑇 , we have:

√
𝑀

(
𝑁̂

𝑁̃
− 1

)
=
√
𝑀
𝑀2𝑇

𝑁̃

(
ln 1 
𝛽
− ln 1

𝑞

)
𝑑

⟶ℕ
(
0, 𝑎−2(𝑒𝑎 − 1)

)
. (7)

Furthermore, (6) implies ln(1∕𝛽) − ln(1∕𝑞)
𝑝 

⟶ 0, and thus, using (3), ln(1∕𝛽)
𝑝 

⟶ 𝑎; hence (7) implies (2) (with 𝑁̃ instead of 𝑁).
This is the desired result for the Poisson model. To prove the result for a given number 𝑁 of items, we use Lemma 2.2. We may 

assume that we start by selecting all items with at least T trailing 1s. Since each item is selected with probability 2−𝑇 , the number of 
selected items is Binomial(𝑁,2−𝑇 ). Similarly, if we consider the Poisson model with Poisson(𝑁) items (thus choosing 𝑁 = 𝑁̃ above) 
then the number of selected items is Poisson(𝑁2−𝑇 ). By Lemma 2.2. We may couple the two versions such that the number of selected 
items agree with probability no less than 1 − 2−𝑇 → 1. Hence, (2) for a fixed 𝑁 follows from the Poisson version.

We have proved that (2) holds when 𝑁∕(𝑀2𝑇 ) converges to a limit in (0,∞). The more general assumption 𝑁 =Θ(𝑀2𝑇 ) implies 
that every subsequence has a subsubsequence such that 𝑁∕(𝑀2𝑇 ) converges, and thus (2) holds for the subsubsequence. As is well 
known, this implies that the full sequence converges (see Section 5.7 in [21]). □

In summary, the goal of HyperBitT is to compute an estimate of 𝑁 , the cardinality of the input stream. To do so, it takes two 
parameters:

• 𝑀 , the number of substreams (and the number of bits used),
• 𝑇 , a rough estimate of lg(𝑁∕𝑀),

and, using an 𝑀 -bit sketch, computes a value
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Fig. 1. This plot shows the coefficient of 1∕
√
𝑀 in the relative standard error 𝑐(𝛽) =

√
1∕𝛽 − 1

/
ln(1∕𝛽) (𝑦-coordinate) for 𝛽 (fraction of 0s in the sketch) between 0 

and 1 (𝑥-coordinate). The value of 𝑐(𝛽) goes to infinity as 𝛽 approaches 0 or 1, but it is relatively small when 𝛽 is not close to these extremes. For example, 𝑐(𝛽)< 1.5
when .043 < 𝛽 < .541, 𝑐(𝛽)< 2 when .014< 𝛽 < .748, and 𝑐(𝛽)< 3 when .0035< 𝛽 < .888.

• 𝛽, the fraction of 0s in the sketch.

Theorem 2.1 provides formulas for two important pieces of information, as functions of 𝛽:

• the bias correction ln(1∕𝛽) that gives the estimate 2𝑇𝑀 ln(1∕𝛽) for 𝑁 ,

• the coefficient 𝑐(𝛽) =
√
1∕𝛽 − 1

/
ln(1∕𝛽) that gives the relative standard error 𝑐(𝛽)∕

√
𝑀 .

This is the information that we need to properly choose the value of 𝑇 . Of most interest is the fact that 𝑐(𝛽) is relatively small and is 
large only when 𝛽 is close to 0 or 1 (see Fig. 1). If 𝑇 is too small, then the sketch will be predominately 1s, and 𝛽 will be close to 0; 
if 𝑇 is too large, the sketch will be predominantly 0s and 𝛽 will be close to 1.

As an example, suppose that we take 𝑀 = 1024 and aim to keep 𝑐(𝛽) < 1.5, which is the case when .043 < 𝛽 < .541 (see Fig. 1). 
As indicated in this table, each value of 𝑇 leads to an accurate answer for a rather large range of values of 𝑁 .

𝑇 𝑀2𝑇 ln(1∕𝛽) for 𝛽 = .541 𝑀2𝑇 ln(1∕𝛽) for 𝛽 = .043

6 40,261 206,212 
7 80,522 412,425 
8 161,044 824,850 
9 322,088 1,649,701 
10 644,177 3,299,402 
11 1,288,355 6,598,804 

Validation The purpose of our analysis is to enable us to hypothesize that the cardinality returned by HyperBitT behaves as 
described by Theorem 2.1 and to set parameter values that keep the error low. As with any scientific study, our confidence in the 
result grows with the number of experiments that validate it, so we can only give an initial indication. (For example, practitioners 
have confidence in a similar hypothesis for HyperLogLog because it has been used in a wide variety of practical situations for years.)

The hypothesis rests on three main assumptions. First, we assume that the data we have and that the hash functions we use have 
the idealized properties stipulated in the analysis, or that deviations from this ideal are relatively insignificant. Second, we assume 
that the second hash function splits the stream into each substream with equal probability, or that deviations from this ideal are 
relatively insignificant. Third, we assume that deviations from approximations in the analysis are relatively insignificant.

For example, suppose that we wish to use HyperBitT to estimate the number of distinct strings in the web log described in 
Section 1. To do so, we need to specify the values of the two parameters: 𝑀 (the number of bits of memory we need to use to achieve 
the accuracy that we want) and 𝑇 (where 2𝑇𝑀 is our rough guess of the cardinality).

First, we choose the value of 𝑀 . As an example, suppose that we are looking for an accurate answer, say with 5% relative error. 
Referring to Fig. 1, if 𝛽 is in the range (.043, .541), then 𝑐(𝛽) < 1.5 and 𝑀 = 1024 will do the trick, because 1.5∕

√
1024≐ .0469. This 

is a conservative choice because 𝑐(𝛽) is usually much smaller than 1.5 in that range.
Next, we choose the value of 𝑇 . Suppose we decide that it is a reasonable guess that the unique values comprise somewhere 

between 20% and 80% of the stream (a rather wide range). This leads to the choice 𝑇 = 8 because 𝑀2𝑇 ln(1∕𝛽) is between 161,044 
and 824,851 (and 𝑐(𝛽) < 1.5) when 𝛽 is between .541 and .043.

Table 2 shows experimental results that constitute a quick validation check. Fig. 2 describes two experiments that each run it 
10 thousand times, which both are strong evidence of the validity of our analysis and our hypotheses about the performance of 
HyperBitT.

It is important to reiterate that HyperBitT is not a streaming algorithm. For example, it could not be used without some periodic 
adjustments for our web log example, where the log may be monitored for weeks, months, or even years, and therefore could consist 
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Table 2
Since it is based on hash values, HyperBitT produces a different result every time 
it is run. This table shows the result of five consecutive runs of HyperBitT for our 
sample web log with 𝑀 = 1024 and 𝑇 = 8. The first column is the observed number 
of 0s in sketch[] when the run terminates. Dividing by 𝑀 gives the values of 𝛽 in 
the second column. The formula 2𝑇𝑀 ln(1∕𝛽) gives the estimate of the cardinality 
in the third column, and the formula 𝑐(𝛽)∕

√
𝑀 where 𝑐(𝛽) =

√
1∕𝛽 − 1∕ ln(1∕𝛽)

gives the estimated relative standard error for each run in the fourth column. The 
actual error (comparing the estimated cardinality with the actual value 368,217) is 
in the fifth column. Since our estimate of the standard error is conservative (𝑐(𝛽) is 
usually smaller than 1.5), four of the five runs produced estimates well within the 
desired 5%. Since the distribution is Gaussian, the outlier in the first experiment is 
not unexpected.

observed 0s observed 𝛽 estimated 𝑁 estimated error actual error 
228 .2226 393,773 3.9% 6.9% 
253 .2470 366,498 3.9% 0.4% 
257 .2509 362,386 3.9% 1.6% 
261 .2548 358,338 3.9% 2.7% 
265 .2587 354,351 3.9% 3.8% 

Fig. 2. Results of estimating cardinalities in a web log, each with 10,000 trials, taking 𝑀 = 1024 and 𝑇 = 8 as discussed in the text. In Fig. 2(a) HyperBitT was run 
100 times for the first 10,000, 20,000, 30,000, . . . items in the log, up to 1 million. Each grey dot shows the result of one experiment and the colored dots are the 
average of the values for each set of 100 experiments. A black line that shows the actual number of distinct items in the stream is completely hidden by the colored 
dots. The histogram in Fig. 2(b) plots the estimates returned by HyperBitT for 10,000 runs on the first 1 million strings in the web log. The distribution matches a 
Gaussian, centered on the true number of distinct values, with relative standard deviation about 1.25∕

√
𝑀 ≐ 0.039 (plotted in color), thus validating Theorem 2.1

and our hypothesis that the estimated cardinality is likely to be within 5% of the true value. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

of billions or trillions of strings or more. But there are many situations where HyperBitT may be useful because the estimate need 
not be very accurate and there are reasonable approaches to coming up with one. In a database or similar application, one might take 
a random sample. In a web log or similar application, one might take a small sample from initial values, or run multiple offsetting 
streams, using the estimate from one as the rough guess for another. For example, in protecting against a denial-of-service attack, the 
whole point might be to just set off an alarm when the cardinality deviates significantly from an expected range.

3. HyperBitBit and HyperBitBitBit

In this section, we describe variants of the algorithm that can adapt as the number of unique values grows, by making T a variable 
and then increasing it as needed. We are faced with two choices: (i) when do we increase T, and (ii) by how much? Theorem 2.1
gives us precisely the information we need to make intelligent choices.

As the sketch becomes full, the percentage of 0s decreases and the standard error increases. Consider these values for 𝑀 = 64:
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# 1s in sketch 56 57 58 59 60 61 62 63 
𝛽 .125 .109 .093 .078 .062 .047 .031 .016 
𝑐(𝛽) 1.27 1.29 1.31 1.35 1.40 1.47 1.60 1.90 

For example, we can ensure that the relative standard error stays below 1.60∕
√
𝑀 if we take action before the sketch has 63 1 bits.

Obviously, T needs to increase at that point. The first approach that comes to mind is to plan to increase T by one when the sketch 
becomes nearly full and to maintain a second sketch with 1 bits corresponding to whether or not an item with at least T+1 trailing 
1s has been seen. Then, when the sketch is nearly full, we can increment T and replace the first sketch with the second one. But then 
we need to replace the second sketch. We could use a third sketch (and we will, when 𝑀 is not small), but then do we need a fourth 
sketch? Moreover, when the sketch for T is nearly full of 1s, so is the sketch for T+1, so incrementing T by 1 does not help much.

So we want to increment T by more than one. But by how much? We are faced with a delicate balance because a small value leads 
to too many sketches to maintain and a large increment corresponds to too many 0s in the first sketch (which implies too large a 
value of 𝑐(𝛽)).

Continuing our specific example, take 𝑀 = 64 and suppose that we limit the sketch to at most 62 1s. Now, we want to choose an 
increment i for T�-we will maintain a second sketch for T+i and increment T by i when the 63rd 1 bit arrives to the sketch for T. 
At that point the value of 𝛽 is 2∕64 ≐ .031. Our goal is to choose i such that we do not need to maintain a third sketch.

Let 𝛽𝑖 be the fraction of 0s in the sketch for T+i. Because the estimated value of 𝑁 is the same, we have ln(1∕𝛽0) ≈ ln(1∕𝛽𝑖)∕2𝑖. 
Solving for 𝛽𝑖 gives 𝛽𝑖 ≈ exp(− ln(1∕𝛽0)∕2𝑖). For 𝑖 from 0 to 8 we have these values:

𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8
.031 .177 .420 .648 .805 .898 .947 .973 .987 

These values tell us that if we plan to increment T by 2, we can expect the sketch for T+2 to have about 27 0s (64 × 𝛽2) and the 
sketch for T+4 to have about 52 0s (64 × 𝛽4); if we plan to increment T by 3, we can expect the sketch for T+3 to have about 41 0s 
(64 × 𝛽3) and the sketch for T+6 to have about 61 0s (64 × 𝛽6); and if we plan to increment T by 4, we can expect the sketch for T+4 
to have about 12 0s (64 × 𝛽4) and the sketch for T+8 to have about 63 0s (64 × 𝛽8); Specifically, these calculations tell us something 
very important: for increments 4 or greater, there is no need to maintain a third sketch, because it would be nearly all zeros. If we choose 
to increment T by 4 when the sketch has 2 0s, we can do so, update our sketch for T using the sketch for T+4, and update the sketch 
for T+4 to all 0s (the implicit value of the sketch for T+8).

We may possibly be ignoring a few 1s that would be in the sketch for T+8 had we maintained it, but this is unlikely to noticeably 
affect the final estimate. Even in the worst case (all items distinct), the discrepancy can be bounded by a small constant factor; on 
typical data it is likely to be zero or exceedingly small. If one wants to be very conservative, another alternative is to maintain the 
indices of these 1s, at a very small (if not negligible) extra cost, but few practitioners would bother doing this.

This discussion brings us to HyperBitBit64 (Algorithm 2). It uses 𝑀 = 64, maintains two sketches, increments T by 4, and 
updates the sketches when the 63rd 1 bit arrives to the first sketch. The implementation also illustrates how to use 64-bit words 
for the sketches, which eliminates the overhead of maintaining bit arrays and leads to very simple and efficient code in typical 
programming environments, even machine language. For clarity, Algorithm 2 uses the call p(sketch) to count the number of 1s in 
the sketch. If this is not available as an atomic operation, one might choose the alternative of counting as the bits are set, as described in 
Section 5. (Note: A preliminary version of this algorithm found in earlier talks that uses heuristic bias correction has occasionally been 
referenced as ‘HyperBitBit.’ The fully developed version in Algorithm 2 appears only in this paper and its conference predecessor.)

Estimating the error From the above discussion, it is reasonable to hypothesize that when Algorithm 2 terminates, sketch0 is the 
same as the sketch when Algorithm 1 is used with the current value of T. In other words, Theorem 2.1 applies throughout. As we have 
discussed, just before incrementing T, sketch0 has about 97% 1s and sketch1 has about 20% 1s. Thus, the fraction of 0s in the 
sketches stays in the range .03 < 𝛽 < .80 and the value of 𝑐(𝛽) is in the flat part of its curve (see Fig. 1). Just after T is incremented 
the value of 𝑐𝛽 starts at 𝑐(.80) ≐ 1.27, then decreases to the flat part of the curve (moving from right to left in the figure), staying 
there until increasing to 𝑐(.03) ≐ 1.61 just before the next increment �-the value is always less than 2.27 with average value about 
1 
.77 ∫

.80
.03 𝑐(𝛽)d𝛽 ≐ 1.48. This is conservative—for 80% of the range the average value is smaller, about 1 

.69 ∫
.72
.11 𝑐(𝛽)d𝛽 ≐ 1.42.

The end result is that HyperBitBit64 is a true streaming algorithm that uses just 128 bits (plus six bits for T) to achieve an 
expected standard error which is usually lower than 1.48∕

√
64 ≐ 18.5% even for streams having billions or trillions or more distinct 

items. As we will see in Section 6, this accuracy is substantially better than that achieved by HyperLogLog for the same number of 
bits. The cost of processing each element is the cost of hashing plus a few machine-language instructions. In applications where 18.5% 
accuracy suffices (and developing a rough guess that would enable use of HyperBitT is infeasible), HyperBitBit64 is likely to be 
the method of choice because of these low costs. For example, it would be quite useful in an application where maintaining large 
number of different cardinality counters are needed, each responding to some different filter of the input stream (for an example, see 
[22]).

Larger values of 𝑀  For 𝑀 = 128 or 𝑀 = 256 we can use two or four 64-bit integers, respectively, to implement HyperBitBit 
using the following strategy: Set the cutoff to increment T when the relative standard error for the new value is equal to the current relative 
standard error. That is, with 𝑎= ln(1∕𝛽) and 𝑐(𝑎) =

√
𝑒𝑎 − 1∕𝑎, we increment T by 4 when 𝑐(𝑎) = 𝑐(𝑎∕16). The solution to this equation 
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Algorithm 2. HyperBitBit64. 
p u b l i c s t a t i c i n t e s t i m a t e H B B 6 4 ( I t e r a b l e < S t r i n g > s t r e a m ) 
{ 

i n t T = 1 ; 
i n t M = 6 4 ; 
l o n g s k e t c h 0 ; 
l o n g s k e t c h 1 ; 
f o r ( S t r i n g s : s t r e a m ) 
{ 

l o n g x = h a s h 1 ( s ) ; / / 6 4 -b i t h a s h 
i n t k = h a s h 2 ( s , M ) ; / / 6 -b i t h a s h 
i f ( r ( x ) > T ) s k e t c h 0 = s k e t c h 0 | 1 L < < k ; 
i f ( r ( x ) > T + 4 ) s k e t c h 1 = s k e t c h 1 | 1 L < < k ; 
i f ( p ( s k e t c h 0 ) > . 9 7 * M ) / / > 6 2 1 s ? 
{ s k e t c h 0 = s k e t c h 1 ; s k e t c h 1 = 0 ; T + = 4 ; } 

} 
d o u b l e b e t a = 1 . 0 - 1 . 0 * p ( s k e t c h 0 ) / M ; 
r e t u r n ( i n t ) ( M a t h . p o w ( 2 , T ) * M * M a t h . l o g ( 1 . 0 / b e t a ) ) ; 

} 

is 𝑎 = ln(1∕𝛽) ≐ 4.41 so 𝛽 = 𝑒−𝑎 ≐ .012. That is, we should increment T by 4 and update the sketches when sketch0 has .988𝑀 1 bits 
(about 126 for 𝑀 = 128 and 253 for 𝑀 = 256). At that point, the proportion of 0s in the sketch for T+4 will be about 𝑒−𝑎∕24 ≐ .759. 
The proportion of 0s in the sketch for T+8 would be about 𝑒−𝑎∕28 ≐ .983, so we are ignoring (2, 4) 1 bits for (128, 256) respectively, 
which is likely tolerable. The fraction of 0s in the sketches stays in the range .012< 𝛽 < .759, so the value of 𝑐(𝛽) is always less than 
2.05 with average value about 1 

.747 ∫
.759
.012 𝑐(𝛽)d𝛽 ≐ 1.46. For 𝑀 = 128 the relative standard error is approximately 1.46∕

√
128≐ 13%; 

for 𝑀 = 256 it is approximately 1.46∕
√
256 ≐ 9%.

HyperBitBitBit For even larger values of 𝑀 , we can go to a third sketch, marking the subarrays with at least T, T+4, and T+8 trailing 
1s and define HyperBitBitBit in a straightforward manner. The implementation is omitted because we present a significant 
improvement in Section 4. The proportion of 0s in the sketch for T+12 would be about 𝑒−𝑎∕212 ≐ .9989, so we are ignoring (1, 1, 2, 
4) 1 bits for (512, 1024, 2048, and 4096) respectively, again likely tolerable.

As just noted for HyperBitBit, the fraction of 0s in the sketches stays in the range .012 < 𝛽 < .759, so the value 𝑐(𝛽) is always less 
than 2.05 with average value about 1 

.747 ∫
.759
.012 𝑐(𝛽)d𝛽 ≐ 1.46. In summary, HyperBitBitBit is a true streaming algorithm, effective 

for 𝑀 up to at least 4096, that uses 3𝑀 bits and achieves relative standard error of about 1.46∕
√
𝑀 .

4. HyperTwoBits

Remarkably, we can produce the same result as HyperBitBitBit but using just 2𝑀 bits. The trick is to note that if a bit is set 
in the sketch for T+4, the bit in the corresponding position in the sketch for T must be set, and if a bit is set in the sketch for T+8, 
the bits in the corresponding positions in the sketches for both T+4 and T must be set. That is, there are only four possibilities for the 
values in the corresponding position in the sketches. This observation means that we can represent the three sketches with an array 
of two-bit values that encode in binary the number of 1s in each position in the three sketches in HyperBitBitBit, as illustrated 
in the example below. Maintaining the array of two-bit values while streaming is simple: for each data item, we identify its stream 
and set its value as appropriate. Then when the number of nonzero values reaches the threshold, we increment T by 4 and simply 
decrement the nonzero values in the array.

before resetting sketches

sketch for T 111111111110111011111111111111111111101110111111001111 
sketch for T+4 000100111010000000000001000011001011000000111100001000 
sketch for T+8 000000010000000000000000000000000001000000001100001000 
two-bit values 111211232120111011111112111122112123101110223311003111 

after resetting sketches and incrementing

sketch for T 000100111010000000000001000011001011000000111100001000 
sketch for T+4 000000010000000000000000000000000001000000001100001000 
sketch for T+8 000000000000000000000000000000000000000000000000000000 
two-bit values 000100121010000000000001010011001012000000112200002000 

From this description, the implementation in Algorithm 3 is immediate. For clarity, we use a twobit[] type to describe the 
algorithm—although no programming languages support an explicit twobit[] type, the abstraction can be implemented with shift
ing and masking on arrays of integers, an amusing exercise in bit logic (see Section 5). For clarity, we use a method pnz() to count the 
nonzero entries in the array—its implementation is omitted because it is better to maintain the count dynamically (also see Section 5).
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Algorithm 3. HyperTwoBits. 
p u b l i c s t a t i c i n t e s t i m a t e H T B ( I t e r a b l e < S t r i n g > s t r e a m , i n t M ) 
{ / / f o r M = 1 0 2 4 , 2 0 4 8 , o r 4 0 9 6 

i n t T = 1 ; 
t w o b i t [ ] s k e t c h = n e w t w o b i t [ M ] ; 
f o r ( S t r i n g s : s t r e a m ) 
{ 

l o n g x = h a s h 1 ( s ) ; / / 6 4 -b i t h a s h 
i n t k = h a s h 2 ( s , M ) ; / / ( l g M ) -b i t h a s h 
i f ( r ( x ) > = T ) i f ( s k e t c h [ k ] < 1 ) s k e t c h [ k ] = 1 ; 
i f ( r ( x ) > = T + 4 ) i f ( s k e t c h [ k ] < 2 ) s k e t c h [ k ] = 2 ; 
i f ( r ( x ) > = T + 8 ) i f ( s k e t c h [ k ] < 3 ) s k e t c h [ k ] = 3 ; 
i f ( p n z ( s k e t c h ) > . 9 8 8 * M ) 
{ 

T = T + 4 ; 
f o r ( i n t i = 0 ; i < M ; i + + ) 

i f ( s k e t c h [ i ] > 0 ) s k e t c h [ i ] --; 
} 

} 
d o u b l e b e t a = 1 . 0 - 1 . 0 * p n z ( s k e t c h ) / M ; 
r e t u r n ( l o n g ) ( M a t h . p o w ( 2 , T ) * M * M a t h . l o g ( 1 / b e t a ) ) ; 

} 

Fig. 3. Results of estimating cardinalities in a web log using Algorithm 3 with 𝑀 = 1024, for comparison with Fig. 2 (where the details of the experiments are 
described). Given the same inputs (and the same random numbers), the figures for HyperBitBitBit would be identical.

In summary, HyperTwoBits is a true streaming algorithm, effective for 𝑀 up to at least 4096, that uses 2𝑀 bits (plus six bits 
for 𝑇 ) and achieves relative standard error of about 1.46∕

√
𝑀 . As described in Section 5, it can be implemented such that processing 

each item in a stream requires only a few machine-language operations.
Fig. 3 presents the results of two experiments for Algorithm 3 corresponding to those presented for Algorithm 1 in Fig. 2, which 

validate our hypothesis that the relative accuracies of the algorithms are comparable and are strong evidence of the utility of the 
algorithm in practice.

5. Implementation details

The abstract operations we have used in expressing our algorithms can be implemented efficiently on most computers, as described 
in the following paragraphs. Our code makes liberal use of Java’s left and right shift operators << and >> and bitwise logical operations 
(&, |, and ~) for bitwise (AND, OR, and NOT) respectively.

Sketches As we have noted, few programming languages support an efficient bit[] type (even Java does not guarantee that boolean 
arrays use one bit per entry). As we saw in HyperBitBit64 (Algorithm 2), shifting and masking on 64-bit long values is an easy 
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way to implement the abstraction. For larger values of M, we use arrays of 64-bit values. In Java, for example, we maintain the sketch 
as an array of long values:

long[] sketch = new long [M/64];

Then the Java code

if ((sketch[k/64] & (1L < < (k % 64))) != 0)

tests whether the kth bit in the sketch is 1, and the Java code

sketch[k/64] = sketch[k/64] | (1L < < (k % 64));

sets the kth bit in the sketch to 1.

Trailing 1s The key abstract operation in our implementations involves computing the function r(x), so that we can test whether 
a 64-bit value x has at least T trailing 1s. Rather than maintaining the parameter 𝑇 , we maintain 𝑈 = 2𝑇 . The reason for doing so is 
that the value U-1 has T trailing 1s, which enables us to test whether a value x has at least T trailing ones with the bitwise logical 
operation (x & (U-1)) == (U-1), which is easy to implement with a few machine-language instructions.

Population count The second abstract operation in our implementations is the function p(x), the so-called ``population count''—the 
number of 1 bits in a binary value. This function has a long and interesting history, but, for our purposes, it is easy to avoid, by 
maintaining a count of the number of 1 bits in the sketches, incrementing when each bit is set.

Two-bit counters Again, we use shifting and masking on arrays of 64-bit long values. We keep one long array s1 for the more 
significant bit and a second long array s0 for the less significant bit. To make the code more readable, we define the following 
methods to get and set the bit corresponding to bit k:

public static long get(long[] s1 , long[] s0 , int k)
{ return 2 * ((s1[k/64] > > (k % 64)) & 1L)

+ ((s0[k/64] > > (k % 64)) & 1L); }

public static void set(long[] s1 , long[] s0 , int k , long v)
{

s1[k/64] = (s1[k/64] & ~(1L < < (k % 64)))
| ((v/2) & 1L) < < (k % 64);

s0[k/64] = (s0[k/64] & ~(1L < < (k % 64)))
| (v & 1L) < < (k % 64);

}

In a tightly efficient or machine-code version, this code would be used inline.
The final abstract operation to consider is to decrement all the non-zero counters. Consider the following tables, which give all 

possibilities for a given bit position, where 𝑠1𝑠0 is the value before incrementing and 𝑡1𝑡0 is the value after decrementing.

before after 
value s1 s0 value t1 t0 

0 0 0 0 0 0 
1 0 1 0 0 0 
2 1 0 1 0 1 
3 1 1 2 1 0 

Considering these as truth tables on boolean values, it is easy to check that t1 = s1 AND s0 and t0 = s1 AND NOT s0. Further
more, we can eliminate the temporary variables by doing the operations in the order s0 = s1 AND NOT s0 and then s1 = s1 
AND NOT s0. Implementing these operations with bitwise operations on our arrays of long values is straightforward.

Algorithm 4 is a full low-level implementation of HyperTwoBitsthat uses these techniques to solve the practical cardinality 
estimation problem.

6. Performance comparisons

Comparing the performance of our algorithms with each other and with cardinality estimation algorithms in the literature needs 
to be done carefully for several reasons.
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Algorithm 4. HyperTwoBits (full low-level implementation). 
p u b l i c s t a t i c i n t e s t i m a t e H T B ( I t e r a b l e < S t r i n g > s t r e a m , i n t M ) 
{ 

i n t U = 2 ; / / 2 ̂  T 
l o n g [ ] s 0 = n e w l o n g [ M / 6 4 ] ; 
l o n g [ ] s 1 = n e w l o n g [ M / 6 4 ] ; 
i n t c o u n t = 0 ; 
f o r ( S t r i n g s : s t r e a m ) 
{ 

l o n g x = h a s h 1 ( s ) ; / / 6 4 -b i t h a s h 
i n t k = h a s h 2 ( s , M ) ; / / ( l g M ) -b i t h a s h 
i f ( ( x & ( U -1 ) ) = = ( U -1 ) ) / / > T t r a i l i n g 1 s ? 

i f ( g e t ( s 1 , s 0 , k ) = = 0 ) 
{ c o u n t + + ; s e t ( s 1 , s 0 , k , 1 ) ; } 

i f ( ( x & ( 1 6 * U -1 ) ) = = ( 1 6 * U -1 ) ) / / > T + 4 ? 
i f ( g e t ( s 1 , s 0 , k ) < 2 ) s e t ( s 1 , s 0 , k , 2 ) ; 

i f ( ( x & ( 2 5 6 * U -1 ) ) = = ( 2 5 6 * U -1 ) ) / / > T + 8 ? 
i f ( g e t ( s 1 , s 0 , k ) < 3 ) s e t ( s 1 , s 0 , k , 3 ) ; 

i f ( c o u n t > = . 9 8 8 * M ) 
{ 

f o r ( i n t j = 0 ; j < M / 6 4 ; j + + ) / / D e c r e m e n t c o u n t s 
{ s 0 [ j ] = s 1 [ j ] & ~ s 0 [ j ] ; s 1 [ j ] = s 1 [ j ] & ~ s 0 [ j ] ; } 
c o u n t = 0 ; 
f o r ( i n t j = 0 ; j < M ; j + + ) / / C o u n t t h e n o n -0 s 

i f ( g e t ( s 1 , s 0 , j ) > 0 ) c o u n t + + ; 
U = 1 6 * U ; / / T + = 4 

} 
} 
d o u b l e b e t a = 1 . 0 - 1 . 0 * c o u n t / M ; / / f r a c t i o n o f 0 s 
r e t u r n ( i n t ) ( U * M * M a t h . l o g ( 1 . 0 / b e t a ) ) ; 

} 

First, many papers from the theoretical computer science literature study algorithms implemented in pseudocode (or just described 
in English). While these papers often introduce interesting ideas, they cannot be evaluated as solutions to the practical cardinality 
estimation problem for two reasons:

(i) The methods described have never been implemented (and are sufficiently complicated that implementing them is not likely to 
be worthwhile) so the time required to process each item while streaming cannot be determined.

(ii) The analyses generally define complexity results that use O-notation and are not sufficiently precise to enable comparison of the 
relative accuracy with other methods.

Generally, such methods are not potentially feasible for practical applications.
Second, even among methods that have been implemented and tested, practitioners might prefer algorithms that are much simpler 

to implement and maintain over more complicated methods that perform slightly better. And the time required to process each item 
is a critical factor in many typical applications. Some methods are sufficiently complicated to implement that practitioners might shy 
away from (or may not be able to afford) actually doing so. For example, HyperLogLog is easy to implement with 8-bit bytes, but 
6-bit bytes are sufficient. Implementing a 6-bit byte array with arrays of 64-bit words is not difficult, but may be too cumbersome 
from the point of view of some practitioners.

Third, many papers use the parameter 𝑀 to count the number of bytes or words (of varying length) of memory used, and ignore 
constant factors when citing accuracy results. Proper comparisons require taking constant factors into account and reckoning with 
the total number of bits of memory in all cases (see [23] for a discussion of this point with regard to another streaming problem). 
This reflects the broader reality that much of the literature focuses on scaling in terms of 𝑀 , the number of substreams, rather than 
the total bit budget, which is what ultimately governs practical space usage. One of the contributions of this paper is to highlight 
and explicitly control for this dimension, allowing fair comparisons and more precise memory-performance tradeoffs. As an extreme 
example, suppose that two algorithms achieve standard error 2∕

√
𝑀 but one uses 𝑀 bits and the other uses 𝑀 64-bit words. The 

first is eight times more accurate for a given number of bits of memory. In general, if we know that the accuracy of an algorithm is 
𝑐∕
√
𝑀 and that it stores 𝑀𝑏 bits, we express the accuracy in terms of 𝑀⋆ , the total number of bits used, or 𝑐

√
𝑏∕
√
𝑀⋆. Inverting 

this equation gives the number of bits needed to achieve a given accuracy 𝑥: 𝑀⋆ = 𝑏(𝑐∕𝑥)2.
Fourth, few papers actually prove anything about the distribution of the reported values, with the notable exception of [24]. 

Typically, normality is instead presented as a reasonable hypothesis, which may often be the case, but our proof of asymptotic 
normality of the reported cardinalities is significant.

Fifth, the accuracy of our algorithms depend on the coefficient 𝑐(𝛽) of 1∕
√
𝑀 in the relative standard error, which varies. We 

use the average value of 𝑐(𝛽) over the interval of values 𝛽 might take on during the execution of the algorithm. For HyperBitT we 
(somewhat arbitrarily) use the interval where 𝑐(𝛽) < 1.5; our other algorithms calculate an appropriate interval. As we have noted, 
the shape of the curve in Fig. 1 tells us that it is likely that the value encountered in practice is smaller than the value cited.
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Table 3
Performance of cardinality estimation algorithms: Adaptive sampling [1] (AS), 
Probabilistic counting [2] (PC), LogLog[3] (LL), HyperLogLog 8-bit and 6-bit 
versions [4] (HLL8 and HLL), Extended HyperLogLog[12] (EHLL), HyperBitT 
(HBT), HyperBitBit (HBB), HyperBitBitBit (HBBB), and HyperTwoBits 
(HTB). We emphasize normalization by total bits used (𝑀⋆), not just the number 
of substreams (𝑀), to ensure fair comparisons.

𝑀⋆ = 𝑏(𝑐∕𝑥)2 𝑐
√
𝑏∕
√
𝑀⋆

bits needed for accuracy with 
algorithm 𝑏 𝑐 𝑐

√
𝑏 2% 20% 128 bits 8K bits 

AS 64 1.20 9.60 230400 2304 85% 10.6% 
PC 64 0.78 6.24 97344 973 55% 6.9% 
LL 6 1.05 2.57 16538 165 23% 3.5% 

HLL8 8 1.04 2.94 21632 216 26% 3.3% 
HLL 6 1.02 2.55 16224 162 23% 2.8% 
EHLL 7 0.88 2.33 13552 136 21% 2.6%

HBT 1 1.32 1.32 4356 44 12% 1.5% 
HBB 2 1.46 2.06 �- 128 18% �- 

HBBB 3 1.46 2.53 15987 128 22% 2.8% 
HTB 2 1.46 2.06 10658 128 18% 2.3% 

Sixth, it is important to remember that we are dealing with random fluctuations and approximate analyses. It may be tempting 
to use more precision, but any differences indicated would not be noticed in practice. For example, one might conclude that Hyper
LogLog with 6-bit bytes should be very slightly better than LogLog with 6-bit bytes because its standard error of 1.02∕

√
𝑀 is very 

slightly better than 1.05∕
√
𝑀 , but it would be extremely challenging to develop experimental validation of that hypothesis.

Seventh, we ignore relatively inconsequential small fixed costs such as the memory required to store the value of T. In theory, 
our algorithms all require lg lg𝑁 bits to represent 𝑇 . This is inconsequential in practice because six bits suffice to represent lg lg𝑁 in 
any conceivable application, but it is worthwhile noting that we are not claiming that the algorithms use 𝑂(1) memory for fixed 𝑀 .

With all these caveats, Table 3 presents a comparison of the algorithms we have discussed. HyperBitT is the best by far when 
starting with a rough estimate is feasible. Among the streaming algorithms, our simplest and perhaps most useful implementation 
is HyperBitBit64, which achieves 18.5% accuracy on a stream on any length with just 128 bits (two 64-bit words) and can be 
implemented with a few dozen machine instructions. The 256-bit and 512-bit versions referred to in Section 3 are also simple and likely 
useful, as they achieve 13% and 9% accuracy, respectively. For better accuracy, a larger value of 𝑀 (and more memory) is needed. 
If a straightforward and easy-to-maintain implementation is desired, HyperBitBit and HyperBitBitBit are arguably simpler 
than the 8-bit version of HyperLogLog and substantially more efficient. If a careful implementation with improved efficiency is 
desired, HyperTwoBits is substantially better than the 6-bit version of HyperLogLog. Generally, our algorithms provide much better 
accuracy for the same number of bits as HyperLogLog and use significantly fewer bits to achieve the same accuracy. These results 
underscore the importance of evaluating accuracy with respect to total bit usage (not just register count) as we have systematically 
done throughout this paper.

Further validation may be found in the work by Geis [25], a thorough implementation derived from the conference version of 
this paper [17].

7. Further improvements

We conclude by briefly mentioning some opportunities that may lead to variants of our algorithms that may be worthy of study 
in various particular situations.

• Small cardinalities. In many practical applications, the cardinality is often likely to be small, in which case users prefer exact 
values. For this reason, using a simpler algorithm that returns exact values for small cardinalities is typical [5]. Our accuracy 
estimates hold even for small cardinalities, so the switch from exact to approximate is an application-dependent decision.

• Sparse arrays. Precise characterization of the situation just after incrementing T (when the sketches are mostly 0s) may lead to 
slightly better accuracy estimates.

• Use both sketches. The second sketch contains information that may lead to a better accuracy estimate. Analyzing this effect is 
tractable, but not likely to improve the estimate by more than a percentage point or two.

• HyperThreeBits. Using 3-bit counters instead of the 2-bit counters in HyperTwoBits allows implementation of seven layers 
of bit arrays and may be useful for specialized applications needing very high accuracy (requiring huge values of 𝑀) for the 
kinds of truly huge streams seen in modern computing.

• Mergeability. Many applications can benefit from being able to merge sketches built from two different streams. Our sketches are 
not difficult to merge, as indicated by the following argument for HyperBitBit. A sketch is a triple (T, sketch0, sketch1). 
To merge the two sketches (T𝐴,sketch0𝐴,sketch1𝐴) and (T𝐵,sketch0𝐵,sketch1𝐵) consider the following four cases:
(i) If T𝐴 = T𝐵 = T use (T,sketch0𝐴|sketch0𝐵,sketch1𝐴|sketch1𝐵).
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(ii) If the values of T differ by 8 or more, use the larger value and its sketches.
(iii) If 𝑇𝐴 = 𝑇𝐵 + 4, use (T𝐴,sketch0𝐴|sketch1𝐵,sketch1𝐴).
(iv) If 𝑇𝐵 = 𝑇𝐴 + 4, use (T𝐵,sketch0𝐵|sketch1𝐴,sketch1𝐵).
In all cases, check whether the first sketch is nearly full. If so, increment T (by 4) and update the sketches as usual. This result 
is not precisely the same as if the two streams had actually been merged, but the difference is likely acceptably small in many 
practical situations. The argument for HyperBitT is similar, but simpler; the argument for HyperBitBitBit is similar, but 
more complicated. All of these approaches require alignment of the hash functions, which may present practical challenges.

As a final remark, we note that we have studied many approaches to developing a true HyperBit algorithm, by modifying HyperBitT 
to just increment T, reset the sketch to 0s, and then characterizing the error due to the transition. Despite some promising empirical 
results with heuristic bias corrections, the problem of developing a mathematical model admitting proper comparison of such an 
algorithm with the ones described here remains open.
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