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Abstract. In the critical beta-splitting model of a random n-leaf rooted tree,
clades are recursively split into sub-clades, and a clade of m leaves is split into
sub-clades containing i and m− i leaves with probabilities ∝ 1/(i(m− i)). Study
of structure theory and explicit quantitative aspects of the model is an active
research topic. It turns out that many results have several different proofs, and
detailed studies of analytic proofs are given in [9] (via analysis of recursions) and
[7] (via Mellin transforms). This article describes two core probabilistic methods
for studying n → ∞ asymptotics of the basic finite-n-leaf models.

(i) There is a canonical embedding into a continuous-time model, that is a
random tree CTCS(n) on n leaves with real-valued edge lengths, and this model
turns out to be more convenient to study. The family (CTCS(n), n ≥ 2) is
consistent under a “delete random leaf and prune” operation. That leads to an
explicit inductive construction (the growth algorithm) of (CTCS(n), n ≥ 2) as
n increases, and then to a limit structure CTCS(∞) which can be formalized
via exchangeable partitions, in some ways analogous to the Brownian continuum
random tree.

(ii) There is an explicit description of the limit fringe distribution relative to
a random leaf, whose graphical representation is essentially the format of the
cladogram representation of biological phylogenies.
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1. Introduction

This article is part of a broad project [6, 7, 8, 9] studying a certain random tree
model. The model is defined by recursively splitting a given set of leaves such that
a set of m leaves is split into subsets containing i and m− i leaves with probabilities
proportional to 1/i(m − i); see Section 2 for details. The model arose [5] as a toy
model for phylogenetic trees, designed to mimic the uneven splits observed in real
world examples (see Section 5.2). The model turns out to have a rich mathematical
structure. There are many questions one can ask and many different proof techniques
can be exploited. Indeed several of the key results each have several quite different
proofs, a fact which may be of pedagogical interest.

This article provides an introduction to the model, emphasizing connections with
previous work, and describes core probabilistic methods for studying n→ ∞ asymp-
totics of the basic finite-n-leaf models. A detailed technical study of some aspects
via the analysis of recursions is given in [9], and another detailed technical study
of other aspects via Mellin transforms will be given in [7]. In parallel, a document
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[6] will be maintained, to summarize known results and provide more heuristics and
open problems.

We do find it convenient to adopt the biological term clade for the set of leaves in
a subtree, that is the elements in a subset somewhere in the splitting process. There
is an obvious correspondence between the clades and the total 2n− 1 nodes of the
binary tree, where leaves correspond to the n clades of size 1 and internal nodes to
the n− 1 larger clades.

1.1. Outline of results. The most studied aspects of the model have been centered
on the CLT for leaf heights, proved by different methods in [9, 27, 30], with further
related “height” results in [7, 9]. Basic such results are mentioned in Section 3.1,
but this article is essentially independent of those results.

• In Section 2.3 we describe the consistency property (Theorem 2.3) for n-
leaf trees and the resulting representation of a limit tree CTCS(∞) via an
exchangeable random partition of N.

• For finite n the “number of subclades along a path to a uniform random leaf”
is a certain continuous-time Markov chain that we call the harmonic descent
chain (Section 3.2). The probability of visiting a given state (subclade size)
i has an explicit formula a(i) in the n→ ∞ limit. This occupation measure
Theorem 3.1 (Section 3.3) has been proved originally in [8] and then [26].

• This leads in Section 4 to an exact description of the “number of subclades
along a path to a uniform random leaf on the infinite boundary” process
within CTCS(∞), in terms of a certain subordinator (Theorem 4.5).

• In Section 5 we observe that the “occupation measure” Theorem 3.1 leads to
an explicit description (Theorem 5.1) of the asymptotic fringe tree, many of
whose properties have yet to be investigated. The fringe tree is essentially the
way that real-world phylogenies are drawn as cladograms, and we illustrate
a real example alongside a realization of our model.

• In Section 6 we give a novel third proof of the occupation measure theorem,
as a first indication of the power of Mellin transform methods.

• In Section 7.2 we discuss analogies with the Brownian continuum random
tree.

2. The critical beta-splitting model of random trees

In this section we give the basic construction of the critical beta-splitting random
tree. In fact we will give several different versions: we define a discrete-time ver-
sion DTCS(n) and a continuous-time version CTCS(n); furthermore, in both cases
we define ordered and unordered versions. Moreover, for the unordered version
of CTCS(n), we define an explicit growth process (CTCS(n), n = 1, 2, 3, . . .) that
constructs CTCS(n) for all n jointly in a natural way by adding leaves one by one.

2.1. The ordered versions. For m ≥ 2, consider the probability distribution
(q(m, i), 1 ≤ i ≤ m− 1) constructed to be proportional to 1

i(m−i) . Explicitly

(2.1) q(m, i) =
m

2hm−1
· 1

i(m− i)
=

1

2hm−1

(1
i
+

1

m− i

)
, 1 ≤ i ≤ m− 1,
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where hm−1 is the harmonic sum

hm−1 :=

m−1∑
i=1

1

i
.(2.2)

Now fix n ≥ 2. Consider the process of constructing a random binary tree with n
leaves, labelled 1, . . . , n, by recursively splitting the integer interval [n] := {1, 2, . . . , n}
of leaves as follows. First specify that there is a left edge and a right edge at the
root, leading to a left subtree which will have the Ln leaves {1, . . . ,Ln} and a right
subtree which will have the Rn = n−Ln leaves {Ln+1, . . . , n}, where Ln (and also
Rn, by symmetry) has distribution q(n, ·). Recursively, a subinterval with m ≥ 2
leaves is split into two subintervals of random size from the distribution q(m, ·).
Continue until reaching intervals of size 1, which are the leaves. This yields a binary
tree with the given n leaves; each of the n− 1 splits corresponds to an internal node
(including the root). For completeness, we also include the case n = 1, in which
there are no splits and the tree just consists of the root. Figure 1 (left) illustrates
schematically the construction as interval-splitting.

For our purposes, it will be convenient to draw the binary trees in a non-standard
way, shown in Figure 1 (center and right). Instead of drawing two edges from an
internal node to its children as usual, we draw one vertical line to a “branchpoint”
(representing the split but not regarded as a node in the tree) followed by two
horizontal lines to the children. We regard the horizontal lines as having length
0; we may (for obvious practical reasons) draw them with arbitrary lengths in the
figures, but these lengths have no significance. In Figure 1 (right), the horizontal
lines to leaves are drawn with their true length 0.

We regard the splitting process as evolving in time, and consider two versions, one
in discrete time and one in continuous time, which we call DTCS(n) and CTCS(n),
respectively.1 In DTCS(n), the root clade splits at time 1, its children at time 2,
and so on. In CTCS(n), a clade with m ≥ 2 leaves is split at rate hm−1, that is after
an Exp(hm−1) random time (independent of everything else).2 In both versions, we
start at time 0. Each node is regarded as born at the time the corresponding clade
appears; we also regard this time as the height of the node in the tree. Hence, in the
DTCS(n), all edges have length 1 and the height equals the usual graph distance to
the root; in CTCS(n) the edges have different, random, lengths.

In other words, in our graphical representation of the binary tree, each clade with
size > 1 is represented by one vertical line (and conversely); this line thus has length
1 in DTCS(n) and has length Exp(hm−1) for a clade of size m in CTCS(n).

Recall that apart from edge lengths, DTCS(n) and CTCS(n) define the same bi-
nary tree; in particular, we can always recover DTCS(n) from CTCS(n) by ignoring
the edge lengths. Figure 2 shows a schematic realization of CTCS(20) as a “con-
tinuization” of the realization of DTCS(20) in Figure 1. Figure 3 shows an actual

1DTCS and CTCS are abbreviations for Discrete Time Critical Splitting and Continuous Time
Critical Splitting, for reasons explained in Section 7.1.

2Exp(r) denotes a random variable with an exponential distribution with rate r, and thus ex-
pectation 1/r.
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Figure 1. Equivalent representations of a realization of DTCS(20).

realization of CTCS(400). Figure 2 shows also, as an example, a distinguished leaf
(11); the path from the root to the distinguished leaf 11 passes through successive
clades

[[1, 20]], [[4, 20]], [[5, 20]], [[9, 20]], [[9, 19]], [[9, 17]], [[9, 13]], [[9, 11]], [[11]]

which have successive sizes (number of leaves) 20, 17, 16, 12, 11, 9, 5, 3, 1.
The choice of rate hm−1 in the definition of CTCS(n) may seem arbitrary, but

it is justified by the consistency result below (Theorem 2.3, see also (2.4) in its
proof), which suggests that hm−1 is the canonical choice of splitting rates for the
continuization. Note that we, equivalently, can say that a clade of size m ≥ 2 splits
into two clades of sizes i and m− i (taking, as always below, the left subclade first
for definiteness) with rate

q̂(m, i) := hm−1q(m, i) =
m

2i(m− i)
=

1

2i
+

1

2(m− i)
,(2.3)

for every 1 ≤ i ≤ m− 1.
Regarding terminology, remember that “time” and “height”3 are the same. Within

the mathematical analysis of random processes we generally follow the usual “time”
convention, while in stating results we generally use the tree-related terminology of
“height”.

Remark 2.1. In our representations of the trees, we stop at each leaf. It is some-
times advantageous to consider an extended representation where we add a vertical
line to infinity from each leaf; then every clade is represented by a vertical line, ex-
tending from the time the clade is created until it splits (if ever). This is particularly
attractive for CTCS(n), since leaves split with rate 0 = h0 (i.e., never), and thus
the extended representation has for each clade of size m (including leaves) a vertical
line of length Exp(hm−1) (interpreted as ∞ when m = 1 so the rate hm−1 = 0)
showing the interval of time that the clade lives. In this representation, the leaves

3Or depth, if one draws trees upside-down.
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Figure 2. Equivalent representations of a realization of CTCS(20).
One distinguished leaf is marked.

are located at the bottoms of the infinite lines (i.e., where the lines branch off from
other lines, going from there to infinity without further branching).

Note that in the construction above, we have labelled the leaves 1, . . . , n from
left to right. This is sometimes convenient, but it is often artificial. In particular,
the leaves are not equivalent; for example 1 and n are the only leaves that can have
height 1, and quantities such as the expectation of the height of leaf i (in either
CTCS(n) or DTCS(n)) will depend on i. We call this version of CTCS(n) and
DTCS(n) ordered ; in the next subsection we consider an alternative.

2.2. The unordered versions. In the versions of the construction in Section 2.1,
the leaves are ordered before we start. Conceptually we are instead usually thinking
of recursively splitting a set of objects which have labels (so they are distinguishable)
but without any prior structure on the label-set. Without loss of generality, we can
still assume that the set of labels is [n], but now, each time a clade of size m is to
be split into a left subclade of size i and a right subclade of size m − i, we choose
the left subclade uniformly at random among all

(
m
i

)
subsets of size i. Otherwise,

the construction is exactly as in Section 2.1. This yields the unordered versions of
DTCS(n) and CTCS(n).

Note that we may obtain the unordered versions from the ordered ones by applying
a uniform random permutation to the labels of the leaves. Conversely, we may
obtain the ordered versions from the unordered ones by relabelling the vertices in
order from left to right. Consequently, any properties of the tree that do not depend
on the labels of the leaves are the same for the ordered and unordered versions; two
examples are the height of the tree (i.e., the maximum of the heights of the leaves),
and, for CTCS, the sum of all edge lengths. Moreover, any properties of the path to
a uniform random leaf will have the same distribution for the ordered and unordered
version,
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Figure 3. A realization of the tree-representation of the CTCS(n)
model with n = 400. Drawn as in the previous Figure, so the width
of subtrees above a given time level are the sizes of clades at that
time.
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Figure 4. The delete and prune operation: effect of deleting leaf a
or b or c from the top left tree.

The unordered versions of DTCS(n) and CTCS(n) have for our purposes the ad-
vantage that they (by definition) are invariant under permutation of the leaf-labels.
(This of course is a certain type of finite exchangeability.) Hence, for example, the
“path to a uniform random leaf” is equivalent (in distribution) to “path to leaf 1”.
And “delete a uniform random leaf” is equivalent to “delete leaf n”. (Recall that
this does not hold for the ordered versions.)

Another important advantage of the unordered versions is the consistency prop-
erty in the next subsection. For this reason, in the sequel we will always use the
unordered versions unless we explicitly say otherwise.

Remark 2.2. We may also consider unlabelled versions where leaves are not la-
belled. The left/right distinction still matters, and thus the leaves can still be
identified by their positions. Hence, the unlabelled versions are equivalent to the
unordered versions; we may obtain the unordered versions by randomly labelling
the leaves in the unlabelled versions.
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2.3. The consistency property and the growth algorithm. Observe that all
versions of the construction above are for a given n; there is no direct connection be-
tween the model (discrete or continuous) for n and the model for n+1. Nevertheless,
for the unordered versions we have the following consistency property.

Note that if we delete a leaf k, then we also have to delete the internal node that
is the mother of k (merging the other two edges at that node into one), and if the
mother has only one other child, we also have to reduce the height of that child to
its grandmother’s; see Figure 4. We call this operation “delete and prune leaf k”.

Theorem 2.3 (Consistency property). The operation “delete and prune leaf n+ 1
from CTCS(n+1)” gives a tree distributed as CTCS(n), and similarly for DTCS(n+
1) and DTCS(n).

This consistency property is in fact a special case of [23, Theorem 1 and Propo-
sition 3], where all consistent splitting rules are characterized using the theory of
homogeneous fragmentation processes; the connection to such processes will be dis-
cussed in Section 4 below. We will give a simple direct proof of Theorem 2.3 in
Section 2.4, which furthermore leads to a proof of the growth algorithm in Theo-
rem 2.4 below. An alternative, elementary but longer, proof is given in Appendix A.

Theorem 2.3 implies that if we start at some large N and repeatedly delete and
prune the last leaf, we obtain a realization of the sequence (CTCS(n))Nn=1 with the
correct marginal distributions. By Kolmogorov’s extension theorem, there exists an
infinite consistent growth process (CTCS(n), n = 1, 2, 3, . . .) such that, for each n,
“delete and prune leaf n from the realization of CTCS(n + 1)” gives exactly the
realization of CTCS(n). Conversely, the realization of CTCS(n+ 1) is obtained by
adding a new leaf n + 1 to CTCS(n) at the appropriate place (i.e., at a random
place with a specified distribution). It turns out that this addition can be described
by the following explicit growth algorithm.

In the context of growth of trees, it is more evocative to use the word buds instead
of leaves, which we use in the following. In Figure 4 we see side-buds such as a, and
bud-pairs such as b, c.

Theorem 2.4 (The growth algorithm). Given a realization of CTCS(n) for some
n ≥ 1:

(1) Pick a uniform random bud; move up the path from the root toward that bud.
A stop event occurs at rate = 1/(size of clade from current position).

(2) If stop before reaching the target bud, make a side-bud at that point, random
on left or right.

(3) Otherwise, extend the target bud into a branch of Exp(1) length to make a
bud-pair.

Then the result is a realization of CTCS(n+1). Consequently, we obtain a realiza-
tion of the growth process

(
CTCS(n), n = 1, 2, . . .

)
by starting with CTCS(1), which

has a single bud at the root, and then repeating this algorithm ad infinitum.

The proof is given in Section 2.4; an alternative proof, which also gives explicit
formulas for probability densities, is given in Appendix A.
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To visualize the growth step, the addition of a new bud can happen in one of
three qualitative ways, illustrated in Figure 5, as the reverse of the “cut” in Figure
4. The addition is either what we will call a side-bud addition (case a in Figure 5)
in which a side-bud is attached at the interior of some existing edge, or a branch
extension (case b) in which one bud of a terminal pair grows into a new branch to
a terminal pair of buds, or a side-bud extension (case c) in which a side-bud grows
into a new branch with two terminal buds.

b

b
b b

b

b
b b b b

b

b
b b

b

b
b b b b

r
b

b
b b

b

b
b b b

r b

b

b
b b

rbb
b b bb

a b c

=⇒ OR OR

Figure 5. Possible transitions from CTCS(10) to CTCS(11): the
added bud is •.

Remark 2.5. Using the extended representation in Remark 2.1, the growth algo-
rithm in Theorem 2.4 has an even simpler description:

(1) Pick a uniform random path to infinity (corresponding to a uniform random
bud); move up this path from the root toward infinity. A stop event occurs
at rate = 1/(size of clade from current position).

(2) At stop, make a side-bud at that point, random on left or right. Add a
vertical line from the new bud to infinity. If the current clade at stop had
size 1, so stop occurred on the line from some bud to infinity, move also that
bud up along the line to the same height as the new bud.

Corollary 2.6. Let Bn denote the height of the branchpoint between the paths to
two uniform random distinct leaves of CTCS(n). Then, for each n ≥ 2, Bn has
exactly Exp(1) distribution.

Proof. By exchangeability, Bn has the same distribution as the height of the branch-
point between the paths to leaves 1 and 2 in CTCS(n). If we consider the growth
process given by the growth algorithm in Theorem 2.4, then this branchpoint re-
mains the same in CTCS(n) for all n ≥ 2. (Leaves may move to higher positions,

but branchpoints will not move.) Hence, Bn
d
= B2, which by definition has the

distribution Exp(h1) = Exp(1). □

Remark 2.7. Note that the growth algorithm is for the continuous-time CTCS(n)
only, since it depends on the lengths of the edges. Kolmogorov’s extension theorem
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applies to DTCS(n) too and yields a consistent sequence (DTCS(n), n = 1, 2, 3, . . .),
but this is of less interest since both leaves and internal nodes move towards infinity
as new leaves are added, while for CTCS(n), all internal vertices (branchpoints)
remain at the same height when new leaves are added, as seen in Corollary 2.6. This
happens because in the continuous-time model there is an offsetting feature, that
the initial splitting rate hn−1 is increasing with n, which remarkably compensates
exactly in Corollary 2.6

Remark 2.8. Using the growth process (CTCS(n), n = 1, 2, . . .), we can define a
limiting object CTCS(∞) as the union

⋃∞
n=1CTCS(n), suitably interpreted. This is

perhaps best done with the version in Remark 2.5 with lines to ∞. In that version,
by ignoring the buds (which may move when adding a new bud) and considering
the lines only, the lines form a type of tree structure that grows with n by adding
new lines to ∞ at random branchpoints.

We can regard CTCS(∞) as a (non-compact) real tree – see e.g. [15]. Note that
this is not the usual kind of “locally finite” infinite tree4, because a realization has a
countable infinite dense set of branchpoints. We will not study this limit object fur-
ther; instead we consider a different (though conceptually equivalent) formalization
in Section 4.

Here is another viewpoint on the existence of the limit object. For any given buds
i and j with i < j, the branchpoint Bij between the paths from the root to i and j
in CTCS(n) is the same for all n ≥ j (its height is Exp(1) by Corollary 2.6). In the
growth process above, if we consider only the instances where we happen to move
past Bij , and record whether we turn towards i or towards j, then this process can
be modelled by a Pólya urn; consequently, the proportion of leaves in each branch
converges a.s. to a random non-zero limit.

2.4. Proof of the consistency property and growth algorithm.

Proof of Theorem 2.3. It suffices to consider CTCS(n), since the result for DTCS(n)
then follows by ignoring edge-lengths.

Recall from (2.3) that the rate at which a clade of size m splits into two clades
of sizes i and m− i is q̂(m, i) given by (2.3).

Consider CTCS(n+ 1), but kill leaf n+ 1 and replace it with an invisible ghost.
Consider a clade in the tree with m visible elements plus the ghost. This clade
really has m+1 elements and thus splits with rate hm in CTCS(n+1), but the two
cases when only the ghost is split off from the rest are invisible. A visible split into
subsets with j and m− j visible elements may have the ghost in either of the two,
and so, taking into account the probability that the ghost appears in the proper
subclade, the rate is by (2.3)

j + 1

m+ 1
q̂(m+ 1, j + 1) +

m+ 1− j

m+ 1
q̂(m+ 1, j)(2.4)

=
j + 1

2(j + 1)(m− j)
+

m+ 1− j

2j(m+ 1− j)
=

1

2(m− j)
+

1

2j
= q̂(m, i).

4Such as a supercritical Galton-Watson tree.
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In other words, the ghost does not affect the visible splitting rates. Hence, if we
delete and prune leaf n + 1 from CTCS(n + 1), we obtain CTCS(n), which proves
Theorem 2.3. □

Proof of Theorem 2.4. We continue to consider CTCS(n+1) with leaf n+1 replaced
by an invisible ghost. In the argument above, we see from the calculation in (2.4)
that if a clade containing the ghost and m visible leaves splits into new clades of
visible sizes j and m − j, then the ghost will be in the left clade, of size j, with
probability

1/(2(m− j))

q̂(m, j)
=

j

m
.(2.5)

In other words, the ghost moves as if it accompanies a uniformly chosen visible
leaf in the clade. Note also that when the ghost belongs to a clade with m visible
elements, it splits off on its own at the rate

2

m+ 1
q̂(m+ 1, 1) =

1

m
.(2.6)

(This follows also because the splitting rate in CTCS(n + 1) is hm, of which the
visible splits have rate hm−1; hence the rate of an invisible split is hm−hm−1.) This
means that given CTCS(n), the life of the ghost can (up to identity in distribution)
be described by: Choose a leaf in CTCS(n) uniformly at random, and follow the
branch towards it. With rate 1/(current size of the clade (excluding the ghost)),
branch off alone; if the ghost reaches the chosen leaf, continue together with it and
branch off from it with the same rate (now 1).

We may thus construct CTCS(n + 1) from CTCS(n) by the procedure just de-
scribed, but giving life to the ghost as leaf n + 1. This gives precisely the growth
algorithm in Theorem 2.4 (or Remark 2.5). □

Remark 2.9 (Alternative proofs). As said above, Theorem 2.3 follows also from
general results in [23], but we do not know any analog of Theorem 2.4 in the gener-
ality studied there. Before finding the rather “conceptual” proofs above, we found
a more pedestrian argument based on explicitly describing the joint distribution
of (CTCS(n + 1),CTCS(n)). That argument is given in Appendix A. There is
also a direct (not using the consistency theorem) proof of the branchpoint result
(Corollary 2.6) via stochastic calculus – see Appendix B. Another discussion of
exchangeability and consistency of random tree models can be found in [24] but we
do not see any direct application to our model.

3. Leaf height and the harmonic descent chain

3.1. Leaf height. Before continuing to study a formalization of the limit process
CTCS(∞) and its quantitative properties (Section 4.1), let us describe some relevant
quantitative work on another aspect of the model, which is leaf height. We let Dn

be the height of a uniform random leaf ℓ in CTCS(n), and let Ln be the height of
a uniform random leaf ℓ in DTCS(n). Equivalently, recalling the relation between
DTCS(n) and CTCS(n), Dn is the total length of the path from the root to ℓ in
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CTCS(n), while Ln is the hop-height, i.e., the number of edges on the path, in either
of DTCS(n) or CTCS(n).

Recall that in the unordered versions (which we normally use), Dn and Ln can
just as well be defined by taking the path to a fixed leaf ℓ ∈ [n], for example ℓ = 1.

The limit behavior of both Dn and Ln is studied in great detail in [9], though
here we consider only Dn. It is easy to see that tn := E [Dn] satisfies the recurrence

(3.1) tn = 1
hn−1

(
1 +

n−1∑
i=1

ti
n−i

)
; n ≥ 2

with t1 = 0. One can see the first order result E [Dn] ∼ 6
π2 log n heuristically by

plugging c log n into the recursion and taking the natural first-order approximation
to the right side; the constant c emerges as the inverse of the constant

(3.2)

∫ 1

0

log(1/x)
1−x dx = ζ(2) = π2

6

and this heuristic goes back to [5]. It has recently been proved [9, Theorems 1.1 and
1.7]

E[Dn] =
1
ζ(2) log n+O(1),(3.3)

var(Dn) = (1 + o(1))2ζ(3)
ζ3(2)

log n(3.4)

and the corresponding CLT holds for Dn. These and related results (and analogs for
Ln) are proved in [9] by detailed analysis of recursions analogous to (3.1); further
results will be given in [7]. After the preprint version of [9] was posted, alternative
proofs of the CLT have been announced: see [27, 30]. Related weaker results about
tree height, that is maximum leaf height, are given in [6, 9].

3.2. The harmonic descent chain. We can characterize Dn in an alternate way,
as follows. In the discrete construction, the sequence of clade sizes along the path
from the root to ℓ is the discrete-time Markov chain, starting in state n, whose
transition (m → i) probabilities q∗(m, i) are obtained by size-biasing the q(m, ·)
distribution; so

(3.5) q∗(m, i) := 2i
mq(m, i) =

1
hm−1

· 1
m−i , 1 ≤ i ≤ m− 1, m ≥ 2

from (2.1). Because the continuous-time CTCS process exits m at rate hm−1, the
continuous-time process of clade sizes as one moves at speed 1 along the path is the
continuous-time Markov process on states {1, 2, 3, . . .} with transition rates

(3.6) λm,i :=
1

m−i , 1 ≤ i ≤ m− 1, m ≥ 2

with state 1 absorbing. So Dn is the absorption time for this chain, started at state
n. Let us call this the (continuous-time) harmonic descent (HD) chain.5

The HD chain is relevant to the current article in two ways. First, there is a simple
probabilistic heuristic for the behavior of the harmonic descent chain, leading to the

5Descent is a reminder that the chain is decreasing. Despite its simple form, the HD chain has
apparently never been studied before.
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approximation (3.7) below. Write X = (Xt, t ≥ 0) for the HD chain with rates

(3.6), or X(n) = (X
(n)
t , t ≥ 0) for this chain starting with X

(n)
0 = n. The key idea

is to study the process logX = (logXt, t ≥ 0). By considering its transitions, one
quickly sees that, for large n, there should be a good approximation

(3.7) logX
(n)
t ≈ log n− Yt while Yt < log n

where (Yt, 0 ≤ t <∞) is the subordinator with Lévy measure ψ∞ and corresponding
σ-finite density f∞ on (0,∞) defined as

(3.8) ψ∞[a,∞) := − log(1− e−a); f∞(a) := e−a

1−e−a , 0 < a <∞.

Recall that a subordinator [13] is the continuous-time analog of the discrete-time
process of partial sums of i.i.d. positive summands: informally

P(Yt+dt − Yt ∈ da) = f∞(a) da dt.(3.9)

Such a subordinator satisfies the law of large numbers

(3.10) t−1Yt → ρ a.s. as t→ ∞

where the limit is the mean

(3.11) ρ =

∫ ∞

0
ψ∞[a,∞) da =

∫ ∞

0
− log(1− e−a) da = π2/6.

So the approximation (3.7) provides a heuristic explanation of why Dn
logn → 6/π2,

and by the CLT for subordinators one can derive a heuristic for the explicit form
(3.4) of the variance. This method can, with some effort, be made into a proof of
the CLT – see [6]. But instead of asymptotics of CTCS(n), we shall show in Section
4 that the subordinator arises exactly within the limit structure CTCS(∞).

3.3. The occupation measure. Here is the second way in which the HD chain is
relevant to this article. The chain describes the number of descendant leaves of a
node, as one moves at speed 1 along the path from the root to a uniform random
leaf. We study the “occupation measure”, that is

(3.12) a(n, i) := probability that the chain started at state n is ever in state i.

So a(n, n) = a(n, 1) = 1. To see the relevance of a(n, i) to the tree model, we let
Nn(j) be the number of subtrees of CTCS(n) that have j leaves; thus, for j ≥ 2,
Nn(j) is the number of internal nodes of CTCS(n) that have exactly j leaves as
descendants. Then, conditioned on CTCS(n), the number of leaves that are in some
subtree with i leaves is iNn(i), and thus the (conditional) probability that a random
leaf is in such a subtree is iNn(i)/n. Taking the expectation we find

a(n, i) =
iE [Nn(i)]

n
(3.13)

and, conversely,

(3.14) E [Nn(i)] = na(n, i)/i.
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It seems very intuitive (but not obvious at a rigorous level) that the limits a(i) =
limn→∞ a(n, i) exist. Note that

∑n
i=2 a(n, i)/hi−1 is just the mean absorption time

E [Dn], so (from (3.3)) we anticipate that, assuming the limits exist,
n∑
i=2

a(i)
log i ∼ E [Dn] ∼ (6/π2) log n as n→ ∞.(3.15)

This in turn suggests

a(i) ∼ 6
π2

log i
i as i→ ∞.(3.16)

However, there seems no intuitive reason to think there should be some simple
formula for the limits a(i). So the following result was surprising to us.

Theorem 3.1 (Occupation measure). For each i = 2, 3, . . .,

a(i) := lim
n→∞

a(n, i) =
6hi−1

π2(i− 1)
.(3.17)

And a(1) = 1.

This is the starting point for our analysis of the fringe distribution in Section 5.
We currently know 3 quite different proofs of Theorem 3.1.

1. One method [8] (straightforward in outline, though somewhat tedious in detail)6

is to first prove by coupling that the limits a(i) exist. The limits must satisfy

a certain infinite set of equations; the one solution 6hi−1

π2(i−1)
was found by inspired

guesswork. Then check that the solution is unique.

2. Iksanov [26] repeats his method for proving the CLT [27] by exploiting the exact
relationship with regenerative composition structures, enabling a shorter derivation
of Theorem 3.1 from known results in that theory. This methodology is clearly
worth further consideration.

3. In Section 6 we give a third proof, illustrating how to exploit the exchangeable
representation of CTCS(∞).

4. The exchangeable partitions representation

In Remark 2.8 we discussed briefly a limiting object CTCS(∞), which formally is
a real tree. In this section we will define and study another, related, limiting object,
which formally is a nested family (Π(t))t≥0 of partitions of N. This uses an existing
formalism via Kingman’s theory of exchangeable partitions; a standard reference is
[13, Section 2.3] – see also [12] and [36, Chapter 2]. The key feature of this approach
is Kingman’s paintbox theorem, which is stated in our setting in Theorem 4.2 below.

The relation between trees and nested families of partitions has been used at least
since [21]. For completeness, we develop it below in detail for our case; we refer also
to [23] where this relation is studied in a more general situation. (See also Section
7.2 for further discussion.) The idea is simple: Given a finite tree with edge-lengths
and leaves labelled 1, . . . , n we define a partition Π(t) of [n] for each t ≥ 0 by cutting

6A simplification of that proof has been found by Luca Pratelli and Pietro Rigo (personal
communication).
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the tree at time (=height) t; conversely, it is easy to see that, provided there are no
vertices with outdegree 1, the tree is determined by this family of partitions. This
extends to infinite trees, and for exchangeable infinite trees, such as CTCS(∞), we
obtain a family of exchangeable partitions and can employ Kingman’s theory.

4.1. Exchangeable partitions. Fix a level (time) t ≥ 0. For each n, the clades

of CTCS(n) at time t define a partition Π[n](t) of [n] := {1, . . . , n}. If we represent
the tree CTCS(n) as in Remark 2.1, with lines extending to infinity from each node,

then Π[n](t) is the partition obtained by cutting the tree CTCS(n) at level t; that
is, i and j are in the same part if and only if the branchpoint separating the paths
to leaves i and j has height > t.

We use the consistent growth process to define CTCS(n) for all n ≥ 1, and then

these partitions Π[n](t) are consistent and define a partition Π(t) of N := {1, 2, . . . }
into clades at time t. Explicitly, i and j (with i, j ∈ N) are in the same part if and
only if the branchpoint separating the paths to leaves i and j has height > t, in
CTCS(n) for any n ≥ max(i, j). In other words, Π(t) is the partition of N into the
clades defined by the infinite tree CTCS(∞). Obviously, Π(0) is the trivial partition
into a single class.

Because each CTCS(n) is exchangeable, Π(t) is an exchangeable random partition
of N, so we can exploit the theory of exchangeable partitions. Denote the clades
at time t, that is the parts of Π(t), by Π(t)1,Π(t)2, . . . , enumerated in order of the
least elements. In particular, the clade of leaf 1 is Π(t)1. The clades Π(t)ℓ are thus
subsets of N, and the clades of CTCS(n) are the sets Π(t)ℓ∩ [n] that are non-empty.

Writing | · | for cardinality, it is easy to show the following (proofs of the results
stated here are given in Section 4.6).

Lemma 4.1. Let t > 0. Then, a.s., all clades Π(t)ℓ are infinite, that is |Π(t)ℓ| = ∞
for every ℓ ≥ 1.

Write, for ℓ, n ≥ 1,

K
(n)
t,ℓ :=

∣∣Π(t)ℓ ∩ [n]
∣∣;(4.1)

the sequence K
(n)
t,1 ,K

(n)
t,2 , . . . is thus the sequence of sizes of the clades in CTCS(n),

extended by 0’s to an infinite sequence. Lemma 4.1 shows that for every t > 0,

K
(n)
t,ℓ → ∞ as n→ ∞ for every ℓ. By Kingman’s fundamental result [13, Theorem

2.1], the asymptotic proportionate clade sizes, that is the limits

Pt,ℓ := lim
n→∞

K
(n)
t,ℓ

n
,(4.2)

exist a.s. for every ℓ ≥ 1, and the random partition Π(t) may be reconstructed (in
distribution) from the limits (Pt,ℓ)ℓ by Kingman’s paintbox construction, which we
state as the following theorem. Obviously P0,ℓ = δ1ℓ.

Theorem 4.2. Let t ≥ 0.

(i) If t > 0, then a.s. each Pt,ℓ ∈ (0, 1), and
∑

ℓ Pt,ℓ = 1.
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(ii) Given a realization of (Pt,ℓ)ℓ, give each integer i ∈ N a random color ℓ, with
probability distribution (Pt,ℓ)ℓ, independently for different i. These colors de-
fine a random partition of N, which has the same distribution as Π(t).

Note that the paintbox construction in Theorem 4.2 starts with the limits Pt,ℓ,

but gives as the result (in distribution) Π(t) and thus also the partition Π[n](t) =
Π(t) ∩ [n] for every finite n.

Regarding CTCS(∞) as a real tree, the process (Pt,1, t ≥ 0) is the relative size of
the subclade at time t, as one moves at speed 1 down the path to a uniform random
leaf on the infinite boundary.

4.2. The homogeneous fragmentation process. We have in Section 4.1 studied
a fixed t; now consider the family of nested partitions (Π(t))t≥0. It is easy to see that
this is a homogeneous fragmentation process as defined in [13, Definition 3.2]. To

verify this, it suffices by [13, Lemma 3.4] to show that (Π[n](t))t≥0 is a homogeneous
fragmentation process for each n ≥ 1, which follows directly from the definition of
CTCS(n).

For n ≥ 1, the family of nested partitions (Π[n](t))t≥0 determines when a clade
splits in CTCS(n), and how the clade splits, except for which subclade is left and

which is right. Hence, the process (Π[n](t))t≥0 determines CTCS(n) up to the order

of the children at each vertex; conversely, CTCS(n) determines the partitions Π[n](t)
by definition. Consequently, if we ignore the ordering of children in CTCS(n) (which
in any case is uniformly random), the process (Π(t))t≥0 determines the entire growth
process (CTCS(n))n≥1 and conversely.

The conclusion is that we may regard the homogeneous fragmentation process
(Π(t))t≥0 of partitions of N as another representation of the limit object CTCS(∞).
We continue to develop some properties of (Π(t))t≥0; some of them will later be
used to study CTCS(n) and DTCS(n).

Remark 4.3. In this paper we start with the concrete definition of DTCS(n) and
CTCS(n) in Section 2, and then find explicitly in the present section the correspond-
ing homogeneous fragmentation process (Π(t)). An alternative approach, suggested
to us by Bénédicte Haas and using [23], is to start with a general homogeneous frag-
mentation process (Π(t))t≥0, which can be defined as in [13] by an erosion coefficient
c and a dislocation measure ν (see Section 4.5); then the restrictions of the parti-
tions Π(t) to [n] correspond to a random tree Tn in continuous time and it is easy to
see that the family (Tn)n of random trees is consistent.7 Moreover, if we choose the
erosion coefficient 0 and the dislocation measure defined by (4.12) in Section 4.5 be-
low, then [23, Theorem 1, (2)] shows (cf. the calculation in (4.13)) that this family of
random trees has the correct splitting probabilities q(m, i); furthermore, (4.8) below
then shows that the splitting rate is hm−1. Consequently, this constructs DTCS(n)
and CTCS(n) starting from the correct homogeneous fragmentation process.

See also Remark 4.6.

7One of the results in [23] is the converse: every consistent family of random trees obtained by
some splitting rule can be obtained in this way.
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4.3. Self-similarity. As in Section 4.1, consider the version of the tree CTCS(n)
with all branches extended up to ∞ (see Remark 2.1) and cut it at a fixed height
t, but now consider also the continuation to higher levels; that is, we consider the

tree CTCS(n) restricted to times u ≥ t, which defines a forest F
(n)
t . The trees in

the forest F
(n)
t then correspond to the clades at height t in CTCS(n).

The roots are all at height t, but we may make an obvious time translation so
that all roots have height 0.

As n grows, we have the following self-similar behaviour as a consequence of the
growth algorithm; this can be seen as a consequence of the fact that the fragmen-
tation process (Π(t))t≥0 is homogeneous (see Section 4.2 and [13, p. 119]), but we
give also an elementary direct proof in Section 4.6.

Theorem 4.4. Let t ≥ 0 be fixed and let n grow from 1 to ∞. At each increase

of n, either one of the trees in F
(n)
t gets a new leaf, or a new tree consisting only

of a root is added to F
(n)
t ; in either case all other trees in F

(n)
t remain unchanged.

Moreover, each tree in F
(n)
t , considered only when it is born or increases in size,

grows as a copy of the process CTCS(n), and different trees grow as independent
copies.

4.4. The subordinator within CTCS(∞). Let us consider the clade containing a
given (or random) node and see how it develops as time increases; by exchangeability,
we may consider the clade containing 1.

For given n the process (K
(n)
t,1 , t ≥ 0) at (4.1) of the clade size is the harmonic

descent (Section 3.2) chain (X
[n]
t , t ≥ 0) started at state n. We have described

informally the approximation (3.7) of this (K
(n)
t,1 , t ≥ 0) by the subordinator (Yt, 0 ≤

t < ∞) with Lévy measure ψ∞ and corresponding σ-finite density f∞ on (0,∞)
defined in (3.8), which we for convenience repeat:

(4.3) ψ∞[a,∞) := − log(1− e−a); f∞(a) := e−a

1−e−a , 0 < a <∞.

The next theorem says that this becomes exact in the n → ∞ limit given by (4.2).
We note that by [13, Theorem 3.2], a.s. the limit Pt,1 in (4.2) exists for all t ≥ 0
simultaneously.

Theorem 4.5. Define Yt := − logPt,1. Then (Yt, 0 ≤ t < ∞) is the subordinator
given by (4.3). Moreover, for t ≥ 0 and complex s with ℜs > −1,

E [P st,1] = E [e−sYt ] = e−t(ψ(s+1)−ψ(1))(4.4)

where ψ(z) := Γ′(z)/Γ(z) is the digamma function.

We prove Theorem 4.5 in Section 4.6 by calculating moments.
As noted after Theorem 4.2, for finite n the partition of CTCS(n) into clades at

a fixed level t can be also described by the limits Pt,ℓ. Similarly, considering only
ℓ = 1 but all t ≥ 0 simultaneously, the harmonic descent chain describing the size
of the first clade can be reconstructed (in distribution) for any finite n from the
process Pt,1, or equivalently from the subordinator Yt, as shown by Iksanov [26, 27].
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4.5. Jump rates and dislocation measure. The general theory of homogeneous
fragmentation processes in [13, Sections 3.1–3.2] includes several further objects
associated with such processes that can be used to study and characterize them. In
this subsection we calculate the objects below for the process (Π(t))t≥0. The results
of this subsection will not be used in the present paper, but the results are included
both for possible future use and to illustrate more aspects of the general theory that
apply to our setting.

For n ∈ N ∪ {∞}, let Pn denote the set of partitions of [n], where [∞] := N.
The trivial partition into a single class is denoted 1[n]. Let P ′

n := Pn \ {1[n]}. We
denote the parts of the partition π by π1, π2, . . . , in order of their least elements;
the number of parts is |π| ≥ 1. Thus P ′

n := {π ∈ Pn : |π| ≥ 2}.

4.5.1. The jump rates qπ [13, p. 121] are defined for (finite) partitions π ∈
⋃

1≤n<∞ P ′
n

as the jump rates from 1[n] in the (Markov) process Π[n](t). They are thus equal
to the rate that the initial clade [n] splits in CTCS(n) according to the partition π.
Hence,

qπ = 0 if |π| ≥ 3,(4.5)

while if |π| = 2, then by (2.3), noting that we now specify the parts as subsets of
[n] (and not just their sizes as in (2.3)), and, on the other hand, that we ignore the
left/right distinction which gives a factor 2,

qπ =
2(
n

|π1|
) q̂(n, |π1|) = 2

|π1|! |π2|!
n!

n

2|π1||π2|
=

(|π1| − 1)! (|π2| − 1)!

(n− 1)!
.(4.6)

4.5.2. The splitting rate [13, p. 122] is a (possibly infinite) measure µ on P∞ with
µ{1[∞]} = 0 characterized by

µ
{
π′ ∈ P∞ : π′|[n] = π

}
= qπ(4.7)

for every finite n and every π ∈ P ′
n. It follows from (4.5) that µ is supported on the

set {π ∈ P∞ : |π| = 2}. We note that (4.5)–(4.7) yield

µ
{
π′ ∈ P∞ : π′|[n] ̸= 1[n]

}
=

∑
π∈P ′

n

qπ =

n−1∑
i=1

q̂(n, i) = hn−1.(4.8)

It follows that the total mass µ(P ′
∞) = ∞.

4.5.3. In general, the splitting rate can be decomposed as a sum of two measures
which are determined by the erosion coefficient c and the dislocation measure ν,
respectively [13, Theorem 3.1 and p. 128]. The erosion coefficient equals the mass

µ(ϵ(1)) of the partition ϵ(1) ∈ P∞ with two blocks: {1} and N \ {1}. For every

n ≥ 1, we have by (4.7) and (4.6), with ϵ
(1)
n := ϵ(1)|[n], the partition of [n] into {1}

and {2, . . . , n},

c = µ(ϵ(1)) ≤ µ
{
π′ ∈ P∞ : π′|[n] = ϵ(1)n

}
= q

ϵ
(1)
n

=
1

n− 1
.(4.9)

Thus, the erosion coefficient c = 0.
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4.5.4. The dislocation measure ν is a (possibly infinite) measure on the space Pm of
mass partitions, where a mass partition s is an infinite sequence s1 ≥ s2 ≥ · · · ≥ 0
such that

∑∞
i=1 si ≤ 1 [13, Definition 2.1]. The space Pm is a compact metric space,

see [13]. Each mass partition s defines a random partition of N by the paintbox
construction in Theorem 4.2(ii) (with obvious change of notation, and allowing for
missing mass if

∑
i si < 1, see [13, Lemma 2.7]); the distribution of this random

partition is denoted ρs. The dislocation measure ν is characterized by, assuming
for simplicity that c = 0 as in our case, see [13, pp. 126–128],

µ =

∫
Pm

ρs dν(s).(4.10)

Also, or as a consequence of (4.10) and µ(1[∞]) = 0, ν has no mass at the point
(1, 0, 0, . . . ) ∈ Pm. (Note that in Theorem 4.2, we used the paintbox construction
for a fixed t; here we use it for the splitting rate µ, which can be seen as a version
for infinitesimally small t.)

It is easy to see that if s has at least 3 non-zero terms, or if
∑

i si < 1, then ρs

gives a positive probability to the set of partitions with more than two parts; since
µ gives mass 0 to such partitions, ν is concentrated on the set of mass partitions
sx := (x, 1 − x, 0, . . . ) for x ∈ [12 , 1). (We need x ≥ 1

2 since s1 ≥ s2 is assumed.)
Given a partition π ∈ Pn with two parts of sizes i and n − i (with 1 ≤ i ≤ n − 1),
the paintbox construction using sx yields a probability, using ρsx to denote also the
induced probability distribution on Pn,

ρsx(π) = xi(1− x)n−i + xn−i(1− x)i.(4.11)

We claim that ν is the (infinite) measure on Pm obtained as the push-forward by
the map x 7→ sx of the measure

dν̃ :=
dx

x(1− x)
on [12 , 1).(4.12)

To verify this, it suffices to calculate for a partition π ∈ Pn as above, using (4.11),
(4.12), and (4.6),∫ 1

1/2
ρsx(π) dν̃(x) =

∫ 1

1/2

(
xi(1− x)n−i + xn−i(1− x)i

) dx

x(1− x)
(4.13)

=

∫ 1

0
xi(1− x)n−i

dx

x(1− x)
=

Γ(i) Γ(n− i)

Γ(n)
= qπ,

which by (4.7) verifies (4.10).

Remark 4.6. The dislocation measure8 ν̃ in (4.12) appears alternatively in the def-
inition of DTCS(n) in [5]. In fact, [5, Section 4] considers first a general construction
of random binary splits. To split a clade with n leaves, the leaves are represented
by i.i.d. uniformly distributed random points in (0, 1), and then the unit interval is
split at a random point X with a given density f(x) in (0, 1); we condition on this
giving a proper split. The beta-splitting model is defined in [5] for −1 < β < ∞

8In the symmetric version with x ∈ (0, 1).
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using this construction with the beta density f(x) = cβx
β(1−x)β; for −2 < β ≤ −1.

Here f(x) is not a probability density, but the calculation of splitting probabilities
still makes sense, and defines the model. For β = −1, this calculation is just (4.13).

As mentioned before, the framework of exchangeable partitions have been used
by Haas et al [23, 22] in somewhat similar contexts – see Section 7.2 for further
discussion.

4.6. Proofs.

Proof of Lemma 4.1. It is easily seen from the growth algorithm that a.s., as n grows
to ∞:

(1) Infinitely many buds of height < t are added, and thus Π(t)ℓ ̸= ∅ for every
ℓ ≥ 1, and

(2) Once a clade Π[n](t)ℓ is non-empty, new leaves will be added to it an infinite
number of times.

The result follows. □

Proof of Theorem 4.2. First, obviously Pt,ℓ ∈ [0, 1], and
∑

ℓ Pt,ℓ ≤ 1 by Fatou’s
lemma. Part (ii) is Kingman’s paintbox construction [13, Theorem 12.1], stated
for the special case when

∑
ℓ Pt,ℓ = 1. This holds a.s. since otherwise the general

version of the paintbox construction would imply that |Π(t)ℓ| = 1 for some ℓ [13,
Proposition 2.8(iii)], which is ruled out by Lemma 4.1. □

Proof of Theorem 4.4. Consider the effect on the forest F
(n)
t of adding a new leaf

by the growth algorithm. We have the following cases:

(i) If the algorithm stops at height u < t, then CTCS(n) gets a new leaf (bud)

there, which means that F
(n)
t gets a new tree consisting of a root only.

(ii) If the target leaf has height ≥ t and the algorithm does not stop before reaching
height t, then the algorithm will continue in the tree containing the target ex-

actly as it would if acting on this tree separately. All other trees in F
(n)
t remain

unchanged. Note also that the probability of reaching height t is the same for

all target leaves in a given tree in F
(n)
t ; hence the conditional distribution of

the target leaf, given the tree in F
(n)
t that it belongs to, is uniform.

(iii) If the target leaf has height < t and the algorithm does not stop until reaching
the target, then the target leaf is extended into a branch of Exp(1) length L
ending with a bud-pair.

If u+L < t, then the two buds in the pair define separate singleton trees in

F
(n+1)
t , and thus the net effect is to add a new tree consisting of a root only

to F
(n)
t .

On the other hand, if u + L ≥ t, then the tree in F
(n)
t consisting of the

target leaf (only) becomes a tree with two leaves at the end of a branch of
length L+ u− t. Since the exponential distribution has no memory, also this
branch length has Exp(1) (conditional) distribution, and thus this tree has the
distribution of CTCS(2).

All cases conform to the description in the statement. □
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Proof of Theorem 4.5. This is, apart from the explicit formula (4.4), an instance
of [13, Theorem 3.2]. Nevertheless, we find it instructive to give an explicit proof,
partly using the same arguments as [13]. We prove the theorem in 3 steps.

Step 1. Yt is a subordinator. Recall thatK
(n)
t,1 is the size of the first clade of CTCS(n)

at time t. Consider two fixed times t and t + h, where h > 0. Then Theorem 4.4
and (4.2) imply that a.s., as n→ ∞,

K
(n)
t+h,1

K
(n)
t,1

→ P ′
h,1,(4.14)

where P ′
h,1 is a copy of Ph,1 that is independent of Pt,1. Consequently, a.s.

K
(n)
t+h,1

n
=
K

(n)
t+h,1

K
(n)
t,1

·
K

(n)
t,1

n
→ P ′

h,1Pt,1(4.15)

and thus

Pt+h,1 = Pt,1P
′
h,1.(4.16)

Hence, Yt := − logPt,1 is an increasing stochastic process with stationary indepen-
dent increments, i.e., a subordinator. Note that Yt < ∞ a.s. since Pt,1 > 0 by
Theorem 4.2.

Step 2. The Lévy measure is given by (4.3). In order to verify this, we calculate
moments. Let k ≥ 0. By the paintbox construction in Theorem 4.2,

P
(
Π(t)1 ∩ [k + 1] = [k + 1] | (Pt,ℓ)∞ℓ=1

)
=

∞∑
ℓ=1

P k+1
t,ℓ .(4.17)

Furthermore, also as a consequence of the paintbox construction, Pt,1 has the same
distribution as a size-biased sample of (Pt,ℓ)

∞
ℓ=1 [13, Proposition 2.8], and thus [13,

Corollary 2.4]

E [P kt,1] = E
[ ∞∑
ℓ=1

P k+1
t,ℓ

]
.(4.18)

Consequently, (4.18) and (4.17) together with the definition of Π(t)1 in Section 4.1
yield

E [P kt,1] = P
(
Π(t)1 ∩ [k + 1] = [k + 1]

)
(4.19)

= P
(
2, 3, . . . , k + 1 ∈ Π(t)1

)
= P

(
CTCS(k + 1) has no branchpoint with height ≤ t

)
.

The latter event occurs if and only if for each j ≤ k, in the inductive construction
by the growth algorithm of CTCS(j + 1) from CTCS(j), there is no stop at height
≤ t. Since the subclade at the current position then has size j for all times ≤ t,



THE CRITICAL BETA-SPLITTING RANDOM TREE III 23

the probability of this happening at step j, given that it has happened so far, is
exp(−t/j). Consequently,

E [P kt,1] =
k∏
j=1

e−t/j = exp
(
−t

k∑
j=1

1

j

)
= e−hkt.(4.20)

On the other hand, let Yt be the subordinator with Lévy measure given by (4.3).
Then, by definition, for any real s ≥ 0,

E [e−sYt ] = exp
(
−t

∫ ∞

0
(1− e−sx)f∞(x) dx

)
= exp

(
−t

∫ ∞

0

1− e−sx

1− e−x
e−x dx

)
.

(4.21)

In particular, if s = k is an integer,

E [
(
e−Yt

)k
] = E [e−kYt ] = exp

(
−t

∫ ∞

0

e−x − e−(k+1)x

1− e−x
dx

)
= exp

(
−t

∫ ∞

0

k∑
j=1

e−jx dx
)(4.22)

= exp
(
−t

k∑
j=1

1

j

)
= e−hkt.

Consequently, for any t ≥ 0, (4.20) and (4.22) show that E [P kt,1] = E [
(
e−Yt

)k
] for all

k ≥ 1, and thus, by the method of moments 9 Pt,1
d
= e−Yt . Thus Yt = − logPt,1

d
= Yt.

This calculation is for a fixed t ≥ 0, but we know that the process (Yt) is a
subordinator, and thus the distribution of the entire process is determined by, say,
the distribution of Y1.

Step 3. The moment formula. For any complex s with ℜs > −1, we have [35, 5.9.16]
(as is easily verified by standard arguments)∫ ∞

0

1− e−sx

1− e−x
e−x dx =

∫ ∞

0

e−x − e−(s+1)x

1− e−x
dx = ψ(s+ 1)− ψ(1),(4.23)

generalizing the formula for integer s in (4.22). Hence, (4.21) yields, for t ≥ 0 and
ℜs > −1,

E [P st,1] = E [e−sYt ] = E [e−sYt ] = e−t(ψ(s+1)−ψ(1)),(4.24)

which shows (4.4) and completes the proof of the theorem. □

Remark 4.7. [13, Theorem 3.2] gives a general formula relating the moment and
Laplace transform in (4.4) to the dislocation measure in (4.12). This can be used to
show (4.4), although we preferred above a calculation using the growth algorithm;
conversely, using [13, footnote on p. 135], this formula can be used to show (4.12)
from (4.4).

9The random variables on both sides are bounded, with values in [0, 1].
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5. The occupation measure and the fringe process

5.1. The (limit) fringe tree. To be consistent with the cladogram representation
described below, we work here in the discrete time DTCS(n) setting: the definition
(3.12) of a(n, i) is of course unchanged in discrete time.

The motivation for Theorem 3.1 involves the (asymptotic) fringe tree for the
random tree model DTCS(n), that is the n→ ∞ local weak limit of the tree relative
to a typical leaf. See [2, 25, 29] for general accounts of fringe trees, which for us10

are random locally finite trees with a distinguished leaf. It will be straightforward
to verify that the fringe tree can be described in terms of the limits (a(i), i ≥ 1) as
follows.

Theorem 5.1. (a) The sequence of clade sizes as one moves away from the distin-
guished leaf is the discrete time “reverse HD” Markov chain started at state 1,
whose “upward” transition probabilities q↑(i, j) are given by

q↑(i, j) =
a(j)

a(i)
q∗(j, i),(5.1)

which, from the explicit formula (3.17) for a(i), becomes

q↑(1, j) = 6π−2 1
(j−1)(j−1) , j ≥ 2(5.2)

q↑(i, j) = i−1
(j−1)(j−i)hi−1

, 2 ≤ i < j.(5.3)

(b) At each such upward step i→ j, there is the sibling clade of size j− i, and this
clade is distributed as DTCS(j − i), independently for each step. This sibling
clade is randomly on the left or right side.

One can check that (5.3) is a probability distribution by observing∑
j>i

1
(j−1)(j−i) =

∑
j>i

1
i−1(

1
j−i −

1
j−1) =

hi−1

i−1 .(5.4)

Proof. (a): This is a simple exercise in reversing a Markov chain. Let 1 = k1 < k2 <
· · · < kℓ be a finite sequence of integers. If n ≥ kℓ, then the probability that the HD
chain started at n ends with kℓ, kℓ−1, . . . , k1 = 1 is, by the definition of a(n, i) and
recalling the transition probabilities q∗(m, i) of the HD chain in (3.5),

a(n, kℓ)

ℓ−1∏
i=1

q∗(kℓ+1−i, kℓ−i) =

ℓ−1∏
j=1

a(n, kj+1)

a(n, kj)
q∗(kj+1, kj).(5.5)

So the reverse chain is a Markov chain with transition probabilities

q↑n(i, j) =
a(n, j)

a(n, i)
q∗(j, i), i < j ≤ n.(5.6)

Taking the limit as n→ ∞, we obtain by (3.17) and (3.5) the transition probabilities
(5.1)–(5.3).

(b): Obvious. □

10The general accounts take limits relative to a random node, but for our leaf-labelled trees it
is more natural to use leaves. In the terminology of [2, 25] these are extended fringe trees.
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Remark 5.2. Using (3.5), we can also write (5.6) as

i−1a(n, i)q↑(i, j) = 2j−1a(n, j)q(j, i) = j−1a(n, j)(q(j, i) + q(j, j − i))(5.7)

where the two sides both are

n−1 E [number of splits j → (i, j − i) or (j − i, i) in DTCS(n)],(5.8)

calculated in the two different directions.

5.2. Fringe trees and cladograms. As mentioned before, the model arose as a
toy model for phylogenetic trees, designed to mimic the uneven splits observed in
real world examples. The small-scale study [10] suggests that in splitsm→ (i,m−i)
in real-world phylogenetic trees, the median size of the smaller subtree scales roughly
as m1/2. That data is not consistent with more classical random tree models, where
the median size would be O(logm) or Θ(m), but this m1/2 median property does
hold for our particular model. Figure 6 compares a simulation of DTCS(77) with a
real cladogram on 77 species; these appear visually quite similar. As shown in that
figure, a cladogram is typically drawn upwards from the leaves, and we draw the
fringe tree in the same way. That is, one should visualize a fringe tree11 as in Figure
6 (top), but with leaves labelled as . . . ,−2,−1,−0, 1, 2, . . ..

5.3. Properties of the fringe tree. For large n, a realization of DTCS(n) will
contain many copies of small clades in its fringe. In the asymptotic fringe tree, the
probability that a given leaf is in some clade χ of size i is just a(i). Because a
clade of size i has the DTCS(i) distribution, we can then calculate (numerically via
recursion) the probability p(χ) that a leaf is in a specific clade χ of size i. Some
numerical results are shown in Figure 7. In that figure we have grouped clades with
the same shape, meaning that (as in the biology use) we do not distinguish left and
right branches. Figure 7 compares these model predictions with the data from a
small set of real cladograms12 – 10 cladograms with a total of 995 species. Further
data will be given in [6], and it is clear that the current model gives a better fit
than other models such as those in [29, Appendix A] and [28]. Note that the models
treated in [29] are precisely the cases β = ∞, 0,−3/2 of the beta-splitting tree [5].

But also one can use the fringe tree to study asymptotics of statistics of DTCS(n)
or CTCS(n), for statistics which depend only on the structure of the tree near the
leaves. In particular, the number Nn(χ) of copies of a size-i clade χ in DTCS(n)
will satisfy n−1 E [Nn(χ)] → p(χ)/i. By analogy with CLT results for other random
tree models [25, section 14], and because occurrences of a given χ are only locally
dependent, we expect a CLT for Nn(χ), but have not attempted a proof.

11There is no biological significance to the positioning of left/right branches, though a common
convention is to position the larger subclade to the right. In our model, branches are randomly
positioned left/right, but in drawing Figure 6 (top) we followed the biological convention for visual
comparison.

12Dragonflies [33], eagles [32], elms [40], gamebirds [14], ladybirds [34], parrots[41], primates
[20], sharks [39], snakes [16], swallows [37]
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Figure 6. Bottom: cladogram showing phylogenetics of 77 parrot
species, from [41]. Top: simulation of DTCS(77), drawn as fringe
distribution in the style of biological cladograms.



THE CRITICAL BETA-SPLITTING RANDOM TREE III 27

s s
6
π2

.
= 0.6079
[0.573]

s s s
9

2π2

.
= 0.4559
[0.491]

s s s s
8

3π2

.
= 0.2702
[0.285]

s s s s
1
π2

.
= 0.1013

[0.120]

s s s s s
15

11π2

.
= 0.1382
[0.125]

s s s s s
45

88π2

.
= 0.0518
[0.055]

s s s s s
5

4π2

.
= 0.1267
[0.145]

s s s s s s
864

1375π2

.
= 0.0637

[0.030]

s s s s s s
324

1375π2

.
= 0.0239

[0.024]

s s s s s s
72

125π2

.
= 0.0584
[0.042]

s s s s s s
36

55π2

.
= 0.0663
[0.054]

s s s s s s
27

110π2

.
= 0.0249
[0.030]

s s s s s s
2

5π2

.
= 0.0405
[0.024]

Figure 7. Proportions of leaves in clades of a given shape, for each
shape with 2 − 6 leaves in the fringe tree. The top number is from
our model, the bottom number [· · · ] from our small data set.

5.4. Combinatorial questions. Regarding the number Nn(χ) of copies of a clade
χ in DTCS(n), there are aspects which have not been studied (even within the usual
random tree models). For example one could study distributions of the following:

• The number Kn :=
∑

χ 1(Nn(χ)≥1) of different-shape clades within (a real-

ization of) DTCS(n).
• The largest clade that appears more than once within DTCS(n).
• The smallest clade that does not appear within DTCS(n).

The difficulty is that, although one can calculate each p(χ) numerically, we do
not have a useful explicit description of the set of probabilities (p(χ) : |χ| = m) of
size-m clades.
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6. Proving Theorem 3.1 via study of CTCS(∞) and Mellin transforms

Having the exchangeable formalization of CTCS(∞) leads to an alternate proof
of the second foundational result (Theorem 3.1). This is rather surprising, be-
cause convergence of CTCS(n) to CTCS(∞) seems a kind of “global” convergence,
whereas the asymptotic fringe is a “local” limit. It turns out that the Mellin trans-
form method can be used to study many other aspects of the model, including leaf
heights. Work in progress will appear in [7], and the following is included here as
an illustration of the methodology,

Recall notation from Section 4. The central idea of the proof is to define an
infinite measure Υ on (0, 1) by

Υ :=

∫ ∞

0
L(Pt,1) dt.(6.1)

Formula (4.4) immediately tells us the moments of the measure Υ:∫ 1

0
xs−1 dΥ(x) =

∫ ∞

0
E [P s−1

t,1 ] dt =
1

ψ(s)− ψ(1)
, ℜs > 1.(6.2)

So this is the Mellin transform of Υ. We do not know how to invert the transform
to obtain an explicit formula for Υ, but what is relevant to the current proof is the
behavior of Υ near 0, as follows.

Lemma 6.1. Let Υ be the infinite measure on (0, 1) having the Mellin transform
(6.2). Then Υ is absolutely continuous, with a continuous density υ(x) on (0, 1) that
satisfies

υ(x) =
6

π2x
+O

(
x−s1 + x−s1 | log x|−1

)
,(6.3)

uniformly for x ∈ (0, 1), where s1
.
= −0.567 is the largest negative root of ψ(s) =

ψ(1). In particular, for x ∈ (0, 12) say,

υ(x) =
6

π2x
+O

(
x−s1

)
as x ↓ 0.(6.4)

The (quite technical) proof of this “inversion” lemma is given in Appendix C.

6.1. Deriving Theorem 3.1. Here we show how to derive Theorem 3.1 via the
exchangeable representation and Theorem 4.5 and Lemma 6.1.

For j ≥ 2 let, as in Section 3.3, Nn(j) be the number of internal nodes of CTCS(n)
that have exactly j leaves as descendants. Similarly, let Nn(j; t) be the number of
clades of CTCS(n) at time t that have size exactly j. Let

en(j) := E [Nn(j)], en(j; t) := E [Nn(j; t)].(6.5)

The integral
∫∞
0 Nn(j; t) dt equals the sum of the lifetimes of all clades of size j that

ever appear in CTCS(n). Because these lifetimes have expectation 1/hj−1 (and are
independent of the structure), we have∫ ∞

0
en(j; t) dt = E

[∫ ∞

0
Nn(j; t) dt

]
=

1

hj−1
E [Nn(j)] =

en(j)

hj−1
.(6.6)
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As noted previously in (3.13),

a(n, j) = j
nen(j)(6.7)

so to prove Theorem 3.1 it will suffice to study the behavior of en(j).
To start to calculate en(j), use the paintbox construction in Theorem 4.2 to see

that

conditioned on (Pt,ℓ)
∞
ℓ=1, the probability that a given set of j leaves

form a clade at time t equals
∑

ℓ P
j
t,ℓ(1− Pt,ℓ)

n−j .

Thus, by recalling that Pt,1 can be regarded as a size-biased sample of (Pt,ℓ)
∞
ℓ=1 [13,

Corollary 2.4], we see

en(j; t) =

(
n

j

)
E
[∑

ℓ

P jt,ℓ(1− Pt,ℓ)
n−j

]
=

(
n

j

)
E
[
P j−1
t,1 (1− Pt,1)

n−j].(6.8)

Recall that Υ is the infinite measure on (0, 1) given by

Υ :=

∫ ∞

0
L(Pt,1) dt.(6.9)

Then (6.8) yields ∫ ∞

0
en(j; t) dt =

(
n

j

)∫ 1

0
xj−1(1− x)n−j dΥ(x)(6.10)

and thus

1

n

∫ ∞

0
en(j; t) dt ∼

nj−1

j!

∫ 1

0
xj−1(1− x)n−j dΥ(x) as n→ ∞.(6.11)

Lemma 6.1 gives us the relevant information about the density υ(x) of Υ, and then
we complete a proof of Theorem 3.1 as follows. By (6.6), (6.10) and Lemma 6.1, we
have

1

hj−1

en(j)

n
=

1

n

∫ ∞

0
en(j; t) dt =

1

n

(
n

j

)∫ 1

0
xj−1(1− x)n−jυ(x) dx.(6.12)

Substitute υ(x) from (6.3). The main term becomes, using a standard beta integral,

1

n

(
n

j

)∫ 1

0
xj−1(1− x)n−j

6

π2
x−1 dx =

6

π2
1

n

(
n

j

)∫ 1

0
xj−2(1− x)n−j dx(6.13)

=
6

π2
1

n

(
n

j

)
Γ(j − 1)Γ(n− j + 1)

Γ(n)

=
6

π2
1

n

(
n

j

)
(j − 2)! (n− j)!

(n− 1)!

=
6

π2
1

j(j − 1)
.
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The contribution from the error term in (6.3) has absolute value at most, letting C
denote unimportant constants (not necessarily the same), and using − log x > 1−x,

C
1

n

(
n

j

)∫ 1

0
xj−1(1− x)n−jx−s1

(
1 + | log x|−1

)
dx(6.14)

≤ Cnj−1

∫ 1

0
xj−s1−1(1− x)n−j−1 dx

≤ Cnj−1

∫ ∞

0
xj−s1−1e−(n−j−1)x dx

= Cnj−1(n− j − 1)−j+s1

= O
(
ns1−1

)
.

This is o(1) as n→ ∞, and thus from (6.12) and (6.13), for every fixed j ≥ 2,

en(j)

n
→ 6

π2
hj−1

j(j − 1)
.(6.15)

Then by (6.7) we get the assertion of Theorem 3.1: for j ≥ 2,

a(n, j) → 6

π2
hj−1

j − 1
=: a(j)(6.16)

with the bound

(6.17) |a(n, j)− a(j)| = O
(
ns1−1

)
as n→ ∞.

□

7. Final remarks

7.1. The general beta-splitting model. The mathematical theme of [5] was to
introduce the beta-splitting model with split probabilities

(7.1) q(n, i) =
1

an(β)

Γ(β + i+ 1)Γ(β + n− i+ 1)

Γ(i+ 1)Γ(n− i+ 1)
, 1 ≤ i ≤ n− 1

with a parameter −2 ≤ β ≤ ∞ and normalizing constant an(β). The qualitative
behavior of the model is different for β > −1 than for β < −1; in the former case
the height (number of edges to the root) of a typical leaf grows as order log n, and
in the latter case as order n−β−1. In this article we are studying the critical13 case
β = −1. The general beta-splitting model is often mentioned in the mathematical
biology literature on phylogenetics as one of several simple stochastic models. See
[31, 38] for recent overviews of that literature.

13Hence our terminology CS for critical splitting. But note that critical in our context is quite
different from the usual critical in the context of branching processes or percolation.
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7.2. Analogies with and differences from the Brownian CRT. As noted in
the introduction, this article is part of a broad project investigating the random
tree model. The document [6], which will be periodically updated, is intended to
provide an overview: statements of results, proofs not given elsewhere, heuristics
and open problems, data from phylogenetic trees, and general discussion. Let us
discuss below only one aspect of the project.

The best known continuous limit of finite random tree models is the Brownian
continuum random tree (CRT) [3, 4, 15, 18], which is a scaling limit of conditioned
Galton-Watson trees and other “uniform random tree” models. Our CTCS(∞)
model can also be regarded as a scaling limit14 of CTCS(n). How do these compare?

(a) The most convenient formalization of the Brownian CRT is as a randommeasured
metric space, with the Gromov-Hausdorff-Prokhorov topology [1] on the set of all
such spaces. So one automatically has a notion of convergence in distribution. Our
formalization of CTCS(∞) via exchangeable partitions is less amenable to rephrasing
as a random element of some metric space. For instance it is easy to visualize
Brownian motion [11] on a realization of the CRT, but it seems harder to visualize
a stochastic process on a realization of CTCS(∞).

(b) Our consistency result, that CTCS(n) is consistent as n increases, and exchange-
able over the random leaves, constitutes one general approach to the construction
of continuum random trees (CRTs) [4, 15].

(c) Our explicit inductive construction (growth algorithm) is analogous to the line-
breaking constructions of the Brownian CRT [3] and stable trees [19].

(d) Haas et al [23] and subsequent work such as [22] have given a detailed general
treatment of self-similar fragmentations via exchangeable partitions, though the
focus there is on characterizations and on models like the −2 < β < −1 case of the
beta-splitting model. On the range −2 < β < −1 , such models have limits which
are qualitatively analogous to the Brownian continuum random tree, which is the
case β = −2.

(e) It is implausible that CTCS(∞) is as “universal” a limit as the Brownian CRT
has proved to be, but nevertheless one can ask Are there superficially different dis-
crete models whose limit is the same CTCS(∞)? The key feature of our model seems
to be the subordinator approximation (3.7): can this arise in some other model?
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Appendix A. More on the consistency property and growth
algorithm

We give in this section our original proof of the consistency property Theorem 2.3
and the growth algorithm Theorem 2.4. This proof uses only straightforward (al-
though rather long) calculations of (conditional) probabilities.

Recall the statement of Theorem 2.3: The operation “delete and prune leaf n+1
from CTCS(n+ 1)” gives a tree distributed as CTCS(n).

Consider a pair of trees (tn, tn+1) with n and n + 1 leaves, in which tn can be
obtained from tn+1 via the “delete a leaf and prune” operation in Figure 4. So tn+1

arises by adding a new bud to tn, which can happen in one of three qualitative ways
illustrated in Figure 5.

We will do explicit calculations for (CTCS(3), CTCS(4)) in the following section.
This enables one to guess the growth algorithm in Theorem 2.4, which we verify
for general n in Section A.2. In the argument below, it will be convenient to use
unlabelled leaves, cf. Remark 2.2.

A.1. A starting step. The distribution of CTCS(n) is specified by the shape of
the tree and the probability density of the edge-lengths. For n = 3 there are only
two possible shapes, as t in Figure 8 and as its “reflection” with the side-bud on
the left instead of the right. There are two edge-lengths (a, b). Clearly the density
of CTCS(3) is

(A.1) f(t; a, b) = 1
2h2e

−h2a · e−b; 0 < a, b <∞

and the probability of t is 1/2. There are 7 shapes of CTCS(4) that are consistent
with this t, shown as t1, t2, t3, t4 in Figure 8, together with the “reflected” forms of t1
and t3 and t4 (the added side-bud involves the other side; drawn as t̂1, t̂3, t̂4) which
will be accounted for as q(·, ·)+q(·, ·) terms in the calculation below.15 The densities
of these shapes involve 3 edge-lengths (a, b, c), calculated below as f+i (a, b, c). We

also calculate the marginals fi(a, b) =
∫
f+i (a, b, c) dc.

The consistency assertion that we wish to verify is the assertion, for f = f(t; ·, ·) as
at (A.1),

(A.2) f
?
= 1

4f1 +
2
4f2 +

1
4f3 +

2
4f4

15That is, f+
1 is the density of t1 plus the density of t̂1.
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Figure 8. The possible transitions from t: the added bud is •.

where the fractions denote the probability that deleting a random bud gives t with
the given edge-lengths (a, b). From the definition of CTCS(4) we can calculate

f+1 (a, b, c) = (q(4, 1) + q(4, 3)) · h3e−h3c · q(3, 2) · h2e−h2(a−c) · e−b(A.3)

f1(a, b) = (q(4, 1) + q(4, 3)) · h3 · 3(1− e−a/3) · q(3, 2) · h2e−h2a · e−b(A.4)

= 3(e−h2a − e−h3a) · e−b

f+2 (a, b, c) = q(4, 2) · h3e−h3a · e−be−c(A.5)

f2(a, b) = q(4, 2) · h3e−h3a · e−b(A.6)

= 1
2e

−h3a · e−b

f+3 (a, b, c) = q(4, 3) · h3e−h3a · (q(3, 2) + q(3, 1)) · h2e−h2c · e−(b−c)(A.7)

f3(a, b) = q(4, 3) · h3e−h3a · (q(3, 2) + q(3, 1)) · h2 · 2(1− e−b/2) · e−b(A.8)

= 2e−h3a(1− e−b/2) · e−b

f+4 (a, b, c) = q(4, 3) · h3e−h3a · (q(3, 2) + q(3, 1)) · h2e−h2b · e−c(A.9)

f4(a, b) = q(4, 3) · h3e−h3a · (q(3, 2) + q(3, 1)) · h2e−h2b(A.10)

= e−h3a · e−h2b.
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From this we can verify (A.2).
This argument is not so illuminating, but we can immediately derive the condi-

tional distribution of CTCS(4) given that CTCS(3) is (t, a, b). Writing gi(c|a, b)
for the conditional density of shape ti or t̂i and additional edge length c, and
p(ti|a, b) =

∫
gi(c|a, b) dc for the conditional probability of shape ti or t̂i, we have

g1(c|a, b) =
1
4f

+
1 (a, b, c)

f(a, b)
= 1

3e
−c/3; p(t1|a, b) = 1− e−a/3(A.11)

g2(c|a, b) =
1
2f

+
2 (a, b, c)

f(a, b)
= 1

3e
−a/3 · e−c; p(t2|a, b) = 1

3e
−a/3(A.12)

g3(c|a, b) =
1
4f

+
3 (a, b, c)

f(a, b)
= 1

3e
−a/3 · e−c/2; p(t3|a, b) = 2

3e
−a/3(1− e−b/2)(A.13)

g4(c|a, b) =
1
2f

+
4 (a, b, c)

f(a, b)
= 2

3e
−a/3e−b/2 · e−c; p(t4|a, b) = 2

3e
−a/3 · e−b/2.(A.14)

One can now see that these are the conditional probabilities that arise from the
growth algorithm in Theorem 2.4 which we for convenience repeat:

Given a realization of CTCS(n) for some n ≥ 1 (above, n = 3):

(1) Pick a uniform random bud; move up the path from the root toward that bud.
A stop event occurs at rate = 1/(size of clade from current position).

(2) If stop before reaching the target bud, make a side-bud at that point, random
on left or right. (As in t1 or t3 above.)

(3) Otherwise, extend the target bud into a branch of Exp(1) length to make a
bud-pair. (As in t2 or t4 above.)

Figure 8 indicated three of these possibilities (t1, t3, t4) when the chosen target
bud was at the top right. The “rate” is 1/3 until the side-bud, and then 1/2. Note
that case t2 arises as an “extend the target bud” for a different target bud.

A.2. The general step. To set up a calculation, we consider the side-bud addition
case first, illustrated by the example in Figure 9, where the left diagram shows the
relevant part of tn and the right diagram shows the side-bud addition making tn+1.
The ℓi are edge-lengths and the (ni) are clade sizes. The side-bud is attached to
some edge, in Figure 9 an edge at edge-height 4 with length ℓ4 and defining a clade
of size n4 ≥ 2. The new bud splits that edge into edges of length α and ℓ4 − α.
The probability density function on a given tree is a product of terms for each edge.
Table 1 shows the terms for the edges where the terms differ between the two trees
– these are only the edges on the path from the root to the added bud. The first
three lines in Table 1 refer to the edges below the old edge into which the new bud
is inserted, and the bottom line refers to that old edge.

Because hn−1q(n, k) =
n

2k(n−k) the ratios right/left of each of the first 3 lines in

Table 1 equal

ni + 1

ni
· ni+1

ni+1 + 1
· exp(−ℓi/ni), i = 1, 2, 3.(A.15)
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Figure 9. Growing via a side-bud addition

left tree right tree
hn1−1 exp(−hn1−1ℓ1)dℓ1 · q(n1, n2) hn1 exp(−hn1ℓ1)dℓ1 · q(n1 + 1, n2 + 1)
hn2−1 exp(−hn2−1ℓ2)dℓ2 · q(n2, n3) hn2 exp(−hn2ℓ2)dℓ2 · q(n2 + 1, n3 + 1)
hn3−1 exp(−hn3−1ℓ3)dℓ3 · q(n3, n4) hn3 exp(−hn3ℓ3)dℓ3 · q(n3 + 1, n4 + 1)

hn4−1 exp(−hn4−1ℓ4)dℓ4 hn4 exp(−hn4α)dα · q(n4 + 1, 1)
·hn4−1 exp(−hn4−1(ℓ4 − α))dℓ4

Table 1. Differing terms in density product (side-bud case)

hn4−1 exp(−hn4−1ℓ4)dℓ4 hn4 exp(−hn4ℓ4)dℓ4 · q(n4 + 1, 1)
·h1 exp(−h1β)dβ

Table 2. Differing terms in density product (branch extension case)

The corresponding ratio for the final term equals

n4 + 1

2n4
· exp(−α/n4) dα.(A.16)

Combining terms, the ratio of densities equals

n+ 1

2n
· exp(−ℓ1/n1 − ℓ2/n2 − ℓ3/n3 − α/n4) dα.(A.17)

In obtaining tn from tn+1 we chose one of n + 1 buds to delete, so finally the
conditional density of CTCS(n+1) given CTCS(n) at (tn+1|tn) equals

(A.18)
1

2n
· exp(−ℓ1/n1 − ℓ2/n2 − ℓ3/n3 − α/n4) dα.
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Figure 10. Growing via a branch extension

We need to check that this agrees with the growth algorithm. According to the
algorithm, the conditional density is a product of terms

• n4/n: the chance that the target bud is in the relevant clade;
• exp(−ℓ1/n1− ℓ2/n2− ℓ3/n3): the chance of not stopping before reaching the
edge of length ℓ4;

• 1
n4

exp(−α/n4) dα: the chance of stopping in dα;

• 1/2: chance of placing side-bud on right side.

And this agrees with (A.18).
That was the side-bud addition case. Now consider the branch extension case,

illustrated in Figure 10. In this case, tn has an edge terminating in two buds. Then
tn+1 is obtained by extending the branch by an extra edge of some length β to two
terminal buds, leaving one bud as a side-bud. Comparing the densities of tn and
tn+1 in this case, the first 3 lines are the same as in Table 1, and the 4th is shown
in Table 2. Following the previous argument we derive the conditional density in a
format similar to (A.18):

(A.19)
1

2n
· exp(−ℓ1/n1 − ℓ2/n2 − ℓ3/n3 − ℓ4/n4 − β) dβ.

Again this agrees with the growth algorithm. The third case, the side-bud extension,
is similar. □
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Appendix B. Another proof of Proposition 2.6

In CTCS(n) write (Xn(i, t), i ≥ 1) for the clade sizes at time t and consider

Qn(t) =
∑
i

X2
n(i, t).(B.1)

Note that, when a size-m clade is split, the effect on sum-of-squares of clade sizes
has expectation

(B.2)

m−1∑
i=1

(m2 − i2 − (m− i)2) q(m, i) =
m

2hm−1

m−1∑
i=1

2 =
m(m− 1)

hm−1
.

If we chose some arbitrary rates r(m,n) for splitting a size-m clade, then

E [Qn(t)−Qn(t+ dt)|Ft] =
∑
i

r(Xn(i, t), n)
Xn(i, t)(Xn(i, t)− 1)

hXn(i,t)−1
dt.(B.3)

So by choosing r(m,n) = hm−1 we obtain

E [Qn(t)−Qn(t+ dt)|Ft] = (Qn(t)− n) dt.(B.4)

Because Qn(0) = n2 we obtain the exact formula

(B.5) E [Qn(t)] = n+ (n2 − n)e−t, 0 ≤ t <∞.

Now we are studying the height Bn of the branchpoint between the paths to two
uniform random distinct leaves of CTCS(n). The conditional probability that both
sampled leaves are in clade i at time t equals 1

n(n−1)Xn(i, t)(Xn(i, t)− 1). So

P(Bn > t) = 1
n(n−1) E [

∑
i

Xn(i, t)(Xn(i, t)− 1)](B.6)

= 1
n(n−1) E [Qn(t)− n]

= e−t by (B.5).

Appendix C. Proof of Lemma 6.1 by Mellin inversion

Proof of Lemma 6.1. We begin by noting that the Mellin transform 1/
(
ψ(s)−ψ(1)

)
in (6.2) extends to a meromorphic function in the entire complex plane. The poles
are the roots of

ψ(s) = ψ(1).(C.1)

Obviously, s0 := 1 is a pole. Its residue is

Ress=1
1

ψ(s)− ψ(1)
=

1

ψ′(1)
=

6

π2
,(C.2)

using the well known formula ψ′(1) = π2/6 [35, 5.4.12] (see also (C.15) below). As
shown in Lemma C.1 below the other poles are real and negative, and thus can be
ordered 0 > s1 > s2 > . . . . In particular, there are no other poles in the half-plane
ℜs > s1, with s1

.
= −0.567.
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We cannot immediately use standard results on Mellin inversion16 (as in [17,
Theorem 2(i)]) because the Mellin transform in (6.2) decreases too slowly as ℑs→
±∞ to be integrable on a vertical line ℜs = c. In fact, Stirling’s formula implies
(see e.g. [35, 5.11.2]) that

ψ(s) = log s+ o(1) = log |s|+O(1) = log |ℑs|+O(1)(C.3)

as ℑs→ ∞ with s in, for example, any half-plane ℜs ≥ c.
We overcome this problem by differentiating the Mellin transform, but we first

subtract the leading term corresponding to the pole at 1. Since Υ is an infinite
measure, we first replace it by ν defined by dν(x) = x dΥ(x); note that ν is also a
measure on (0, 1), and taking s = 2 in (6.2) shows that ν is a finite measure.

Next, define ν0 as the measure (6/π2) dx on (0, 1), and let ν∆ be the (finite)
signed measure ν − ν0. Then ν∆ has the Mellin transform, by (6.2),

ν̃∆(s) :=

∫ 1

0
xs−1 dν∆(x) =

∫ 1

0
xs dΥ(x)− 6

π2

∫ 1

0
xs−1 dx(C.4)

=
1

ψ(s+ 1)− ψ(1)
− 6

π2s
, ℜs > 0.

We may here differentiate under the integral sign, which gives

ν̃∆
′(s) :=

∫ 1

0
(log x)xs−1 dν∆(x)(C.5)

= − ψ′(s+ 1)

(ψ(s+ 1)− ψ(1))2
+

6

π2s2
, ℜs > 0.(C.6)

The Mellin transform ν̃∆(s) extends to a meromorphic function in C with (simple)
poles (si − 1)∞1 ; note that there is no pole at s0 − 1 = 0, since the residues there of
the two terms in (C.4) cancel by (C.2). Furthermore, the formula (C.6) for ν̃∆

′(s)
holds for all s (although the integral in (C.5) diverges unless ℜs > 0).

For any real c we have, on the vertical line ℜs = c, as ℑs → ±∞, that ψ(s) ∼
log |s| by (C.3), and also, by careful differentiation of (C.3) or by [35, 5.15.8], that
ψ′(s) ∼ s−1. It follows from (C.6) that ν̃∆

′(s) = O(|s|−1 log−2 |s|) on the line ℜs = c,
for |ℑs| ≥ 2 say, and thus ν̃∆

′ is integrable on this line unless c is one of the poles
si − 1. In particular, taking c = 1 and thus s = 1 + ui (u ∈ R), we see that the
function

ν̃∆
′(1 + iu) =

∫ 1

0
xiu log(x) dν∆(x)(C.7)

is integrable. The change of variables x = e−y shows that the function (C.7) is the
Fourier transform of the signed measure on R+ that corresponds to log(x) dν∆(x).
This measure on R+ is thus a finite signed measure with integrable Fourier trans-
form, which implies that it is absolutely continuous with a continuous density. Re-
versing the change of variables, we thus see that the signed measure log(x) dν∆(x) is
absolutely continuous with a continuous density on (0, 1). Moreover, denoting this

16And we cannot use [17, Theorem 2(ii)] since we do not know that Υ has a density that is
locally of bounded variation.
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density by h(x), we obtain the standard inversion formula for the Mellin transform
[17, Theorem 2(i)], [35, 1.14.35]:

h(x) =
1

2πi

∫ c+∞i

c−∞i
x−sν̃∆

′(s) ds, x > 0,(C.8)

with c = 1. Furthermore, the integrand in (C.8) is analytic in the half-plane ℜs >
s1−1, and the estimates above of ψ(s) and ψ′(s) are uniform for ℜs in any compact
interval and, say, |ℑs| ≥ 2. Consequently, we may shift the line of integration in
(C.8) to any c > s1 − 1. Taking absolute values in (C.8), and recalling that ν̃∆

′(s)
is integrable on the line, then yields

h(x) = O
(
x−c

)
(C.9)

for any c > s1 − 1.
Reversing the transformations above, we see that ν∆ has the density (log x)−1h(x),

and thus ν has the density (log x)−1h(x)+6/π2, and, finally, that Υ has the density

υ(x) :=
dΥ

dx
=

1

x

dν

dx
=

6

π2x
+

1

x log x
h(x), 0 < x < 1.(C.10)

Furthermore, (C.10) and (C.9) have the form of the claimed estimate (6.3), although
with the weaker error term O(x−s1−ε| log x|−1) for any ε > 0.

To obtain the (stronger) claimed error term, we note that the residue of ν∆(s)
at s1 − 1 is r1 := 1/ψ′(s1). Let ν1 be the measure r1x

1−s1 dx on (0, 1); then ν1 has
Mellin transform

ν̃1(s) = r1

∫ 1

0
xs−1x1−s1 dx =

r1
s+ 1− s1

, ℜs > s1 − 1.(C.11)

It follows from (C.4) and (C.11) that the signed measure ν − ν0 − ν1 = ν∆ − ν1 has
the Mellin transform

1

ψ(s+ 1)− ψ(1)
− 6

π2s
− r1
s+ 1− s1

,(C.12)

which is an analytic function in the half plane ℜs > s2 − 1. Hence, the same
argument as above yields the estimate

υ(x) =
6

π2x
+

1

ψ′(s1)
x−s1 +O

(
x−s2−ε| log x|−1

)
, x ↓ 0,(C.13)

for any ε > 0, which in particular yields (6.3). □

C.1. A lemma on the digamma function.

Lemma C.1. The roots of the equation ψ(s) = ψ(1) are all real and can be enu-
merated in decreasing order as s0 = 1 > s1 > s2 > . . . , with si ∈ (−i,−(i− 1)) for
i ≥ 1. Numerically, s1

.
= −0.567 and s2

.
= −1.628.
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Proof. Recall that ψ(s) is a meromorphic function of s, with poles at 0,−1,−2, . . . .
For any other complex s we have the standard formulas [35, 5.7.6 and 5.15.1]

ψ(s) = −γ +
∞∑
k=0

( 1

k + 1
− 1

k + s

)
,(C.14)

ψ′(s) =
∞∑
k=0

1

(k + s)2
.(C.15)

If ℑs > 0, then ℑ(1/(k + s)) < 0 for all k and thus (C.14) implies ℑψ(s) > 0.
Similarly, if ℑs < 0, then ℑψ(s) < 0. Consequently, all roots of ψ(s) = ψ(1) are
real.

For real s, (C.15) shows that ψ′(s) > 0. We can write R \ {the poles} =
⋃∞
i=0 Ii

with I0 := (0,∞) and Ii := (−i,−(i − 1)) for i ≥ 1; it then follows that ψ(s) is
strictly increasing in each interval Ii. Moreover, by (C.14) (or general principles),
at the poles we have the limits ψ(−i − 0) = +∞ and ψ(−i + 0) = −∞ (i ≥ 0).
Consequently, ψ(s) = ψ(1) has exactly one root si in each Ii, and obviously the
positive root is s0 = 1. (See also the graph of ψ(s) in [35, Figure 5.3.3].) □

References

[1] Romain Abraham, Jean-François Delmas, and Patrick Hoscheit. A note on the Gromov-
Hausdorff-Prokhorov distance between (locally) compact metric measure spaces. Electron. J.
Probab., 18:no. 14, 21 pp., 2013.

[2] David Aldous. Asymptotic fringe distributions for general families of random trees. Ann. Appl.
Probab., 1(2):228–266, 1991.

[3] David Aldous. The continuum random tree. II. An overview. In Stochastic analysis (Durham,
1990), volume 167 of London Math. Soc. Lecture Note Ser., pages 23–70. Cambridge Univ.
Press, Cambridge, 1991.

[4] David Aldous. The continuum random tree. III. Ann. Probab., 21(1):248–289, 1993.
[5] David Aldous. Probability distributions on cladograms. In Random discrete structures (Min-

neapolis, MN, 1993), volume 76 of IMA Vol. Math. Appl., pages 1–18. Springer, New York,
1996.

[6] David Aldous and Svante Janson. The critical beta-splitting random tree II: Overview and
open problems. arXiv 2303.02529v2, 2024.

[7] David Aldous and Svante Janson. The critical beta-splitting random tree IV: Mellin analysis
of leaf height. In preparation, 2024.

[8] David Aldous, Svante Janson, and Xiaodan Li. The harmonic descent chain. Electron. Com-
mun. Probab. 29 (2024), paper no. 77, 1–10.

[9] David Aldous and Boris Pittel. The critical beta-splitting random tree I: Heights and related
results. arXiv:2302.05066, 2023. To appear in Ann. Appl. Probab.

[10] David Aldous. Stochastic models and descriptive statistics for phylogenetic trees, from Yule
to today. Statist. Sci., 16(1):23–34, 2001.

[11] George Andriopoulos, David A. Croydon, Vlad Margarint and Laurent Menard. On the cover
time of Brownian motion on the Brownian continuum random tree. arXiv:2410.03922, 2024.

[12] Jean Bertoin. Homogeneous fragmentation processes. Probab. Theory Related Fields,
121(3):301–318, 2001.

[13] Jean Bertoin. Random fragmentation and coagulation processes, volume 102 of Cambridge
Studies in Advanced Mathematics. Cambridge Univ. Press, Cambridge, 2006.

[14] Timothy M. Crowe, Rauri C.K. Bowie, Paulette Bloomer, Tshifhiwa G. Mandiwana, Terry A.J.
Hedderson, Ettore Randi, Sergio L. Pereira, and Julia Wakeling. Phylogenetics, biogeography



42 DAVID J. ALDOUS AND SVANTE JANSON

and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of
character exclusion, data partitioning and missing data. Cladistics, 22(6):495–532, 2006.

[15] Steven N. Evans. Probability and real trees, volume 1920 of Lecture Notes in Mathematics.
Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23,
2005. Springer, Berlin, 2008.

[16] Alex Figueroa, Alexander D. McKelvy, L. Lee Grismer, Charles D. Bell, and Simon P. Lailvaux.
A species-level phylogeny of extant snakes with description of a new colubrid subfamily and
genus. PLOS ONE, 11(9):e0161070, 2016.

[17] Philippe Flajolet, Xavier Gourdon, and Philippe Dumas. Mellin transforms and asymptotics:
harmonic sums. Theoret. Comput. Sci., 144(1-2):3–58, 1995.

[18] Christina Goldschmidt. Scaling limits of random trees and random graphs. In Random graphs,
phase transitions, and the Gaussian free field, volume 304 of Springer Proc. Math. Stat., pages
1–33. Springer, Cham, 2020.

[19] Christina Goldschmidt, Bénédicte Haas, and Delphin Sénizergues. Stable graphs: distributions
and line-breaking construction. Ann. H. Lebesgue, 5:841–904, 2022.

[20] Morris Goodman, Lawrence I. Grossman, and Derek E. Wildman. Moving primate genomics
beyond the chimpanzee genome. TRENDS in Genetics, 21(9):511–517, 2005.

[21] Bénédicte Haas and Grégory Miermont. The genealogy of self-similar fragmentations with
negative index as a continuum random tree. Electron. J. Probab. 9(4):57–97, 2004.

[22] Bénédicte Haas and Grégory Miermont. Scaling limits of Markov branching trees with appli-
cations to Galton-Watson and random unordered trees. Ann. Probab., 40(6):2589–2666, 2012.

[23] Bénédicte Haas, Grégory Miermont, Jim Pitman, and Matthias Winkel. Continuum tree
asymptotics of discrete fragmentations and applications to phylogenetic models. Ann. Probab.,
36(5):1790–1837, 2008.

[24] Benjamin Hollering and Seth Sullivant. Exchangeable and sampling-consistent distributions on
rooted binary trees. J. Appl. Probab., 59(1):60–80, 2022.

[25] Cecilia Holmgren and Svante Janson. Fringe trees, Crump-Mode-Jagers branching processes
and m-ary search trees. Probab. Surv., 14:53–154, 2017.

[26] Alexander Iksanov. A comment on the article ‘The harmonic descent chain’ by D. J. Aldous,
S. Janson and X. Li. arxiv 2412.06826, 2024.

[27] Alexander Iksanov. Another proof of CLT for critical beta-splitting tree. Unpublished, 2024.
[28] Jasper Ischebeck. Central limit theorems for fringe trees in patricia tries. arXiv 2305.14900,

2023.
[29] Svante Janson. Fringe trees of Patricia tries and compressed binary search trees. arXiv

2405.01239, 2024.
[30] Brett Kolesnik. Critical beta-splitting, via contraction. arXiv 2404.16021, 2024.
[31] Amaury Lambert. Probabilistic models for the (sub)tree(s) of life. Braz. J. Probab. Stat.,

31(3):415–475, 2017.
[32] Heather R.L. Lerner and David P. Mindell. Phylogeny of eagles, Old World vultures, and other

Accipitridae based on nuclear and mitochondrial DNA. Molecular Phylogenetics and Evolution,
37(2):327–346, 2005.

[33] Harald Letsch. Phylogeny of Anisoptera (Insecta: Odonata): promises and limitations of a new
alignment approach. PhD thesis, Rheinische Friedrich-Wilhelms-Universität in Bonn, 2007.

[34] Alexandra Magro, E. Lecompte, F. Magne, J.-L. Hemptinne, and B. Crouau-Roy. Phylogeny
of ladybirds (Coleoptera: Coccinellidae): are the subfamilies monophyletic? Molecular Phylo-
genetics and Evolution, 54(3):833–848, 2010.

[35] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors.
NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute
of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010.
Also available as NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/

[36] J. Pitman. Combinatorial stochastic processes, volume 1875 of Lecture Notes in Mathematics.
Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24,
2002. Springer-Verlag, Berlin, 2006.



THE CRITICAL BETA-SPLITTING RANDOM TREE III 43

[37] Frederick H. Sheldon, Linda A. Whittingham, Robert G. Moyle, Beth Slikas, and David W.
Winkler. Phylogeny of swallows (Aves: Hirundinidae) estimated from nuclear and mitochon-
drial DNA sequences. Molecular Phylogenetics and Evolution, 35(1):254–270, 2005.

[38] Mike Steel. Phylogeny—discrete and random processes in evolution, volume 89 of CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 2016.
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