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Abstract. We study the number X(n) of vertices that can be reached from the last
added vertex n via a directed path (the descendants) in the standard preferential attach-
ment graph. In this model, vertices are sequentially added, each born with outdegree
m ⩾ 2; the endpoint of each outgoing edge is chosen among previously added vertices
with probability proportional to the current degree of the vertex plus some number ρ.

We show that X(n)/nν converges in distribution as n → ∞, where ν depends on both
m and ρ, and the limiting distribution is given by a product of a constant factor and
the (1 − ν)-th power of a Gamma(m/(m − 1), 1) variable. The proof uses a Pólya urn
representation of preferential attachment graphs, and the arguments of Janson (2024)
where the same problem was studied in uniform attachment graphs. Further results,
including convergence of all moments and analogues for the version with possible self-
loops are provided.

1. Introduction

Preferential attachment models have emerged as a popular class of random graphs
since it was proposed in [2] as an explanation for the power-law degree sequences observed
in real-world networks. There are several versions of these models, differing in minor
details, see e.g. [11]; we will use the version defined below, which is the sequential model
in [3]. In this version, self-loops are not allowed but multiple edges are possible. The
graph is often treated as undirected, but we regard it as directed, with all edges directed
from the younger vertex (with larger label) to the older vertex (with smaller label).

Definition 1.1 (Preferential attachment graph). Fix an integer m ⩾ 2 and a real number
ρ > −m, and let (Gn)n⩾1 be the sequence of random graphs that are generated as follows;
Gn has n vertices with labels in [n] := {1, . . . , n}. The initial graph G1 consists of a single
vertex (labelled 1) with no edges. Given Gn−1, we construct Gn from Gn−1 by adding the
new vertex with label n, and sequentially attaching m edges between vertex n and at most
m vertices in Gn−1 as follows. Let dj(n) be the degree of vertex j in Gn. If n ⩾ 2, each
outgoing edge of vertex n is attached to vertex j ∈ [n−1] with probability proportional to
ρ + the current degree of vertex j. (In particular, if n = 2, we add m edges from vertex 2
to vertex 1.) This means that the first outgoing edge of vertex n is attached to vertex
j ∈ [n− 1] with probability

dj(n− 1) + ρ

2m(n− 2) + (n− 1)ρ
; (1.1)

noting that
∑n−1

k=1 dk(n − 1) = 2m(n − 2) and dj(n − 1) + ρ ⩾ m + ρ > 0. Furthermore,
given that the first 1 ⩽ k ⩽ m − 1 outgoing edges of vertex n have been added to the
graph, the (k + 1)th edge of vertex n is attached to vertex j ∈ [n− 1] with probability

dj(n− 1) +
∑k

ℓ=1 1[n
ℓ→ j] + ρ

2m(n− 2) + k + (n− 1)ρ
, (1.2)
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where n
ℓ→j is shorthand for the event that the ℓ-th outgoing edge of vertex n is attached

to vertex j. The resulting graph Gn is a preferential attachment graph with n vertices
with parameters m and ρ, and we denote its law by PA(n,m, ρ).

The formulation of the sequential model in [3] is somewhat different, but is easily seen
to be equivalent. Note also that [3] assume (in our notation) ρ ⩾ 0, but in the formulation
above, only ρ > −m is needed. The definition above is valid also for m = 1 (in which case
the graph is a tree), but we do not consider this case in the present paper; see Remark
1.5 below for a further discussion.

Since [6] proved that the degree sequence of a certain class of preferential attachment
models indeed has a power-law behaviour, many other properties of the model above and
its variants have been investigated over the last two decades. These results include for
example, vertex degrees, distance and local weak convergences; and we refer to the books
[11, 12] for a comprehensive overview.

In this paper, we study the number of vertices that can be reached from the lastly
added vertex n via a directed path in the preferential attachment graph. We refer to
these vertices (including vertex n) as the descendants of n and their count as X(n), even
though all of them (apart from vertex n itself) are added to Gn before n. The problem
was first considered in [15, Exercise 7.2.2.3-371 and 372] for a uniform attachment graph,
where each vertex has m ⩾ 2 outgoing edges and the endpoints of these edges are cho-
sen uniformly among the existing vertices. ([15] uses drawing without replacement, thus
avoiding multiple edges, but as shown in [13], this makes no difference asymptotically.)
This uniform attachment version is studied in [13], where it is shown that as n → ∞, if

ν = (m − 1)/m, then X(n)/nν converges in distribution, and the limiting distribution is
given by a product of a constant factor and the (1−ν)-th power of a Gamma(m/(m−1), 1)
variable. The main result of the present paper is that for the preferential attachment graph
defined above, X(n) behaves similarly, but with a different exponent ν which furthermore
depends on both m and ρ.

As in previous works such as [3, 18, 21], the analysis in this work is hinged on a
connection between Pólya urns and the preferential attachment mechanism. We use, in
particular, the Pólya urn representation of [3] that was originally devised to study the
local weak limit of preferential attachment graphs. As we show later, this representation
result enables us to adapt the framework of [13] to study the problem in the preferential
attachment setting.

We state our main results in the next subsection.

1.1. Main results. The parameters m ⩾ 2 and ρ > −m are fixed throughout the paper.
We define

ν :=
(m− 1)(m+ ρ)

m(m+ ρ+ 1)
∈ (0, 1). (1.3)

The proofs of the results below are developed in Sections 2–11, and as by-products of the
proofs, we also prove some results on the structure of the subgraph of descendants of n.
In Section 12 we show that the following results hold also for a preferential attachment
model with possible self-loops.

Theorem 1.2. As n→ ∞,

n−νX
d−→

Γ
( (m−1)(m+ρ)
m(m+ρ+1)

)
Γ
( m+ρ
m(m+ρ+1) + 1

)
Γ
( m+ρ
m+ρ+1

) ((m+ ρ+ 1)(m− 1)

2m+ ρ
ξ1

)1−ν
, (1.4)

where ξ1 ∈ Gamma(m/(m− 1), 1).
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Theorem 1.3. All moments converge in (1.4). In other words, for any p > 0, as n→ ∞,

E[Xp]/npν →

Γ
( (m−1)(m+ρ)
m(m+ρ+1)

)
Γ
( m+ρ
m(m+ρ+1) + 1

)
Γ
( m+ρ
m+ρ+1

) (
(m+ ρ+ 1)(m− 1)

2m+ ρ

)1−ν
p

·
Γ(p(1− ν) + m

m−1)

Γ( m
m−1)

. (1.5)

Remark 1.4. In the special case ρ = 0, (1.3) and (1.4) simplify to ν = (m− 1)/(m+ 1)
and

n−νX
d−→ 1

m+ 1

Γ
(
m−1
m+1

)
Γ
(

1
m+1

)
Γ
(

m
m+1

) (m2 − 1

2m
ξ1

)2/(m+1)
. (1.6)

If we specialize further to the case m = 2 and ρ = 0, we get ν = 1/3, and (1.4) simplifies
further to

n−1/3X
d−→

Γ
(
1
3

)2
24/331/3Γ

(
2
3

)ξ2/31 =
31/6Γ

(
1
3

)3
27/3π

ξ
2/3
1 , (1.7)

with ξ1 ∈ Gamma(2, 1) and

Γ
(
1
3

)2
24/331/3Γ

(
2
3

) .
= 1.45833. (1.8)

In this case, (1.5) yields, for example,

E[X]/n1/3 →
Γ
(
1
3

)2
24/331/3Γ

(
2
3

)Γ(2 + 2
3

)
=

5Γ
(
1
3

)2
21/337/3

.
= 2.19416. (1.9)

Remark 1.5. Definition 1.1 is valid also for m = 1, and then defines a random tree;
such preferential attachment trees have been studied by many authors. In this case, X(n)

equals 1 + the depth of vertex n, and it is known that X(n) grows like log n, in contrast to
the case m ⩾ 2 studied in the present paper, where we show that X(n) grows as a power
of n. More precisely, as n→ ∞,

X(n)/ log n
p−→ 1 + ρ

2 + ρ
, (1.10)

and precise results are known on the exact distribution, Poisson approximation, and a cen-
tral limit theorem, see [8], [20, Theorem 6], and [16, Theorem 3]. (Papers on preferential
attachment trees usually use a slightly different definition, where the attachment proba-
bilities depend on the outdegree rather than the degree as in (1.1); apart from a shift in
the parameter ρ, this makes a difference only at the root. This minor difference ought not
to affect asymptotic result; for X(n) this follows rigorously by the bijection in [16] which
yields both exact and asymptotic results, and in particular (1.10), by straightforward
calculations for both versions of the definition.)

We mention also an open problem, which we have not studied, where the same meth-
ods might be useful.

Problem 1.6. Study the asymptotic behaviour of max{X(n+1), . . . , X(n+i)} for a fixed
i ⩾ 2, in both uniform and preferential attachment graphs. Perhaps also do the same for
i = i(n) growing with n at some rate.
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1.2. Notation. As above, k
ℓ→ i (where 1 ⩽ i < k ⩽ n and ℓ ∈ [m]) denotes that in Gn

the ℓ-th outgoing edge of vertex k is attached to vertex i. We say that vertex i is a child
of vertex k if there is such an edge.

As usual, empty sums are 0, and empty products are 1.

Convergence in distribution, in probability, and a.s. (almost surely) are denoted by
d−→,

p−→, and
a.s.−→, respectively. Equality in distribution is denoted by

d
=, and w.h.p.

(with high probability) is short for “with probability tending one as n→ ∞”.

We frequently use two standard probability distributions. The Gamma(a, b) distribu-

tion, with a, b > 0, has density Γ(a)−1b−axa−1e−x/b on (0,∞). The Beta(a, b) distribution,

with a, b > 0, has density Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 on (0, 1).

Most quantities defined below depend on n. We sometimes indicate this by a super-
script (n), but usually we omit this to simplify the notation. We may in proofs sometimes
tacitly assume that n is large enough.

C[a, b], C[0,∞) and C(0,∞) denote the spaces of continuous functions on the indi-
cated intervals, equipped with the topology of uniform convergence on compact subsets.
These spaces are complete separable metric spaces. Note that a sequence of random func-
tions in C[0,∞) or C(0,∞) converges (a.s., in probability, or in distribution) if and only if
it converges in the same sense in C[a, b] for each compact interval [a, b] in [0,∞) or (0,∞),
respectively. (For C[0,∞) it is obviously equivalent to consider intervals [0, b] only.) The
case C[0,∞) is treated in detail in [22]; the case C(0,∞) is similar.

C denotes positive constants (not depending on n) that may vary from one occasion to
another. The constants may depend on the parameters m and ρ; we indicate dependence
on other parameters (if any) by writing e.g. Ca.

2. Pólya urn representation

We shall use a celebrated result of [3], which states that the dynamics of the pref-
erential attachment graph can be encoded in a collection of classical Pólya urns; see also
[12, Chapter 5] for more details. In a classical Pólya urn with initially a red balls and b
black balls, a ball is randomly sampled from the urn at each step, and is then returned to
the urn with another ball of the same colour. (The “numbers” of balls are not necessarily
integers; any positive real numbers are allowed.) In the preferential attachment graph, for
each i ⩾ 2, the weight of vertex i, defined as the degree + ρ, and the total weight of the
first i− 1 vertices evolve like the numbers of red and black balls in a classical Pólya urn.
The initial numbers of red and black balls are a = m + ρ and b = (2i − 3)m + (i − 1)ρ,
which are the weights of vertex i and the first i − 1 vertices before the edges of vertex
i + 1 are added to the graph. When one of the first i vertices is chosen as a recipient of
a newly added edge, the number of red balls in the urn increases by one if vertex i is the
recipient; otherwise we add a new black ball to the urn. It is well-known, for example
as a consequence of exchangeability and de Finetti’s theorem, that the proportion of red
balls a.s. converges to a random number β ∈ Beta(a, b), and that conditioned on β, the
indicators that a red ball is chosen at each step are distributed as conditionally indepen-
dent Bernoulli variables with parameter β. Consequently, by conditioning on suitable beta
variables, the preferential attachment graph can instead be generated using independent
steps.

The model and the theorem below are easy variations of their counterparts in [3,
Section 2.2]. The only difference is that ρ is allowed to be negative here.
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Definition 2.1 (Pólya urn representation, [3]). Given the integer m ⩾ 2 and the real
number ρ > −m, let (Bj)

∞
j=1 be independent random variables such that B1 = 1 and

Bj ∈ Beta(m+ ρ, (2j − 3)m+ (j − 1)ρ), j ⩾ 2. (2.1)

Given (Bj)
∞
j=1, construct for each n ⩾ 1 a (directed) graph Gn on n vertices (labelled by

[n]) such that each vertex 2 ⩽ k ⩽ n has m outgoing edges, and the recipient of each
outgoing edge of k is i ∈ [k − 1] with probability

Bi

k−1∏
j=i+1

(1−Bj), (2.2)

with the endpoints of all edges in Gn chosen (conditionally) independently. The law of Gn
is denoted by PU(n,m, ρ), where PU is short for Pólya Urn.

Remark 2.2. The probabilities (2.2) can be interpreted as follows, which will be useful
below: Given (Bj)

∞
j=1, each edge from vertex k tries to land at k−1, k−2, . . . successively;

at each vertex j it stops with probability Bj , and otherwise it continues to the next vertex.
(All random choices are independent, given (Bj)

∞
j=1.)

Remark 2.3. The construction in [3] is actually formulated in the following somewhat
different way, which obviously is equivalent; we will use this version too below. Define

Sn,j =
n−1∏
i=j+1

(1−Bi) for 0 ⩽ j ⩽ n− 1. (2.3)

(In particular, Sn,0 = 0 and Sn,n−1 = 1.) Conditioned on (Bj)
n−1
j=2 , let (Uk,ℓ)

n,m
k=2,ℓ=1 be

independent random variables with

Uk,ℓ ∈ U[0, Sn,k−1). (2.4)

For each vertex 2 ⩽ k ⩽ n, add the m outgoing edges such that

k
ℓ→ i ⇐⇒ Uk,ℓ ∈ [Sn,i−1, Sn,i), ℓ ∈ [m], i ∈ [k − 1]. (2.5)

Note also that a natural way to achieve (2.4) is to let (Ũk,ℓ)
n−1,m
k=2,ℓ=1 be independent U[0, 1]

variables, independent of (Bi)
n−1
i=2 , and set

Uk,ℓ := Sn,k−1Ũk,ℓ. (2.6)

Theorem 2.4 ([3], Theorem 2.1). For all integers n ⩾ 2, m ⩾ 2 and real ρ > −m,
PA(n,m, ρ) = PU(n,m, ρ).

In view of this theorem, it is enough to consider the Pólya urn representation instead
of the preferential attachment graph. We shall do so in the subsequent analysis and always
have Gn ∈ PU(n,m, ρ).

Remark 2.5. The uniform directed acyclic graph studied in [13], where each new edge
from k is attached uniformly to a vertex in [k − 1], can be seen as the limit as ρ → ∞ of
the construction above; it can be constructed by the same procedure, except that we let
Bj := 1/j (deterministically). This may help seeing the similarities and differences in the
arguments below and in [13]. Not surprisingly, formally taking the limit ρ → ∞ in (1.4)
yields the main result of [13].

Remark 2.6. Unless we say otherwise, we use the same sequence (Bi)
∞
i=1 for every n.

(But see Section 8 for an exception.)
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3. Preliminaries

For convenience, we define the positive constants

θ := 2m+ ρ, (3.1)

χ :=
m+ ρ

2m+ ρ
=
m+ ρ

θ
, (3.2)

noting that if ρ = 0, then χ = 1/2 for any m.

Recall that if B ∈ Beta(a, b), it follows by evaluating a beta integral that the moments
are given by

EBs =
Γ(a+ b)Γ(a+ s)

Γ(a)Γ(a+ b+ s)
=

Γ(a+ s)/Γ(a)

Γ(a+ b+ s)/Γ(a+ b)
, s > 0. (3.3)

Recall also that for any fixed real (or complex) a and b, and x > 0 (with x + a /∈
{0,−1,−2, . . . },

Γ(x+ a)

Γ(x+ b)
= xa−b

(
1 +O

(
x−1

))
, (3.4)

which follows readily from Stirling’s formula; see also [19, 5.11.13].

Similarly to the definition of Sn,j in (2.3), we also define

Φk =

k∏
j=1

(1 + (m− 1)Bj), for k ⩾ 0. (3.5)

We collect here some simple results for these variables that will be used later.

Lemma 3.1. For 2 ⩽ i < ∞, let Bi be as in (2.1); and for 1 ⩽ i < ∞, let Φi be as in
(3.5). We then have for 2 ⩽ i <∞,

E(Bi) =
m+ ρ

θi− 2m
=

χ

i− 2m/θ
=
χ

i
+O

( 1

i2

)
, (3.6)

E(B2
i ) =

(m+ ρ+ 1)(m+ ρ)

(θi− 2m+ 1)(θi− 2m)
= O

( 1

i2

)
. (3.7)

Furthermore, for 2 ⩽ j ⩽ k <∞,

k∏
i=j

E(1 + (m− 1)Bi) =
Γ
(
k + 1 + [(m− 1)(m+ ρ)− 2m]/θ

)
Γ(j − 2m/θ)

Γ(k + 1− 2m/θ)Γ
(
j + [(m− 1)(m+ ρ)− 2m]/θ

)
=
(k
j

)(m−1)χ(
1 +O

(
j−1
))

(3.8)

and

EΦk =
m · Γ

(
2− 2m/θ

)
Γ
(
2 + [(m− 1)(m+ ρ)− 2m]/θ

)k(m−1)χ
(
1 +O

(
k−1

))
. (3.9)

Finally, there is a positive constant C such that, for 2 ⩽ j ⩽ k <∞,

k∏
i=j

E(1 + (m− 1)Bi)
2 ⩽ C

(k
j

)2(m−1)χ
(3.10)

and, for 2 ⩽ k <∞,

E(Φ2
k) ⩽ Ck2(m−1)χ, E(Φ−1

k ) ⩽ Ck−(m−1)χ, E(Φ−2
k ) ⩽ Ck−2(m−1)χ. (3.11)

Remark 3.2. If m = 2 and ρ = 0, then θ = 4 and so in (3.9),

m · Γ
(
2− 2m/θ

)
Γ
(
2 + [(m− 1)(m+ ρ)− 2m]/θ

) =
2

Γ(3/2)
=

4√
π
. (3.12)
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Proof. The equalities in (3.6) and (3.7) follow from (3.3), recalling (3.1)–(3.2). For (3.8),
we use (3.6) to obtain

k∏
i=j

E(1 + (m− 1)Bi) =
k∏
i=j

i+ [(m− 1)(m+ ρ)− 2m]/θ

i− 2m/θ

=
Γ
(
k + 1 + [(m− 1)(m+ ρ)− 2m]/θ

)
Γ(j − 2m/θ)

Γ(k + 1− 2m/θ)Γ
(
j + [(m− 1)(m+ ρ)− 2m]/θ

) , (3.13)

and so (3.8) follows from (3.4) and (3.2). The formula (3.9) follows similarly by taking
j = 2 in (3.13) and using B1 = 1.

To prove (3.10), we write for i ⩾ 2, using (3.6)–(3.7),

E(1 + (m− 1)Bi)
2 = 1 + 2(m− 1)EBi + (m− 1)2 EB2

i

= 1 + 2(m− 1)
χ

i
+O

(
i−2
)

=: 1 + yi.

Taking logarithms,

log

( k∏
i=j

(1 + yi)

)
=

k∑
i=j

log(1 + yi) ⩽
k∑
i=j

yi = 2(m− 1)χ
k∑
i=j

(
i−1 +O(i−2)

)
= 2(m− 1)χ log

(k
j

)
+O(j−1). (3.14)

This implies the inequality in (3.10). The bound on E(Φ2
k) in (3.11) follows from the

definition in (3.5) and applying (3.10) with j = 2. The upper bound on E(Φ−2
k ) in (3.11)

can be proved similarly, where we can use (1 + x)−2 ⩽ 1− 2x+ 3x2 for x ⩾ 0, and thus

E
[
(1 + (m− 1)Bi)

−2
]
⩽ 1− 2(m− 1)EBi + 3(m− 1)2 EB2

i

= 1− 2(m− 1)χi−1 +O(i−2), (3.15)

together with log(1 − x) ⩽ −x. Finally, by the Cauchy–Schwarz inequality and the just

proven E(Φ−2
k ) ⩽ Ck−2(m−1)χ,

E(Φ−1
k ) ⩽

√
E(Φ−2

k ) ⩽ Ck−(m−1)χ, (3.16)

which completes the proof of all three inequalities claimed in (3.11). □

3.1. An infinite product.

Lemma 3.3. The infinite product

β :=

∞∏
k=1

1 + (m− 1)Bk
E(1 + (m− 1)Bk)

= lim
k→∞

Φk
EΦk

(3.17)

exists a.s. and in Lp for every p <∞. Furthermore, Eβ = 1 and β > 0 a.s.

We have also, as k → ∞,

k−(m−1)χΦk
a.s.−→ β̃ :=

m · Γ
(
2− 2m/θ

)
Γ
(
2 + [(m− 1)(m+ ρ)− 2m]/θ

)β. (3.18)

Proof. Define for k ⩾ 1

M̃k :=
Φk

E(Φk)
=

k∏
i=1

1 + (m− 1)Bi
E(1 + (m− 1)Bi)

. (3.19)



8 SVANTE JANSON, TIFFANY Y. Y. LO

This is a product of independent random variables with mean 1, and thus a martingale.
For every fixed integer r > 1, we have by the binomial theorem, |Bk| ⩽ 1, and (3.6)–(3.7),

E(1 + (m− 1)Bk)
r =

r∑
j=0

(
r

j

)
(m− 1)j EBj

k = 1 + r(m− 1)EBk +O(EB2
k)

= 1 + r(m− 1)EBk +O(k−2)

= (1 + (m− 1)EBk)r +O(k−2). (3.20)

Hence, for every k ⩾ 1,

E M̃ r
k =

k∏
i=1

E(1 + (m− 1)Bi)
r

(E(1 + (m− 1)Bi))r
=

k∏
i=1

(
1 +O(i−2)

)
⩽ Cr (3.21)

and thus the martingale M̃k is Lr-bounded; consequently it converges in Lr, and thus in
Lp for all real 0 < p ⩽ r. Since r is arbitrary, this holds for all p > 0.

In particular, M̃k → β in L1, which shows that Eβ = limk→∞ E M̃k = 1.

The event {β = 0} is independent of any finite number of B1, B2, . . . , and is thus a
tail event. The Kolmogorov zero-one law, see e.g. [10, Theorem 1.5.1], thus shows that
P(β = 0) = 0 or 1, but P(β = 0) = 1 is impossible since Eβ = 1. Hence, β > 0 a.s.

Finally, (3.18) follows by (3.17) and (3.9). □

3.2. Estimates for Sn,k. Below, let ψn be a positive function such that ψn ⩽ n− 1 and
ψn → ∞ as n → ∞ (we later choose ψn = n/ log n). The next lemma shows that w.h.p.,
for all k ⩾ ψn, the random variables Sn,k are close enough to the constants (k/n)χ.

Lemma 3.4. Let Sn,k be as in (2.3) and ψn be as above. Define δn = ψ−ε
n for some

ε ∈ (0, 1/2). Then, there is a positive constant C such that

P

[
max

⌈ψn⌉⩽k<n

∣∣∣∣Sn,k − (kn)χ
∣∣∣∣ ⩾ 2δn

]
⩽ Cψn

2ε−1. (3.22)

The proof of Lemma 3.4 is based on a standard martingale argument that is similar
to [17] (see also [3]), but we present it here for completeness. To prepare for the main
proof, we start by estimating E(Sn,k).

Lemma 3.5. Let Sn,k be as in (2.3). For every 1 ⩽ k ⩽ n− 1, we have

E(Sn,k) =
Γ
(
n− (3m+ ρ)/θ

)
Γ
(
n− 2m/θ

) Γ
(
k + 1− 2m/θ

)
Γ
(
k + 1− (3m+ ρ)/θ

) . (3.23)

Proof. Recalling that (Bj)
n−1
j=2 are independent, we obtain from (3.6)

ESn,k =
n−1∏
j=k+1

E(1−Bi) =

n−1∏
j=k+1

θj − 3m− ρ

θj − 2m
=

n−1∏
j=k+1

j − (3m+ ρ)/θ

j − 2m/θ

=
Γ
(
n− (3m+ ρ)/θ

)
Γ
(
n− 2m/θ

) Γ
(
k + 1− 2m/θ

)
Γ
(
k + 1− (3m+ ρ)/θ

) , (3.24)

as claimed in the lemma. □

Lemma 3.6. Let Sn,k be as in (2.3). Then, there is a positive constant C such that, for
1 ⩽ k ⩽ n− 1, ∣∣∣∣E(Sn,k)− (kn)χ

∣∣∣∣ ⩽ C

nχk1−χ
. (3.25)
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Proof. By (3.23) and (3.4), we have, recalling (3.2),

E(Sn,k) = n−χ
(
1 +O(n−1)

)
kχ
(
1 +O(k−1)

)
=
(k
n

)χ(
1 +O(k−1)

)
, (3.26)

which yields (3.25). □

Proof of Lemma 3.4. By Lemma 3.6, for n large enough and any k ∈ [ψn, n],∣∣∣∣E(Sn,k)− (kn)χ
∣∣∣∣ ⩽ C

nχk1−χ
⩽
C

k
⩽

C

ψn
< δn. (3.27)

Hence,

P

[
max

⌈ψn⌉⩽k<n

∣∣∣∣Sn,k − (kn)χ
∣∣∣∣ ⩾ 2δn

]
⩽ P

[
max

⌈ψn⌉⩽k<n

∣∣Sn,k − E(Sn,k)
∣∣ ⩾ δn

]
⩽ P

[
max

⌈ψn⌉⩽k<n

∣∣Sn,k/E(Sn,k)− 1
∣∣ ⩾ δn

]
, (3.28)

noting that ESn,k ⩽ 1 for k ⩾ 1. To bound the right-hand side of (3.28), we first observe
that for k ⩾ 0,

M̂k :=

n−1∏
j=n−k

1−Bj
E(1−Bj)

=
Sn,n−1−k
ESn,n−1−k

(3.29)

is a martingale with respect to the σ-algebras generated by (Bj)
n−1
j=n−k, with E M̂k = 1.

Now, by Doob’s inequality for the submartingale (M̂k − 1)2, see e.g. [10, Theorem 10.9.1],

P

[
max

⌈ψn⌉⩽k<n

∣∣Sn,k/E(Sn,k)− 1
∣∣ ⩾ δn

]
= P

[
max

0⩽k⩽n−1−⌈ψn⌉
|M̂k − 1| ⩾ δn

]
⩽ δ−2

n Var
(
M̂n−1−⌈ψn⌉

)
. (3.30)

Using E M̂n−1−⌈ψn⌉ = 1 and the independence of the beta variables, we have

Var
(
M̂n−1−⌈ψn⌉

)
= E

(
M̂2
n−1−⌈ψn⌉

)
− 1 =

n−1∏
k=⌈ψn⌉+1

E[(1−Bk)
2]

(E[1−Bk])2
− 1, (3.31)

and by (2.1), (3.3), and simplifying, we get

Var
(
M̂n−1−⌈ψn⌉

)
=

n−1∏
k=⌈ψn⌉+1

(θk − 3m− ρ+ 1

θk − 3m− ρ
· θk − 2m

θk − 2m+ 1

)
− 1

⩽
n−1∏

k=⌈ψn⌉+1

(1 + Ck−2)− 1 ⩽
C

ψn
. (3.32)

Applying (3.32) and δn = ψ−ε
n to (3.28) and (3.30) yields

P

[
max

⌈ψn⌉⩽k<n

∣∣∣∣Sn,k − (kn)χ
∣∣∣∣ ⩾ 2δn

]
⩽ δ−2

n

C

ψn
= Cψ2ε−1

n ,

hence proving the lemma. □

3.3. Asymptotics of two sums. Fix a sequence λn → ∞ (we will later choose λn = nν)
and define, for y ⩾ 0 and 0 ⩽ k ⩽ ℓ <∞,

Hy
k,ℓ :=

ℓ∑
i=k+1

[
(1−Bi)

λny − 1 + λnyBi
]
, Iyk,ℓ :=

ℓ∑
i=k+1

[
1− (1−Bi)

λny
]

(3.33)

and, for y ⩾ 0 and 0 ⩽ s ⩽ t <∞,

Ĥy
s,t := λ−1

n Hy
⌊sλn⌋,⌊tλn⌋, Îys,t := λ−1

n Iy⌊sλn⌋,⌊tλn⌋. (3.34)



10 SVANTE JANSON, TIFFANY Y. Y. LO

Lemma 3.7. Let 0 < s ⩽ t <∞. Then, for every y ⩾ 0, as n→ ∞,

Ĥy
s,t

p−→
∫ t

s

( (θu)m+ρ

(θu+ y)m+ρ
− 1 +

χy

u

)
du =

∫ t

s

( 1

(1 + y/(θu))m+ρ
− 1 +

χy

u

)
du (3.35)

and

Îys,t
p−→
∫ t

s

(
1− (θu)m+ρ

(θu+ y)m+ρ

)
du =

∫ t

s

(
1− 1

(1 + y/(θu))m+ρ

)
du. (3.36)

Proof. Denote the summand in (3.33) by ∆Hi. Then −1 ⩽ ∆Hi ⩽ λnyBi, and thus, using
(3.7), for ⌊sλn⌋ < i ⩽ ⌊λnt⌋,

Var(∆Hi) ⩽ E(∆Hi)
2 ⩽ C + Cλ2n EB2

i ⩽ Cs. (3.37)

The summands ∆Hi are independent, and thus (3.33)–(3.34) and (3.37) yield

Var(Ĥy
s,t) = λ−2

n

⌊tλn⌋∑
i=⌊sλn⌋+1

Var
(
∆Hi

)
⩽ Cs,tλ

−1
n = o(1). (3.38)

Hence, it suffices to show that the expectation E Ĥy
s,t converges to the limit in (3.35). We

have, applying (3.3) to 1− Bi ∈ Beta(θi− 3m− ρ,m+ ρ) and using (3.4), uniformly for
sλn < i ⩽ tλn,

E(1−Bi)
λny =

Γ(θi− 2m)Γ(θi− 3m− ρ+ λny)

Γ(θi− 3m− ρ)Γ(θi− 2m+ λny)
=
( θi

θi+ λny

)m+ρ
+ o(1)

=
( θi/λn
θi/λn + y

)m+ρ
+ o(1). (3.39)

Hence, using also (3.6), if i = uλn with u ∈ (s, t],

E[∆Hi] = E(1−Bi)
λny − 1 + λny EBi

=
( θi/λn
θi/λn + y

)m+ρ
− 1 +

χ

i
λny + o(1). (3.40)

It follows that E Ĥy
s,t is o(1) plus a Riemann sum of the integral in (3.35).

The proof of (3.36) is similar, where we now replace ∆Hi with

∆Ii = 1− (1−Bi)
λny (3.41)

and, for sλn < i ⩽ tλn, use the estimates 0 ⩽ ∆Ii ⩽ 1 and thus, using (3.39),

Var(∆Ii) ⩽ E(∆Ii)2 ⩽ 1, (3.42)

E[∆Ii] = 1− E(1−Bi)
λny = 1−

( θi/λn
θi/λn + y

)m+ρ
+ o(1) (3.43)

to proceed. □

4. Basic analysis

In this and subsequent sections, we follow the framework (and hence the notation) in
[13]. To concentrate on the important aspects of the proof, we assume that m = 2 and
ρ = 0; note that then χ = 1

2 and θ = 2m = 4. The minor modifications for the general
case are discussed in Section 10.
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4.1. The stochastic recursion. Let Dn be the subgraph in Gn, consisting of vertex n,
all vertices that can be reached from n via a directed path, and all the edges between them.
We think of the vertices and edges in Dn as coloured red. We use the following stochastic
recursion to construct Dn. It is similar to the recursion used in [13], with differences that
stem from the difference of the models.

(1) Sample the beta variables (Bj)
n−1
j=2 defined in (2.1).

(2) Declare vertex n to be red and all others black. Initiate the recursion by setting
k := n.

(3) If vertex k is red, choose the recipients of the two outgoing edges from vertex k
according to the construction given in Definition 2.1. After sampling the recipients,
declare them as red.
If vertex k is black, delete k and do nothing else.

(4) If k = 2 then stop; otherwise let k := k − 1 and repeat from (3).

For integers 0 ⩽ k ⩽ n − 1, let Yk be the number of edges in Dn that start from
{k + 1, . . . , n} and end in {1, . . . , k}. Define Zk as the number of edges in Yk that end
in k. Note that we have the boundary conditions Yn−1 = 2 and Y0 = 0; as well as Z1 = Y1
and Z0 = 0.

For 1 ⩽ k ⩽ n− 1, denote the indicator that at least one edge of Yk ends at k as

Jk = 1[Zk ⩾ 1], (4.1)

which is the same as the indicator that k is red. Thus summing Jk over k ∈ [n− 1] gives

the number X(n) of red vertices. For 2 ⩽ k ⩽ n− 1, the number of edges that start at k
is 2Jk, and we thus have

Yk−1 = Yk − Zk + 2 · Jk = Yk − Zk + 2 · 1[Zk ⩾ 1]. (4.2)

As in [13], we use a modified version of the procedure above, where we use the
construction in Remark 2.2. In (3) above, we thus do not choose the recipients of the
outgoing edges, we just note that they have endpoints in [k − 1]. We then at the next
vertex toss a coin for each edge with unassigned endpoint to decide whether it ends there
or not. This yields the following equivalent version of the construction.

(1) Sample the beta variables (Bj)
n−1
j=2 defined in (2.1).

(2) Declare vertex n to be red and all others black. Initiate the recursion by setting
k := n.

(3) If vertex k is red, add two outgoing edges from vertex k, with as yet undetermined
endpoints in [k − 1]; mark these edges incomplete.

(4) Let k := k − 1.

(5) For each incomplete edge, toss a coin with heads probability Bk, independently
given Bk. If the outcome is heads, the edge ends at k and is marked complete;
furthermore, vertex k is coloured red. Otherwise do nothing (so the edge is still
incomplete).

(6) If k = 1 then stop; otherwise repeat from (3).

Let Fk be the σ-field generated by all beta variables (Bj)
n−1
j=2 and the coin tosses at

vertices n− 1, . . . , k + 1. Then F1, . . . ,Fn−1 forms a decreasing sequence of σ-fields, and
Yn−1, . . . , Yk are measurable with respect to Fk. Moreover, conditioned on Fk, we have

Zk | Fk ∈ Bin(Yk, Bk) for 1 ⩽ k ⩽ n− 1. (4.3)
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Thus, in view of the recursion (4.2), we have for 2 ⩽ k ⩽ n− 1,

E(Yk−1 | Fk) = Yk − E(Zk | Fk) + 2 ·P(Zk ⩾ 1 | Fk)
= Yk −BkYk + 2

(
1− (1−Bk)

Yk
)
. (4.4)

By Markov’s inequality, we also have for 2 ⩽ k ⩽ n− 1,

E[Yk−1 | Fk] ⩽ Yk − E[Zk | Fk] + 2 · E[Zk | Fk] = Yk + E[Zk | Fk]
=(1 +Bk)Yk. (4.5)

Define, recalling (3.5),

Wk = ΦkYk for 0 ⩽ k ⩽ n− 1, (4.6)

noting that W0 = 2Y0 = 0. Using (4.5) and (3.5), we find for 2 ⩽ k ⩽ n− 1,

E(Wk−1 | Fk) = Φk−1 E(Yk−1 | Fk) ⩽ Φk−1(1 +Bk)Yk = ΦkYk =Wk; (4.7)

and so W0, . . . ,Wn−1 is a reverse supermartingale. The initial value is

Wn−1 = Φn−1Yn−1 = 2Φn−1. (4.8)

By Doob’s decomposition,

Wk =Mk −Ak, 0 ⩽ k ⩽ n− 1, (4.9)

where

Mk := 2Φn−1 +
n−1∑
j=k+1

(Wj−1 − E(Wj−1 | Fj)) (4.10)

is a reverse martingale and

Ak :=
n−1∑
j=k+1

(Wj − E(Wj−1 | Fj)) (4.11)

is positive and reverse increasing. To see these properties of Ak, we note An−1 = 0 and
by (4.7),

Ak−1 −Ak =Wk − E(Wk−1 | Fk) ⩾ 0 for 1 ⩽ k ⩽ n− 1. (4.12)

Hence, for 0 ⩽ k ⩽ n− 1, we have 0 ⩽Wk ⩽Mk.

From the exact formula (4.4),

E(Wk−1 | Fk) = Φk−1 E(Yk−1 | Fk) = Φk−1(1−Bk)Yk + 2Φk−1

(
1− (1−Bk)

Yk
)
, (4.13)

and so (4.12) can be written as

Ak−1 −Ak = 2BkΦk−1Yk − 2Φk−1

(
1− (1−Bk)

Yk
)

= 2Φk−1

(
(1−Bk)

Yk − 1 +BkYk
)
. (4.14)

Following the steps in [13, equation (2.16)] for evaluating Var(Yk−1 | Fk) in the uniform
attachment case, here we have, for 1 ⩽ k ⩽ n− 1,

Var(Yk−1 | Fk)
= Var(Zk − 2 · 1[Zk ⩾ 1] | Fk) ⩽ 2Var(Zk | Fk) + 2Var(2 · 1[Zk ⩾ 1] | Fk)
⩽ 2BkYk + 8P(Zk ⩾ 1 | Fk) ⩽ 2BkYk + 8E(Zk | Fk) = 10BkYk. (4.15)

Thus,

Var(Wk−1 | Fk) = Φ2
k−1Var(Yk−1 | Fk) ⩽ 10Φ2

k−1BkYk. (4.16)

Let B be the σ-field generated by the beta variables (Bj)
n−1
j=2 , and let EB and VarB

denote conditional expectation and variance with respect to B. Note that M0, . . . ,Mn−1
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is a reverse martingale also conditioned on B, since B = Fn−1 ⊆ Fk for every k. In
particular,

EBWk ⩽ EBMk =Mn−1 = 2Φn−1 for 0 ⩽ k ⩽ n− 1. (4.17)

Hence, by applying (4.10), the reverse martingale property, (4.16), (3.5), (4.6), and then
(4.17), for 0 ⩽ k ⩽ n− 1,

VarB(Mk) = EB(Mk − 2Φn−1)
2 =

n−1∑
j=k+1

EBVar(Wj−1 | Fj)

⩽ 10

n−1∑
j=k+1

Φ2
j−1Bj EB(Yj) = 10

n−1∑
j=k+1

Bj
1 +Bj

Φj−1 EB(Wj)

⩽ 20
n−1∑
j=k+1

Bj
1 +Bj

Φj−1Φn−1 = 20
n−1∑
j=k+1

Φ2
j−1Bj

n−1∏
i=j+1

(1 +Bi). (4.18)

4.2. Some estimates. Below we provide several estimates for Wk, Mk, Zk and Ak that
we need later. The results are analogous to [13, Lemmas 2.1–2.3]. Recall that χ = 1/2 for
m = 2 and ρ = 0.

Lemma 4.1. For 1 ⩽ k ⩽ n− 1, we have

EBW
2
k ⩽ EBM

2
k ⩽ 20

n−1∑
j=k+1

Φ2
j−1Bj

n−1∏
i=j+1

(1 +Bi) + 4Φ2
n−1. (4.19)

Furthermore,

EB max
0⩽k⩽n−1

W 2
k ⩽ EB max

0⩽k⩽n−1
M2
k ⩽ 4EBM

2
0 (4.20)

and there is a positive constant C such that

E max
0⩽k⩽n−1

W 2
k ⩽ E max

0⩽k⩽n−1
M2
k ⩽ Cn. (4.21)

Proof. The first inequalities in (4.19) and (4.20) follow from 0 ⩽Wk ⩽Mk. For the second
inequality in (4.19), note that

EBM
2
k = VarB(Mk) + (EBMk)

2, (4.22)

and the inequality follows from this by the inequality (4.18) and the equalities in (4.17).

The second inequality in (4.20) follows from Doob’s inequality. By (4.20), (4.21)
follows from showing EM2

0 ⩽ Cn. For every 0 ⩽ k ⩽ n − 1, we use (4.18) and the
independence of the beta variables to obtain

E
(
VarB(Mk)

)
⩽ 20E

n−1∑
j=k+1

Φ2
j−1Bj

n−1∏
i=j+1

(1 +Bi)

= 20
n−1∑
j=k+1

EΦ2
j−1 EBj

n−1∏
i=j+1

E(1 +Bi). (4.23)

So applying (3.6), (3.8) and (3.11), we get

E
(
VarB(Mk)

)
⩽ C

n−1∑
j=k+1

j

j
·
(n
j

)1/2
⩽ Cn1/2

n−1∑
j=k+1

1

j1/2
⩽ Cn. (4.24)

Using the equalities in (4.17) and the estimate in (3.11), we also have

E
[
(EBMk)

2
]
= E

(
M2
n−1

)
= 4E(Φ2

n−1) ⩽ Cn for 0 ⩽ k ⩽ n− 1. (4.25)
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Applying (4.24) and (4.25) to (4.22), with k = 0, we thus have

EM2
0 ⩽ E

[
VarB(M0)

]
+ E

[
(EBM0)

2
]
⩽ Cn, (4.26)

which together with (4.20) implies (4.21). □

Lemma 4.2. There is a positive constant C such that, for 1 ⩽ k ⩽ n− 1,

P(Zk ⩾ 1) ⩽ C
n1/2

k3/2
; (4.27)

P(Zk ⩾ 2) ⩽ C
n

k3
. (4.28)

Proof. We start by proving (4.27). Firstly, it follows from (4.3) and (4.6) that

E(Zk | Fk) = YkBk = Φ−1
k BkWk, (4.29)

which, along with (4.17), imply that

EB(Zk) = Φ−1
k Bk EB(Wk) ⩽ 2Φ−1

k BkΦn−1 = 2Bk

n−1∏
i=k+1

(1 +Bi). (4.30)

Using the independence of (Bk)
n−1
k=2 , (3.6) and (3.8), we therefore have

E(Zk)⩽ 2E(Bk)
n−1∏
i=k+1

E(1 +Bi) ⩽
C

k

(n
k

)1/2
= C

n1/2

k3/2
, (4.31)

and (4.27) follows from Markov’s inequality.

The proof for (4.28) is similar, this time we observe that by Markov’s inequality,

P(Zk ⩾ 2 | Fk) ⩽ E
((

Zk
2

) ∣∣∣∣ Fk) =

(
Yk
2

)
B2
k ⩽ B2

kY
2
k = B2

kΦ
−2
k W 2

k . (4.32)

By (4.19) of Lemma 4.1 and (3.5), we have

E
(
B2
kΦ

−2
k W 2

k

)
= E

(
B2
kΦ

−2
k EB(W

2
k )
)

⩽ 20E
(
B2
kΦ

−2
k

n−1∑
j=k+1

Φ2
j−1Bj

n−1∏
i=j+1

(1 +Bi)

)
+ 4E

(
B2
kΦ

−2
k Φ2

n−1

)
= 20E

(
B2
k

n−1∑
j=k+1

Bj

j−1∏
i=k+1

(1 +Bi)
2
n−1∏
l=j+1

(1 +Bl)

)
+ 4E

(
B2
k

n−1∏
i=k+1

(1 +Bi)
2
)

= 20E(B2
k)

n−1∑
j=k+1

E(Bj)
j−1∏
i=k+1

E(1 +Bi)
2
n−1∏
l=j+1

E(1 +Bl) + 4E(B2
k)

n−1∏
i=k+1

E(1 +Bi)
2

(4.33)

Applying the estimates in (3.7), (3.8) and (3.10) to (4.33), we find

E
(
B2
kΦ

−2
k W 2

k

)
⩽
C

k2

n−1∑
j=k+1

1

j
· j
k
·
(n
j

)1/2
+
Cn

k3
⩽
Cn

k3
. (4.34)

Taking the expectation in (4.32) and plugging in (4.34) yields (4.28). □

Lemma 4.3. For 1 ⩽ k ⩽ n− 1,

Ak−1 −Ak ⩽ (WkBk)
2Φ−1

k (4.35)

and there is a positive constant C such that

EAk ⩽
Cn

k3/2
. (4.36)
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Proof. By (4.14), Taylor’s formula, the increasing property of Φk, and (4.6),

Ak−1 −Ak = 2Φk−1

(
(1−Bk)

Yk − 1 +BkYk
)
⩽ 2Φk−1

(
Yk
2

)
B2
k

⩽ Y 2
k Φk−1B

2
k ⩽ Y 2

k ΦkB
2
k =W 2

kΦ
−1
k B2

k, (4.37)

yielding (4.35). To prove (4.36), we note that by a telescoping argument, (4.35) implies

Ak ⩽
n−1∑
i=k+1

(
WiBi

)2
Φ−1
i (4.38)

Furthermore, (4.19) of Lemma 4.1 and (3.5) together yield

EB

(
W 2
i B

2
i Φ

−1
i

)
⩽ 20B2

i Φ
−1
i

n−1∑
j=i+1

Φ2
j−1Bj

n−1∏
h=j+1

(1 +Bh) + 4B2
i Φ

−1
i Φ2

n−1

= 20B2
i Φi

n−1∑
j=i+1

Bj

j−1∏
l=i+1

(1 +Bl)
2

n−1∏
h=j+1

(1 +Bh) + 4B2
i Φi

n−1∏
h=i+1

(1 +Bh)
2

⩽ 40B2
i Φi−1

n−1∑
j=i+1

Bj

j−1∏
l=i+1

(1 +Bl)
2

n−1∏
h=j+1

(1 +Bh) + 8B2
i Φi−1

n−1∏
h=i+1

(1 +Bh)
2. (4.39)

Taking expectation and again using the independence of (Bk)
n−1
k=2 , we have

E
(
W 2
i B

2
i Φ

−1
i

)
⩽ 40E(B2

i )E(Φi−1)

n−1∑
j=i+1

E(Bj)
j−1∏
l=i+1

E(1 +Bl)
2

n−1∏
h=j+1

E(1 +Bh)

+ 8E(B2
i )E(Φi−1)

n−1∏
h=i+1

E(1 +Bh)
2. (4.40)

Applying (3.6), (3.7), (3.8), (3.9) and (3.10) to the last display gives

E
(
W 2
i B

2
i Φ

−1
i

)
⩽

C

i3/2

n−1∑
j=i+1

1

2j − 2
· j
i
·
(n
j

)1/2
+
Cn

i5/2
⩽
Cn

i5/2
. (4.41)

Thus, in view of (4.41) and (4.38), we deduce that for 1 ⩽ k ⩽ n− 1,

E(Ak) ⩽
n−1∑
i=k+1

Cn

i5/2
⩽

Cn

k3/2
, (4.42)

hence proving (4.36). □

5. The early part and a Yule process

We continue to study the case m = 2 and ρ = 0, and recall that then χ = 1/2. We
show that the early part of the growth of Dn can be closely coupled to the same time-
changed Yule process as in [13], and use this coupling to study Yk and Wk. We start by
presenting its construction and key features, following the description in [13].

Let Y be a Yule process starting with two particles, and let Yt be the number of
(living) particles at time t (thus Y0 = 2). Note that Yt has the same distribution as the
sum of two copies of the standard Yule process, which starts with a single particle. (See
e.g. [1, Section III.5] for definition and some basic properties.) To better compare the
process to Dn, it is convenient too to view the Yule process Y as a tree, where the root
γ0 := 0 marks the beginning of the process and the vertex γi marks the time of the i-th
particle split in the process. Note also these split times are a.s. distinct. In this way, each
particle can be represented by an edge from its time of birth to its time of death.
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The time-changed Yule tree Ŷ appearing in [13] is obtained by applying the mapping

t → e−t, so that the vertices in Ŷ have labels e−γi ∈ (0, 1]. Hence, the root in Ŷ has
label 1, and a particle in the original Yule process that is born at time γi and has lifetime
τ ∈ Exp(1) is now represented by an edge from x = e−γi to e−(γi+τ) = xe−τ = xU , where
U := e−τ ∈ U(0, 1). In light of this, as well as that e−γ0 = 1 and all lifetimes in the

original Yule process are independent and have the Exp(1) distribution, any vertex in Ŷ
that is d generations away from the root therefore take labels of the form Û1 · · · Ûd, where
Û1, . . . , Ûd ∈ U(0, 1) and are independent.

Let D̂n be the random red graph Dn with label k replaced with (k/n)χ, so that the

labels now take values in (0, 1]. We regard Dn as rooted at n; thus the root of D̂n has

label 1. We shall compare the time-changed Yule tree Ŷ to D̂n, considering only vertices
with large enough labels. In preparation, let

n1 = n
(n)
1 := ⌊n/ log n⌋. (5.1)

We will use the construction of Gn in (2.3)–(2.6), using the variables Sn,k defined there;

in particular, recall that Ũk,ℓ are independent U(0, 1) random variables.

Lemma 5.1. Let κn := log n/n1/3. With probability at least 1−C log n/n1/3, the following
hold:

(i) For every path in Dn between vertex n (the root) and a vertex k > n1 consisting of

d + 1 ⩾ 2 red vertices n = v0 > v1 > · · · > vd−1 > vd = k such that vi
ℓi→ vi+1 for

0 ⩽ i < d, we have ∣∣Ũv0,ℓ0 · · · Ũvd−1,ℓd−1
−
(
k
n

)χ∣∣ ⩽ 3dκn. (5.2)

(ii) For every such path in Dn between vertex n and a vertex k ⩽ n1, we have

Ũv0,ℓ0 · · · Ũvd−1,ℓd−1
⩽
(
n1
n

)χ
+ 3dκn. (5.3)

Proof. We may assume that n is large enough such that n−1
1 < κn, since the result is

trivial for small n by choosing C large enough.

Firstly it follows from (2.5) and (2.6) that if k
ℓ→ i, then

Sn,i−1 ⩽ Ũk,ℓSn,k−1 < Sn,i. (5.4)

Secondly, again assuming that n is large, we take ε = 1/3 and ψn = n1 in Lemma 3.4 and

find that there is a positive constant C such that with probability at least 1−C log n/n1/3,

max
n1⩽j⩽n

∣∣Sn,j − ( jn)χ∣∣ ⩽ 2n
−1/3
1 ⩽ 3 log1/3 n/n1/3 ⩽ κn. (5.5)

We assume in the rest of the proof that (5.5) holds, and show first that (5.2) follows by
induction on d. Note first that if j > n1, then (5.5) implies

Sn,j−1 ⩾
( j−1
n

)χ − κn =
( j
n

)χ(
1− 1

j

)χ − κn ⩾
( j
n

)χ(
1− 1

j

)
− κn ⩾

( j
n

)χ − 1
j − κn

⩾
( j
n

)χ − 2κn. (5.6)

For the base case d = 1 we have by (5.4), (5.5), (5.6), and recalling Sn,n−1 = 1,

Ũn,ℓ0 ⩽ Sn,k ⩽
(
k
n

)χ
+ κn (5.7)

and

Ũn,ℓ0 ⩾ Sn,k−1 ⩾
(
k
n

)χ − 2κn, (5.8)

which show (5.2) in this case.



THE NUMBER OF DESCENDANTS IN A PREFERENTIAL ATTACHMENT GRAPH 17

For d ⩾ 2, we use induction and find, using the induction hypothesis and (5.4)–(5.6),

Ũv0,ℓ0 · · · Ũvd−1,ℓd−1
⩽
((vd−1

n

)χ
+ 3(d− 1)κn

)
Ũvd−1,ℓd−1

⩽
(
Sn,vd−1−1 + 2κn + (3d− 3)κn

)
Ũvd−1,ℓd−1

⩽ Sn,vd−1−1Ũvd−1,ℓd−1
+ (3d− 1)κn

< Sn,k + (3d− 1)κn

⩽
(
k
n

)χ
+ 3dκn (5.9)

and similarly, using also Sn,vd−1
⩾ Sn,vd−1−1,

Ũv0,ℓ0 · · · Ũvd−1,ℓd−1
⩾
((vd−1

n

)χ − 3(d− 1)κn

)
Ũvd−1,ℓd−1

⩾
(
Sn,vd−1

− κn − (3d− 3)κn
)
Ũvd−1,ℓd−1

⩾ Sn,vd−1−1Ũvd−1,ℓd−1
− (3d− 2)κn

⩾ Sn,k−1 − (3d− 2)κn

⩾
(
k
n

)χ − 3dκn. (5.10)

These inequalities prove (5.2), which completes the proof of (i).

To prove (ii), assume first vd−1 > n1 ⩾ k. Then, using (5.2), the first lines of (5.9)
still hold and yield

Ũv0,ℓ0 · · · Ũvd−1,ℓd−1
< Sn,k + (3d− 1)κn. (5.11)

Furthermore, by n1 ⩾ k and (5.5),

Sn,k ⩽ Sn,n1 ⩽
(
n1
n

)χ
+ κn, (5.12)

and (5.3) follows by (5.11) and (5.12). Finally, in the remaining case vd−1 ⩽ n1, we use

the trivial Ũv0,ℓ0 · · · Ũvd−1,ℓd−1
⩽ Ũv0,ℓ0 · · · Ũvd−2,ℓd−2

and induction on d. □

Recall that a vertex in Ŷ that is d generations away from the root has label of the

form Û1 · · · Ûd, where Ûi ∈ U[0, 1] and are independent. In view of (5.2), we couple Ŷ and

D̂n by generating them together as follows, where we also construct a mapping Ψ of the

vertices of Ŷ to the vertices of D̂n. In the construction below, Ŷ and D̂n will be finite

subsets of the final Yule tree and digraph, and Ψ maps the current Ŷ onto the current D̂n.

Recall that Ŷ and D̂n determine Y and Dn by (deterministic) relabelling.

(1) Sample the beta variables (Bj)
n−1
j=2 defined in (2.1). This defines also Sn,j by (2.3).

(2) Start the construction by letting Ŷ and D̂n just consist of their roots, both labelled

1. Let Ψ map the root of Ŷ to the root of D̂n.

(3) Let x be the vertex in the constructed part of Ŷ that has the largest label among
all vertices that do not yet have children assigned. Give x children xU ′

x,1 and xU
′
x,2

(which are added to the current Ŷ), where U ′
x,ℓ are independent U[0, 1] variables

that are independent of all other variables.

The vertex x is mapped to some vertex Ψ(x) = (k/n)χ in D̂n, which thus corre-
sponds to vertex k in Dn. There are three cases:

(a) If k > 1 and Ψ(x) has not yet got any children, define Ũk,ℓ := U ′
x,ℓ for ℓ = 1, 2.

This defines by (2.5)–(2.6) the edges from k and thus the children of k in

Dn; if these children are k1 and k2, the corresponding children in D̂n are

(k1/n)
χ and (k2/n)

χ; we add them to D̂n and we define Ψ(xℓ) := (kℓ/n)
χ,

thus mapping the children of x in Ŷ to the children of Ψ(x) in D̂n.
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(b) If k > 1 and Ψ(x) already has children (because it equals Ψ(y) for some
y > x), then we just extend Ψ by mapping the children of x to the children
of Ψ(x) (in any order).

(c) If k = 1, so x maps to v = (1/n)χ (which has no children in the final D̂n), we
extend Ψ by mapping also the children of x to v.

(4) Repeat from (3) (ad infinitum).

It is easy to see that running this “algorithm” an infinite number of iterations yields

Ŷ and D̂n with the right distributions, together with a map Ψ of the vertices of Ŷ onto the

vertices of D̂n such that every path from the root in D̂n is the image of a path from the

root in Ŷ. Ψ is obviously not injective since Ŷ is an infinite tree. Nevertheless, we show
that restricted to rather large labels, the mapping Ψ is w.h.p. a bijection which perturbs
the vertex labels with small errors.

Theorem 5.2. Let n1 := ⌊n/ log n⌋. We may w.h.p. couple the D̂n and the time-changed

Yule tree Ŷ, such that considering only vertices with labels in ((n1/n)
χ, 1] and edges with

the starting points in this set, there is a bijection between these sets of vertices in the two
models which displaces each label by at most 3 log2 n/n1/3, and a corresponding bijection
between the edges (preserving the incidence relations). In particular, w.h.p.

Y (n)
n1

= Ŷ(n1/n)χ , (5.13)

where Ŷx = Y− log x is the number of edges in Ŷ alive at time x.

Proof. The proof is similar to that of [13, Theorem 3.1], but with several technical com-

plications. We use the coupling constructed before the theorem. Let δn := 3 log2 n/n1/3 =
(log n)κn, with κn as in Lemma 5.1.

Step 1. We first note that if some vertex in D̂n with label in [(n1/n)
χ, 1] is the image of

two or more vertices in Ŷ, then the corresponding vertex k ⩾ n1 in Dn can be reached
from n by at least two different paths in Dn, and if we let k be maximal with this property,
then its indegree Zk ⩾ 2. Consequently, the probability that this happens is at most, using
(4.28) of Lemma 4.2,

n−1∑
k=n1

P(Zk ⩾ 2) ⩽ Cn

n−1∑
k=n1

k−3 = O(n/n21) = O(log2 n/n) = o(1). (5.14)

Hence, w.h.p. the mapping Ψ from Ŷ to D̂n is injective at every vertex in D̂n∩ [(n1/n)
χ, 1].

We may thus in the sequel assume that this injectivity holds. Note that this implies that

in the construction of the mapping Ψ above, we have Ũk,ℓ = U ′
x,ℓ for every k ⩾ n1 and

vertex x ∈ Ŷ such that Ψ(x) = (k/n)χ.

Step 2. As in [13], Ŷx = Y− log x for every x ∈ (0, 1], so by standard properties of the Yule
process (see e.g. [13, Section 3])

E Ŷx = EY− log x = 2e− log x = 2/x. (5.15)

In Ŷ, there are Ŷx − 1 vertices with labels in [x, 1]. Thus, (5.15) implies that w.h.p. there
are less than ⌊log n⌋ such vertices for x = (n1/n)

χ ∼ log−χ n. It follows trivially that

w.h.p., in Ŷ the number of generations from the root to any point in [(n1/n)
χ, 1] is less

than ⌊log n⌋. Hence, we may assume this property too.

Step 3. The expected number of vertices in Ŷ that are within δn from (n1/n)
χ is, by

(5.15),

E
(
Ŷ(n1/n)χ−δn − Ŷ(n1/n)χ+δn

)
=

2

(n1/n)χ − δn
− 2

(n1/n)χ + δn
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= O
( δn
(n1/n)2χ

)
= O

(
δn log

2χ n
)
= o(1). (5.16)

Hence, w.h.p. there are no vertices x in Ŷ with |x− (n1/n)
χ| ⩽ δn. We may in the sequel

assume this.

Step 4. Consequently, w.h.p. the properties in Steps 1–3 hold, and also the conclusions
(i) and (ii) of Lemma 5.1. We assume this for the rest of the proof.

Suppose that k > n1 is a vertex of Dn, and let v = (k/n)χ be the corresponding

vertex of D̂n. By Step 1, v = Ψ(x) for a unique vertex x ∈ Ŷ. If x ∈ ((n1/n)
χ, 1],

then the number of generations from the root to x in Ŷ is at most log n by Step 2. The

number of generations to Ψ(x) in D̂n is the same, and it follows from (5.2) and the equality

Ũk,ℓ = U ′
x,ℓ in Step 1 that, denoting the path from n to k as in Lemma 5.1,

|x−Ψ(x)| =
∣∣Ũv0,ℓ0 · · · Ũvd−1,ℓd−1

−
(
k
n

)χ∣∣ ⩽ 3(log n)κn = 3 log2 n/n1/3 = δn. (5.17)

It remains to show only that no vertex x in Ŷ is pushed over the boundary (n1/n)
χ (in

any direction) by Ψ.

Step 5. Suppose that there exists a vertex x ⩽ (n1/n)
χ in Ŷ such that Ψ(x) > (n1/n)

χ.

Let y > x be the parent of x in Ŷ, so that Ψ(y) > Ψ(x). Assume also y > (n1/n)
χ. By

Step 2, it follows that the number of generations from the root to y is less than ⌊log n⌋,
and thus the number of generations to x is at most ⌊log n⌋. Consequently, (5.2) shows,
similarly to (5.17), that

|x−Ψ(x)| ⩽ 3(log n)κn = δn (5.18)

and hence

x ⩾ Ψ(x)− δn ⩾ (n1/n)
χ − δn. (5.19)

However, we have also x ⩽ (n1/n)
χ, so |x− (n1/n)

χ| ⩽ δn, and by Step 3, there is no such

vertex x in Ŷ. If y ⩽ (n1/n)
χ, we may instead replace x by y (and repeat this if necessary)

until we encounter a vertex x with parent y such that x ⩽ (n1/n)
χ, Ψ(x) > (n1/n)

χ and
y > (n1/n)

χ. However, we have shown that such a pair cannot exist.

Step 6. Suppose that there exists a vertex x > (n1/n)
χ in Ŷ such that Ψ(x) ⩽ (n1/n)

χ.
By Step 2, it follows that the number of generations from the root to x is less than log n.
This time (5.3) applies and shows that

x ⩽
(
n1
n

)χ
+ 3(log n)κn =

(
n1
n

)χ
+ δn. (5.20)

However, by Step 3 again, there is no such vertex x in Ŷ.

The various claims proved in the steps above show that with the coupling and mapping
Ψ constructed before the theorem, w.h.p. Ψ yields a bijection with the stated properties. In

particular, w.h.p. Yn1 equals the number of edges in Ŷ that are alive at (n1/n)
χ, meaning

that they start in J := [(n1/n)
χ, 1] and end outside J . (Note that a.s. Ŷ has no point

exactly at (n1/n)
χ, so it does not matter whether we include that point in J or not.)

Finally, note that for any x ∈ (0, 1), the number of edges of Ŷ that are alive at x equals
the number of edges in Y that are alive at − log x, which equals the number Y− log x of
particles at − log x, since each edge represents the lifeline of one particle. □

We define

Ξ = Ξ(n) :=
W

(n)
n1

nχ
. (5.21)

This random variable plays the same role as Ξ in [13], but note the different scaling. Recall

also β̃ defined in (3.17)–(3.18).
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Lemma 5.3. As n→ ∞,

Ξ(n) d−→ β̃ · ξ, (5.22)

where β̃ is given by (3.18), and ξ ∈ Gamma(2, 1) is independent of β̃.

Proof. As in [13, Lemma 3.2], we first generate the Yule process Y, and then for each n
separately, we construct Dn by the construction given before Theorem 5.2. This yields
for each n the coupling in Theorem 5.2. In particular, (5.13) holds w.h.p. By standard
properties of the Yule process (see e.g. [1, Section III.5 and Problem III.2]),

xŶx = xY− log x
a.s.−→ ξ as x→ 0, (5.23)

with ξ ∈ Gamma(2, 1). Therefore, (5.13) and (5.23) together imply that(n1
n

)χ
Y (n)
n1

p−→ ξ. (5.24)

Hence, using also (5.21), (4.6), and (3.18),

Ξ(n) = n−χΦn1Yn1 = n−χ1 Φn1

(n1
n

)χ
Yn1

p−→ β̃ξ. (5.25)

Finally, Y
(n)
n1 is a function of (Bi)i>n1 and the coin tosses made for k > n1 in the

construction. Hence, for any fixed K, Y
(n)
n1 is independent of (Bi)

K
i=1 for large enough n.

Consequently, (5.24) implies that ξ is independent of (Bi)
K
i=1 for every K < ∞, and thus

ξ and β are independent. □

6. The flat middle part

Let n2 be any sequence of integers satisfying n1/3 ≪ n2 ⩽ n1. We show that similar
to the case of uniform attachment, the variable Wk does not fluctuate much in the range
n1 ⩾ k ⩾ n2. Below we give analogues of [13, Lemmas 4.1–4.2 and Theorem 4.3], where

we recall the definitions of Wk, Mk, Ak and Ξ(n) in (4.6), (4.9) and (5.21). The results
and proofs are again similar, but with a different scaling.

Lemma 6.1. As n→ ∞,

max
n2⩽k⩽n−1

∣∣∣∣ Akn1/2

∣∣∣∣ = An2

n1/2
p−→ 0. (6.1)

Proof. The first equality in (6.1) follows from the fact that Ak is reverse increasing. By
(4.36) in Lemma 4.3 and the choice of n2,

E
An2

n1/2
⩽ C

n

n1/2n
3/2
2

= o(1), (6.2)

implying the convergence in probability in (6.1). □

Lemma 6.2. As n→ ∞,

max
0⩽k⩽n1

∣∣∣∣ Mk

n1/2
− Ξ(n)

∣∣∣∣ p−→ 0. (6.3)

Proof. Recall that Mk is a reverse martingale. Hence we obtain by Doob’s inequality,
(4.10), (4.16), (4.6), (3.5), and (4.17),

E max
0⩽k⩽n1

|Mk −Mn1 |2 ⩽ 4E |M0 −Mn1 |2 = 4

n1∑
i=1

EVar(Wi−1 | Fi)

⩽ 40

n1∑
i=1

E
(
Φ2
i−1BiYi

)
= 40

n1∑
i=1

E
(
Φi−1WiBi(1 +Bi)

−1
)
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= 40

n1∑
i=1

E
(
Φi−1Bi(1 +Bi)

−1 EB(Wi)
)

⩽ 80

n1∑
i=1

E
(
Φi−1Bi(1 +Bi)

−1Φn−1

)
= 80

n1∑
i=1

E
(
Φ2
i−1Bi

n−1∏
j=i+1

(1 +Bj)
)
. (6.4)

Using the independence of (Bi)
n−1
i=2 , (3.6), (3.8) and (3.11), it follows from (6.4) that

E
(

max
0⩽k⩽n1

|Mk −Mn1 |
)2

= E max
0⩽k⩽n1

|Mk −Mn1 |2 ⩽ C

n1∑
i=1

i

i

(n
i

)1/2
⩽ C(nn1)

1/2 = o(n). (6.5)

Thus, by (5.21), (4.9), the triangle inequality, Lemma 6.1, and (6.5),

max
0⩽k⩽n1

∣∣∣∣ Mk

n1/2
− Ξ(n)

∣∣∣∣ ⩽ max
0⩽k⩽n1

∣∣∣∣ Mk

n1/2
− Mn1

n1/2

∣∣∣∣+ An1

n1/2
p−→ 0, (6.6)

as required. □

Theorem 6.3. As n→ ∞,

max
n2⩽k⩽n1

∣∣∣∣ Wk

n1/2
− Ξ(n)

∣∣∣∣ p−→ 0. (6.7)

Proof. The result is a direct consequence of (4.9), the triangle inequality, and Lemmas 6.1
and 6.2. □

7. The final part: tightness

Most vertices in Dn turn out to have labels of the order n1/3. To study this region in
detail, we extend the processes Wk, Mk and Ak to real arguments t ∈ [0, n− 1] by linear
interpolation. We for convenience extend them further to t ∈ [0,∞) by defining them to
be constant on [n− 1,∞).

The aim of this and the next section is to prove convergence of Wtn1/3 and Ytn1/3 as
n→ ∞, after suitable rescaling. A key ingredient is the tightness of the random function

Â
(n)
t := n−1/2A

(n)

tn1/3 , t ⩾ 0. (7.1)

Recall that C[a, b] is the space of continuous functions on [a, b].

Lemma 7.1. Let 0 < a < b <∞. Then the stochastic processes Â
(n)
t , n ⩾ 1, are tight in

C[a, b].

The proof of Lemma 7.1 is more complicated than for the corresponding Lemma 5.2
in [13], and we show first two other lemmas. We begin by stating a simple general lemma
on tightness in the space C[a, b]. (See e.g. [4] for a background.)

Lemma 7.2. Let −∞ < a < b < ∞. Let (Xn(t))
∞
n=1 and (Yn(t))

∞
n=1 be two sequences

of random continuous functions on [a, b]. Suppose that there exists a sequence (Zn)
∞
n=1 of

random variables such that for every n and s, t ∈ [a, b], we have

|Xn(t)−Xn(s)| ⩽ Zn|Yn(t)− Yn(s)|. (7.2)

If the sequences (Xn(a))
∞
n=1 and (Zn)

∞
n=1 are tight, and (Yn(t))

∞
n=1 is tight in C[a, b], then

the sequence (Xn(t))
∞
n=1 is tight in C[a, b].
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Proof. We may for convenience assume [a, b] = [0, 1]. We define for any function f on [0, 1]
its modulus of continuity

ω(f ; δ) := sup
s,t∈[0,1]; |s−t|<δ

|f(s)− f(t)|, δ > 0. (7.3)

Then [4, Theorem 8.2] says that a sequence (Xn(t))
∞
n=1 in C[0, 1] is tight if and only if

(i) the sequence (Xn(0))n is tight, and

(ii) for each positive ε and η, there exists δ > 0 such that, for every n,

P
(
ω(Xn; δ) ⩾ ε

)
⩽ η. (7.4)

We have already assumed (i). Moreover, the assumption (7.2) implies

ω(Xn; δ) ⩽ Znω(Yn; δ) (7.5)

for every δ. Let ε, η > 0 be given. Since the sequence (Zn)
∞
n=1 is tight, there exists a

number K > 0 such that P(|Zn| > K) < η/2 for every n. Hence, (7.5) implies

P
(
ω(Xn; δ) ⩾ ε

)
⩽ P(|Zn| > K) +P

(
Kω(Yn; δ) ⩾ ε

)
⩽ η/2 +P

(
ω(Yn; δ) ⩾ ε/K

)
. (7.6)

Since (Yn(t))
∞
n=1 is tight, conditions (i)–(ii) hold for Yn(t); in particular, there exists δ > 0

such that P
(
ω(Yn; δ) ⩾ ε/K

)
⩽ η/2 for every n. Then (7.6) shows that (ii) holds.

Consequently, (Xn(t))
∞
n=1 is tight. □

Recall that Lemma 4.3 shows that

0 ⩽ Ak−1 −Ak ⩽W 2
kΦ

−1
k B2

k ⩽M2
kΦ

−1
k B2

k, 1 ⩽ k ⩽ n− 1. (7.7)

We define the simpler

Vk :=
k∑
j=1

B2
j , Tk :=

k∑
j=1

Bj , 0 ⩽ k ⩽ n− 1; (7.8)

we extend also Vk and Tk by linear interpolation to real arguments, and define

V̂
(n)
t := n1/3V

(n)

tn1/3 , T̂
(n)
t := T

(n)

tn1/3 , t ⩾ 0. (7.9)

The proof of Lemma 7.1 only uses V̂
(n)
t , but T̂

(n)
t is needed later when we prove (1.7).

Lemma 7.3. Let 0 < a < b < ∞. Then the stochastic processes V̂
(n)
t − V̂

(n)
a and T̂

(n)
t −

T̂
(n)
a , n ⩾ 1, are tight in C[a, b].

Proof. We start with V̂
(n)
t − V̂

(n)
a , n ⩾ 1. If 1 ⩽ k ⩽ ℓ ⩽ n− 1, then

E |Vℓ − Vk|2 = E
( ℓ∑
i,j=k+1

B2
iB

2
j

)
=

ℓ∑
i,j=k+1

E
[
B2
iB

2
j

]
. (7.10)

If i ̸= j, then Bi and Bj are independent, and thus, by (3.7), E
[
B2
iB

2
j

]
= E[B2

i ] E[B2
j ] =

O
(
i−2j−2

)
. On the other hand, if i = j, then, by (3.3), recalling that Bi ∈ Beta(2, 4i− 6),

EB4
i =

2 · 3 · 4 · 5
(4i− 4)(4i− 3)(4i− 2)(4i− 1)

= O
(
i−4
)
. (7.11)

Consequently, (7.10) yields

E |Vℓ − Vk|2 ⩽
ℓ∑

i,j=k+1

Ci−2j−2 ⩽ C(ℓ− k)2k−4. (7.12)

This trivially holds for ℓ > n − 1 too, since then Vℓ = Vn−1 by definition. Furthermore,
writing (7.12) as ∥Vℓ− Vk∥L2 ⩽ C(ℓ− k)k−2, it follows by Minkowski’s inequality that we
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can interpolate between integer arguments and conclude that (7.12) holds for all real k
and ℓ with 1 ⩽ k ⩽ ℓ.

Let s and t be real numbers with 0 < s ⩽ t. Then (7.9) and (7.12) yield, with

k := sn1/3 and ℓ := tn1/3,

E
∣∣V̂ (n)
t − V̂ (n)

s

∣∣2 = n2/3 E |Vℓ − Vk|2 ⩽ Cn2/3|ℓ− k|2k−4 = C|t− s|2s−4. (7.13)

For the restriction to [a, b] we thus have

E
∣∣V̂ (n)
t − V̂ (n)

s

∣∣2 ⩽ Ca|t− s|2, a ⩽ s ⩽ t ⩽ b, (7.14)

which shows the tightness of V̂
(n)
t − V̂

(n)
a by [4, Theorem 12.3].

Tightness of T̂
(n)
t − T̂

(n)
a can be shown by using

E |Tk − Tℓ|2 =
ℓ∑

i,j=k+1

E(BiBj) ⩽ C(ℓ− k)2k−2, 1 ⩽ k ⩽ ℓ ⩽ n− 1, (7.15)

instead of (7.12) and proceeding similarly. □

Proof of Lemma 7.1. Note first that (4.36) implies that

E Â(n)
a ⩽ n−1/2 Cn

(an1/3)3/2
= Ca−3/2, (7.16)

and thus the sequence Â
(n)
a is tight.

Let

Mn := n−1/2max
k⩾1

Mk and Ψ̂n := n1/6Φ−1
⌊an1/3⌋. (7.17)

Then Lemma 4.1 shows that EM2
n ⩽ C, and (3.11) yields E Ψ̂n = O(1); hence the

sequences (Mn)
∞
n=1 and (Ψ̂n)

∞
n=1 are tight.

By (7.7) and (7.8), we have for any integer k with k ⩾ an1/3, since Φk is increasing
by the definition (3.5), using (7.17),

|Ak −Ak−1| ⩽M2
kΦ

−1
k (Vk − Vk−1) ⩽ nM2

nΦ
−1
⌊an1/3⌋(Vk − Vk−1)

= n5/6M2
nΨ̂n(Vk − Vk−1). (7.18)

Thus, if ⌊an1/3⌋ ⩽ k ⩽ ℓ,

|Aℓ −Ak| ⩽ n5/6M2
nΨ̂n(Vℓ − Vk), (7.19)

We can interpolate between integer arguments and conclude that (7.19) holds for all real

k and ℓ with ⌊an1/3⌋ ⩽ k ⩽ ℓ. By (7.1) and (7.9), this shows that if a ⩽ s ⩽ t, then∣∣Â(n)
t − Â(n)

s

∣∣ ⩽ M2
nΨ̂n

(
V̂

(n)
t − V̂ (n)

s

)
. (7.20)

The result now follows from Lemmas 7.2 and 7.3, taking Xn(t) := Â
(n)
t , Yn(t) := V̂

(n)
t −

V̂
(n)
a , and Zn := M2

nΨ̂n, noting that (Zn)
∞
n=1 is tight since (Mn)

∞
n=1 and (Ψ̂n)

∞
n=1 are. □

8. The final part: convergence

Recall the definition of the spaces C(0,∞) and C[0,∞) in Section 1.2.

Theorem 8.1. As n→ ∞ we have

Wtn1/3

n1/2
d−→ 4β̃

((
t9/2 + 3

4ξt
3
)1/3 − t3/2

)
in C[0,∞), (8.1)
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and

Ytn1/3

n1/3
d−→ 4

((
t3 + 3

4ξt
3/2
)1/3 − t

)
in C(0,∞), (8.2)

with β̃ as in (3.18) and ξ ∈ Gamma(2, 1) independent of β̃.

Remark 8.2. We believe that (8.2) holds also in C[0,∞), but we see no simple proof so
we leave this as an open problem.

Proof. The proof is similar to that of [13, Theorem 5.3], but with several technical com-
plications.

Step 1. Convergence in C(0,∞) for a subsequence. As in [13], Lemma 7.1 implies that by

considering a subsequence, we may assume that the processes Â
(n)
t converge in distribution

in every space C[a, b] with 0 < a < b to some continuous stochastic process A(t) on (0,∞);
in other words, as n→ ∞,

Â
(n)
t → A(t) (8.3)

holds in distribution in the space C(0,∞). Furthermore, also as in [13], we may by the
Skorohod coupling theorem [14, Theorem 4.30], assume that this convergence holds a.s.; in
other words (as n→ ∞ along the subsequence) a.s. (8.3) holds uniformly on every interval
[a, b]. We use such a coupling until further notice. Note that this means that we consider
all random variables as defined separately for each n (with some unknown coupling); in

particular, this means that we have potentially a different sequence B
(n)
i (i ⩾ 1) for each n,

and thus different limits β(n) and β̃(n). (The variables B
(n)
i for a fixed n are independent,

but we do not know how they are coupled for different n.) Hence, we cannot directly use
the a.s. convergence results in Lemma 3.3. Instead we note that (3.18) (which holds for
each n, with the distributions of the variables the same for all n) implies, for any coupling,

sup
k⩾logn

∣∣k−1/2Φ
(n)
k − β̃(n)

∣∣ p−→ 0. (8.4)

Furthermore, trivially (since the distributions are the same)

β̃(n)
d−→ β̃ (8.5)

for some random variable β̃ with, by Lemma 3.3, β̃ > 0 a.s.; note also that (8.5) holds
jointly with (5.22), since this is true for the coupling used in the proof of Lemma 5.3,

where Bi does not depend on n and thus trivially β̃(n) → β̃ holds together with (5.25).

We may select the subsequence above such that (8.3) (in distribution), (8.5) and
(5.22) hold jointly (with some joint distribution of the limits). We may then assume that
(8.3), (8.4), (8.5), (5.22), (6.3), and (6.7) all hold a.s., by redoing the application of the
Skorohod coupling theorem and including all these limits. It then follows from (4.9), (7.1),
(6.3), (8.3), and (5.22) that a.s.

n−1/2Wtn1/3 = n−1/2Mtn1/3 − Â
(n)
t = Ξ(n) −A(t) + o(1) → B(t) := β̃ξ −A(t) (8.6)

uniformly on every compact interval in (0,∞). In other words, (8.6) holds a.s. in C(0,∞).

From (8.6) we obtain by (4.6), (8.4), and (8.5), letting k := ⌊tn1/3⌋, a.s.

Y⌊tn1/3⌋ =
Wk

Φk
=

Wk

k1/2
(β̃(n) + o(1))−1 =

n1/2

k1/2
(
B(t) + o(1)

)(
β̃ + o(1)

)−1
(8.7)

and thus

n−1/3Y⌊tn1/3⌋ → t−1/2β̃−1B(t), (8.8)

again uniformly on every compact interval in (0,∞), and thus in C(0,∞).
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Step 2. Identifying the limit. Fix 0 < s < t and let k := ⌊sn1/3⌋ and ℓ := ⌊tn1/3⌋. It

follows from (8.3) that Â
(n)
s − Â

(n)

n−1/3k
→ 0 and Â

(n)
t − Â

(n)

n−1/3ℓ
→ 0 a.s. Hence, (7.1) and

(4.14) imply that

Â(n)
s − Â

(n)
t =

ℓ∑
i=k+1

n−1/2(Ai −Ai−1) + o(1)

= n−1/2
ℓ∑

i=k+1

2Φi−1

[
(1−Bi)

Yi − 1 + YiBi
]
+ o(1). (8.9)

For any B ∈ (0, 1), with x := − log(1−B), and any y ⩾ 1,

d

dy

(
(1−B)y − 1 + yB

)
=

d

dy

(
e−xy − 1 + y(1− e−x)

)
= −xe−xy + 1− e−x

⩾ 1− (1 + x)e−x > 0. (8.10)

Hence (1−B)y − 1 + yB is an increasing function of y ⩾ 1. Let ε > 0, and let

y+ := max{u−1/2β̃−1B(u) : u ∈ [s, t]}+ ε. (8.11)

Then (8.8) implies that, for large enough n, Yi ⩽ y+n
1/3 when k ⩽ i ⩽ ℓ, and hence (8.9)

implies, noting that Φi is increasing in i,

Â(n)
s − Â

(n)
t ⩽ 2n−1/2Φℓ

ℓ∑
i=k+1

[
(1−Bi)

n1/3y+ − 1 + n1/3y+Bi
]
+ o(1). (8.12)

Using the notation (3.33)–(3.34), we thus have by (3.35) and (3.18)

Â(n)
s − Â

(n)
t ⩽ 2n−1/6ΦℓĤ

y+
s,t + o(1)

= 2t1/2β̃

∫ t

s

( 1

(1 + y+/(4u))2
− 1 +

y+
2u

)
du+ op(1). (8.13)

Similarly, defining

y− := min{u−1/2β̃−1B(u) : u ∈ [s, t]} − ε (8.14)

(adjusted to 0 if (8.14) becomes negative), we obtain a lower bound

Â(n)
s − Â

(n)
t ⩾ 2s1/2β̃

∫ t

s

( 1

(1 + y−/4u)2
− 1 +

y−
2u

)
du+ op(1). (8.15)

We now subdivide [s, t] into a large number N of small subintervals of equal length and

apply (8.13) and (8.15) for each subinterval [si, ti]. Since u
−1/2β̃−1B(u) is continuous, we

may choose N such that with probability > 1− ε, for each subinterval, the corresponding
values of y+ and y− differ by at most 3ε, and also that ti/si < 1 + ε. We may then, for

each subinterval, replace y+ and y− in (8.13) and (8.15) by u−1/2β̃−1B(u) with a small
error, and by summing over all subintervals it finally follows by letting ε → 0 (we omit
the routine details) that

Â(n)
s − Â

(n)
t = 2β̃

∫ t

s
u1/2

((
1 + 1

4u
−3/2β̃−1B(u)

)−2 − 1 + 1
2u

−3/2β̃−1B(u)
)
du+ op(1).

(8.16)

Since we also assume (8.3), the left-hand side converges a.s. to A(s)−A(t), and thus we
have, a.s.,

A(s)−A(t) = 2β̃

∫ t

s
u1/2

((
1 + 1

4u
−3/2β̃−1B(u)

)−2 − 1 + 1
2u

−3/2β̃−1B(u)
)
du. (8.17)
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This holds a.s. simultaneously for every pair of rational s and t, and thus by continuity a.s.
for every real s and t with 0 < s ⩽ t. Consequently, A(t) is a.s. continuously differentiable
on (0,∞), with

A′(t) = −2β̃t1/2
((

1 + 1
4 t

−3/2β̃−1B(t)
)−2 − 1 + 1

2 t
−3/2β̃−1B(t)

)
. (8.18)

By the definition of B(t) in (8.6), this implies that also B(t) is continuously differentiable
and

B′(t) = −A′(t) = 2β̃t1/2
((

1 + 1
4 t

−3/2β̃−1B(t)
)−2 − 1 + 1

2 t
−3/2β̃−1B(t)

)
. (8.19)

We may simplify a little by defining

B̃(t) := β̃−1B(t). (8.20)

Then (8.19) becomes

B̃′(t) = 2t1/2
((

1 + 1
4 t

−3/2B̃(t)
)−2 − 1 + 1

2 t
−3/2B̃(t)

)
. (8.21)

By definition, Â
(n)
t is decreasing on [0,∞), and thus (8.3) shows that A(t) is de-

creasing, and thus B(t) is increasing by (8.6). (This also follows from (8.21), since the
right-hand side is positive.) Furthermore, (8.3), (7.1), (4.36), and Fatou’s inequality yield,
for every t > 0,

EA(t) ⩽ lim inf
n→∞

E Â(n)
t ⩽ lim inf

n→∞
n−1/2 Cn

(tn1/3)3/2
=

C

t3/2
. (8.22)

Hence, by dominated convergence,

E lim
t→∞

A(t) = lim
t→∞

EA(t) = 0. (8.23)

Consequently, a.s. A(t) → 0 as t→ ∞, and thus by (8.20) and (8.6)

B̃(t) ↗ ξ, as t→ ∞. (8.24)

We show in Appendix A below, see in particular (A.14) and (A.16), that the dif-
ferential equation (8.21) has a unique solution satisfying the boundary condition (8.24),
viz.

B̃(t) = 4t3/2
((
1 + 3

4ξt
−3/2

)1/3 − 1
)
, t > 0. (8.25)

(It can easily be verified by differentiation that this is a solution; Appendix A shows how
the solution may be found, and that it is unique.) Hence, by (8.20),

B(t) = β̃B̃(t) = 4β̃t3/2
((
1 + 3

4ξt
−3/2

)1/3 − 1
)

= 4β̃
((
t9/2 + 3

4ξt
3
)1/3 − t3/2

)
. (8.26)

Step 3. Convergence in C[0,∞). Note that (8.26) shows that B(t) extends to a continuous
function on [0,∞) with B(0) = 0; hence it follows from (8.6) that also A(t) extends to a

continuous function on [0,∞) with A(0) = β̃ξ. Using A
(n)
0 = M

(n)
0 −W

(n)
0 ⩽ M

(n)
0 , and

the assumed a.s. versions of (6.3) and (5.22), we have that, a.s.,

lim sup
n→∞

n−1/2A
(n)
0 ⩽ lim sup

n→∞
n−1/2M

(n)
0 = β̃ξ = A(0). (8.27)

By the reverse increasing property of A
(n)
k , we also have, for every t > 0,

lim inf
n→∞

n−1/2A
(n)
0 ⩾ lim inf

n→∞
n−1/2A

(n)

tn1/3 = A(t). (8.28)

Sending t↘ 0 and thus A(t) ↗ A(0) then yields

lim inf
n→∞

n−1/2A
(n)
0 ⩾ A(0). (8.29)
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It follows that, Â
(n)
0 → A(0) a.s., and thus (8.3) holds a.s. for every fixed t ⩾ 0. Since

Â
(n)
t and A(t) are decreasing in t, and A(t) is continuous, this implies that (8.3) holds a.s.

uniformly for every interval [0, b] with 0 < b <∞. It then follows that also (8.6) holds a.s.
uniformly on every compact interval in [0,∞); in other words, (8.6) holds a.s. in C[0,∞),
with B(t) as in (8.26).

Step 4. Conclusion. We have so far considered a subsequence, and a special coupling, and
have then shown (8.6) in C[0,∞) and (8.8) in C(0,∞), which by (8.26) yields (8.1) and
(8.2). Since (8.1) and (8.2) use convergence in distribution, they hold in general along
the subsequence, also without the special coupling used in the proof. Moreover, the limits
in (8.1) and (8.2) do not depend on the subsequence, and the proof shows that every
subsequence has a subsequence such that the limits in distribution (8.1) and (8.2) hold.
As is well known, this implies that the full sequences converge in distribution, see e.g. [10,
Section 5.7]). □

Remark 8.3. The argument above using possibly different B
(n)
i is rather technical. A

more elegant, and perhaps more intuitive version, of the argument would be to assume
that Bi is the same for all n, and then condition on (Bi)

∞
i=1 before applying the Skorohod

coupling theorem. However, while intuitively clear, this seems technically more difficult
to justify, and it seems to require that we prove that earlier convergence results hold also
conditioned on (Bi)

∞
i=1, a.s. We therefore prefer the somewhat clumsy argument above.

9. The number of descendants

Let X = X(n) be the number of red vertices in the preferential attachment graph.
Vertex n is red by definition, and Jk = 1[Zk ⩾ 1] is the indicator that takes value 1 if
vertex k is red for k < n; thus

X = 1 +
n−1∑
k=1

Jk, (9.1)

noting that Jk is Fk−1-measurable. We now set out to prove (1.7) (a special case of
Theorem 1.2 with m = 2 and ρ = 0), which we for convenience restate below as a separate
theorem.

Theorem 9.1. As n→ ∞,

X(n)

n1/3
d−→ 2−4/33−1/3Γ(

1
3)

2

Γ(23)
ξ2/3, (9.2)

where ξ ∈ Gamma(2, 1).

Remark 9.2. Unlike in (8.1), β̃ does not appear in the distributional limit of X(n)/n1/3.
This is because β in (3.17) is essentially determined by Bk corresponding to the first few
vertices; and in the red subgraph Dn, the number of these vertices is insignificant, since
most vertices have labels of the order n1/3.

As in [13], we use the Doob decomposition

X = 1 + L0 + P0, (9.3)

where for 0 ⩽ k ⩽ n− 1,

Lk :=

n−1∑
i=k+1

(
Ji − E(Ji | Fi)

)
(9.4)

is a reverse martingale, and by (4.3),

Pk :=

n−1∑
i=k+1

E(Ji | Fi) =
n−1∑
i=k+1

P(Zi ⩾ 1 | Fi) =
n−1∑
i=k+1

(
1− (1−Bi)

Yi
)

(9.5)
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is positive and reverse increasing. Furthermore, by Markov’s inequality and (4.3),

Pk−1 − Pk = P(Zk ⩾ 1 | Fk) ⩽ BkYk, 1 ⩽ k ⩽ n− 1. (9.6)

By (9.5) and Lemma 4.2, for 1 ⩽ k ⩽ n− 1,

EPk =
n−1∑
i=k+1

P(Zi ⩾ 1) ⩽
n−1∑
i=k+1

Cn1/2

i3/2
⩽
Cn1/2

k1/2
. (9.7)

Using also the crude bound 0 ⩽ Ji ⩽ 1, we have P0 − Pk ⩽ k. Choosing k = ⌊n1/3⌋ and
applying (9.7) thus yield

EP0 ⩽ EP⌊n1/3⌋ + ⌊n1/3⌋ ⩽ Cn1/3. (9.8)

Moreover, it follows from the reverse martingale property of Lk, Var(Ji | Fi) ⩽ E(Ji | Fi)
and (9.8) that

EL2
0 =

n−1∑
i=1

E[Var(Ji | Fi)] ⩽
n−1∑
i=1

E Ji = EP0 ⩽ Cn1/3. (9.9)

This in turn implies that as n→ ∞,

L0

n1/3
p−→ 0, (9.10)

and thus by (9.3), it is enough to show that as n→ ∞, n−1/3P0 converges in distribution
to the right-hand side of (9.2). To this end, we extend also Pk to real arguments by linear
interpolation and define

P̂
(n)
t = n−1/3P

(n)

tn1/3 , t ⩾ 0. (9.11)

Lemma 9.3. Let 0 < a < b <∞. Then the stochastic processes P̂
(n)
t , n ⩾ 1, are tight in

C[a, b].

Proof. The proof is very similar to that of Lemma 7.1. First, by (9.11) and (9.8),

E P̂ (n)
a = n−1/3 EP (n)

an1/3 ⩽ n−1/3 EP (n)
0 ⩽ C, (9.12)

and thus the sequence (P̂
(n)
a )∞n=1 is tight.

Let Mn and Ψ̂n be as in (7.17), Tk and T̂
(n)
k be as in (7.8) and (7.9). From (9.6) and

(4.6), Wk ⩽Mk, the increasing property of Φk and also (7.8), for any integer k ⩾ an1/3,

|Pk − Pk−1| ⩽ BkYk = BkΦ
−1
k Wk ⩽ BkΦ

−1
⌊an1/3⌋max

k⩾1
Mk = n1/3MnΨ̂n(Tk − Tk−1). (9.13)

Extending (9.13) to real arguments and using (9.11), we thus have

|P̂ (n)
t − P̂ (n)

s | ⩽ MnΨ̂n(T̂
(n)
t − T̂ (n)

s ) if a ⩽ s ⩽ t. (9.14)

The result then follows from Lemmas 7.2 and 7.3, this time taking Xn(t) := P̂
(n)
t , Yn(t) :=

T̂
(n)
t − T̂ (n)

a and Zn := MnΨ̂n; tightness of MnΨ̂n follows from that of (Mn)
∞
0 and (Ψ̂n)

∞
0 .
□

Proof of Theorem 9.1. In view of Lemma 9.3, by considering a subsequence, we may as-

sume that the processes P̂
(n)
t converge in distribution in every space C[a, b] for 0 < a <

b < ∞, and thus in C(0,∞), to some stochastic process P(t) on (0,∞). Again using the
Skorohod coupling theorem, we can assume that all a.s. convergence results in the proof
of Theorem 8.1 hold and also

P̂
(n)
t → P(t) (9.15)
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a.s. uniformly on every interval [a, b]. From (8.8),

n−1/3Y⌊tn1/3⌋ → t−1/2β̃−1B(t) = t−1/2B̃(t) (9.16)

a.s. uniformly on each compact interval in (0,∞).

Let s, t be real numbers with 0 < s < t, and let k = ⌊sn1/3⌋ and ℓ = ⌊tn1/3⌋. By the
same argument leading to (8.9), now using (9.15) and (9.5), we have

P̂ (n)
s − P̂

(n)
t = n−1/3

ℓ∑
i=k+1

(
1− (1−Bi)

Yi
)
+ o(1) (9.17)

Let y+ and y− be as in (8.11) and (8.14). By (3.36) of Lemma 3.7, we can therefore
conclude that

P̂ (n)
s − P̂

(n)
t ⩽

∫ t

s

(
1− 1

(1 + y+/(4u))2

)
du+ op(1) (9.18)

and

P̂ (n)
s − P̂

(n)
t ⩾

∫ t

s

(
1− 1

(1 + y−/(4u))2

)
du+ op(1). (9.19)

The sandwich argument in the proof of (8.16), the bounds in (9.18) and (9.19), together
with (8.25), imply that for 0 < s < t <∞,

P̂ (n)
s − P̂

(n)
t =

∫ t

s

(
1− 1

(1 + u−1/2B̃(u)/(4u))2
)
du+ op(1)

=

∫ t

s

(
1− 1(

1 + 3
4ξu

−3/2
)2/3) du+ op(1). (9.20)

In light of (9.15), we thus have a.s.,

P(t)− P(s) =

∫ t

s

(
1− 1(

1 + 3
4ξu

−3/2
)2/3)du. (9.21)

Furthermore,
d

ds
P̂ (n)
s = −E(Jk | Fk) = (1−Bk)

Yk − 1, (9.22)

where k = ⌈sn1/3⌉. Thus
∣∣ d
ds P̂

(n)
s

∣∣ ⩽ 1, which in turn implies that∣∣P̂ (n)
0 − P̂ (n)

s

∣∣ ⩽ s. (9.23)

For t ⩾ 1, it follows from the reverse increasing property of Pk and (9.7) that

E P̂ (n)
t = n−1/3 EP (n)

tn1/3 ⩽ n−1/3 EP (n)

⌊tn1/3⌋ ⩽
Cn1/6

⌊tn1/3⌋1/2
⩽ Ct−1/2. (9.24)

Sending s→ 0 and t→ ∞, we deduce from (9.23) and (9.24) that P̂
(n)
0 −(P̂

(n)
s −P̂ (n)

t )
p−→ 0,

uniformly in n. Combining this and (9.21) with a standard argument gives

P̂
(n)
0

p−→
∫ ∞

0

(
1− 1(

1 + 3
4ξu

−3/2
)2/3)du. (9.25)

The change of variable x = 3ξu−3/2/4 yields, using Lemma B.1,∫ ∞

0

(
1− 1(

1 + 3
4ξu

−3/2
)2/3)du =

2

3

(3ξ
4

)2/3 ∫ ∞

0

(
1− 1

(1 + x)2/3

)
x−5/3 dx

=
2

3

(3
4

)2/3
ξ2/3

−Γ(−2
3)Γ(

4
3)

Γ(23)
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= 2−4/33−1/3Γ(
1
3)

2

Γ(23)
ξ2/3. (9.26)

The result thus follows from (9.3), (9.10), (9.11), (9.25), and (9.26). □

10. The general case

Here we consider the general case. The argument is similar to the case where m = 2
and ρ = 0, so we give only the main changes here.

10.1. The stochastic recursions and new estimates. Define Yk, Jk, Zk,Fk as in Sec-
tion 4, but now with the boundary condition Yn−1 = m. We use the stochastic recursions
in Section 4.1 to obtain the subgraph Dn, where we now sample m outgoing edges instead
of two. The recursion in (4.2) now becomes

Yk−1 = Yk − Zk +m · Jk = Yk − Zk +m · 1[Zk ⩾ 1], 2 ⩽ k ⩽ n− 1. (10.1)

As (4.3) still holds, we have

E(Yk−1 | Fk) = Yk − E(Zk | Fk) +mP(Zk ⩾ 1 | Fk)
= Yk −BkYk +m

(
1− (1−Bk)

Yk
)
, (10.2)

and, again by Markov’s inequality,

E(Yk−1 | Fk) ⩽ Yk −BkYk +mBkYk = (1 + (m− 1)Bk)Yk. (10.3)

Thus, with Φk as in (3.5), we can define

Wk := ΦkYk, 0 ⩽ k ⩽ n− 1. (10.4)

It follows from (10.3) and (10.4) that W0, . . .Wn−1 is a reverse supermartingale with

Wn−1 = Φn−1Yn−1 = mΦn−1. (10.5)

We again consider the Doob decomposition Wk =Mk −Ak, with

Mk := mΦn−1 +
n−1∑
j=k+1

(Wj−1 − E(Wj−1 | Fj)), (10.6)

and Ak as in (4.11). Analogous to (4.14) and (4.16),

Ak−1 −Ak = mΦk−1

(
(1−Bk)

Yk − 1 +BkYk
)

(10.7)

and

Var(Wk−1 | Fk) ⩽ CΦ2
k−1BkYk. (10.8)

Using (10.8) and arguing as in (4.18), we obtain

VarB(Mk) ⩽ C
n−1∑
j=k+1

Φ2
j−1Bj

n−1∏
i=j+1

(
1 + (m− 1)Bi

)
. (10.9)

By the same proofs as for Lemmas 4.1–4.3, again using (3.6), (3.7), (3.8), (3.9) and
(3.11), we get

E max
0⩽k⩽n−1

W 2
k ⩽ E max

0⩽k⩽n−1
M2
k ⩽ Cn2(m−1)χ; (10.10)

P(Zk ⩾ 1) ⩽
Cn(m−1)χ

k1+(m−1)χ
, P(Zk ⩾ 2) ⩽

Cn2(m−1)χ

k2+2(m−1)χ
; (10.11)

Ak−1 −Ak ⩽ CΦ−1
k W 2

kB
2
k, EAk ⩽

Cn2(m−1)χ

k1+(m−1)χ
. (10.12)
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10.2. The branching process. As in Section 5, we can couple the early part of Dn to a
suitable time-changed branching process. Let Y be a branching process that starts with m
particles at time 0, and each particle has an independent Exp(1) lifetime, before splitting

into m new particles. Let Ŷ be the time-changed counterpart of Y, again by the mapping

t 7→ e−t; thus Ŷx = Y− log x is the number of particles in Ŷ alive at time x. By standard
properties of branching processes (see [13, Section 8] and e.g. [1, Chapter III])

EYt = me(m−1)t (10.13)

and as t→ ∞ and thus x = e−t → 0,

xm−1Ŷx = e−(m−1)tYt
a.s.−→ ξ ∈ Gamma

( m

m− 1
,m− 1

)
. (10.14)

The statements of Lemma 5.1 and Theorem 5.2 hold with the same n1 and κn, but χ
is now as in (3.2), and δn = 3 logm n/n1/3. The analogue of Lemma 5.1 can be proved using
entirely the same argument, but several straightforward modifications are needed to obtain
the analogue of Theorem 5.2. For instance, in Step 1, we use (10.11) and n1 = ⌊n/ log n⌋
to show that

n−1∑
k=n1

P(Zk ⩾ 2) = O
(
n−1(log n)1+2(m−1)χ

)
= o(1). (10.15)

In Step 2, it follows from (10.13) that

E Ŷx = EY− log x =
m

xm−1
, 0 < x ⩽ 1, (10.16)

and so for x = (n1/n)
χ ∼ logχ n, w.h.p. there are at most logm−1 n generations from the

root 1 to any point in [(n1/n)
χ, 1]. Adjusting the remaining steps accordingly then yield

the desired conclusion.

Redefine

Ξ(n) :=
W

(n)
n1

n(m−1)χ
. (10.17)

It follows from (10.17), (4.6). (3.5), (3.18), (5.13), and (10.14), that the statement of

Lemma 5.3 holds, with β̃ as in (3.18), and ξ ∈ Gamma(m/(m − 1),m − 1), independent

of β̃.

10.3. The flat middle part. We first note that ν defined in (1.3) also satisfies, by (3.2)
and a simple calculation,

ν =
(m− 1)χ

1 + (m− 1)χ
(10.18)

and thus

(1− ν)(m− 1)χ = ν. (10.19)

We now choose nν ≪ n2 ⩽ n1 := ⌊n/ log n⌋. Then, as in Section 6, (10.12) and (10.18)
yield

E max
n2⩽k⩽n−1

∣∣∣∣ Ak
n(m−1)χ

∣∣∣∣ = EAn2

n(m−1)χ
⩽ C

n(m−1)χ

n
1+(m−1)χ
2

= C
(nν
n2

)1+(m−1)χ
= o(1). (10.20)

Hence Lemma 6.1 holds, with denominators n(m−1)χ. Similarly, the proofs in Section 6,
now using (10.9), (3.8), (3.11), and (10.17), yield the conclusion that as n→ ∞,

max
0⩽k⩽n1

∣∣∣∣ Mk

n(m−1)χ
− Ξ(n)

∣∣∣∣ p−→ 0; (10.21)

max
n2⩽k⩽n1

∣∣∣∣ Wk

n(m−1)χ
− Ξ(n)

∣∣∣∣ p−→ 0. (10.22)
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10.4. The final part. Let Vk and Tk be as in (7.8). As before, we extendWk,Mk, Ak, Vk, Tk
to real arguments by linear interpolation. Now let, for t ⩾ 0,

Â
(n)
t := n−(m−1)χA

(n)
tnν , (10.23)

V̂
(n)
t := nνV

(n)
tnν , (10.24)

T̂
(n)
t := T

(n)
tnν . (10.25)

Note that Lemma 7.3 holds in this more general setting (with the exponent 1/3 replaced
by ν in the proof). Moreover, fix a > 0 and define also

Mn := n−(m−1)χmax
k⩾1

Mk and Ψ̂n := nν(m−1)χΦ−1
⌊anν⌋. (10.26)

In view of (10.12), we have, for all real ⌊anν⌋ ⩽ k ⩽ ℓ,

|Aℓ −Ak| ⩽ Cn(m−1)χ(2−ν)M2
nΨ̂n(Vℓ − Vk). (10.27)

Since (2− ν)(m− 1)χ− (m− 1)χ = ν by (10.19), it follows from (10.27) that if a ⩽ s ⩽ t,
then

|Â(n)
t − Â(n)

s | ⩽ CM2
nΨ̂n(V̂

(n)
t − V̂ (n)

s ). (10.28)

By (10.23), (10.12), and (10.18), E Â(n)
a ⩽ Ca, which implies that the sequence (Â

(n)
a )∞n=1

is tight. From (10.10) and (3.11), EM2
n ⩽ C and E Ψ̂n = O(1), implying that (Mn)

∞
n=1

and (Ψ̂n)
∞
n=1 are tight also. Following the proof of Lemma 7.1, with the ingredients

above, we then conclude that the stochastic processes Â
(n)
t , n ⩾ 1, are tight in C[a, b] for

0 < a < b <∞.

Therefore, arguing as in the beginning of the proof of Theorem 8.1, we may assume
(by considering a subsequence and a special coupling) that (8.3) holds a.s. in C(0,∞)
together with (8.5), (5.22), (10.21), (10.22), and, instead of (8.4),

sup
k⩾logn

∣∣k−(m−1)χΦ
(n)
k − β̃(n)

∣∣ p−→ 0. (10.29)

Then, analogously to (8.6) and (8.8),

n−(m−1)χWtnν → B(t) := β̃ξ −A(t) (10.30)

and, again using (10.19),

n−νY⌊tnν⌋ → t−(m−1)χβ̃−1B(t) (10.31)

a.s. uniformly on every compact interval in (0,∞).

Let k := ⌊snν⌋ and ℓ := ⌊tnν⌋ for some 0 < s < t. Similarly to (8.9), we have by (8.3)
and (10.7)

Â(n)
s − Â

(n)
t = mn−(m−1)χ

ℓ∑
i=k+1

Φi−1[(1−Bi)
Yi − 1 + YiBi] + o(1). (10.32)

Following (8.10)–(8.16) with minor adjustments (in particular, choosing λn = nν in
Lemma 3.7 and using again (10.19)) leads to, a.s. for every real 0 < s ⩽ t,

A(s)−A(t) = mβ̃

∫ t

s
u(m−1)χ

((
1 + 1

θu
−(1+(m−1)χ)β̃−1B(u)

)−(m+ρ)

− 1 + χu−(1+(m−1)χ)β̃−1B(u)
)
du. (10.33)

Let, for convenience, recalling (10.18),

α := 1 + (m− 1)χ =
1

1− ν
. (10.34)
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Then, by (10.33), a.s. A(t) is differentiable on (0,∞) and

A′(t) = −mβ̃t(m−1)χ
((

1 + 1
θ t

−αβ̃−1B(t)
)−(m+ρ) − 1 + χt−αβ̃−1B(t)

)
, (10.35)

and B′(t) = −A′(t) by (10.30). Define again

B̃(t) = β̃−1B(t), (10.36)

so that

B̃′(t) = mt(m−1)χ
((

1 + 1
θ t

−αB̃(t)
)−(m+ρ) − 1 + χt−αB̃(t)

)
. (10.37)

Moreover, EA(t) ⩽ Ct−α for t ⩾ 1, say, by (10.23), (10.12), and Fatou’s lemma, and
dominated convergence further implies that E limt→∞A(t) = 0. Hence A(t) → 0 a.s. as
t→ ∞, and thus we have we have from (10.30) and (10.36) that

B̃(t) ↗ ξ as t→ ∞. (10.38)

As shown in detail in Appendix A, see (A.14) and (A.16), the unique solution to (10.37)
satisfying (10.38) is given by

B̃(t) = θtα
((

1 + m+ρ+1
θ ξt−α

) 1
m+ρ+1 − 1

)
. (10.39)

Hence, by (10.36) and (10.39),

B(t) = β̃B̃(t) = θβ̃tα
((

1 + m+ρ+1
θ ξt−α

) 1
m+ρ+1 − 1

)
. (10.40)

Now, proceeding as in the remaining steps of the proof of Theorem 8.1 yields the conclusion
that as n→ ∞,

n−(m−1)χWtnν
d−→ θβ̃tα

((
1 + m+ρ+1

θ ξt−α
) 1

m+ρ+1 − 1
)

in C[0,∞), (10.41)

and

n−νYtnν
d−→ θt

((
1 + m+ρ+1

θ ξt−α
) 1

m+ρ+1 − 1
)

in C(0,∞). (10.42)

10.5. The number of descendants. As in Section 9, let X = X(n) be the number of
red vertices, and define Lk and Pk as in (9.4) and (9.5). As in (9.7), it follows from (10.11)
that

EPk ⩽ C
(n
k

)(m−1)χ
, 1 ⩽ k ⩽ n− 1. (10.43)

Furthermore, arguing as in (9.8) with the cutoff nν yields, recalling (10.19),

EP0 ⩽ Cnν . (10.44)

The argument for (9.9) now yields

EL2
0 ⩽ Cnν , (10.45)

which implies that

n−νL0
p−→ 0 as n→ ∞. (10.46)

As before, we extend Pk to real arguments by linear interpolation, but now let

P̂
(n)
t = n−νP

(n)
tnν , t ⩾ 0. (10.47)

The same proof as for Lemma 9.3 then shows that for 0 < a < b <∞, the sequences P̂
(n)
t ,

n ⩾ 1 are tight in C[a, b]. Proceeding as in the proof of Theorem 9.1, where we use the
Skorohod coupling theorem again, we get

P̂
(n)
0

p−→
∫ ∞

0

(
1−

(
1 + θ−1u−αB̃(u)

)−(m+ρ)
)
du.

=

∫ ∞

0

(
1−

(
1 + m+ρ+1

θ ξu−α
)− m+ρ

m+ρ+1

)
du. (10.48)
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By the change of variable v = θ−1(m+ ρ+ 1)ξu−α,∫ ∞

0

(
1−

(
1 + m+ρ+1

θ ξu−α
)− m+ρ

m+ρ+1

)
du

=
1

α

(m+ ρ+ 1

θ
ξ
)1/α ∫ ∞

0

(
1− (1 + v)

− m+ρ
m+ρ+1

)
v−(1+1/α) dv. (10.49)

We take a = −1/α and b = (m+ ρ)/(m+ ρ+ 1) in Lemma B.1, and note that
1/α = 1− ν by (10.34), and thus by (1.3),

b− a =
m+ ρ

m+ ρ+ 1
+

1

α
=

m+ ρ

m+ ρ+ 1
− ν + 1 =

m+ ρ

m(m+ ρ+ 1)
+ 1. (10.50)

Hence, (10.49) and Lemma B.1 yield∫ ∞

0

(
1−

(
1 + m+ρ+1

θ ξu−α
)− m+ρ

m+ρ+1

)
du

= − 1

α
·
Γ(− 1

α)Γ
( m+ρ
m(m+ρ+1) + 1

)
Γ
( m+ρ
m+ρ+1

) (m+ ρ+ 1

θ
ξ
)1/α

=
Γ(1− 1

α)Γ
( m+ρ
m(m+ρ+1) + 1

)
Γ
( m+ρ
m+ρ+1

) (m+ ρ+ 1

θ
ξ
)1/α

. (10.51)

Finally, (9.3), (10.46), (10.47), (10.48), and (10.51) together imply that as n→ ∞,

n−νX
d−→

Γ(1− 1
α)Γ

( m+ρ
m(m+ρ+1) + 1

)
Γ
( m+ρ
m+ρ+1

) (m+ ρ+ 1

θ
ξ
)1/α

. (10.52)

We here note that, by (10.34) and (1.3),

1− 1

α
= ν =

(m− 1)(m+ ρ)

m(m+ ρ+ 1)
. (10.53)

We write also ξ = (m−1)ξ1, with ξ1 ∈ Gamma(m/(m−1), 1), and recall that θ = 2m+ρ.
Hence, (10.52) can be written as (1.4). □

11. Moment convergence

In this section, we prove Theorem 1.3 on moment convergence; we use the standard
method of proving uniform moment estimates and thus uniform integrability. This time
we choose to treat general m and ρ from the beginning.

We consider first the reverse martingale Mk, recalling that Mk ⩾Wk ⩾ 0. We denote
the maximal function by

M∗ := max
n−1⩾k⩾0

Mk, (11.1)

and define the martingale differences, for n − 1 ⩾ k ⩾ 1, recalling (10.6), (10.4), (10.1),
and that Yk is Fk-measurable,

∆Mk :=Mk−1 −Mk =Wk−1 − E
(
Wk−1 | Fk

)
= Φk−1

(
Yk−1 − E

(
Yk−1 | Fk

))
= −Φk−1

(
Zk − E

(
Zk | Fk

))
+mΦk−1

(
Jk − E

(
Jk | Fk

))
. (11.2)

We define also the conditional square function

s(M) :=

(
n−1∑
i=1

E
(
(∆Mi)

2 | Fi
))1/2

. (11.3)

Let for convenience

κ := (m− 1)χ. (11.4)
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(Thus, in the case m = 2, ρ = 0, we have κ = χ = 1
2 .) We use also the standard notation,

for any random variable X ,

∥X∥p :=
(
E[|X |p]

)1/p
. (11.5)

Note that for any p > 0, (2.1), (3.3), and (3.4) yield, cf. (3.6)–(3.7),

E[Bp
k] ⩽ Cpk

−p. (11.6)

Lemma 11.1. For every p > 0,

E[Mp
∗ ] ⩽ Cpn

pκ. (11.7)

Proof. We assume in the proof for simplicity that p ⩾ 2 is an integer; the general case
follows by Lyapunov’s inequality.

We use as in [13] one of Burkholder’s martingale inequalities [7, Theorem 21.1], [10,
Corollary 10.9.1] on the reverse martingale Mk −Mn−1 =Mk −mΦn−1, which yields

E[Mp
∗ ] ⩽ Cp E[Φpn−1] + Cp E

[(
max
k

|Mk −Mn−1|
)p]

⩽ Cp E[Φpn−1] + Cp E[s(M)p] + Cp E
[
max
k

|∆Mk|p
]

⩽ Cp E[Φpn−1] + Cp E
[
s(M)p

]
+ Cp

n−1∑
k=1

E
[
|∆Mk|p

]
. (11.8)

We estimate the three terms on the right-hand side separately.

First, we have by the independence of Bi, (3.20), and (3.6), similarly to (3.10)–(3.11),

E[Φpk] =
k∏
i=1

E (1 + (m− 1)Bi)
p =

k∏
i=1

(
1 + p(m− 1)

χ

i
+O

(
i−2
))

= exp
( k∑
i=1

(pκ
i

+O
(
i−2
)))

= exp
(
pκ log k +O

(
1
))

⩽ Cpk
pκ. (11.9)

Next, by (11.2), (10.8), and (10.4),

E
[
(∆Mk)

2 | Fk
]
= Var

[
Wk−1 | Fk

]
⩽ CΦ2

k−1BkYk ⩽ CΦk−1BkWk

⩽ CΦk−1BkMk ⩽ CΦk−1BkM∗. (11.10)

Note that Φk − Φk−1 = (1 + (m − 1)Bk − 1)Φk−1 = (m − 1)BkΦk−1. Hence, (11.3) and
(11.10) yield

s(M)2 ⩽ C
n−1∑
k=1

(Φk − Φk−1)M∗ ⩽ CΦn−1M∗. (11.11)

Hölder’s inequality (or Cauchy–Schwarz’s) and (11.9) thus yield

E[s(M)p] ⩽ Cp E
[
Φ
p/2
n−1M

p/2
∗
]
⩽ Cp

(
E[Φpn−1]E[M

p
∗ ]
)1/2

⩽ Cpn
pκ/2∥M∗∥p/2p . (11.12)

For the final term in (11.8), we use the decomposition of ∆Mk in (11.2) and treat the
two terms on the last line there separately. We use as in [13, (7.9)] the well-known general
estimate for a binomial random variable ζ ∈ Bin(N, q):

E |ζ − E ζ|p ⩽ Cp(Nq)
p/2 + CpNq. (11.13)

Conditioned on Fk, we have Zk ∈ Bin(Yk, Bk) by (4.3), and thus (11.13) yields

E
(∣∣Zk − E(Zk | Fk)

∣∣p | Fk) ⩽ Cp(YkBk)
p/2 + CpYkBk. (11.14)
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Similarly, since Jk = 1[Zk ⩾ 1] has a conditional Bernoulli distribution,

E
(∣∣Jk − E(Jk | Fk)

∣∣p | Fk) ⩽ Cp E
(
|Jk|p | Fk

)
= Cp E

(
Jk | Fk

)
⩽ Cp E

(
Zk | Fk

)
= CpYkBk. (11.15)

Hence, (11.2), (11.14), and (11.15) yield,

E
[
|∆Mk|p | Fk

]
⩽ CpΦ

p
k−1

[
E
(∣∣Zk − E(Zk | Fk)

∣∣p | Fk)+ E
(∣∣Jk − E(Jk | Fk)

∣∣p | Fk)]
⩽ CpΦ

p
k−1Y

p/2
k B

p/2
k + CpΦ

p
k−1YkBk

⩽ CpΦ
p/2
k−1W

p/2
k B

p/2
k + CpΦ

p−1
k−1WkBk

⩽ CpΦ
p/2
k−1M

p/2
∗ B

p/2
k + CpΦ

p−1
k−1M∗Bk. (11.16)

Hence, using Hölder’s inequality, the independence of Φk−1 and Bk, (11.9), and (11.6),

E
[
|∆Mk|p

]
⩽ Cp E

[
Φ
p/2
k−1B

p/2
k M

p/2
∗
]
+ Cp E

[
Φp−1
k−1BkM∗

]
⩽ Cp

(
E
[
Φpk−1B

p
k

]
E
[
Mp

∗
])1/2

+ Cp

(
E
[
Φ2p−2
k−1 B

2
k

]
E
[
M2

∗
])1/2

⩽ Cpk
pκ/2−p/2∥M∗∥p/2p + Cpk

(p−1)κ−1∥M∗∥2
⩽ Cpk

pκ/2−1∥M∗∥p/2p + Cpk
(p−1)κ−1∥M∗∥p. (11.17)

Consequently,

n−1∑
k=1

E
[
|∆Mk|p

]
⩽ Cpn

pκ/2∥M∗∥p/2p + Cpn
(p−1)κ∥M∗∥p. (11.18)

Finally, (11.8) yields, collecting the estimates (11.9), (11.12), and (11.18),

E[Mp
∗ ] ⩽ Cpn

pκ + Cpn
pκ/2∥M∗∥p/2p + Cpn

(p−1)κ∥M∗∥p. (11.19)

It follows trivially from the definitions that for every n, M∗ is deterministically bounded
by some constant (depending on n), and thus ∥M∗∥p <∞. Let x := ∥M∗∥p/nκ ∈ (0,∞);
then (11.19) can be written as

xp ⩽ Cp + Cpx
p/2 + Cpx. (11.20)

Since p > 1, it follows that x ⩽ Cp, which is the same as (11.7). Alternatively, we can
proceed as in [13] to consider only p = 2j , with j being positive integers. The conclusion
(11.7) then follows from an induction over j, (11.19) and the base case (p = 2) proved in
(10.10). □

We use the decomposition X = 1 + L0 + P0 in (9.3), and estimate the terms L0 and
P0 separately.

Lemma 11.2. For every p > 0,

E[P p0 ] ⩽ Cpn
pν . (11.21)

Proof. We may by Lyapunov’s inequality assume that p ⩾ 1 is an integer. By (9.5) and
(4.3),

Pk =

n−1∑
i=k+1

E(Ji | Fi) ⩽
n−1∑
i=k+1

YiBi =

n−1∑
i=k+1

Φ−1
i WiBi ⩽M∗

n−1∑
i=k+1

Φ−1
i−1Bi. (11.22)

Hence, by Hölder’s and Minkowski’s inequalities,

∥Pk∥p ⩽ ∥M∗∥2p

∥∥∥∥∥
n−1∑
i=k+1

Φ−1
i−1Bi

∥∥∥∥∥
2p

⩽ ∥M∗∥2p
n−1∑
i=k+1

∥∥Φ−1
i−1Bi

∥∥
2p
. (11.23)
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We have (1 + x)−p ⩽ 1 − px + Cpx
2 for all x ⩾ 0, and thus by (3.6)–(3.7) and (11.4),

generalizing (3.15),

E
[
(1 + (m− 1)Bi)

−p] ⩽ 1− p(m− 1)E[Bi] + Cp E[B2
i ]

= 1− pκi−1 +O(i−2). (11.24)

Hence, by the same argument as for (11.9), for any integers p ⩾ 1 and k ⩾ 1,

E[Φ−p
k ] =

k∏
i=1

E
[
(1 + (m− 1)Bi)

−p] = k∏
i=1

(
1− pκ

i
+O

(
i−2
))

= exp
(
−

k∑
i=1

(pκ
i

+O
(
i−2
)))

= exp
(
−pκ log k +O

(
1
))

⩽ Cpk
−pκ. (11.25)

In other words, ∥Φ−1
k ∥p ⩽ Cpk

−κ. Furthermore, ∥Bk∥p ⩽ Cpk
−1 by (11.6). Since Φi−1

and Bi are independent, it follows that, for i ⩾ 2,∥∥Φ−1
i−1Bi

∥∥
p
= ∥Φ−1

i−1∥p∥Bi∥p ⩽ Cpi
−κ−1. (11.26)

We may here replace p by 2p, and it follows from (11.23) and (11.7) that, for k ⩾ 1,

∥Pk∥p ⩽ ∥M∗∥2p
n−1∑
i=k+1

∥∥Φ−1
i−1Bi

∥∥
2p

⩽ Cpn
κ

n−1∑
i=k+1

i−κ−1 ⩽ Cpn
κk−κ. (11.27)

Furthermore, as in Section 9, we have P0−Pk ⩽ k for any k ⩾ 0, and thus Minkowski’s
inequality and (11.27) yield, choosing k := ⌊nν⌋ and noting that (10.18) and (11.4) imply
κ(1− ν) = ν,

∥P0∥p ⩽ ∥Pk∥p + k ⩽ Cpn
κ−κν + nν ⩽ Cpn

ν , (11.28)

which completes the proof. □

Lemma 11.3. For every p > 0,

E[|L0|p] ⩽ Cpn
pν/2. (11.29)

Proof. Recall that (Lk)
n−1
k=0 is a reverse martingale. By (9.4), its conditional square function

is given by

s(L)2 :=
n−1∑
i=1

E
[(
Ji − E(Ji | Fi)

)2 | Fi] = n−1∑
i=1

Var[Ji | Fi] ⩽
n−1∑
i=1

E[Ji | Fi] = P0, (11.30)

where the inequality follows because Ji has a conditional Bernoulli distribution. Fur-
thermore, again using (9.4), the martingale differences ∆Lk := Lk−1 − Lk are bounded
by

|∆Lk| =
∣∣Jk − E(Jk | Fk)

∣∣ ⩽ 1. (11.31)

Hence, Burkholder’s inequality yields, similarly to (11.8), using also Lemma 11.2,

E[Lp0] ⩽ Cp E[s(L)p] + Cp E
[
max
k

|∆Lk|p
]
⩽ Cp E[P

p/2
0 ] + Cp ⩽ Cpn

pν/2, (11.32)

which completes the proof. □

Proof of Theorem 1.3. It follows from (9.3) and Lemmas 11.2 and 11.3 that, for any p > 0,

E[Xp] ⩽ Cp + Cp E[Lp0] + Cp E[P p0 ] ⩽ Cpn
pν . (11.33)

In other words, E[(X(n)/nν)p] ⩽ Cp for every p > 0. By a standard argument, see e.g. [10,

Theorems 5.4.2 and 5.5.9], this implies uniform integrability of the sequence |X(n)/nν |p
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for every p > 0 and thus the convergence in distribution in (1.4) implies convergence of
all moments.

Since ξ1 ∈ Gamma
(

m
m−1 , 1

)
,

E
[
ξ
p(1−ν)
1

]
=

Γ(p(1− ν) + m
m−1)

Γ( m
m−1)

, (11.34)

and thus the explicit formula (1.5) follows. □

12. The model with self-loops

In this section, we consider a variation of the preferential attachment graph in Defi-
nition 1.1, where self-loops are possible. We use the version in [11, Section 8.2] (see also
[5, 6]) and start with a single vertex 1 with m self-loops. For n ⩾ 2, each outgoing edge
of vertex n is now attached to a vertex j ∈ [n], again with probability proportional to ρ
+ the current degree of vertex j, where we define the current degree of vertex n when we
add the (k + 1)th edge from it to be k + 1 + the number of loops attached to n so far.
(We thus count all outgoing edges up to the (k+1)th; a loop contributes 2 to the degree.)
Hence, recalling that dj(n) is the degree of vertex j in Gn, when adding vertex n ⩾ 2 to
Gn−1, the (k+ 1)-th outgoing edge of vertex n attaches to vertex j ∈ [n] with probability

dj(n−1)+
∑k

ℓ=1 1[n
ℓ→j]+ρ

2(n−1)m+2k+1+nρ , j < n,

k+1+
∑k

ℓ=1 1[n
ℓ→j]+ρ

2(n−1)m+2k+1+nρ , j = n.
(12.1)

Remark 12.1. The details of the model can be modified without affecting the following
asymptotic result, with only straightforward changes to its proof. For example, we may
again start with m edges between vertices 1 and 2, and thus no loops there, or we may
include all m outgoing edges in the weight of vertex n when we add edges from it. We
leave the details to the reader.

Theorem 12.2. Let X(n) be the number of descendants of vertex n in the model above.
Then, the statements of Theorems 1.2 and 1.3 hold.

The proof of Theorem 12.2 is largely similar to those of Theorems 1.2 and 1.3 so we
only sketch the main differences here.

First, let Ni be the number of self-loops at vertex i. When we add the m edges from
a new vertex i, the weight of vertex i and the total weight of the first i− 1 vertices evolve
like a Pólya urn U ′

i with initially 1 + ρ red and (2i − 2)m + (i − 1)ρ black balls, where
we add 2 new balls at each draw: 2 red balls when a red ball is drawn, and one ball of
each colour when a black ball is drawn; Ni is the number of times a red ball is drawn.
Note that this urn does not depend on what has happened when the edges from earlier
vertices were added, and in particular not on N1, . . . , Ni−1. Consequently, the random
numbers (Ni)

∞
i=1 are independent. Furthermore, if we condition on the entire sequence

(Ni)
∞
i=1, then the non-loop edges are added from each new vertex n ⩾ 2 to [n− 1] by the

same random procedure as in Definition 1.1, except that now we add m −Nn new edges
from n, and that the degrees of the vertices include also any existing loops. This means
that after we have added vertex j ⩾ 2, the weight of vertex j and the total weight of the
first j − 1 vertices evolve like a standard Pólya urn U ′′

j with initially m+Nj + ρ red and

(2j−1)m−Nj+(j−1)ρ black balls, after each draw adding one ball of the same colour as
the drawn ball. As a consequence, the proportion of red balls converges a.s. to a random
number Bj with the (conditional) beta distribution

Bj | (Ni)
∞
i=1 ∈ Beta(m+Nj + ρ, (2j − 1)m−Nj + (j − 1)ρ), j ⩾ 2. (12.2)
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Moreover, conditioned on (Ni)
∞
i=1, we can again construct the preferential attachment

graph by the Pólya urn representation in Definition 2.1–Remark 2.3, using (condition-
ally) independent Bj with the distributions (12.2). (As before, we also let B1 := 1.)
In particular, note that since (Ni)

∞
i=2 are independent, the random variables (Bi)

∞
i=2 are

independent. and so are the pairs of random variables (Ni, Bi), i ⩾ 2.

The distribution of each Bj is thus a mixed beta distribution, but we do not need
exact expressions. We will show that all estimates in Section 3 still hold (possibly with
different constants C). Note first that in the urn U ′

i used to determine Ni, we make m
draws and thus the number of red balls is at most m+ ρ = O(1); hence the probability of
drawing a red ball is O(1/i) for each draw, and thus

P(Ni > 0) ⩽ ENi = O(1/i). (12.3)

Recall θ and χ in (3.1) and (3.2). Using 0 ⩽ Ni ⩽ m, (12.2), (12.3), and (3.3), it is easy
to show that

EBi =
m+ ρ+ ENi

θi
=
χ

i
+O(i−2), (12.4)

EBr
i ⩽

r−1∏
j=0

2m+ ρ+ j

θi+ j
⩽ Cri

−r, r ⩾ 2. (12.5)

Similarly, we have, by first conditioning on Ni,

E[NiBi] =
E[Ni(m+ ρ+Ni)]

θi
⩽

E[Ni(2m+ ρ)]

θi
= O(i−2), (12.6)

and the bound

E
[
N r
i B

r
i

]
= O

(
i−(r+1)

)
, for each r ⩾ 2. (12.7)

Define Φi and Sn,i by (3.5) and (2.3) as before. Then (12.4) and a little calculation
using (3.4) shows that, for 2 ⩽ j ⩽ k <∞,

k∏
i=j

E(1 + (m− 1)Bi) =
k∏
i=j

i+ (m− 1)χ

i
·
k∏
i=j

E(1 + (m− 1)Bi)

1 + (m− 1)χ/i

=
Γ
(
k + 1 + (m− 1)χ

)
Γ(j)

Γ
(
j + (m− 1)χ

)
Γ(k + 1)

k∏
i=j

(
1 +O

(
i−2
))

=
(k
j

)(m−1)χ(
1 +O(j−1)

)
, (12.8)

as in (3.8), and, recalling that Bi are independent and taking j = 1 in (12.8),

EΦk =
k∏
i=1

E(1 + (m− 1)Bi) =
Γ
(
k + 1 + (m− 1)χ

)
Γ
(
1 + (m− 1)χ

)
Γ(k + 1)

k∏
i=1

E(1 + (m− 1)Bi)

1 + (m− 1)χ/i

= Qk(m−1)χ
(
1 +O(k−1)

)
, (12.9)

where

Q :=

∏∞
i=1

E(1+(m−1)Bi)
1+(m−1)χ/i

Γ
(
1 + (m− 1)χ

) ; (12.10)

note that the infinite product in (12.10) converges as a consequence of (12.4).

Using (12.4) and (12.5), the upper bounds (3.10) and (3.11) follow by the same proof
as before. The statements in Lemmas 3.3 and 3.4 hold exactly, except for (3.18), which in
view of (12.9), is now replaced with

β̃ := Qβ. (12.11)
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Let Yk, Zk, Jk,Wk be as in Section 4. To streamline the arguments, from here onwards
we concentrate on the m = 2, ρ = 0 case, and leave the general case (with modifications
as in Section 10) to the reader. Once we have sampled the self-loops at every vertex,
the stochastic recursions for obtaining Dn are similar to the ones in Section 4.1: we
sample (Bi)

n−1
i=1 according to (12.2), and for each red vertex k, we add 2 − Nk outgoing

edges and proceed as before. The boundary conditions are the same, except now we have
Yn−1 = 2−Nn. For 2 ⩽ k ⩽ n− 1, the recursion takes the form

Yk−1 = Yk − Zk + (2−Nk)Jk, (12.12)

and because 0 ⩽ Nk ⩽ 2, we also have

Yk−1 ⩽ Yk − Zk + 2Jk. (12.13)

Let Fk be the σ-algebra generated by (Ni)
n
i=2, (Bi)

n−1
i=2 and the coin tosses at vertices

n− 1, . . . , k + 1 in the stochastic recursion. Note that (4.3) holds, and in view of (12.13),
also (4.5)–(4.12) and (4.15)–(4.18) hold, with the number 2 in (4.10) and (4.18) replaced
with 2−Nn, and with the last equality in (4.17) replaced with ⩽. Instead of (4.14), from
(12.12) we have

Ak−1 −Ak =Wk − E(Wk−1 | Fk)
= 2Φk−1((1−Bk)

Yk − 1 +BkYk) + Φk−1Nk E(Jk | Fk). (12.14)

Now, let B be the σ-field generated by (Bi)
n−1
i=2 and (Ni)

n
i=2. As the upper bounds in Sec-

tion 3 still hold, and (Bi)
n−1
i=2 are independent, Lemmas 4.1 and 4.2 hold. The probability

that vertex k ⩾ 2 is red and has at least one self-loop is

P(Zk ⩾ 1, Nk ⩾ 1) = E
[
1{Nk ⩾ 1}PB(Zk ⩾ 1)

]
; (12.15)

and so by Markov’s inequality and (4.30),

P(Zk ⩾ 1, Nk ⩾ 1) ⩽ 2E
(
NkBk

n−1∏
i=k+1

(1 +Bi)
)
. (12.16)

By the independence of the pairs (Bi, Ni), (12.6), and (3.8), this yields

P(Zk ⩾ 1, Nk ⩾ 1) ⩽ 2E(NkBk)
n−1∏
i=k+1

E(1 +Bi) ⩽ C
n1/2

k5/2
. (12.17)

In view of (12.14) and Markov’s inequality, (4.35) in Lemma 4.3 is replaced with

Ak−1 −Ak ⩽ (WkBk)
2Φ−1

k +ΦkNkBkYk = (WkBk)
2Φ−1

k +NkBkWk. (12.18)

Using (4.17), we have

EB[NkBkWk] = NkBk EB[Wk] ⩽ 2NkBkΦn−1. (12.19)

Since the pairs (Bi, Ni) are independent, it follows from (12.19) and (3.5) that

E[NkBkWk] ⩽ 2E
[
NkBk(1 +Bk)

] n−1∏
i=1
i ̸=k

E(1 +Bi) ⩽ 4E[NkBk]EΦn−1, (12.20)

and applying (12.6) and (12.9), we get

E
[
NkBkWk

]
⩽ C

n1/2

k2
⩽ C

n

k5/2
. (12.21)

With (12.18) and (12.21), we may proceed as in the proof of Lemma 4.3 to show that
(4.36) holds.

Lemma 5.1 follows from Lemma 3.4. Thus, the early part of the growth of Dn can be

coupled to the same time-changed Yule process Ŷ with some extra modifications. Recall

that Ψ(x) is the mapping of vertex x in Ŷ to a vertex k in Dn (or vertex (k/n)χ in D̂n).
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In Step (1) of the coupling, we sample (Ni)
n
i=1 and then (Bi)

n−1
i=1 as in (12.4). If Ψ maps

x to some k that has at least one self-loop, we extend Ψ in Section 5 by mapping all
children of x to k (so all other descendants of x are also mapped to k). To prove that
Theorem 5.2 also holds in this case, we need to show that the extended mapping above is

w.h.p. injective at every vertex in D̂n∩ [(n1/n)
χ, 1]. By (12.17) and (12.3), the probability

that a vertex in D̂n ∩ [(n1/n)
χ, 1] has at least one self-loop is at most

P(Nn ⩾ 1) +

n−1∑
k=n1

P(Zk ⩾ 1, Nk ⩾ 1) ⩽
C

n
+

n−1∑
k=n1

Cn1/2

k5/2
= O(log3/2 n/n) = o(1).

(12.22)

The same argument as in Step 1 in the proof of Theorem 5.2 and (12.22) then give the
desired claim. The remaining steps of the proof can be applied without any changes.

Lemma 6.1, Lemma 6.2 and Theorem 6.3 hold with the same proofs as before, since
we have shown that (4.36) and the various other estimates that we use there still hold.

Let Â
(n)
t be as in (7.1). When proving tightness of Â

(n)
t in C[a, b] for 0 < a < b <∞,

we have to use (12.18) instead of (4.35). Let Vk, Tk, V̂
(n)
t , T̂

(n)
t , Mn, and Ψ̂n be as in

(7.8), (7.9) and (7.17). Using (12.18) we obtain instead of (7.18), using the crude bound
Nk ⩽ m,

|Ak −Ak−1| ⩽M2
kΦ

−1
k (Vk − Vk−1) +mMk(Tk − Tk−1)

⩽ n5/6M2
nΨ̂n(Vk − Vk−1) +mn1/2Mn(Tk − Tk−1) (12.23)

and thus, arguing as for (7.20), for real numbers s, t such that a ⩽ s ⩽ t,

|Â(n)
t − Â(n)

s | ⩽ Ψ̂nM
2
n(V̂

(n)
t − V̂ (n)

s ) +mMn(T̂
(n)
t − T̂ (n)

s ). (12.24)

We have already shown in Section 7 that the processes V̂
(n)
t −V̂ (n)

a and T̂
(n)
t −T̂ (n)

a are tight

in C[a, b] (Lemma 7.3) and that the sequences (Mn)
∞
n=1 and (Ψ̂n)

∞
n=1 are tight. Hence,

by simple applications of Lemma 7.2, the processes Ψ̂nM
2
n(V̂

(n)
t − V̂

(n)
a ) and mMn(T̂

(n)
t −

T̂
(n)
a ), n ⩾ 1, are tight in C[a, b]. If (Xn(t))

∞
n=1 and (Yn(t))

∞
n=1 are any two sequences of

random continuous functions on [a, b] that both are tight in C[a, b], then so is the sequence

((Xn(t)+Yn(t)))
∞
n=1. Hence, the sequence Ψ̂nM

2
n(V̂

(n)
t − V̂ (n)

a )+mMn(T̂
(n)
t − T̂ (n)

a ), n ⩾ 1,
is tight in C[a, b]; finally (12.24) and another application of Lemma 7.2 (now with Zn = 1)

show that Â
(n)
t , n ⩾ 1, are tight in C[a, b], so Lemma 7.1 still holds.

Some minor adjustments are also required to yield the same result as in Theorem 8.1.

When applying the Skorohod coupling theorem, N
(n)
i , n ⩾ 1, are potentially different for

each n. Let 0 < s < t and define k := ⌊sn1/3⌋ and ℓ := ⌊tn1/3⌋. By (7.1) and (12.14),

Â(n)
s − Â

(n)
t = n−1/2

ℓ∑
i=k+1

2Φi−1

[
(1−Bi)

Yi − 1 + YiBi
]

+ n−1/2
ℓ∑

i=k+1

Φi−1Ni E(Ji | Fi) + o(1). (12.25)

However, by Markov’s inequality and (12.21),

E
ℓ∑

i=k+1

Φi−1Ni E(Ji | Fi) ⩽ E
ℓ∑

i=k+1

Φi−1NiBiYi ⩽ E
ℓ∑

i=k+1

NiBiWi

⩽
ℓ∑

i=k+1

C
n1/2

i2
⩽ C

n1/2

k
⩽ Csn

1/6, (12.26)
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implying that

n−1/2
ℓ∑

i=k+1

Φi−1Ni E(Ji | Fi)
p−→ 0. (12.27)

The remainder of the proof of Theorem 8.1 is then the same as before.

Proof of Theorem 12.2. With the preparations above, the same argument as in Section 9
yields Theorem 9.1 for this model too; with modifications as in Section 10 we obtain
Theorem 1.2. Similarly, the arguments in Section 11 still hold, and thus Theorem 1.3
holds. □

Appendix A. The differential equations in (8.21) and (10.37)

We rewrite the equation in (10.37) as

f ′(t) = mtα−1
((

1 + 1
θ t

−αf(t)
)−(m+ρ) − 1 + χt−αf(t)

)
. (A.1)

where, as above,

α := 1 + (m− 1)χ. (A.2)

Note that in the special case m = 2 and ρ = 0, we have χ = 1/2, θ = 4, and α = 3/2, so
the above yields the differential equation in (8.21). We define

g(t) := θ−1t−αf(t) (A.3)

so that (A.1) simplifies to, recalling χθ = m+ ρ, see (3.2),

g′(t) = −α
t
g(t) +

m

θt

(
(1 + g(t))−(m+ρ) − 1 + (m+ ρ)g(t)

)
. (A.4)

Letting

h(x) := g(e(m+ρ)x) (A.5)

then yields, using (A.2),

h′(x) = −(m+ ρ)(1 + (m− 1)χ)h(x) + χm
(
(1 + h(x))−(m+ρ) − 1 + (m+ ρ)h(x)

)
= χm(1 + h(x))−(m+ρ) − χm+ (m+ ρ)(χ− 1)h(x)

= χm
(
(1 + h(x))−(m+ρ) − 1− h(x)

)
, (A.6)

where the last equality follows from (m+ρ)(1−χ) = χm, see again (3.2). The autonomous
differential equation in (A.6) can be integrated to

1

χm

∫
1

(1 + h)−(m+ρ) − 1− h
dh =

∫
1 dx (A.7)

Furthermore, with v := 1 + h,

1

χm

∫
1

(1 + h)−(m+ρ) − 1− h
dh =

1

χm

∫
(1 + h)m+ρ

1− (1 + h)m+ρ+1
dh

= − 1

χm

∫
vm+ρ

vm+ρ+1 − 1
dv. (A.8)

The change of variable u = vm+ρ+1 − 1 then gives

1

χm

∫
vm+ρ

vm+ρ+1 − 1
dv =

1

χm(m+ ρ+ 1)

∫
1

u
du =

1

χm(m+ ρ+ 1)
log u+ C. (A.9)

Thus, reverting back to the original variable h, (A.7) is equivalent to

− 1

χm(m+ ρ+ 1)
log
(
(1 + h)m+ρ+1 − 1

)
= x+ C, (A.10)
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which yields the solution

h(x) =
(
1 + ce−χm(m+ρ+1)x

) 1
m+ρ+1 − 1, for some c ∈ R. (A.11)

From (A.3) and (A.5),

f(t) = θt1+(m−1)χh
(

1
m+ρ log t

)
. (A.12)

so plugging in (A.11) into (A.12), and using

α = 1 + (m− 1)χ = 1 +
(m− 1)(m+ ρ)

2m+ ρ
=
χm(m+ ρ+ 1)

m+ ρ
, (A.13)

we get

f(t) = θtα
((

1 + ct−α
) 1

m+ρ+1 − 1
)
. (A.14)

Using L’Hôpital’s rule (or a Taylor expansion) and (A.14), we obtain

f(∞) := lim
t→∞

f(t) =
θc

m+ ρ+ 1
lim
t→∞

(
1 + ct−α

) 1
m+ρ+1

−1
=

θc

m+ ρ+ 1
. (A.15)

Hence, the unique solution f to (A.1) with a given f(∞) is given by (A.14) with

c =
m+ ρ+ 1

θ
f(∞). (A.16)

Appendix B. A beta integral

Recall the standard beta integral [19, 5.12.3]∫ ∞

0

xa−1

(1 + x)b
dx =

Γ(a)Γ(b− a)

Γ(b)
(B.1)

when 0 < ℜa < ℜb. We use the following less well-known extension; it is not new but we
give a proof for completeness.

Lemma B.1. If −1 < ℜa < 0 and ℜb > 0, then∫ ∞

0

( 1

(1 + x)b
− 1
)
xa−1 dx =

Γ(a)Γ(b− a)

Γ(b)
. (B.2)

Proof. We consider a more general integral. Assume first ℜa > 0 and ℜb > 0, and let
ℜc > ℜa. Then, by using (B.1) twice,∫ ∞

0

( 1

(1 + x)b+c
− 1

(1 + x)c

)
xa−1 dx =

Γ(a)Γ(b+ c− a)

Γ(b+ c)
− Γ(a)Γ(c− a)

Γ(c)
. (B.3)

For fixed b and c with ℜb,ℜc > 0, the left-hand side converges for −1 < ℜa < ℜc, and
defines an analytic function of a in this strip. Hence, by analytic continuation, (B.3) holds
throughout this range. Similarly, if ℜa > −1 and ℜb > 0, then the left-hand side of
(B.3) is an analytic function of c in the domain ℜc > ℜa, and thus (B.3) holds whenever
−1 < ℜa < ℜc and ℜb > 0.

For −1 < ℜa < 0 we thus may take c = 0 in (B.3) which yields (B.2). (Recall that
1/Γ(0) = 0.) □

Remark B.2. Note that (B.1) and (B.2) give the same formula, but for different ranges of
a. The integrals can be interpreted as the Mellin transforms of (1+x)−b and (1+x)−b−1,
respectively, and thus this is an instance of a general phenomenon when considering the
Mellin transforms of a function f(x) and of the difference f(x)− p(x) where, for example,
p(x) is a finite Taylor polynomial at 0, see [9, p. 19].
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