FRINGE TREES OF PATRICIA TRIES AND COMPRESSED
BINARY SEARCH TREES

SVANTE JANSON

ABSTRACT. We study the distribution of fringe trees in Patricia tries and com-
pressed binary search trees; both cases are random binary trees that have been
compressed by deleting vertices of outdegree 1 so that they are random full binary
trees. The main results are central limit theorems for the number of fringe trees
of a given type, which imply quenched and annealed limit results for the fringe
tree distribution; for Patricia tries, this is complicated by periodic oscillations in
the usual manner. We also consider extended fringe trees. The results are derived
from earlier results for uncompressed tries and binary search trees. In the case of
compressed binary search trees, it seems difficult to give a closed formula for the
asymptotic fringe tree distribution, but we provide a recursion and give examples.

1. INTRODUCTION

We consider in this paper fringe tree distributions for some different types of
random binary trees. It is well known that there are two types of tress that are
called binary trees. We use the following (common, but not universal) notation. A
binary tree is a rooted tree such that each child of a node is labelled either left or
right, and each node has at most one left and at most one right child. A full binary
tree is a binary tree where each node has outdegree 0 or 2. (In the latter case, it thus
has one left and one right node.) A leaf is a node with no children (i.e., outdegree 0).
The size |T| of a tree T is its number of nodes. All trees in the paper are non-empty,
finite, and binary (and thus rooted), except when we explicitly say otherwise.

Is is well known that a full binary tree has odd size, and that there is a bijection
between binary trees of size n > 1 and full binary trees of size 2n + 1 defined as
follows: given a binary tree, add new leaves at all possible places, i.e., add one new
leaf to each node of outdegree 1, and two new leaves to each node of outdegree 0;
conversely, given a full binary tree, delete all its leaves. For many purposes, the two
types of binary trees are thus equivalent, but both types are important, and there
are several reasons for studying both types of binary trees.

In the present paper we will mainly study another relation between binary trees
and full binary trees. Given a binary tree T, its compression T is the full binary
tree obtained by deleting all nodes of outdegree 1 (and connecting the remaining
nodes in the obvious way). This is obviously not a bijection; there is no way to
reconstruct the binary tree without further information. Note also that the size of
the compressed tree typically is smaller; we have 1 < |1A“ | < |T|, and every size in
this range is possible.

Date: 2 May, 2024.

2020 Mathematics Subject Classification. 60C05, 05C05, 60F05.

Supported by the Knut and Alice Wallenberg Foundation and the Swedish Research Council.
1



2 SVANTE JANSON

One well known example of compression is for tries: a trie is a binary tree con-
structed from a sequence of distinct infinite strings of 0 and 1 (see Section 2.2 for
details), and its compression is known as a Patricia trie; see [29, Section 6.3] for
the computer science background. We study in this paper tries and Patricia tries
defined by independent random strings where all bits are independent. We denote
the random trie defined by n random strings by T,,, and the corresponding Patricia
trie by T,,.

The Binary Search Tree (BST) is another commonly studied random binary tree.
(See Section 2.3 for definition.) Just as tries and Patricia tries, it appears naturally in
computer science in connection with sorting and searching, see e.g. [29, Section 6.2.2].
Unlike tries, the compressed version is perhaps not so interesting in that context,
but we study here the different random binary trees from a purely mathematical
perspective, and we find it natural to study also the compressed Binary Search Tree,
and compare it to other random full binary trees. We denote the random BST with
n nodes by B,,, and its compression by B,,.

In this paper we focus on fringe trees of the various random trees. Recall that for
a rooted tree T and a node v € T', the fringe tree TV is the subtree of T consisting
of v and all its descendants; the fringe tree T is a rooted tree with root v, and if T’
is a binary tree or a full binary tree, then so is each of its fringe trees. If T" and ¢
are two binary trees, let N;(T') be the number of fringe trees of T' that are equal to
t (in the sense of isomorphic as binary trees), i.e.,

Ny(T):=|fveT:T" =t}|. (1.1)

Here t will always be a fixed tree (think of it as small), while 7" usually will be a
(big) random tree; then N¢(T') is a random variable. We consider also the random
fringe tree T* defined as T for a node v € T' chosen uniformly at random. (If 7" is
random, we first condition on T and then choose a node v in it.) Thus, for every
fixed binary tree ¢ and a non-random binary tree T,

N(T)
P(T* = t) = : (1.2)
T
for a random binary tree 7', (1.2) holds conditionally on 7', and thus
N (T
P(T* =t)=E ’tj(,‘ ). (1.3)

See [1] for a general study of fringe tree distributions, including explicit results for
several classes of random trees.

We consider asymptotics as the size of the random tree tends to infinity. When
T is a random trie T, or a binary search tree B, the asymptotic distribution of
the random fringe tree T* is given already by [1]. More precise result including
asymptotic normality of the fringe tree counts N;(T) are proved in [28] (tries) and
[9], [10] (BST), see also e.g. [13], [23], and [20]. Our main results below use these
results to show corresponding results for Patricia tries and compressed binary search
trees. In particular, in both cases the counts N;(T') are asymptotically normal.

For Patricia tries ?n, we find explicitly the asymptotics of the mean and variance
of Ni(Y,), and thus the asymptotic distribution of the random fringe tree Y. For
the compressed BST [’S\m this seems more difficult. We show how to find explicitly

the asymptotics of the mean E Ny(B,,) and, equivalently, the asymptotic distribution
of the random fringe tree B, but this is done by a recursion and we cannot give a
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general formula. We leave as an open problem to find a formula for the asymptotic
variance of Nt(B ) for the compressed BST.

Remark 1.1. A cladogram is a full binary tree where we do not care about the
orientations, i.e., we do not distinguish between left and right. (Formally, we may
see a cladogram as an equivalence classe of full binary trees.) In particular, the
Patricia tries and compressed binary search trees studied here may be regarded
as random cladograms by forgetting all orientations. The results below yield as
corollaries corresponding results for fringe trees (which now are random cladograms)
of these; we omit the details. See also Remark A.1.

A very different model of random cladograms is studied by Aldous [3, 4]; the
results obtained here may be compared to results for fringe trees in that model [in
preparation]. A

Remark 1.2. Related results of fringe trees in other classes of random trees have
been given by many authors, see for example [1], [5], [12], [15], [7], [8], [16], [19], [20],
[27], [21], [22], [28], [6], and the further references therein. A

2. PRELIMINARIES

1. Notation. For a rooted tree T, the set of leaves of T' is denoted L£(T). The
leaves are also called external nodes and the other nodes, i.e., those with outdegree
> 0, are called internal nodes. The number of nodes of T is denoted |T'|, and the
number of leaves (external nodes) by |T|e := |£(T)|. Recall that in a binary tree
T, the number of nodes of outdegree 2 is |T'|e — 1, and thus the number of nodes of
outdegree 1 is |T'| — 2|T|e + 1. Hence, if T' is a full binary tree, then

|T| =2|T)e — 1. (2.1)
The root degree p(T) is the (out)degree of the root o € T'.
We let e denote the tree consisting of a root only, so |e| =|e | = 1.

Let ¥ be the set of all binary trees, and ¥ the subset of all full binary trees, and
‘/I\’ the set of all binary trees such that no leaf has a parent of outdegree 1; thus
T < ¥ < T. Furthermore, for any set S € {0,1,2}, let T5 := {T'e T: p(T) € S} be
the set of all binary trees with root degree in S. In particular, T{ = {e}.

If ¢ is a full binary tree, let ‘ft be the set of all binary trees that can be obtained
fron t by subdividing the edges, i.e., by replacing every edge by a path of £ > 1
edges; each such path thus contains £ — 1 new nodes of outdegree 1. Note that each
new node has its (only) child as either a left or a right child. Let further ‘?’ be
the set of all binary trees that compress to ¢; note that this is larger than ‘Zt since
‘It allows also adding a path from the root to a new root, but Tt does not; in fact,
T, =% AT (Ift # o, then T, = T/ ~ T2

If v is a node in a binary tree T', then the left depth d| (v) is the number of edges
that go from some node to its left child in the path from the root to v. The right
depth dr(v) is defined similarly. Note that di (v) + dr(v) = d(v), the depth of wv.
When necessary, we write dp(v) for the depth in 7.

We define the left external path length LPL(T') and right external path length
RPL(T") by

LPL(T 2 dy (v RPL(T Z dr(v (2.2)

vel(T vel(T)
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Thus the sum LPL(T) + RPL(T") equals the total external path length ZveE(T) d(v).
The fringe tree T and the fringe tree counts Ny(T') are defined in the introduction.

We use —% and -2 to denote convergence in distribution and probability, re-
spectively, of random variables. We further say that X, ¥V with all moments if
X, -4 Y and also EX, — EY" for every integer r > 0. We let o,(1) denote any
sequence of random variables X, such that X, 2,0.

N(u,0?) denotes the normal distribution with mean p and variance o2 = 0. Po()\)
denotes the Poisson distribution with parameter A > 0. We thus have

_ AT

Po(A;n) := Po(A)(n) = , n=0,1,... (2.3)

n!

We may sometimes abbreviate “uniformly random” to “random”. log denotes
natural logarithms. Unspecified limits are as n — 0.

In this paper we discuss results for the random fringe tree 7,F of a sequence of
random trees T,,; we state results both conditioned on the tree T;, and unconditioned,
and we use the standard terminology and call such results quenched and annealed,
repectively.

2.2. Tries. A trie is a rooted tree constructed from a set of n > 1 distinct strings

=M, 2@ .. =™ in some alphabet A; we consider here only the case A = {0,1}, and
then the trie will be a binary tree. (See e.g. [29, Section 6.3] and [11, Section 1.4.4].)
We assume for convenience that the strings are infinite; thus Z() = f;l)éz) s €

{0,1}* for every i. The trie is constructed recursively. If n = 0, then the trie is the
empty tree ¢J. Otherwise, we begin with a root, and put every string in the root. If
n = 1, then we stop there, so the trie equals e. Otherwise, i.e., if n > 2, we pass all
strings to new nodes; all strings beginning with 0 (if any) are passed to a left child
of the root and all strings beginning with 1 (if any) are passed to a right child of
the root. We continue recursively, the next time partitioning the strings according
to the second letter, and so on, always looking at the first letter not yet inspected.
At the end there is a tree with n leaves, each containing one string. Equivalently,
each string 2 defines an infinite path I'; from the root in the infinite binary tree,
by processing the letters in the string in order and going to a left child for every 0
and a right child for every 1. We then stop each path at first node that it does not
share with any other of the paths I'j; these nodes are the leaves of the trie, and the
trie is the union of the n stopped paths. Note that in a trie, a parent of a leaf must
have outdegree 2, i.e., a trie belongs to the set T'.

We will consider the random trie T,, defined by n random strings =), ... =)
where we assume that the strings are independent, and furthermore in each string
the letters are independent and identically distributed with distribution Be(p) for
some p € (0,1), i.e., each letter {,(;) has IP’(&,(;) =1)=pand IP’(&,(;) =0)=q:=1—p.
We omit the parameter p from the notation, but it is implicit when we discuss tries;
we use always the notations p and ¢ = 1 — p in the sense above.

It is well known that many results for tries show (typically small) periodic oscilla-
tions instead of limits as n — o0, see e.g. [29; 31; 14; 17; 25; 18; 24; 28]. More precisely,
if logp/logq is irrational, then such oscillations do not occur, but if logp/logq is
rational they typically do. We call the case when logp/logq € Q periodic; otherwise
we have the aperiodic case. In the periodic case, if logp/logq equals a/b in lowest
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terms (with a,b € N), then define

—1 —1
d—d ng _ qu -
the greatest common divisor of —logp and — logq.
The Patricia trie fn is obtained by compressing Y,,. Note that the trie YT,, and
the Patricia tree ”’fn both have exactly n leaves:

|Tn‘e = ‘?n’e ="n. (2.5)

0, (2.4)

The Patricia tree T,, thus has n — 1 internal nodes, while the number of internal
nodes in Y, is random.

2.3. Binary search trees. Binary search trees may be constructed in different (but
equivalent) ways; we will use the following, closely connected to the sorting algorithm
Quicksort (see e.g. [29, Section 6.2.2] and [11, Section 1.4.1]): Consider a set of n
distinct items, which we may assume are real numbers z1,...,z,. If n = 0, the BST
By is the empty tree ¢, and if n = 1, By := . If n > 2, pick one of the n items at
random, and call it the pivot. Compare all other elements to the pivot, and let L be
the set of all x; that are smaller than the pivot, and let R be the set of all items x;
that are greater than the pivot. (Thus, |L| + |R| = n —1.) The BST B, is defined
as the binary tree with the root having left and right subtrees that are constructed
recursively from the sets L and R, respectively. It is easily seen, by induction, that
|B,| = n; in fact, it is natural to label the root by the pivot, and then during the
recursion each node becomes labelled by exactly one of the n numbers x;. Note that
both [By|e = |l§n|e and |B,| are random. It is shown by Aldous [1, Example 3.3] and
Devroye [9, Theorem 2], that, as n — oo,

Bple/n = |Byle/n - 1/3 (2.6)
and thus, see (2.1),
1B, |/n 2> 2/3. (2.7)
More precisely [9],
Buale —=1/3  |Bule —1/3 a
N Y N(0,2/45) (2.8)

and thus 4, N(0,8/45) by (2.1); see also [30] for expectations and e.g.
[11, Theorem 6.9] for a more general result.

|Bn|—2n/3
Vn

2.4. Fringe trees of compressed trees. Let 1" be a binary tree and T its com-
pression. Note first that the leaves of T are precisely the leaves of T', while the roots
may differ. (In general, there may in 7" be a path of nodes of outdegree 1 from the
root of T to the root of T.) Thus, |T|e = |Te.
Let t be a full binary tree and consider the nodes v € T such that TV = . We
consider two cases separately:
(i) If t = o, then: veTand TV =t < visaleafinT < visaleafin T
— veT and T' =t
(i) If |¢| > 1, then the root of ¢ has outdegree 2, and:
veT and TV =t <= v has outdegree 2 in 1" and t is the contraction of 1.
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Consequently, in both cases,

veTand T’ =t « veT and T" € 5, (2.9)

where we recall that ‘ft is the set of all binary trees that can be obtained fron t by
subdividing the edges.
Define the functional ¢ on binary trees by

o(T) := 1{T € %1}, (2.10)
and define the corresponding additive functional

O(T) := Y o(T"). (2.11)

veT
Then, by (2.9),

N(T)= Y 1T =t} = D YT e Ty} = > (1) = ®(T). (2.12)

veT veT veT

2.5. Extended fringe trees. Let T be a rooted tree. The fringe tree T defined in
the introduction consists of a node v and all its descendants. Aldous [1] introduces
also the extended fringe tree by also going up from the chosen node v to ancestors and
then taking descendants, thus including siblings, cousins, and so on; we may formally
define the extended fringe tree as the nested sequence of fringe trees (7 )fi%) where v;
is the ith ancestor of v. (See [1, Section 4] for details.) It is shown in [1, Proposition
11] that if the random fringe trees of some sequence of random trees T,, converge

in distribution, then so do the random extended fringe trees. The limit then is an
infinite nested sequence of random trees (T é?)i?().

Remark 2.1. Assume also the technical condition (satisfied for the random trees
studied here) that the depth of a random node in 7;, tends to infinity in probability.
Then the random limit sequence (TO(()Z))Z‘>O can be combined to a random infinite tree,
called sin-tree, with a single infinite path from o consisting of the roots of the trees
To(oz), see [1]. The results below can be translated to this, more intuitive, description
of the limit of the extended fringe tree, but we leave that to the reader. A

We consider in the present paper the extended fringe tree T%* = (T**(®)); of a
uniformly random leaf in the tree T (instead of a random node); this also converges
in distribution when the random fringe tree does, since it can be regarded as the
random extended fringe tree conditioned on the fringe tree being e.

The distribution of this random extended fringe tree 7%* = (T**(*)); can be de-
scribed by the probabilities, for pairs (t,¢) of a tree ¢ and a marked leaf ¢ € ¢, and
any (deterministic or random) tree T, letting L be a uniformly random leaf in T,

q(T;t,0) :==P(FweT: LeT" and (T, L) is isomorphic to (¢,)). (2.13)

In fact, it is easy to see that for any such pair (¢,¢) and ¢ = 0, if o is the root of T**
(defined as the root of T**()), then

P((T**),0) = (t,0)) = q(T;t,0)1{i = dy(¢)}. (2.14)
We define also the simpler
q(T;t) := P(a random leaf v lies in some fringe tree T isomorphic to t). (2.15)
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Note that, if |T| > 1, any leaf lies in several fringe trees of different sizes; hence
2, q(T;t) > 1 so q(T;-) is not a probability distribution on trees. In fact, trivially
q(T;e) =1 for every tree T

For a random tree T' we define also ¢(T;t,¢ | T) and ¢(T;t | T) by (2.13) and
(2.15) conditioned on 7. Thus ¢(T;t | T) is a functional of 7', and thus a random
variable, while ¢(T';t) is a number depending on the distribution of 7" only, and
similarly for ¢(7;t,¢). We have, as always for conditional expectations,

q(Tst,0) =Eq(T3t,0|T),  q(T3t) =Eq(T;t|T). (2.16)

Let ¢ be a fixed tree with a marked leaf ¢, and let T" be a (deterministic or random)
tree. For every fringe tree T that is isomorphic to ¢, there is exactly one leaf L in
T such that L € T% and (T"%, L) = (t,¢). Since all copies of ¢ in T are disjoint, these
leaves L are distinct for different fringe trees T% = ¢, and thus (for a random tree
T)

N(T
a(Tst 0| ) = 24D (2.17)
T
and hence
N (T
q(T;t,0) =E |;E| ) (2.18)

Consequently, recalling (2.14), the distribution of the random extended fringe tree
T** is determined by the fringe subtree counts Ny(T'). Furthermore, again since the
copies of t in T are disjoint, the number of leaves that lie in some copy of ¢ equals
N¢(T)|t|e, and hence, for any (random) tree T,

N(T)|t
q(T;t | T) = N(Dltle (2.19)
Tl
and
N (T
o(T5t) = [t B XD (2.20)
Tl
Consequently, for every leaf ¢ € t,
1 1
T, 0| T) = ——q(T;t [ T),  q(T;t,8) = —a(T1). (2.21)

[t
Hence, it suffices to study the simpler ¢(T;t | T') and ¢(7';t) without marked leaves.
For a sequence of (deterministic or random) trees T, it follows from (2.14) and
(2.21) that the extended fringe trees T** = (T, *(i))i converge in distribution, to
some sequence of (random) trees T3* = (T;*(i))izo, if and only if ¢(7),;t) converges
for every fixed tree t, and in this case the limit distribution is determined by the
limits
(T3 t) = lim g(Ts t). (2.22)

More precisely, if these limits exist, then it follows from (2.14) and (2.21) that if o
is the root of T5* (i.e., the root of T;;*(O)), then for every tree t and leaf ¢ € t with

di(0) = i,

P((T5,0) = () = — Tim q(Tust) = ——g(T5531). (2.23)

[tle
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Note also that for any (deterministic) tree 7', (2.19) and (1.2) yield

[tle[T|P(T™ = t) . P(T* = t)
T;t) = = |t P(T* =t) = |t .
Q( ’ ) |T|e | |e|T|e ( ) | |e]P;(T* _ .)

This leads to the following version of the result by Aldous [1, Proposition 11] that,
as said above, if a sequence of random fringe trees converge in distribution, then so
do the extended fringe trees. We also obtain a formula for the limits (2.22).

(2.24)

Lemma 2.2. Let (T},) be a sequence of random trees such that P(T* =t | T,) =

P(T3 =t) for every fized tree t and some random tree T3 (a quenched limiting fringe
tree). Then

Q(Tpit | Tn) = q(T55t) = k[t|P(T = 1), (2.25)
where (with the limit in probability, in general)
1 Tl
= = lim ——. 2.26
ORIz = [T (2:20)
For full binary trees with |T,| == o0, we simply have k = 2.
Proof. We have by (2.24) and the assumption
P(T* =t|Tp) p . B(TE=t)
Tnit | Ty) = [teme— e — |t|e2— L 2.27
which can be written as (2.25)—(2.26).
For full binary trees with |T},] == o, (2.1) yields x = 2. O

Results for extended fringe trees thus follow rather trivially from results for fringe
trees T, but we find it interesting to state also such results explicitly below.

3. PATRICIA TRIES

A~

We fix a full binary tree ¢ and consider N¢(Y,,), the number of fringe trees in the
Patricia trie T, that equal t. Let m := |t|e, the number of leaves in t. The case
m = 1 is trivial with ¢t = e and Nt('f"n) = n, SO we assume m = 2.

Asymptotic normality of Ny(T,) follows by (2.12) and a straightforward applica-
tion of results for tries in [28], see below for details, although some work is required
to calculate the asymptotic mean and variance. Note that the argument below is
very similar to the one in [28, Section 4.2] for the number of all fringe trees in 1,
with a given number of leaves.

We first introduce some notation. Let

o= P(Tm € Ty), (3.1)
(this will be calculated later) and
H := —plogp — qlogg, (3.2)

the entropy of the bits in the random strings Z(*). Further, for A > 0, let ’Y}\ be the
random trie constructed from a random number N) € Po(\) random strings; thus

T has Ny leaves. The results in [28] use heavily some functions defined in general
(assuming ¢(e) = 0 as in our case) by [28, (3.16)—(3.18)]:

fe(\) == Egp(T)), (3.3)
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() == 2Cov(p(Ty), 2(T))) — Varp(Ty), (3.4)
fe(A) = Cov(p(T1), Na), (3.5)
and their Mellin transforms defined by (for X = E,V, C and suitable s)
Q0
6= [ xtan (3.6)
0

For X = E,V, C define also the function x(z), z € R by [28, (3.13)—(3.14)]:
(i) In the aperiodic case (logp/logq ¢ Q), ¥x is constant: for all z,
Ux(z) == fx(=1). (3.7)

(ii) In the periodic case, 1x is a continuous d-periodic function given by the Fourier
series, recalling d = d), defined in (2.4),

ox(@) = Y f (—1 - #i) e2mike/d, (3.8)
k=—o0

(The Fourier series converges absolutely in our case by (3.12)—(3.14) below, or
by [28, Theorem 3.1] and the formulas for fx(\) below.)

Theorem 3.1. Let ¢ be a full binary tree with |t|}e = m > 1. Then Ny(Y,) is
asymptotically normal as n — c0:

A~

Ny(Tn) —ENi(T,) d
)

4, N(0,1), (3.9)
A/ Var Nt(’?n

with convergence of all moments. We have Var Ny(T,) = ©(n) as n — w0, and

EN,(Y,) = nH 'ye(logn) + o(n), (3.10)
Var Ny(T,) = n(H gy (logn) — H 2y (logn)? + o(1)), (3.11)
where Py is given by (3.7)~(3.8) with (for Res > —m)
. I'(m+ s)
fe(s) =m— (3.12)
2
* T T —2m—s
fy(s) = Et'l“( +5) — m—’;22 Im=SP(2m + )
2 © m+k m+k
" k=0 : p q
* * sI'(m + s
fe(s) = —sfe(s) = —Trt(m, ), (3.14)
In the aperiodic case, (3.10)—(3.11) simplify to
A~ 1 Tt
ENy(Y,)/n —> H mm = 1)’ (3.15)
“ gLl qy_ (-1 Tt 2
Var Ny(Tp)/n — HL£5(—1) (H v 1)) . (3.16)

A~

Proof. By (2.12), we have N¢(Y,,) = ®(Y,); we apply [28, Theorem 3.9] to ®(T),).
We first verify the technical condition there that we can write ¢ = ¢4 — p_ with
bounded ¢4+ such that the corresponding additive functionals ¢4 are increasing, in
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the sense that @ (T1) < ®4(T3) if T} is a subtree of Ty. As in [28, Section 4.3], we
let o= (T) := 1{|T|e > m}, and it is easily seen that ¢ := @+ ¢~ and p_ := Y=y,
satisfy the condition. Hence [28, Theorem 3.9] applies. Furthermore, ¢(Y,,) = for
n > m, and it is easy to see that there exists n such that Var®(Y,) > 0 (i.e.,
®(Y,,) is not constant); we may for example take n = m+ 1 if m > 3 and n = 4
for m = 2. Hence also [28, Lemma 3.14] applies, which shows that Var Ny(T,) =
Var ®(T,,) = Q(n) as n — o. Hence, (3.9) (with convergence of moments) follows
by [28, Theorem 3.9(iv)]. Furthermore, the moment convergence in [28, Theorem
3.9(i1)] implies (3.11). In particular, Var ®(Y,,) = O(n), and thus Var ®(T1,,) = O(n).
The asymtotics (3.10) follows from [28, Theorem 3.9(v)].

It remains to find the Mellin transforms fy (which yield x(x) by (3.7)-(3.8)).
First, since Ty, € ¥ is possible only when n = |t|e = m, it follows by (2.10) and (3.1)
that

m

fEQA) i=Ep(Ty) =P(Ty € %) = P(Ny = m)m = Po(A;m)m; = m%e*. (3.17)

This, or simpler [28, Lemma 3.16], yields the Mellin transform

- f " feontdr -
0

verifying (3.12). By [28, Lemma 3.6], we have f&(s) = —sfg(s), showing (3.14). (We
also obtain fc(A) = AfE(A) = (m — X) fe(N).)

To find the more complicated fy, note first that if o(7') =1, i.e., T € ‘ft, then no
fringe tree TV except T° = T' (where o is the root) belongs to %,. Hence, if o(T) =1,
then ®(7") = 1, and consequently,

Cov(o(T1), 8(T2)) = Ew(T)) — Ep(T) ED(T)). (3.19)

I'(m+s)

ml Tt, (318)

Similarly, Var o(T5) = E¢(Ty) — (E¢(T))2, and thus (3.4) yields, using (3.19),
) =Ep(T)) —2E(TA)E®R(T)) + (Ep(Th)) (3.20)
Let A* := [J°_,{0,1}" be the set of finite strings of {0,1}. If « = a1 - - - a0, € A*,
define P(«) as the probability that the random string Z(!) begins with a, i.e.,

|a|

= [d"p™, (3.21)
=1

where |a| = 0 is the length of . We may regard the strings « € A* as the nodes in
the infinite binary tree, and, using again () = 0, it follows (see [28, (2.25)]) that,
using also (3.17),

E®(Ty) = > Eo(Tp@p) = Y. fe(P(@A) =m Y Po(P(a)\;m). (3.22)

aceA* acA* aeA*

Let Y denote the sum over all a € A* with |a| > 1, i.e., over all strings o except
the empty string. Then (3.20) and (3.22) yield, using (3.17) again and (2.3),

fv(X) = m Po(X;m) — 212 Po(\; m) Z Po(P(a)\;m) + 7} 2 Po(\;m)?
aeA*
m 2 2m
= ﬂ't)\—e -2—X P(a)m)\2m67(1+P(o‘)))‘ + il e

| 12 m!2
m. m.
aeA*
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=me —2 ZP ymAZm e (PN _ 722 =22 (3.23)

ml?

The Mellin transform is thus, for Re s > —m, by a simple calculation,

Fi(s) = —F(m—k s ZP (1 + P(a)) 2 T(2m + s)
2
m|22 2m=ST(2m + s). (3.24)

By a binomial expansion we have, with absolutely convergent sums, e.g. by (3.26)
below,

/ E(—1)F m S
ZP 1+P( ))—2m—s :ZP(Q)mZ ( kl') F(Q + +k>P(a)k

~ = L'2m + s)

& —1)k m S /
:2< 1.) L(2m + Jrk)ZP(a)erk. (3.25)

=

For any exponent b and £ > 1 we
number of 1s in «,

ave from the definition (3.21), letting j be the

>, Pla) =) (f) ()" = (" + ). (3.26)

a:la|=¢ Jj=0
Hence, summing over ¢ > 1, we obtain from (3.25)

00 k m+k m—+k
-D)*T'2m+s+k +
3Pl 1+ Plagy s = 3 G e ey
=k T@m+s) 1—(pmth 4 gmtk)
Finally, we obtain (3.13) from (3.24) and (3.27).
In the aperiodic case, (3.7) holds, and thus (3.10)—(3.11) yield (3.15)—(3.16), using
(3.12) and (3.14). O

(3.27)

We have postponed calculating 7, which appears in the formulas above. We begin
with an elementary (and certainly known) calculation of P(Y,, = t). Recall that a
trie belongs to set set T of trees, and that |Y,,|e = m. Hence, it suffices to consider
the case t € T and [t|e = m, since otherwise the probability is 0.

Lemma 3.2. Let t be a binary tree with t € T and |t|e = m = 1. The probability
that the random trie Y., equals t is given by

]P)(T _ t) qLPL(t) RPL(¢ ) (328)

Proof. Each of the m leaves z; of ¢ corresponds to a finite string A(x;) of {0, 1} which
encodes the path from the root to z; by 0 for each left child and 1 for each right child.
Since t € ¥, the random trie T,, constructed from the strings 2, ... 2™ equals
t if and only if the strings A(z1),..., A(z,,) are initial segments of 1) ... =)
in some order. The string A(z;) contains dy (z;) 0s and dr(x;) 1s, and thus the
probability that 2U) begins with A(z;) is ¢ (@i pdr(®i) Since there are m! possible
permutations of the strings, we obtain

IP)(Tm m' quL :ISZ dR(zZ) qLPL( )pRPL(t)7 (329)
=1
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showing (3.28). O

For a full binary tree ¢, recall from Section 2.4 that i& is the set of binary trees
obtained by subdividing the edges of ¢t. Let

vi(t) i=|{vet:|t']e = k}|, k> 1. (3.30)

Lemma 3.3. Let t be a full binary tree with |t|e = m > 1. Then,

= P(Tom eit) g-PL®) pRPL( H we)+pw(e)))—l/k(t)‘ (3.31)
k=2

Proof. By Lemma 3.2,

P(TmeX) =P(TneSnT)= > PXu=T)=ml Y ¢PHORLD,
TS nT TeS,nT
(3.32)

Let the weight w(e) of an edge e in a tree T be the number of leaves = such that
e is on the path from the root to x. If we insert £ > 0 new nodes in a given edge
e, of which j get a left child and k = ¢ — j a right child, then LPL(7T") and RPL(T")
will increase by jw(e) and kw(e), respectively, and the term ¢-P-(T)pRPLT) will thus
be multiplied by ¢7“(€)pkv(€)  Summing over all j and k with a given £ = j + k we
obtain the factor, since the insertion may be done with (f) orders of left and right,

0
N .
N (j) GO0 _ (ule) 4 (@), (3.33)
=0

And summing over all £ > 0 gives the factor

0
wie) 4wyt _ 1 , 3.34
;}(q p ) 1— (qw(e) —i—pw(e)) ( )

The edges of weight 1 are precisely the edges that lead to a leaf. Hence, we are not
allowed to insert any new nodes in any edge with weight 1, since that would yield a
tree not in ¥, but we may insert arbitrarily many in all other edges. Thus, it follows
from (3.32) that P(Y,, € ‘ft) is obtained by multiplying P(Y,, = t) in (3.28) by the
product of the factors in (3.34) for all edges e with w(e) = 2. Moreover, if e = uv
where v is a child of u, then

w(e) = |L(T) nT"|, (3.35)

the number of leaves in the fringe tree TV, and for £ < m — 1, the number of edges
with weight &k thus equals v (7). (This fails for k& = m, since in a full binary tree
T with |T|e = m, all edges have weight < m — 1 while v,,,(T") = 1.) Consequently,
(3.31) follows. O

Remark 3.4. We do not claim that the error term o(n) in (3.10) is o(4/n) so
that E Ny(T,) may be replaced by H 'yg(logn) in (3.9). It is known that in the
corresponding results for the size of a random trie, this is in general not true, see
[14] and [28, Appendix C]. We leave it as an open problem whether the same may
happen here too. A
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Remark 3.5. Theorem 3.1 extends to multivariate limits for several full binary trees
t; by the Cramér—Wold device, i.e., by considering linear combinations of different
Ni, (1), cf. [28, Remark 3.10]. In particular, for any set U of full binary trees
with the same number of leaves |t|e = m > 1 for t € U (and thus the same size
|t| = 2m + 1), all results in Theorem 3.1 hold also for Ny (Y,,) = DU Ny(T,) if we
just replace m; by 7y := >,y T (By the same proof.) For example, this yields the

asymptotic distribution of the number N,,(T,) of all fringe trees with m leaves; we
then replace m; by

Ty 1= P(Tm € U ‘ft) =1-p"™ —q¢", (3.36)

[tle=m

since U\tlezm T, (where ¢ is a full binary tree) is the set of all tries with m leaves
and a root of outdegree 2, and the probability that the root of Y,, has outdegree 1
is p™ 4+ ¢". In general, with trees ¢; of different sizes, asymptotic covariances can
be found by calculations similar to the ones above for the variance; we omit the
details. A

A~

The asymptotic normality of N;(Y,,) yields corresponding results for the distribu-
tions of fringe trees and extended fringe trees. We note first a simple corollary.

Corollary 3.6. Let t be a full binary tree with |t|le = m > 1. Then

Ny(Y)/n =EN,(Tn)/n + o0p(1) = H "ge(logn) + op(1), (3.37)
with the periodic function g(t) as in Theorem 3.1. In particular, in the aperiodic
case,

G o Y J L — 3.38

(L T (339)

Proof. The first equality in (3.37) follows from Var Nt(’?n) = O(n) by Chebyshev’s
inequality, and the second is (3.10).

In the aperiodic case, we use (3.15) instead of (3.10) and obtain (3.38). O

The size of the random trie Y, shows oscillations in the periodic case, see e.g.
[29; 31; 14; 17; 25; 18; 24; 28]. However, the Patricia trie Y, is a full binary tree
with n leaves, and thus has a fixed size |T,,| = 2n — 1. (This is special to the binary
case considered here.) Hence we obtain from (1.3) and Corollary 3.6 immediately
the following for the random fringe tree. We state results both conditioned on the
tree 'fn and unconditioned (i.e., results of quenched and annealed type, repectively.)

Corollary 3.7. Let t be a full binary tree with |t|e = m > 1. Then

A~

P(T; =t ) = gr-vellogn) + op(1), (3.39)

P(T* — 1) = %wE(log n) + o(1), (3.40)

with the periodic function g(t) as in Theorem 3.1. In particular, in the aperiodic
case,

o o s
P(Y5, =t | Yp) — m, (3.41)
P(Y* =) —> mt (3.42)
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Furthermore, if |t| =1, i.e., t = e, then, for any p,

~ ~ - n 1
P(Yr=t|Ty) =P(Y) =t) = - —. A4
Proof. The quenched versions (3. 39) and (3.41) are the same as (3.37) and (3.38) by
(1.3) conditioned on T,, recalling |T | = 2n — 1. The annealed versions follow by

taking expectations; note that the error term o, (1) in (3.39) is bounded so dominated
convergence applies and shows that its expectation is o(1).
Finally, (3.43) is trivial (but included for completeness). O

For the random extended fringe tree 'Y“;“L*, we obtain similarly, for the probabilities
q(Ty;t) defined in Section 2.5.

Corollary 3.8. Let t be a full binary tree with |t|e > 1. Then

q(To;t | T) = |tleH Mg (logn) + 0p(1), (3.44)

q(Tn;t) = [tleH e (logn) + o(1), (3.45)

with the periodic function g(t) as in Theorem 3.1. In particular, in the aperiodic
case,

__ ™

([tle — 1) H

q(Tn;t) — (e —DH

Q(Tmt ‘ Tn) - (3'46)

(3.47)

For |tle = 1, q(Ty) = 1 by definition.

Proof. Follows as Corollary 3.7 from Corollary 3.6, now using (2.19)—(2.20) and
recalling | Y, |e = n. O

Remark 3.9. We have here only stated first order results for the distributions
of fringe trees and extended fringe trees. We similarly obtain from Theorem 3.1
also asymptotic normality of these distributions in the quenched version, meaning
asymptotic normality of the conditional probabilities above. A

Remark 3.10. Corollaries 3.7 and 3.8 show that in the periodic case there is oscilla-
tion and no limit distribution, although suitable subsequences converge in distribu-
tion. It is well known that for some related functionals for tries, the oscillations are
numerically very small; this is true here too when m is small, but not for large m.
Consider the symmetric case p = ¢ = %; then d, = log2. (In other periodic cases, d,
is smaller and the oscillations are substantially smaller than in the symmetric case,
but they still become large for large m.) In the Fourier series (3.8) for fg, we have by
(3.12) the constant term fg(—1) = m;/m(m — 1), and if we normalize by this term,
for the term k£ = 1 we have

fE(_ %) :F( 1_10g2) (348)

fe(=1) Iim—1) '

For m = 2, this ratio has absolute value |I'(1 — 10g2')] = 4.9-107% and higher
Fourier coefficients are much smaller. Hence, the oscillations are in this case hardly
of practical importance. However, the absolute value of the ratio increases as m
increases: for m = 3 it is = 4.5-107°, for m = 4 it is = 2.1-10~% and for m = 100 it
is = 0.66; in fact, the absolute value of the ratio converges to 1 as m — o (see [32,
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5.11.12]), and the same holds for every Fourier coefficient. Hence we cannot always
ignore the oscillations.

More precisely, still taking p = ¢ = %, the normalized (log2)-periodic function
Yo(x) := Ye(x)/fE(—1) is non-negative by (3.10) and has by (3.8) and (3.18) Fourier
coefficients

~ o fE(l— kgl Tim—1- 26
to(k) = FCD)C Tmon (3.49)

Let {z} := x — |z] denote the fractional part of a real number z, and suppose that
m — o along a subsequence such that {lgm} = {(logm)/d} — u € [0,1]. (Recall
that d = log2.) It then follows from (3.49) and [32, 5.11.12] that, for any k € Z,

{p\O(k) ~ mf(Zﬂk/logZ)i _ 6727rk(lgm)i N 6727rkui _ (S/d\u(k)7 (350)

where d4, is a point mass at du. Hence, by the continuity theorem, the function
1o(x) converges weakly (as a measure on the circle R/dZ) to dg4,, which roughly
means that for large m, 1o(z) is concentrated at x close to du ~ d{lgm}. Hence,
still roughly, ¥g(logn) in (3.10) is large when {lgn} = {logn/d} ~ {lgm}, but small
otherwise. This should not be surprising. For a large n, in the first generations of
the construction of the trie from n strings in Section 2.2, by the law of large numbers
almost exatly half of the strings are passed to the left child and half to the right
child. Consequently, there will be many fringe trees in T, and thus in Tn, of size
~ 27In for integers 7, but few for intermediate sizes, until we get down to small sizes
m. Thus, for a fixed large m, we expect many fringe trees of size m when n/m is
close to a power of 2, which is the same as {lgn} ~ {lgm}. A

Remark 3.11. If we consider the ratio between the probabilities for two given trees
t of the same size, then there are no oscillations even in the periodic case, since the
oscillations in Corollaries 3.7 and 3.8 for the two trees cancel by (3.8) and (3.12). A

4. COMPRESSED BINARY SEARCH TREES

In this section we study fringe trees of the compressed BST gn Let t be a full
binary tree, and let as in Section 2.4 ‘\ft be the set of all binary trees that can
be obtained by inserting additional nodes of outdegree 1 in the edges. As said
in the introduction, Aldous [1] shows that the random fringe trees B} converge
in distribution to some limiting random fringe tree BX as n — oo, and Devroye
[9, 10] show asymptotic normality of the subtree counts N;(B,). Furthermore, [1]
shows that the distribution of the limiting random fringe tree B}, equals the mixture
Sl WML&W(BQ, i.e., for any set & < T,

& 2

P(Be®) = 2 D12

P(By € S). (4.1)

k=1
We use these results and (2.12) to obtain similar results for fringe trees of the
compressed BST B,,.

~

Theorem 4.1. Let t be a full binary tree. Then Ny(By,) is asymptotically normal:
there exist constants By > 0 and v > 0 such that, as n — 0,

~

Nt(3n> —npy i)

NG N(0,77), (4.2)
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with convergence of mean and variance. In particular,

Ny(B,)/n -2 B,. (4.3)

Furthermore there exists a limiting frmge tree distribution given by a random full
binary tree B such that for every t e T

P(B;, =t) = gﬁt, (4.4)

and (quenched version)
B8 — ¢ B) - 5 o g (4.5

and (annealed version)
P — 1) — E N‘ tl(fr) S PBY = 1), (4.6)

We conjecture that also all higher moments converge in (4.2), but we have not
pursued this and leave it as an open problem.

Proof. We use again (2.12); thus Ny(B,) = ®(B,) where ® is defined by (2.10)-
(2.11). The asymptotic normality (4.2) (with convergence of mean and variance) then
follows from [20, Corollary 1.15]; see also [10] for similar results. The convergence in
probability (4.3) is an immediate consequence.

Furthermore, [20, Corollary 1.15 and (1.24)] yield

0 0
2 ~
E = — P . 4.
Z (k + 1)( k+2) #(Bk) l;l(k+1)(k+2) (Bye o) (A7)
Alternatively, (4.3) and dominated convergence yield, together with (2.12),
E N;(B,, 1 . <
fr = lim E Ni(Bn) = lim — Z 1{B} € Tt} = lim P(B;; € %)
n—0o0 n n—o N B, n—00
= P(B% e %), (4.8)

which agrees with (4.7) by (4.1). The union |,z <, of the sets T; over all full binary
trees ¢ is the set T12 of all binary trees where the root has degree 2 or 0. Hence,
(4.8) implies
Zﬁt = ZP(B;‘O eTy) =P(B, e TO%) = lim P(B; e T0¥).  (49)
te®T teT

If v € By, then the fringe tree BY € 102 «— the degree d(v) € {0,2} «— ve B,.
Hence, (4.9) yields, using (2.7) and dominated convergence,
2

n—o0 n TL—>OO n

Consequently, >, = QBt , 80 (4.4) defines a probability distribution on full binary
trees.
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Combining (4.3) and (2.7) we obtain

Ni(Bn) », 34, (4.11)

|Bn| 2
The quenched and annealed convergence in distribution (4.5) and (4.6) then follow
from (1.2) and (1.3) (and dominated convergence again).

It remains to show that 8; > 0 and 7, > 0. For f;, this is immediate from (4.7).
For 74, let m := |t|e and note first that we may assume m > 2, since for ¢t = o, we have
N.(gn) = |l§n]e = |Byle, and thus 42 = 2/45 by (2.8). Fix a suitable k > m; we may
take k =4 if m =2 and k = m if m > 3. Assume n > 2k — 1. In the construction
of the binary search tree B,, in Section 2.3, stop at every node that receives exactly
2k — 1 items. At each such node, peek into the future to see whether the fringe tree
at that node will be a full binary tree (with k leaves), or it will contain some node of
outdegree 1; in the latter case, continue the recursive constraction at this node too,
but in the first case, just mark the node and leave it. The result is a subtree of B,
that we denote by B),; it has a number N; of marked nodes with 2k — 1 items each,
and we recover BB, by replacing each marked node by a random full binary tree with
k leaves (more precisely, a copy of Byg_1 conditioned on being a full binary tree);

denote these trees by 11, ... ’TNIQ' Every fringe tree B that belongs to ‘ft, and thus
has m leaves, either lies completely in B;, or in one of the N trees T;; furthermore,
any fringe tree of T; that belongs to <, has to be a copy of t. Thus we have
N
Ni(Bp) = N" + Y N(T;) (4.12)
i=1
where N is determined by B),. Condition on B;, (which also determines N ). Then
the trees T; are (conditionally) independent and identically distributed, and, by our
choice of k, 0 < P(N¢(T;) = 1) < 1 so ¢ := Var N¢(T;) > 0. Hence (4.12) implies that
the conditional variance
N
Var[Ny(By,) | B,] = D Var Ny(T;) = cN. (4.13)
i=1
The number N}, equals the number of fringe trees of B, that are full binary trees of
size 2k — 1; we let %k be the set of all such full binary trees. Thus

Nj/n =P(B: e 3 | By). (4.14)
Hence we obtain from the known convergence B} 4, B,
EN;/n=EP(B:eT)|B,) =P(B: %)) —» P(B eFy) =: ¢, (4.15)

where it follows from (4.1) that ¢ > 0. Recall also the law of total variance: for any
square-integrable random variable X and random variable (or o-field) Y

Var X =E Var[X | Y]+ VarE[X | Y] > E Var[X | Y]. (4.16)
Consequently, (4.13) and (4.15) yield
Var[Nt(gn)] >E Var[Nt(gn) | B,]| = cENj, = cc'n + o(n). (4.17)

The convergence of variance in (4.2) thus yields 42 = ¢ > 0. O
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Remark 4.2. Theorem 4.1 extends to multivariate limits for several full binary trees
by the Cramér—Wold device; we omit the details. A

Remark 4.3. The random BST can be constructed by a simple continuous-time
branching process, which yields a simple description of the limiting random fringe
tree B} as this branching process stopped at an exponentially distributed random
time [1] (see also [21, Example 6.2]). In principle, this leads to a description of the
compressed BST and its limiting fringe tree é;’fc, but this becomes more complicated
and we have not been able to use it, for example to compute 3; and the probabilities
in (4.4); we therefore do not give the details. The rather complicated explicit values
of @ given in Appendix A for small ¢ also suggest that no really simple description
of B}, exists. A

For the random extended fringe tree B\;“L* we obtain for the probabilities q(én; t)
defined in Section 2.5:

Corollary 4.4. Let t be a full binary tree. Then

4(Buit | B) = q(B5:1) = 3ltlefr, (4.18)
q(Bnit) — q(Bi3t). (4.19)
Proof. Immediate from (4.4)—(4.5) and Lemma 2.2. O

The numbers g; are given by (4.7), but since it is an infinite set, this formula is
of limited use for explicit calculations. In the remainder of the section, we give one
way to find 3; and thus the limiting fringe distribution B more explicitly.

Problem 4.5. It seems possible that similar but more complicated arguments might
make it possible to compute also the asymptotic variance 77, but we have not pursued
this, and we leave it as an open problem.

4.1. Computing B;. We define a generating function for binary trees and sets of
binary trees as follows. For a binary tree T, let

pr :=P(Bjp =1T), (4.20)
Fr(z) := ppa!™l. (4.21)
For any set Ty of binary trees, let
P, (z):= )] Fr(=). (4.22)
Te%o

These generating functions will help us to compute fringe tree probabilities by the
following simple formula for the BST.

Lemma 4.6. If Ty is a set of binary trees, then

1
P(B; € %) = 2J0 Fz,(z)(1 — z) da. (4.23)

Proof. By (4.22) and linearity, it suffices to consider the case when Ty = {T'} for a
single binary tree T'. Let k := |T'|. Then, by (4.1),

2
(k+1)(k+2)

1

P(B,=T) = QpTL 2*(1 - z)da

P(B: = T) =
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1
i f Fr(z)(1 — ) dz, (4.24)
0

which shows (4.23). O

Let ¢ be a full binary tree, and recall that i:r is the set of all binary trees that
contract to t, and T; the subset of all such trees where the root has degree 2 or 0. In
other words, ¥; is the set of all binary trees that can be obtained from ¢ by replacing
any edge by a path, and T, is the set of all binary trees that can be obtained
from these by adding a path of length ¢ > 0 to the root. Define the corresponding
generating functions

Gi(x) := F‘f:r (x), (4.25)
Hy(z):= Fg, (). (4.26)

We state a series of lemmas to help us compute these generating functions.

Lemma 4.7. If T is a path with | = 1 nodes, then
Fr(z) = o (4.27)

Proof. By the construction of the BST,

1 1 1 1
=== 4.28

0 (-1 1o ( )
since a given path T is obtained by exactly one choice of pivot each time. Hence,
(4.27) follows by the definition (4.21). O

pr =PB,=T)

Lemma 4.8. If Tp is the set consisting of all paths with any number ¢ = 1 of nodes,
then

Fr,(z) = 1(e* —1). (4.29)

Proof. There are 2¢=1 different paths with ¢ nodes. Thus Lemma 4.7 yields, letting
P, denote any path with |FP| = ¢,

Fep(z) = Y 21 Fp () = %Z Qo) _ L _y), (4.30)
(=1

O

Lemma 4.9. Let T be a binary tree and let T} be a tree obtained by adding a path
with £ = 1 nodes to the root of T. Then

T

Fr(o) = [ oS

Proof. Let |T| = k; then |Ty| = k + £. In analogy with (4.28), the construction of
the BST yields

)6—1
dy. (4.31)

1 1 1
=P — T = ) )
i =PBree =T0) = o T R
k!

IR (432

P(B), = T)
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since T} is obtained by exactly one choice of pivot each of the first £ times, and then
by the same choices as for T. On the other hand, a standard Beta integral yields

x € 1
L Fr(y)(z —y)"tdy = prO yF (@ —y) Tt dy = pT:vML F(1-2)fde

Dk + DT(0) ppe  KE—D! 4
Th+1+6" ~“PThron ™

By (4.32) and (4.21), this equals (£ — 1)!z*+py,, and thus (4.31) follows by the
definition (4.21). O

=pr (4.33)

Lemma 4.10. Let %y be a set of binary trees and let T1 be the set of trees obtained
by adding a path with any number £ = 1 of nodes to the root of any tree T € Ty.
Then

P, (@) =2 | Fs, () dy. (4.34)
0

Proof. For each £, there are 2¢ different paths of length ¢ that can be added (including
the choice of edge from the end of the path to the former root). Hence, by Lemma 4.9,
summing over all T' € Ty and all possible paths,

B x (x o y)f—l B T oy
Fr(z) = T;TO; 2KJO FT(?J)W dy = 2J0 Fx, (3/)62( )dy. (4.35)

0

Lemma 4.11. Let T} and Ir be binary trees and let T be a tree obtained by taking
a path with £ = 1 nodes and adding Ty and Tr as the left and right subtrees of the
last node in the path. Then

-1

Fr, (z) = f Fri (y)Fry (y)%

Proof. This is similar to the proof of Lemma 4.9. Let |71 | = ki and |Tr| = kr; then
|T1| = ki + kr + ¢. The same argument as for (4.32) now yields

dy. (4.36)

1 1
—P(B —T) = P(By, =T,) -P(By. =T
pr, = PBi ke = T1) kL +kr+0 R+ kr+1 (Br, =T1) - P(Bie = Tk)
(k‘L-l-kR)!
N ST \ VAR 4.37
(kL + kg + 0)1 VTP (4.37)

since if the first ¢ pivots have been chosen correctly to form the desired path, with
the last node having left and right subtrees of sizes k_ and kg, respectively, then the
shapes of those subtrees are independent. The rest of the proof is as for Lemma 4.9
with only notational changes. ([

Lemma 4.12. Let T and TR be two sets of binary trees and let T1 be the set of
trees obtained by taking a path with any number £ = 1 of nodes and adding two trees
1L € T and Tr € Tr as the left and right subtrees of the last node in the path. Then

T

Fg (z) = L Fs, (y) Frg (y)e* ") dy. (4.38)

Proof. By Lemma 4.11 and summing over T} € ¥, TR € TR, and £ > 1, just as in
the proof of Lemma 4.10; note that for a given ¢, now there are 2¢=! paths. O
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Finally, we obtain our formula for f;, using the functions G(z) for which we
provide a recursion.
Theorem 4.13. Let t be a full binary tree.

(a) The generating function G¢(x) can be computed recursively as follows.
(i) If t = e, then

Go(z) = =(e2® —1). (4.39)

(ii) If |t| > 1, and the root of t has left and right subtrees t| and tgr, then

Gilx) = jo G (1) G ()29 dy, (4.40)

(b) Then [ is given by:
(i) If |t| =1, i.e., t = o, then By = 1/3.
(ii) If [t| > 1, and the root of t has left and right subtrees t| and tgr, then

1
8, = f (1= 2)2Gy, (2)Ghy () da. (4.41)
0

Proof. (a): The recursion (4.39)—(4.40) is an immediate consequence of the definition
(4.25) and Lemmas 4.8 and 4.12.

(b)(i): If t = o, then Ny(B,) = |Bple, and thus (2.6) and (4.3) show S, = 1/3.
(b)(ii): Lemma 4.11 with ¢ = 1 shows, by summing over all T € SZ[ and TRe ¥
and recalling (4.26),

+
tr?

Hy(z) = Fy,(z) = jo " G ()G () dy. (4.42)

Hence, (4.8) and Lemma 4.6 yield

- 1
fi-B@seT) 2| M@ -nde=2 [[ (1-06. )G dyda
O<y<z<1

_ jo (1 - 4)2Gy, (4)Gin (y) dy, (4.43)

which proves (4.41). (Alternatively, one can use integration by parts in (4.43).) O

Remark 4.14. Note that (4.40) and (4.41) hold for ¢ = e too if we define G := 1.
Furthermore, (4.41), (4.40), and an integration by parts yield the alternative for-
mula

1

5 | (1= 2% - G (1) Cap () da = - [ (@) (e Gia)) o

01 X 0
= J 2z(1 — )€ - e Gy (z) da = f 2x(1 — 2)G¢(x) d. (4.44)
0 0

This is perhaps more elegant than (4.41), but (4.41) seems better for calculations. A
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APPENDIX A. EXAMPLES

We give here some examples of exact and numerical values for the limits of P(7}F =
t) and q(Ty;t) that describe the distribution of random fringe trees and extended
fringe trees when T, is a random Patricia trie ?n or a compressed binary search tree
B,. We consider only the smallest fringe trees ¢, with ltle < 4. Since we consider
only full binary trees T;,, we assume that ¢ is a full binary tree; moreover, the case
|t|le = 1 is trivial, since then for any sequence T, of full binary trees
Tale  TWle 1

P(TF =e|T,) = = — = Al
( n .| n) ’Tn| 2|Tn|e_1 9 ( )

provided |T},|e — c0. Hence we consider the small trees in Figure 1 with the notations
given there, and their mirror images which we may ignore since they give the same
result, with p and ¢ exchanged for "fn For simplicity, we state only the annealed
versions of the results; note that the (stronger) quenched results too hold by the
results above. Also for simplicity, for Patricia tries, we do not show the oscillations
in that appear in the periodic case (in particular in the symmetric case p = ¢ = %),
we give only the constant terms coming from the constant term fg(—1) in (3.8) and
ignore the oscillating terms there (which is the same as averaging 1g over a period).
We denote this by ~ below; note that in the aperiodic case, ~ thus means —. We
use freely notation from the previous sections.

Remark A.1. If we ignore orientations and regard the random trees as cladograms,
see Remark 1.1, and for Patricia tries consider only the symmetric case p = %, then
we do not have to consider mirror images, and also t4, disappears; instead we should
multiply the results below for t3 by 2, and for t4, by 4 (the numbers of possible
orientations). A

A.1. The uniform full binary tree. For comparison, we give also the correspond-
ing values for the uniform random full binary tree with n leaves, here denoted U,,.
(Note that this random tree is quite different from ?n and l§n; for example, as is
well known, typically U,, has height of order 4/n, while ?n and l§n have heights of
order logn.)

The random full binary tree U,, can be regarded as a conditioned Galton—Watson
tree with critical offspring distribution P(¢ = 0) = P(¢ = 2) = 3, see e.g. 2], and
thus it follows by Aldous [1, Lemma 9] (see also [27]) that the asymptotic fringe tree
distribution is the corresponding (unconditioned) Galton—Watson tree, which in this
case simply means that for every full binary tree ¢,

PUF = t) — 271t = 212t (A.2)

We have also the quenched version [26, Theorem 7.12] P(U* =t | U,) — 27!, and
thus Lemma 2.2 yields

qUp; t) — [t]e2! 71 = 2] 22720, (A.3)
A.2. The examples. We consider the trees to,...,t4. in Figure 1 one by one; for
each of them we consider the different random fringe trees studied above.

Example A.2. to: For the Patricia trie ?n, note first that we have |tale = 2,
LPL(tQ) = RPL(tg) = 1, Vl(tg) = 2, I/Q(tg) = 1, and Vk(tg) = 0, k > 2. Hence,
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t2 t3 laa Lap lac
FIGURE 1. Some small full binary trees.

Lemma 3.3 yields

Ty = 2pq. (A4)
(Which perhaps is more easily seen directly.) Corollaries 3.7 and 3.8 then yield
" pq
P(Y! = N A.
( n t2) 2H’ ( 5)
o 2
a(Tuits) ~ 7. (A.6)
In particular, in the symmetric case p = %, when H = log2,
- 1
P(Y* =ty) ~ = 0.1803 A7
T =)~ o , (A7)
- 1
Tpita) =~ = (.7213. A8
o(Fuite) ~ 5 (43)

For the compressed BST B,,, Theorem 4.13 yields Gy, (z) = tetr — Ixe? — L and

i = et — 36+ B = 0100, (A9
Hence, Theorem 4.1 and Lemma 2.2 yield

P(B: = ts) — 3B, = gose* — 362 + 283 = 0.1645. (A.10)

q(Bnits) — 66, = Zet — 3¢ + 23 = 0.6581. (A.11)

For the uniformly random full binary tree U,,, (A.2)—(A.3) yield

PUE = t5) — é — 0.125, (A.12)
1

Ui t2) > 5 = 0.5. (A.13)

A

Example A.3. t3: For ”fn, we have |tsle = 3, LPL(¢3) = 2, RPL(t3) = 3, and
vi(ts) = 3, va(ts) = 1, v3(t3) = 1. Hence, Lemma 3.3 yields
6p°q° 6p°¢° _ ., -
- = = 3p?q. A.14
Tts 1 _p2 — q2 2pq P q ( )
Corollaries 3.7 and 3.8 then yield

B(T) = 1) ~ . (A.15)
~ Ip2
¢(Tnsts) ~ 22 (A.16)
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In particular, in the symmetric case p = %, when H = log2,

P(Y} = t3)

~ = 0.0451
321og 2 ’

~ 3 .

For l§n, Theorem 4.13 yields
1 Loy 3 5 2447

S 2220 - 0.0279.
Bis = 7728 ~256° " 64 T 6912
Hence, Theorem 4.1 and Lemma 2.2 yield
. 3 1 3 9 9447
P(B* = ¢ —>—,:76—74—72 —— =0.041
(Br=t3) = 58 = 1755¢ ~512¢ ~ ¢ T agos 048

2
. 1 9 27 2447
q(By;t3) = 9B, = ﬁeG 422 T 20,2507,

2¢ T 256° 64" T 768
For Uy, (A.2)-(A.3) yield
1
P(U* = t3) — — = 0.0312
(U* = t3) 25 = 003125,

3
i ts) > — = 0.1875.
q(Un; ts) 16 0.1875

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)
A

Example A.4. t4,: For 'Y’n, we have |tyqle = 4, LPL(t40) = 3, RPL(t4q) = 6, and

vi(taa) = 4, v2(taa) = 1, v3(taa) = 1, va(tsa) = 1. Hence, Lemma 3.3 yields
24p°q* 24p5¢* s
Mtaa = 2 2 3 3y =dpq.
(1-p*—¢*>)(1-p*—¢q*)  2pq-3pq
Corollaries 3.7 and 3.8 then yield

4
P(T] = taa) ~ G-
~ 4pt
Q(Tn;téla) ~ %

In particular, in the symmetric case p = %, when H = log2,

A~

P(T* = ty,) = 0.0075,

~ 19210g 2

o 1
Thitae) ¥ ———— = 0.0601.

For gn, Theorem 4.13 yields
1 1 s 11 5 47503
Pua = 35768 ~ 1608°  512° T 200012
Hence, Theorem 4.1 and Lemma 2.2 yield
~ 3 3 1 33 47503
P(BL = tha) = 0, = oo’ — st — o e?

65536°  3072°  1024° T 196608

3 4 1 ¢ 33, 47503
L 690 2 EOUS L el
8102° 381 T 128° T 24576

= 0.0057.

= 0.0086,

q(Bpitaa) — 128y, =

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)
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For U,,, (A.2)—(A.3) yield

P(U* = tg,) > —— = 0. A.32

Uy = taq) 198 0.0078, (A.32)
1

q(Un; tag) — 6= 0.0625. (A.33)

A

Example A.5. t4,: For "fn, we have [tgple = 4, LPL(t4) = 4, RPL(t4) = 5, and
Vl(t4b) = 4, I/2(t4b) = 1, 1/3(t4b) = 1, V4(t4b> = 1. Hence, Lemma 3.3 yields
24p5q4 24]05(]4
Tty = 55 Ty = = 4p>>. (A.34)
(1=p*—¢*)(1—p*—¢*) 2pq-3pq
Corollaries 3.7 and 3.8 then yield

R P
P(Y? =ty) ~ —— A.
(Tn = tw) ~ 2L, (4.35)
N 4p3q2
To; ~ . A.
0(Tnitap) ~ —o (A.36)
All other results are by symmetry the same as for 4. A

Example A.6. tyc: For 'Y‘n, we have |tsc|le = 4, LPL(ts) = RPL(t4.) = 4, and
vi(tae) = 4, va(tee) = 2, v3(tse) = 0, v4(tse) = 1. Hence, Lemma 3.3 yields

24p4q4 B 24p4q4

Tty = = = 6p>¢°. A.37
b (1-pP =) (2pg)? (437
Corollaries 3.7 and 3.8 then yield
2.2
> P q
P(Y5 = tac) ~ (A.38)
~ 2 2.2
a(Tuitac) ~ =5 (A.39)
In particular, in the symmetric case p = %, when H = log2,
- 1
P(YE = ty) ~ = 0.0225 A.40
< 1
Thitae) & = 0.1803. A4l
q(Tnstac) Slog 2 ( )

For l§n, Theorem 4.13 yields
1 g 1 1 4 1., 54973
Bue = T6381° ~ 17 T 1024° 64° T 142368
Hence, Theorem 4.1 and Lemma 2.2 yield

3 s L¢3 4 3 , 5413

39768  1152° ' 2048¢  128° T 204012

= 0.0106. (A.42)

A~

3
P(B: = t4C> - §Bt4c =

= 0.0159,
A.43)
3 ¢ 1 . 3 4, 3, 54973

Bty los 3 s _ B2 98915 L g og
Q( ny 40) /Bt4c 40966 1446 + 2566 ]_6e + 36864
(A.44)
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For U,,, (A.2)—(A.3) yield (just as for t4,)

1
P(U* = - — = 0. A4
1
q(Un;tac) — 6= 0.0625. (A.46)
A

We summarize the numerical values above in Tables 1 and 2. In particular, note
the large differences in the relative importance of ¢4, and t4. for the three random full
binary trees considered here: the asymptotic ratio between the probabilities for ¢4
and t4, are 3 for symmetric Patricia tries (the oscillations cancel, see Remark 3.11),
1.846 ... for compressed BST, and 1 for uniform full binary trees.

lo t3 l4q lac
Patricia trie Y, (p = ¢ = %) 0.1803 | 0.0451 | 0.0075 | 0.0225
Compressed BST l§n 0.1645 | 0.0418 | 0.0086 | 0.0159
Uniform full binary tree i, | 0.125 | 0.0312 | 0.0078 | 0.0078

TABLE 1. Limits or approximations of P(T)¥ = t) for three random
full binary trees.

lo l3 l4a lac
Patricia trie ¥, (p = ¢ = %) 0.7213 | 0.2705 | 0.0601 | 0.1803
Compressed BST B, 0.6581 | 0.2507 | 0.0690 | 0.1273
Uniform full binary tree U, | 0.5 0.1875 | 0.0625 | 0.0625

TABLE 2. Limits or approximations of ¢(7},;t) for three random full
binary trees.
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