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Abstract. In 2024, Daniel Litt posed a simple coinflip game pitting Alice’s
“Heads-Heads” vs Bob’s “Heads-Tails”: who is more likely to win if they score 1
point per occurrence of their substring in a sequence of n fair coinflips? This at-
tracted over 1 million views on X and quickly spawned several articles explaining
the counterintuitive solution. We study the generalized game, where the set of
coin outcomes, {Heads,Tails}, is generalized to an arbitrary finite alphabet A, and
where Alice’s and Bob’s substrings are any finite A-strings of the same length. We
find that the winner of Litt’s game can be determined by a single quantity which
measures the amount of prefix/suffix self-overlaps in each string; whoever’s string
has more overlaps loses. For example, “Heads-Tails” beats “Heads-Heads” in the
original problem because “Heads-Heads” has a prefix/suffix overlap of length 1
while “Heads-Tails” has none. The method of proof is to develop a precise Edge-
worth expansion for discrete Markov chains, and apply this to calculate Alice’s
and Bob’s probability to win the game correct to order O(1/n).

1. Introduction

On March 16, 2024 Daniel Litt posted the following brainteaser on X [17]:

Flip a fair coin 100 times—it gives a sequence of heads (H) and tails
(T). For each HH in the sequence of flips, Alice gets a point; for each
HT, Bob does, so e.g. for the sequence THHHT Alice gets 2 points
and Bob gets 1 point. Who is most likely to win?

The post gained popularity due to the deceptively unintuitive nature of the problem,
with plurality of respondents in an attached poll believing (incorrectly) that the game
is fair, and the correct answer being chosen the least often.

This problem turned out to have a surprisingly rich mathematical structure. In
short order, a succession of papers appeared: Ekhad and Zeilberger [5], Segert [26],
and Grimmett [8], each of which rigorously analyzed the problem via different tech-
niques (respectively, symbolic computation, asymptotic analysis, and probability
theory). We highlight here two key results. Firstly, Litt’s qualitative question “Who
is more likely to win” was answered for an arbitrary number n of coin flips: Bob is
strictly favored as long as n is at least 3 [26; 8]. Secondly, and more immediately
relevant to the present work, for the quantitative question of finding the winning
probabilities, the following asymptotic as n→ ∞ was found by [5; 26; 8] (by differ-
ent methods):

P(Bob wins)− P(Alice wins) ∼ 1

2
√
πn

(1.1)
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and, more precisely,

1

2
− P(Alice wins) ∼ 3

4
√
πn

,
1

2
− P(Bob wins) ∼ 1

4
√
πn

. (1.2)

A natural generalization of Litt’s problem, consider for example by [5], is to let
Alice’s and Bob’s strings be arbitrary finite sequences of the same length ℓ in an
arbitrary finite alphabet A; we then assume that Alice and Bob do a generalized
coin tossing where a sequence of random letters are generated, with the letters inde-
pendent and uniformly distributed. (See Section 4 for details. We leave extensions
to non-uniform letter distributions to the reader.) We call also this generalization
Litt’s game.

This generalization to arbitrary strings was considered by Basdevant et al. [1] who
established, by a combinatorial argument, a condition under which such a game is
exactly fair (see Remark 1.2 below). The main purpose of the present paper is to
establish asymptotics extending (1.1)–(1.2) for the generalized problem.

Somewhat surprisingly, with the exception of a small set of pathological strings,
we find that who has the advantage in the generalized Litt’s game depends only on
how Alice’s/Bob’s string overlap themselves in their prefixs/suffixes. More precisely,
for a string A = a1a2 . . . aℓ of length ℓ from an alphabet A with q letters, one can
calculate a single quantity θAA ∈ R that measures the size of the prefix/suffix overlap
of A defined as follows:

Θ(A,A) := {1 ⩽ k ⩽ ℓ− 1 : aℓ−k+1 · · · aℓ = a1 · · · ak}, (1.3)

θAA :=
∑

k∈Θ(A,A)

qk−ℓ = q−ℓ
∑

k∈Θ(A,A)

qk. (1.4)

(This is a special case of θUV between two strings U, V defined in (4.10).) We will
prove the following result, which shows that the asymptotic winner of Litt’s game
is determined by comparing the value θAA of Alice’s string to θBB of Bob’s string;
whoever’s θ overlap value is larger loses Litt’s game asymptotically.

Theorem 1.1. Let Alice and Bob play Litt’s game with distinct words A and B
of the same length ℓ in an alphabet A with q letters, and assume that n letters are
chosen at random, uniformly and independently.

Exclude the two cases, both with q = 2:

(i) A = HTℓ−1 and B = Tℓ−1H for some ℓ ⩾ 2 (see Example 6.2),
(ii) A = H and B = T (see Example 6.3),

and their variants obtained by interchanging Alice and Bob or H and T (or both).
Then, with θUU given by (1.4) (or (4.10)) and σ2 = σ2(A,B) given by (4.19), we

have σ2 > 0, and

P(Alice wins) =
1

2
+
θBB − θAA − 1

2
√
2πσ2

n−1/2 +O(n−1), (1.5)

P(Bob wins) =
1

2
+
θAA − θBB − 1

2
√
2πσ2

n−1/2 +O(n−1), (1.6)

P(Tie) =
1√
2πσ2

n−1/2 +O(n−1), (1.7)

and thus

P(Alice wins)− P(Bob wins) =
θBB − θAA√

2πσ2
n−1/2 +O(n−1). (1.8)
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In the two excluded cases, the conclusions (1.5)–(1.7) fail (in somewhat different
ways), see Examples 6.2 and 6.3.

Remark 1.2. In particular, Theorem 1.1 shows that the game is fair up to order n−1

if and only if θAA = θBB. This is (in different notation) the condition by Basdevant
et al. [1], who showed (by completely different methods) that in this case the game is
perfectly fair for every n: P(Alice wins) = P(Bob wins). (The result in [1] is stated
for q = 2, but the proof holds for an arbitrary finite alphabet.) Our result thus
shows that if the condition in [1] is not satisfied, then the game is for all large n not
fair; thus their condition for fairness is both necessary and sufficient. △

Our method to prove Theorem 1.1 is to recognize (1.5) and (1.6) as examples of
(first order) Edgeworth expansions. Edgeworth expansions are useful approxima-
tions in many situations in probability and statistics, and they have been rigorously
established in many situations, see Section 2.3 for a background. We use a general
result giving an Edgeworth expansion for partial sums of an integer-valued function
of a finite-state Markov chain. There is a large literature on Edgeworth expansions
in various situations, including Markov chains, see Section 2.3. However, we have
failed to find a general theorem that is directly applicable here. We therefore state
such a theorem for finite-state Markov chains here (in two versions, Theorems 3.2
and 3.4); it is perhaps not new, but since we do not know a reference we give for
completeness a complete proof.

2. Preliminaries

2.1. Notation. The characteristic function of a random variable X is defined by

φ(t) = φX(t) := E eitX , t ∈ R. (2.1)

Vectors are generally regarded as column vectors in formulas using matrix nota-
tion; the row vector that is the transpose of a column vector v is denoted vt.

We let 1 = (1, . . . , 1)t, the (column) vector with all entries 1, with the dimension
of the vector determined by context.

For vectors v (in Cm for some m ∈ N) we let ∥v∥ be the usual Euclidean norm.
For a square matrix A, let ∥A∥ denote its operator norm

∥A∥ := sup
{
∥Av∥ : ∥v∥ = 1

}
(2.2)

and let ρ(A) denote its spectral norm

ρ(A) := max{|λ| : λ is an eigenvalue of A}. (2.3)

Recall the spectral radius formula

ρ(A) = lim
n→∞

∥An∥1/n. (2.4)

A square matrix A with non-negative entries is irreducible if for every pair of
indices i, j we have (An)ij > 0 for some n ⩾ 1; the matrix is primitive if we further
can choose the same n for all pairs i, j; see e.g. [27, Chapter 1]. Recall that a
matrix is primitive if and only if it is irreducible and aperiodic [27, Theorem 1.4]. A
stochastic matrix is a square matrix with non-negative entries where all row sums
are 1. It follows from the Perron–Frobenius theorem [27, Theorem 1.5] that an
irreducible stochastic matrix has an eigenvalue 1 which is (algebraically) simple, and
that the spectral radius is 1; corresponding right and left eigenvectors are 1 and πt,
the stationary distribution of the corresponding Markov chain.
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For z0 ∈ C and r > 0, let D(z0, r) := {z ∈ C : |z − z0| < r}, the open disc with
centre z0 and radius r.

We let 1E denote the indicator of an event E ; this is thus 1 if E occurs and 0
otherwise.
C denotes unspecified constants that may vary from one occurrence to the next.

They may depend on parameters, and we may write e.g. C(δ) to stress this.

2.2. Cumulants. If X is a random variable, with (for simplicity) all moments finite,
then its cumulants (also called semi-invariants) are defined by, for integers m ⩾ 1,
recalling (2.1),

κm = κm(X) := i−m dm

dtm
logφX(t)

∣∣
t=0

; (2.5)

in other words, logφX(t) has the Taylor expansion, for M ⩾ 1 and small t,

logφX(t) =
M∑

m=1

κm
(it)m

m!
+O(|t|M+1). (2.6)

See for example [9, Section 4.6]. The cumulant κm can be expressed as a polynomial
in moments of order at most m. In particular [9, Theorem 4.6.4],

κ1 = EX, (2.7)

κ2 = E [X2]− (EX)2 = Var(X), (2.8)

κ3 = E [(X − EX)3]. (2.9)

Thus κ2 and κ3 are simply the corresponding central moments. (Higher cumulants
have more complicated formulas.)

2.3. Background on Edgeworth expansions. The idea of an Edgeworth expan-
sion (or Edgeworth approximation) [4] is that many random variables in probability
theory and statistics have distributions that are approximatively normal, and that
the approximation often can be improved by adding extra terms to the normal dis-
tribution. It turns out that the natural terms to add are derivatives of the normal
density function, with coefficients that are given by some (explicit but a little com-
plicated) polynomials of cumulants κm, m ⩾ 3, divided by powers of the variance.
(Part of the motivation is that for a normal random variable, all cumulants κm = 0
for m ⩾ 3; thus the cumulants measure in some way deviations from normality.
For detailed motivations, see [4] and [2, Chapter 17.6-7].) For a continuous random
variable Z, for simplicity normalized to have EZ = 0 and VarZ = 1, the one-term
Edgeworth appoximation is

P(Z ⩽ x) ≈ Φ(x) +
κ3(Z)

6
√
2π

(1− x2)e−x2/2, −∞ < x <∞, (2.10)

where

Φ(x) :=

∫ x

−∞

1√
2π
e−x2/2 dx (2.11)

is the standard normal distribution function. This approximation can be made rigor-
ous, with error bounds, in many situations. The most important, and archetypical,

case is when the random variable Z is a normalized sum S̃n := 1
σ
√
n

∑n
1 Xi of n

independent and identially distributed (i.i.d.) random variables Xi with EXi = 0,

VarXi = σ2, and a finite third moment E |Xi|3. Then κ3(S̃n) = n−1/2κ3(Xi)/σ
3,
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and, as shown by [6, Theorem IV.2, p. 49], if the distribution of Xi is non-lattice,

then (2.10) holds with an error o(n−1/2), i.e., with Sn :=
∑n

1 Xi the unnormalized
sum,

P(Sn ⩽ xσ
√
n) = P(S̃n ⩽ x) = Φ(x) +

κ3(X1)

6σ3
√
2πn

(1− x2)e−x2/2 + o
(
n−1/2

)
, (2.12)

uniformly in x. (Note that the right-hand side is Φ(x)+O(n−1/2) uniformly in x, so
(2.12) implies, and can be seen as a precise version of, the Berry–Esseen theorem [9,
Theorem 7.6.1].) Furthermore, under somewhat stronger conditions, the expansion
(2.12) can be continued to any number of terms, where the mth term is of the order

n−m/2; see [6, Theorem IV.1, p. 48] or [23, Theorem VI.4 and (VI.1.13)] for a precise
statement and the general form of the terms.

However, in this paper we are interested in integer-valued variables, and then
(2.12) is not appropriate, since the right-hand side ignores the jumps in the left-
hand side when xσ

√
n is an integer. The correct version of (2.12) for integer-valued

Xi with EXi = 0 is

P(Sn ⩽ xσ
√
n) = P(S̃n ⩽ x) = Φ(x) +

κ3(X1)

6σ3
√
2πn

(1− x2)e−x2/2

+
1

σ
√
2πn

ϑ(xσ
√
n)e−x2/2 + o

(
n−1/2

)
, (2.13)

where we have added a correction term with

ϑ(x) := 1
2 − (x− ⌊x⌋), (2.14)

see [6, Theorem IV.3, p. 56] (which also includes the case EXi ̸= 0, for simplicity
ignored here). See also [6, Theorem IV.4, p. 61] and [23, Theorem VI.6] for the
corresponding result with further terms (similar, but more complicated), and [16]
for an interpretation of this expansion as a Sheppard’s correction of the version for
the continuous (or, more generally, non-lattice) case.

Note that ϑ(x) = 0 when x is the midpoint between two consecutive integers.
In fact, (2.13) can be regarded as an approximation as in (2.12) of the distribution
function of Sn interpolated linearly between such half-integer points, see [7, Theorem
XVI.4.2].

In the present paper we are interested in the distribution function at or close to the
mean, i.e., the case x ≈ 0 above. Note that if, say, xσ

√
n = O(1), so x = O(n−1/2),

then (2.13) simplifies to

P(Sn ⩽ xσ
√
n) =

1

2
+

1√
2π
x+

κ3(X1)

6σ3
√
2πn

+
1

σ
√
2πn

ϑ(xσ
√
n) +O

(
n−1

)
. (2.15)

We remark that under suitable conditions there are also corresponding Edgeworth
expansions of the density function (in the absolutely continuous case) or point prob-
abilities (in the discrete case), which refine the local limit theorem in a similar way,
see for example [6, Theorem IV.5, p. 63] or [23, Theorem VII.13]; we will not use
these expansions here.

In the present paper, we cannot use the basic results above, since the random vari-
able we are interested in is not a sum of i.i.d. variables. Nevertheless, the Edgeworth
expansions above have been extended to various other situations, and there is a large
literature on Edgeworth expansions under various situations with dependency; we
mention only a few references that are closely related to our case, although none
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of them is directly applicable to it, see further the discussion before Theorem 3.2.
We consider below an irreducible finite-state Markov chain, and random variables
defined by (3.7). For this case, Siraždinov [29] proved (under some conditions) an
Edgeworth expansion for point probabilities (and a Berry–Esseen type estimate for
the distribution function). Nagaev [21] considered more general Markov chains,
allowing an infinite number of states, and proved Edgeworth expansions for both
continuous and discrete cases under some conditions. (For the continuous case, see
also [3] with some corrections and improvements.) For the integer-valued case that
we are interested in, Hipp [12, Theorem (3.1)] proved an Edgeworth expansion for
point probabilities under more general conditions. The variables in our application
to Litt’s game are m-dependent, so an alternative approach would be to use results
on Edgeworth expansions for sums of m-dependent variables. However, we have not
found a suitable such theorem for integer-valued variables; for the non-lattice case,
see e.g. Heinrich [11], Rhee [24], and [18]; see also Rinott and Rotar [25] for a more
general result, and the further references there.

2.4. Group Inverse. If A is a square (possibly singular) matrix, then the group
inverse Ag is defined to be the matrix satisfying:

AAg = AgA, (2.16)

AAgA = A, (2.17)

AgAAg = Ag, (2.18)

The matrix Ag is unique if it exists, however it may not exist in the first place.
If we regard A as a linear operator in some or Rq (or Cq), with kernel ker(A) and

range ran(A), then Ag exists if and only if ker(A)∩ ran(A) = {0} and thus Rq (resp.
Cq) is the direct sum ker(A)⊕ ran(A); in this case Ag|ker(A) = 0 and Ag|ran(A) is the
inverse of A : ran(A) → ran(A).

It can be shown that Ag does exist whenever A = I − P where P is a stochastic
matrix, see [19]. In this case, there is actually more that we can say. One useful
identity that holds if P is irreducible is

(I − P )g(I − P ) = I − 1πt (2.19)

where π is the stationary distribution, see Theorem 2.2 in [19].
Most of the time when we want to actually compute (I − P )g, we will use the

following well-known representation.

Proposition 2.1. If P is an irreducible stochastic matrix, then

(I − P )g = (I − P + 1πt)−1 − 1πt

= lim
t↗1

(
(I − tP )−1 − 1πt/(1− t)

)
. (2.20)

Proof. The first equality is proved in [19]. For the second equality, write

(I − P + 1πt)−1 = lim
t↗1

(I − t(P − 1πt))−1 (2.21)

Since for any t < 1, the spectral radius of t(P − 1πt) is < 1, the inverse on the
right side can be expanded as a geometric series. Moreover, it is easily seen that
(P − 1πt)n = Pn − 1πt for n ⩾ 1, which implies the second equality after a simple
calculation. □
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Remark 2.2. Note that the group inverse does not in general coincide with the
more well-known Moore–Penrose pseudoinverse A+. In fact, it can be shown that if
P is an irreducible stochastic matrix, then (I − P )g = (I − P )+ if and only if the
stationary distribution of P is uniform [19, Theorem 6.1]. △

3. An Edgeworth expansion for finite-state Markov chains

3.1. Markov chain preliminaries. Let (Wk)
∞
1 be a homogeneous Markov chain

on a finite state space W, with transition probabilities given by the matrix P =
(Pij)i,j∈W . (All matrices and vectors in this section will be indexed by W. The
reader that so prefers may without loss of generality assume that W = [m] for some
integer m in this section.) For basic facts on Markov chains used below, see e.g. [22,
Chapter 1].

We denote the distribution of Wk by

πk = (πk;i)i∈W where πk;i := P(Wk = i), i ∈ W. (3.1)

In particular, π1 is the initial distribution of the Markov chain. We regard πk as
a column vector; recall that its transpose (a row vector) is denoted by πtk. It is
well-known that

πtk = πt1P
k−1, k ⩾ 1. (3.2)

We say that a sequence i0, . . . , iℓ of elements of W is a path if it can appear with
positive probability in the Markov chain, i.e., if Pikik+1

> 0 for 0 ⩽ k < ℓ. We say
that ℓ is the length of the path; we denote the length of a path Q by ℓ(Q). A closed
path is a path i0, . . . , iℓ such that iℓ = i0. We assume throughout this section that
the Markov chain is irreducible, i.e., that

for every pair i, j ∈ W, there exists a path i = i0, . . . , iℓ = j from i to j. (3.3)

We assume also that the Markov chain is aperiodic, i.e.,

gcd
{
ℓ(Q) : Q is a closed path

}
= 1. (3.4)

It is well-known that our assumptions (3.3)–(3.4) that the Markov chain is irre-
ducible and aperiodic imply that there is a unique stationary distribution π, i.e., a
distribution satisfying

πt = πtP. (3.5)

Moreover, for any initial distribution π1, we have

πn → π as n→ ∞. (3.6)

3.2. The main result. Let g : W → Z be an integer-valued function, and define
the integer-valued random variables Xk := g(Wk) and

Sn :=

n∑
k=1

Xk =

n∑
k=1

g(Wk). (3.7)

Our goal is to prove an Edgeworth expansion for Sn.
We will, besides the aperiodicity condition (3.4), also assume a similar aperiodicity

condition for the function g. For a path Q given by i0, . . . , iℓ, define the value of Q
as

g(Q) :=

ℓ∑
k=1

g(ik) ∈ Z. (3.8)
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We then assume:

The set
{
(g(Q), ℓ(Q)) : Q is a closed path

}
generates Z2 as a group. (3.9)

Remark 3.1. It is easy to see, arguing similarly as in the proof of Proposition 6.8
below, that in (3.9), it is equivalent to consider only closed paths starting at any
given state i0. This implies the following probabilistic formulation of the condition:
Start the Markov chain in state i0 at time 0, and let T := min{k ⩾ 1 : Wk = i0} be
the time of the first return there. Then (3.9) is equivalent to:

The random vector (ST , T ) is not supported on a proper sublattice of Z2. (3.10)

This formulation is used e.g. by [12]. △

The following results will be proved in Section 5 . As noted in Section 2.3, there
is a large literature on Edgeworth expansions, and in particular Nagaev [21] has
proven several similar results for more general Markov chains (allowing also infinite
state spaces); however, his theorems for the integer-valued (or, equivalently, lattice-
valued) case assume instead of (3.9) a strong aperiodicity condition ([21, Condition
C], see Example 6.7) which is not satisfied in our application. Hipp [12, Theorem
(3.1)] has, by another method, proven a general result on approximation of the point
probabilities using weaker assumptions than [21] and in particular under the same
aperiodicity condition (3.9) as we. However, his result is not in a form directly
applicable to our probabilities; it seems possible to derive our result from his with
some extra work but we have not attempted this; we give instead a direct proof, which
also leads to the explicit formulas (3.15)–(3.19) for the parameters (cumulants) in
the approximation (3.14) (which are not explicit in [12]). Our proof is similar to
the proofs in [21], but much simpler since we consider only finite state spaces; our
argument is thus structurally closer to the classical proof of the i.i.d. result using
characteristic functions than the arguments by [12].

Theorem 3.2. Let (Wk)
∞
1 be a stationary, irreducible and aperiodic homogeneous

Markov chain on a finite state space W, and let Sn be defined by (3.7) for some
function g : W → Z such that (3.9) holds. Let

µ := EX1 = E g(W1), (3.11)

σ2 := lim
n→∞

n−1Var(Sn), (3.12)

κ3 := lim
n→∞

n−1κ3(Sn). (3.13)

(The limits exist and are finite under our assumptions.) Then σ2 > 0, ESn = nµ,
and with Φ(x) and ϑ(x) as in (2.11) and (2.14),

P(Sn − nµ ⩽ xσ
√
n) = Φ(x) +

κ3

6σ3
√
2πn

(1− x2)e−x2/2

+
1

σ
√
2πn

ϑ(xσ
√
n+ nµ)e−x2/2 +O

(
n−1

)
, (3.14)

uniformly in x ∈ R and n ⩾ 1. Moreover, µ, σ2, and κ3 have the following explicit
expressions:

µ = πtG1 (3.15)

σ2 = πt
(
G2 + 2GQPG

)
1− µ2 (3.16)

κ3 = πt
(
G3 + 3GQPG2 + 3G2QPG+ 6GQPGQPG

)
1
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− µ
(
6πtGQ2PG1+ 3σ2 + µ2

)
, (3.17)

where π is the stationary distribution of P and G = Diag(g(1), . . . , g(m)) and Q :=
(I − P )g. Equivalently, with Q′ := Q− I = (I − P )g − I, we have

σ2 = πt(G2 + 2GQ′G)1+ µ2 (3.18)

κ3 = πt(G3 + 3GQ′G2 + 3G2Q′G+ 6GQ′GQ′G)1

+ µ
(
3πtG21− 6πtGQ′2G1+ 2µ2

)
. (3.19)

The conditions (3.9) and σ2 > 0 are discussed further in Section 6.2 and 6.3.
In particular, for the case µ = 0 and x = 0 we obtain the following.

Corollary 3.3. Under the assumptions of Theorem 3.2, if furthermore µ = 0, then

P(Sn ⩽ 0) =
1

2
+

κ3

6σ3
√
2πn

+
1

2σ
√
2πn

+O
(
n−1

)
(3.20)

and

P(Sn < 0) =
1

2
+

κ3

6σ3
√
2πn

− 1

2σ
√
2πn

+O
(
n−1

)
. (3.21)

Consequently,

P(Sn < 0)− P(Sn > 0) =
κ3

3σ3
√
2πn

+O
(
n−1

)
(3.22)

and

P(Sn = 0) =
1

σ
√
2πn

+O
(
n−1

)
. (3.23)

The local limit theorem (3.23) is here shown as a consequence of (3.20)–(3.21),
and thus of (3.14). It can also easily be proved directly from the estimates in (5.37)
and (5.52) below using Fourier inversion; furthermore, further terms can be obtained
as in [6, Theorem IV.5], see [29, Theorem 2].

We can generalize the set-up above and consider a function g : W × W → Z of
two variables; we then define

Sn :=

n∑
k=1

g(Wk−1,Wk), (3.24)

where we for convenience index the Markov chain as (Wk)
∞
0 . We then similarly

define, if Q is the path i0, . . . , iℓ,

g(Q) :=
ℓ∑

k=1

g(ik−1, ik) ∈ Z. (3.25)

Theorem 3.4. Let (Wk)
∞
1 be a stationary, irreducible and aperiodic homogeneous

Markov chain on a finite state space W, and let Sn be defined by (3.24) for some
function g : W2 → Z such that (3.9) holds. Then the conclusions of Theorem 3.2
and Corollary 3.3 hold. The explicit expressions for the moments are modified ac-
cordingly, see Section 8 for details.

For further extensions, see Section 9.
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4. Coin tossing

We consider in this section Litt’s game, in the general version described in the
introduction which is defined as follows.

Let A be a finite alphabet, with q := |A| ⩾ 2 letters. (We are mainly interested
in the case q = 2, and then we let A = {H,T} as in Litt’s original formulation with
coin tossing.) Let Ξn = ξ1 · · · ξn be a random word with n letters ξi ∈ A, chosen
independently and uniformly at random. Hence, for any given word a1 · · · an, the
probability

P(ξ1 · · · ξn = a1 · · · an) = q−n. (4.1)

Fix two distinct words A = a1 · · · aℓ and B := b1 · · · bℓ of the same length ℓ ⩾ 1. The
letters in Ξn are drawn one by one; Alice scores a point when the last ℓ letters form
A, and Bob scores a point when they form B. Denote their total scores by SA,n and

SB,n; we are interested in the difference Ŝn := SA;n − SB,n.
To put this into our framework, define for 1 ⩽ k ⩽ n− k + 1 the subword

Wk := ξk · · · ξk+ℓ−1 ∈ Aℓ, (4.2)

and for any word U ∈ Aℓ, define the indicator

IU (V ) := 1U=V , V ∈ Aℓ. (4.3)

Then the net score of the (k + ℓ− 1)th draw (i.e., the kth draw that may score) is

Xk := IA(Wk)− IB(Wk), (4.4)

and thus the final net score is

Ŝn :=

n−ℓ+1∑
k=1

Xk. (4.5)

We may as well assume that the random letter ξi is defined for every i ⩾ 1; then
also Wk, Xk, and Sn are defined for all k ⩾ 1 and n ⩾ ℓ. It is obvious that the
sequence of random words (Wk)

∞
1 forms a stationary, homogeneous Markov chain

with state space Aℓ; furthermore, it is easy to see that this chain is irreducible and
aperiodic. By comparing (4.5) and (3.7) we see that

Ŝn = Sn−ℓ+1 (4.6)

for the function g : Aℓ → Z given by g := IA − IB. Note that for any fixed word
U ∈ Aℓ and any k ⩾ 1 we have

E [IU (Wk)] = P(Wk = U) = q−ℓ, (4.7)

and thus

µ := E g(W1) = E [IA(W1)]− E [IB(W1)] = q−ℓ − q−ℓ = 0. (4.8)

We are thus in the setting of Theorem 3.2 and Corollary 3.3, provided that (3.9)
holds. All that remains is thus to calculate σ2 and κ3 and to verify (3.9).

We provide two methods, one a direct method that is specific to this applica-
tion, and a second method that involves the explicit formulas (3.15)–(3.17) for the
moments.

We introduce some more notation. For a pair of two words U = u1 · · ·uℓ and
V = v1 · · · vℓ of length ℓ, let

Θ(U, V ) := {1 ⩽ k ⩽ ℓ− 1 : uℓ−k+1 · · ·uℓ = v1 · · · vk}, (4.9)
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i.e., the set of integers k < n such that the words consisiting of the last k letters
of U and the first k letters of V are the same; in other words, U and V may be
concatenated with an overlap of k letters. (Note that this is not symmetric: in
general Θ(U, V ) ̸= Θ(V,U).) Note that we do not include ℓ in Θ(U, V ), even if
U = V . We define also the rational number, which may be called overlap index,

θUV :=
∑

k∈Θ(U,V )

qk−ℓ = q−ℓ
∑

k∈Θ(U,V )

qk. (4.10)

This is equivalent to the quantity [U |V ] defined by Basdevant et al. [1], which plays
a key role in their analysis. More precisely, θUV = q−ℓ[U |V ].

For two fixed words U, V ∈ Aℓ, and 1 ⩽ j ⩽ ℓ− 1, we have IU (Wi)IV (Wi+j) = 0
unless ℓ− j ∈ Θ(U, V ), and it follows that, since Wi and Wi+j together contain ℓ+ j
random letters,

E
[
IU (Wi)IV (Wi+j)

]
= 1ℓ−j∈Θ(U,V ) q

−(ℓ+j). (4.11)

Hence

ℓ−1∑
j=1

E
[
IU (Wi)IV (Wi+j)

]
=

ℓ−1∑
j=1

1ℓ−j∈Θ(U,V ) q
−(ℓ+j)

=
ℓ−1∑
i=1

1i∈Θ(U,V ) q
i−2ℓ = q−ℓθUV . (4.12)

We return to Sn. We have ESn = nµ = 0 by (4.8) and thus VarSn = E [S2
n].

Furthermore, by the definition (3.7) (or (4.5)–(4.6)) and expanding,

E [S2
n] =

n∑
i,j=1

E [XiXj ] =

n∑
i=1

E [X2
i ] + 2

n∑
i=1

n−i∑
k=1

E [XiXi+k]. (4.13)

If k ⩾ ℓ, then Wi and Wi+k consist of different letters from Ξ, and thus they are
independent, which implies E [XiXi+k] = E [Xi]E [Xi+k] = 0; hence it suffices to
take k < ℓ in the inner sum in (4.13). Furthermore, it is clear that for any fixed
k ⩾ 0, the expectation E [XiXi+k] does not depend on i. Hence, (4.13) yields

E [S2
n] = nE [X2

1 ] + 2n
ℓ−1∑
k=1

E [X1X1+k] +O(1), (4.14)

where the O(1) comes from the missing terms with 0 ⩽ n− i < k < ℓ. Consequently,
(3.12) yields

σ2 = E [X2
1 ] + 2

ℓ−1∑
k=1

E [X1X1+k]. (4.15)

Recalling (4.4), we see that

X2
k = IA(Wk) + IB(Wk). (4.16)

Hence, (4.7) yields

E [X2
1 ] = E [IA(Wk)] + E [IB(Wk)] = 2q−ℓ. (4.17)
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Furthermore, (4.4) and (4.12) yield

ℓ−1∑
k=1

E [X1X1+k] = q−ℓ
(
θAA − θAB − θBA + θBB

)
. (4.18)

We conclude from (4.15) and (4.17)–(4.18) that

σ2 = 2q−ℓ
(
1 + θAA − θAB − θBA + θBB

)
. (4.19)

For the third cumulant κ3 we argue similarly. First, since ESn = 0, we have
κ3(Sn) = E [S3

n], and by expanding followed by combining equal terms,

E [S3
n] =

n∑
i,j,k=1

E [XiXjXk] =
∑

1⩽i⩽n

E [X3
i ] + 3

∑
1⩽i<j⩽n

E [X2
iXj ]

+ 3
∑

1⩽i<j⩽n

E [XiX
2
j ] + 6

∑
1⩽i<j<k⩽n

E [XiXjXk]. (4.20)

Furthermore, all terms in the sums on the right-hand side with j ⩾ i+ ℓ or k ⩾ j+ ℓ
vanish by independence, and the terms are invariant under a simultaneous shift of
the indices. Hence (3.13) yields

κ3 = E [X3
1 ] + 3

ℓ−1∑
s=1

E [X2
1X1+s] + 3

ℓ−1∑
s=1

E [X1X
2
1+s] + 6

ℓ−1∑
s,t=1

E [X1X1+sX1+s+t].

(4.21)

We have X3
1 = X1, and thus E [X3

1 ] = 0. Furthermore, (4.4) and (4.16) together
with (4.12) show that

ℓ−1∑
s=1

E [X2
1X1+s] = q−ℓ

(
θAA − θAB + θBA − θBB

)
, (4.22)

ℓ−1∑
s=1

E [X1X
2
1+s] = q−ℓ

(
θAA + θAB − θBA − θBB

)
. (4.23)

Arguing as in (4.12) yields, for three fixed words U, V, T ∈ Aℓ,

ℓ−1∑
j,k=1

E
[
IU (Wi)IV (Wi+j)IT (Wi+j+k)

]
=

ℓ−1∑
j,k=1

1ℓ−j∈Θ(U,V )1ℓ−k∈Θ(U,V ) q
−(ℓ+j+k)

= q−ℓθUV θV T . (4.24)

Hence, (4.4) yields

ℓ−1∑
s,t=1

E [X1X1+sX1+s+t] = q−ℓ
(
θAAθAA − θAAθAB − θABθBA + θABθBB

− θBAθAA + θBAθAB + θBBθBA − θBBθBB

)
= q−ℓ(θAA − θBB)(θAA + θBB − θAB − θBA). (4.25)
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Finally we obtain from (4.21) and (4.22)–(4.25), after some cancellations,

κ3 = 6q−ℓ(θAA − θBB)(1 + θAA + θBB − θAB − θBA) = 3σ2(θAA − θBB). (4.26)

It is also possible to obtain this result from the explicit moment formulas. Denote
by Pℓ the transition matrix, indexed by all qℓ strings of length ℓ. Here, a transition
U → V exists if and only if the last ℓ− 1 characters of U coincide with the first ℓ− 1
characters of V . It is easy to see that Pℓ is primitive and the stationary distribution
is uniform: π = q−ℓ1; see (4.29) below. The only remaining difficulty in applying the
formulas (3.15)–(3.17) is to calculate the group inverse (I−Pℓ)

g. It turns out that the
entries of this matrix coincide with the overlap indices θUV , up to a normalization.

Proposition 4.1. The entries of the group inverse Q := (I − Pℓ)
g are given by

(I − Pℓ)
g
U,V = 1U=V + θUV − ℓq−ℓ (4.27)

Proof. Introduce the notation tailk(U) for the string obtained by deleting the first k
characters of U . Analogously for headk(U). It is straightforward to see that for any
U, V we have

(P j)U,V = q−j1tailj(U)=headj(V ), 0 ⩽ j < ℓ, (4.28)

(P j)U,V = q−ℓ, j ⩾ ℓ. (4.29)

Further,

θUV =
l−1∑
k=1

qk−l1taill−k(U)=headl−k(V )

=
l−1∑
j=1

q−j1tailj(U)=headj(V ) =

ℓ−1∑
j=1

P j


U,V

. (4.30)

At this point, the result follows by a simple calculation from the formula (I −P )g =
limt↗1

(∑
k⩾0 t

kP k − 1πt/(1− t)
)
in Proposition 2.1. □

In our case, the diagonal matrix G is given by GAA = 1, GBB = −1, and G is
otherwise zero.

Clearly µ = 0, by (3.11) or (3.15). For σ2 and κ3 we use (3.18)–(3.19), noting
that by Proposition 4.1, Q′

U,V = θUV − ℓq−ℓ. Hence,

πtGQ′G1 = q−ℓ1tGQ′G1 = θAA + θBB − θAB − θBA. (4.31)

Furthermore, evidently πtG21 = 2q−ℓ. Hence, (3.18) yields

qℓσ2 = 1tG21+ 21tGQ′G1+ 0 (4.32)

= 2 + 2(θAA + θBB − θAB − θBA) (4.33)

in agreement with (4.19). The calculation of the third cumulant (4.26) by this
method is similar, and the details are omitted.

We now obtain a preliminary result for Litt’s game. This will be improved to
Theorem 1.1 in Section 7 where we identify the cases where the condition (3.9) does
not hold.

Theorem 4.2. Let Alice and Bob play Litt’s game above with distinct words A and
B of the same length ℓ in an alphabet A with q letters, and assume that n letters
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are chosen at random, uniformly and independently. Assume also that (3.9) holds.
Then, with θUV and σ2 given by (4.10) and (4.19), σ2 > 0 and

P(Alice wins) =
1

2
+
θBB − θAA − 1

2
√
2πσ2

n−1/2 +O(n−1), (4.34)

P(Bob wins) =
1

2
+
θAA − θBB − 1

2
√
2πσ2

n−1/2 +O(n−1), (4.35)

P(Tie) =
1√
2πσ2

n−1/2 +O(n−1), (4.36)

and thus

P(Alice wins)− P(Bob wins) =
θBB − θAA√

2πσ2
n−1/2 +O(n−1). (4.37)

Proof. A consequence of Corollary 3.3, recalling (4.5) and using (4.19) and (4.26)
above. □

Example 4.3 (HH vs HT). Litt’s original game is the case A = {H,T}, q = 2,
ℓ = 2, A = HH, B = HT of Theorem 1.1. We have Θ(A,A) = Θ(A,B) = {1} and
Θ(B,A) = Θ(B,B) = ∅, and thus

θAA = θAB = 1
2 , θBA = θBB = 0. (4.38)

Hence, (4.19) yields σ2 = 1
2 , and (1.5)–(1.8) yield (1.1)–(1.2), with error terms

O(n−1). △

Remark 4.4. We have here represented the score Ŝn using a (finite-state) Markov
chain. We may also note that the sequence Xk is (ℓ − 1)-dependent, which means

that general results for sums of m-dependent variables can be applied to Ŝn. See
e.g. [11; 24; 18] for some related results; however, we have not been able to find a
general result that applies to our situation. △

5. Proof of Theorems 3.2–3.4

5.1. A lemma. We will use the following simple uniform version of the spectral
radius formula (2.4). We do not know a reference so we give a proof for completeness.

Lemma 5.1. Let z 7→ A(z) be a continuous square-matrix-valued function defined
on some compact set K. Suppose that for some r > 0, we have ρ(A(z)) < r for every
z ∈ K. Then there exists r̃ < r such that

∥A(z)n∥ ⩽ Cr̃n (5.1)

for some constant C, uniformly for all z ∈ K and n ⩾ 1.

Proof. Let z ∈ K, and choose rz with ρ(A(z)) < rz < r. Then the assumption
and (2.4) show that there exists N such that ∥A(z)N∥ < rNz . Since z 7→ A(z) is
continuous, and the operator norm is a continuous functional, it follows that there
exists an open neighbourhood Uz of z such that for all w ∈ Uz,

∥A(w)N∥ < rNz . (5.2)

Since ∥AB∥ ⩽ ∥A∥ · ∥B∥ for two matrices A and B, it follows that for any w ∈ Uz

and all n ⩾ 1, by writing n = kN + ℓ with 0 ⩽ ℓ < N ,

∥A(w)n∥ ⩽ ∥A(w)N∥k∥A(w)ℓ∥ ⩽ rkNz ∥A(w)ℓ∥ ⩽ rnz max
0⩽ℓ<N

(
r−ℓ
z ∥A(w)ℓ∥

)
. (5.3)
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For fixed ℓ, ∥A(w)ℓ∥ is a continuous function of z, and is thus bounded in K. Con-
sequently (5.3) implies that

∥A(w)n∥ ⩽ Czr
n
z (5.4)

holds for some Cz, uniformly for w ∈ Uz and n ⩾ 1. We may cover the compact set
K by a finite number of such open sets Uzi , i = 1, . . . ,M ; thus (5.1) follows for all
z ∈ K with C := maxiCzi and r̃ := maxi rzi < r. □

5.2. Proof of Theorem 3.2. We assume in this subsection the assumptions of
Theorem 3.2.

For complex z ̸= 0, define the matrix

P (z) = (P (z)ij)i,j∈W where P (z)ij := Pijz
g(j) (5.5)

and the vector

π1(z) = (π1(z)i)i∈W where π1(z)i := π1;iz
g(i). (5.6)

Note that P (1) = P and π1(1) = π1. Furthermore, the matrix-valued function P (z)
and the vector-valued function π1(z) are analytic functions of z ̸= 0.

Let

Gn(z) := E zSn , (5.7)

i.e., the probability generating function of Sn (in a generalized sense since Sn may
take both positive and negative integer values). Then Gn(z) is a well-defined analytic
(in fact, rational) function for complex z ̸= 0, since Sn takes only a finite number of
values for each n. Note that for real t,

Gn(e
it) = E eitSn = φSn(t), (5.8)

the characteristic function of Sn.
We will use the following well-known representation. Recall that 1 = (1, . . . , 1),

the (column) vector with all entries 1.

Lemma 5.2. For any z ̸= 0 and n ⩾ 1,

Gn(z) = π1(z)
tP (z)n−11. (5.9)

Proof. Since P(W1 = i1, . . . ,Wn = in) = π1;i1Pi1i2Pi2i3 · · ·Pin−1in , we have

Gn(z) = E
n∏

k=1

zg(Wk) =
∑

i1,...,in∈W
π1;i1z

g(i1)Pi1i2z
g(i2) · · ·Pin−1inz

g(in), (5.10)

which equals the right-hand side of (5.9). □

We aim at finding good estimates of the characteristic function φSn(t) = Gn(e
it).

We consider first small t. The following asymptotic formula is central in our argu-
ments.

Lemma 5.3. If δ ∈ (0, 1) is small enough, then there exist analytic functions η(z)
and λ(z) in Dδ := D(1, δ) and a constant c ∈ (0, 1) such that for all z ∈ Dδ and
n ⩾ 1

Gn(z) = η(z)λ(z)n
(
1 +O(cn)

)
(5.11)

and, somewhat more precisely,

Gn(z) = η(z)λ(z)n
(
1 +O(cn|z − 1|)

)
. (5.12)
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Furthermore, λ(z) is an eigenvalue of P (z), and η(1) = λ(1) = 1.

Proof. Denote the set of eigenvalues of P (z) by Λ(z).
Consider first z = 1. The matrix P (1) = P is stochastic, which means that

P1 = 1, i.e., 1 is a right eigenvector with eigenvalue 1. Moreover, by the Perron–
Frobenius theorem and our assumptions (3.3)–(3.4), this eigenvalue is simple and all
other eigenvalues λi of P satisfy |λi| < 1. Let

ρ′ := max{|λ| : λ ∈ Λ(1) \ 1} < 1. (5.13)

Let also ρ0 = (2ρ′ + 1)/3 and ρ1 := (1 − ρ′)/3. Thus 0 < ρ0 < 1 − ρ1 < 1.
Furthermore, P (1) has exactly one eigenvalue (viz. 1) in the open disc D(1, ρ1),
and all other eigenvalues in the (disjoint) open disc D(0, ρ0). The eigenvalues Λ(z)
are the roots of the characteristic polynomial of P (z), and the coefficients in this
polynomial are continuous (in fact, analytic) functions of z. Hence it follows that
there exists a small δ ∈ (0, 1) such that if z ∈ Dδ (i.e., |z − 1| < δ), then P (z) has
exactly 1 simple eigenvalue in D(1, ρ1), and all other eigenvalues in D(0, ρ0). For
z ∈ Dδ, denote the eigenvalue in D(1, ρ1) by λ(z). Thus, for z ∈ Dδ,

|λ(z)− 1| < ρ1 and |λ(z)| > 1− ρ1 >
2
3 . (5.14)

Since λ(z) is a simple root of the characteristic polynomial of P (z), it follows from
the implicit function theorem that λ(z) is an analytic function of z ∈ Dδ. Moreover,
provided δ is chosen small enough, the corresponding left and right eigenvectors u(z)t

and v(z) can (and will) be normalized by

u(z)t1 = 1 = u(z)tv(z), (5.15)

for every z ∈ Dδ, and then u(z)t and v(z) are analytic functions of z ∈ Dδ. Note
that, since P (1) = P , it follows from (3.5) and P1 = 1 that λ(1) = 1 with normalized
eigenvectors

u(1)t = πt and v(1) = 1. (5.16)

Let z ∈ Dδ and let

Π(z) := v(z)u(z)t; (5.17)

in other words, the matrix Π(z) defines the operator v 7→ (u(z)tv)v(z), which is a
projection onto the eigenspace spanned by v(z); in particular,

Π(z)2 = Π(z). (5.18)

Moreover, Π(z) commutes with P (z) and

P (z)Π(z) = Π(z)P (z) = λ(z)Π(z). (5.19)

Consequently, by elementary spectral theory,

P̃ (z) := P (z)− λ(z)Π(z) = (I −Π(z))P (z) (5.20)

has the set of eigenvalues Λ(z) \ {λ(z)} ∪ {0}. This set is contained in D(0, ρ0) and
thus by the definition (2.3) the spectral radius

ρ(P̃ (z)) < ρ0. (5.21)

Consequently, the spectral radius formula (2.4) implies that for some constant C =
C(z)

∥P̃ (z)n∥ ⩽ Cρn0 . n ⩾ 1, (5.22)
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By decreasing δ a little, we may assume that (5.22) holds on Dδ, and then, by
Lemma 5.1, (5.22) holds uniformly for all z ∈ Dδ with some C = C(δ).

By (5.19)–(5.20), P̃ (z) and Π(z) commute, and P̃ (z)Π(z) = Π(z)P̃ (z) = 0. Hence,
(5.20) and (5.18) imply

P (z)n =
(
λ(z)Π(z) + P̃ (z)

)n
= λ(z)nΠ(z) + P̃ (z)n. (5.23)

Consequently, Lemma 5.2 yields, recalling (5.14) and (5.15), for z ∈ Dδ,

Gn(z) = π1(z)
t
(
λ(z)n−1Π(z) + P̃ (z)n−1

)
1

= λ(z)n−1π1(z)
tΠ(z)1+O(ρn−1

0 )

= λ(z)n−1(π1(z)
tv(z))(u(z)t1) +O(ρn0 ),

= λ(z)n−1
(
π1(z)

tv(z) +O
(
cn
))

(5.24)

with c := ρ0/(1− ρ1) < 1; note that the O terms are uniform for z ∈ Dδ since (5.22)
is and π1(z) is bounded for z ∈ Dδ. We may, by decreasing δ if necessary, assume
that |π1(z)tv(z)| > 1/2 for z ∈ Dδ, and then (5.24) yields (5.11) with

η(z) := λ(z)−1π1(z)
tv(z). (5.25)

We have noted λ(1) = 1, and thus (5.25) and (5.16) yield η(1) = πt11 = 1.
Finally, (5.11) can be written∣∣∣∣ Gn(z)

η(z)λ(z)n
− 1

∣∣∣∣ ⩽ Ccn, z ∈ Dδ, n ⩾ 1. (5.26)

The function Gn(z)/
(
η(z)λ(z)n

)
− 1 on the left-hand side is analytic and vanishes

at z = 1; hence we can divide it by z − 1 and obtain, by the maximum principle,∣∣∣∣Gn(z)/(η(z)λ(z)
n)− 1

z − 1

∣∣∣∣ ⩽ Ccn, z ∈ Dδ, n ⩾ 1, (5.27)

which is (5.12). □

We may assume (and actually already have assumed in the proof) that δ is so
small that η(z) ̸= 0 and λ(z) ̸= 0 in Dδ, and thus log η(z) and log λ(z) are defined
there. Let δ0 be so small that if z is a complex number with |z| < δ0, then e

iz ∈ Dδ.
We then can define the analytic functions, for |z| < δ0,

ψ(z) := log λ
(
eiz

)
and γ(z) := log η

(
eiz

)
. (5.28)

We obtain from (5.12) the estimate

logGn(e
iz) = nψ(z) + γ(z) +O

(
|z|cn

)
, |z| < δ0. (5.29)

Note that, recalling (5.8), (5.29) resembles the elementary decomposition of the
characteristic function of the sum of i.i.d. variables as a power of the characteristic
function of an individual variable, but we have here also two “error terms”.

Lemma 5.4. The cumulants of Sn are given by

κm(Sn) = i−mψ(m)(0)n+O(1) = κmn+O(1) (5.30)

for every m ⩾ 1, where

κm := i−mψ(m)(0). (5.31)
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(The implicit constant may depend on m, but not on n.) In particular,

κm(Sn)

n
→ κm as n→ ∞. (5.32)

Proof. Since the functions in (5.29) are analytic, we may differentiate an arbitrary
number of times, and obtain by (2.5) and Cauchy’s estimate, for every m ⩾ 1,

imκm(Sn) =
dm

dtm
logGn(e

it)
∣∣
t=0

= nψ(m)(0) + γ(m)(0) +O
(
cn
)
, (5.33)

which is a more precise form of (5.30)–(5.31). □

We have so far allowed any initial distribution π1, but we now, for simplicity,
assume that the Markov chain (Wn)

∞
1 is stationary, i.e., that the initial distribution

π1 = π, and thus πk = π for every k by (3.2) and (3.5). Then the random variables
Xk have the same distribution. As in (3.11), denote their mean by

µ := EXk. (5.34)

Corollary 5.5. Suppose that the Markov chain (Wn)
∞
1 is stationary. Then

κ1 = µ, ψ′(0) = iµ, γ′(0) = 0. (5.35)

Proof. Since the random variables Xk have the same distribution, (2.7) yields

κ1(Sn) = ESn =
n∑

k=1

EXk = nµ. (5.36)

The result follows from the case m = 1 of (5.32) and (5.33). □

We are now prepared to prove the estimate of φSn(t) that we need for small t.

Lemma 5.6. Suppose that the Markov chain (Wn)
∞
1 is stationary. Then there exists

δ > 0 such that, if |t| ⩽ δ, then

φSn(t) = einµt−nκ2t2/2
(
1− in

κ3

6
t3
)
+O

(
(t2 + n2t6)e−nκ2t2/4

)
. (5.37)

Proof. Let δ < δ0. Then (5.8), (5.29) and Cauchy’s estimate yield, for |t| ⩽ δ,

d4

dt4
logφSn(t) =

d4

dt4
logGn(e

it) = nψ(4)(t) + γ(4)(t) +O
(
cn
)
= O(n). (5.38)

Consequently, a Taylor expansion as in (2.6) yields, using φSn(1) = 1, (5.36) and
(5.30), for |t| ⩽ δ and n ⩾ 1,

logφSn(t) = iκ1(Sn)t−
κ2(Sn)

2
t2 − i

κ3(Sn)

6
t3 +O(nt4)

= inµt− n
κ2

2
t2 − in

κ3

6
t3 +O(t2 + nt4). (5.39)

Hence,

e−inµt+nκ2t2/2φSn(t) = exp
(
−in

κ3

6
t3 +O(t2 + nt4)

)
. (5.40)

If δ is small enough, then the real part of the argument of the exponential function
in (5.40) is less than nκ2t

2/4 + C, and consequently, by a Taylor expansion,

e−inµt+nκ2t2/2φSn(t) = 1− in
κ3

6
t3 +O(t2 + nt4) +O

((
n|t|3 + t2

)2
enκ2t2/4

)
,

(5.41)

which yields (5.37), recalling that |t| = O(1) and noting nt4 ⩽ (t2 + n2t6)/2. □
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We turn to estimating φSn(t) for larger t, and again begin by studying the matrix
P (z). This is where we use our assumption (3.9).

Lemma 5.7. If 0 < |t| ⩽ π, then

ρ
(
P (eit)

)
< 1. (5.42)

Proof. Let λ be an eigenvalue of P (eit), and let ut = (uj)
n
1 be a corresponding left

eigenvector. Then

λuk =
∑
j∈W

ujP (e
it)jk =

∑
j∈W

ujPjke
ig(k)t, k ∈ W, (5.43)

and thus, by the triangular inequality,

|λ| |uk| ⩽
∑
j∈W

|uj |Pjk, k ∈ W. (5.44)

Summing over all k ∈ W yields, since (Pjk) is a stochastic matrix,

|λ|
∑
k∈W

|uk| ⩽
∑
j∈W

|uj |
∑
k∈W

Pjk =
∑
j∈W

|uj |. (5.45)

Consequently, |λ| ⩽ 1.
Suppose now, to obtain a contradiction, that |λ| = 1. We then have equality

in (5.45), and thus in (5.44) for every k. Note first that since (Pjk) is irreducible,
it follows easily from equality in (5.44) that we have |uk| > 0 for every k ∈ W.
Furthermore, equality when applying the triangle inequality to (5.43) implies

uje
ig(k)t

λuk
> 0 (5.46)

for all j, k ∈ W such that Pjk > 0. It follows that for any path Q given by i0, . . . , iℓ,

ui0e
ig(Q)t

λℓ(Q)uiℓ
=

ℓ∏
k=1

uik−1
eig(ik)t

λuik
> 0 (5.47)

and in particular, for a closed path Q

eig(Q)tλ−ℓ(Q) =
eig(Q)t

λℓ(Q)
> 0. (5.48)

Furthermore, |eig(Q)t| = |λℓ(Q)| = 1, and thus, for every closed path Q

eig(Q)tλ−ℓ(Q) = 1. (5.49)

The set of all (k, ℓ) ∈ Z2 such that

eiktλ−ℓ = 1 (5.50)

is a subgroup, and thus it follows from (3.9) and (5.49) that (5.50) holds for all (k, ℓ) ∈
Z2. Taking (k, ℓ) = (1, 0), this shows eit = 1, which contradicts the assumption on t.

This contradiction shows that |λ| < 1 for every eigenvalue λ of P (eit), which is
the same as (5.42) by (2.3). □

Lemma 5.8. For every δ > 0, there exist r = r(δ) < 1 and C such that if δ ⩽ |t| ⩽ π
and n ⩾ 1, then

∥P (eit)n∥ ⩽ Crn. (5.51)

Proof. A consequence of Lemmas 5.7 and 5.1, taking K := {t ∈ R : δ ⩽ |t| ⩽ π}. □
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Lemma 5.9. For every δ > 0, there exist r = r(δ) < 1 and C such that if δ ⩽ |t| ⩽ π
and n ⩾ 1, then ∣∣φSn(t)

∣∣ ⩽ Crn. (5.52)

Proof. A consequence of Lemmas 5.8 and 5.2 together with (5.8). □

Proof of Theorem 3.2. The limits (3.12) and (3.13) exist by (5.32); note that σ2 =
κ2. We postpone the proof that σ2 > 0 to Corollary 6.10 in Section 6. Define the

normalized variable S̃n := (Sn − nµ)/(σ
√
n) which has mean E S̃n = 0 and variance

Var(S̃n) = 1 +O(1/n) by (5.36) and (5.30).
Using the estimates of φSn(t) in Lemmas 5.6 and 5.9, the result (3.14) follows

as the classical corresponding result for sums of i.i.d. random variables [6, Theorem
IV.3]. There are actually two proofs of this theorem in [6]. We use the second proof
in [6, pp. 64–65], taking there

fn(t) := φ
S̃n
(t) = e−iµ

√
nt/σφSn

( t

σ
√
n

)
. (5.53)

We further take T3n there as δ
√
n with the same δ as in Lemma 5.6, and we have

d = 1 and t0 = 2π. A crucial part of the estimate is that Lemma 5.6 yields

φ
S̃n
(t) = e−t2/2

(
1− i

κ3

6σ3
√
n
t3
)
+O

(
n−1(t2 + t6)e−t2/4

)
, |t| ⩽ δσ

√
n, (5.54)

and thus, with g(t) := e−t2/2
(
1− i κ3

6σ3
√
n
t3
)
,∫ δσ

√
n

−δσ
√
n

∣∣∣∣∣φS̃n
(t)− g(t)

t

∣∣∣∣∣ dt = O
(
n−1

)
, (5.55)

which implies that I ′2 = O(n−1) on [6, p. 65]. The rest of the estimates in [6, pp. 64–
65] hold without changes, and we obtain (3.14); we omit the details. We may also
use the first proof in [6, pp. 57–59], again using (5.55); however, this yields (3.14)

with the slightly weaker error term O
( logn

n

)
from the estimates of I ′k and ε1 on [6,

p. 59].
It remains to verify the matrix-based cumulant formulas (3.15)–(3.19). By Lemma

5.4 and (5.28), the cumulants are given in terms of the first three derivatives of
ψ(z) = log λ(eiz) at z = 0. By analyticity of λ(eiz), it is enough to calculate the
derivatives of log λ(et) where t is real. This can be done by repeated differentiation of
the eigenvalue equation and some algebra, see Appendix A, but we will here instead
make use of [10], which studies this problem in great generality; in particular, [10,
Theorem 4.1] (with a correction of the sign of ρ3) provides for P as above and any
matrix E and small t, the Taylor series

λ(P + tE) = 1 + tρ1(E) + t2ρ2(E) + t3ρ3(E) +O(t4), (5.56)

where λ(P + tE) denotes the largest eigenvalue, and ρi are the following expressions:

ρ1(E) = πtE1, (5.57)

ρ2(E) = πtEQE1, (5.58)

ρ3(E) = πtEQEQE1− ρ1(E) · πtEQ2E1. (5.59)

Here, as before, we set Q := (I − P )g. (Recall that since P is irreducible, it has a
simple largest eigenvalue; by continuity, this holds also for all small perturbations.)
We will use this result in a different, more general form. The expansion (5.56) holds
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uniformly for all matrices E in a bounded set. (This follows e.g. since the implicit
function theorem implies that the eigenvalue λ(P + tE) is (for small t) an analytic
function of the entries in tE.) Consequently, (5.56) holds also for a continuous
matrix-valued function E(t). Let F (t) be a smooth one-parameter family of matrices
with F (0) = P and take E(t) := (F (t) − F (0))/t (with E(0) := F ′(0)); then (5.56)
gives an expansion of λ(F (t)). We want to extract the first three derivatives at the
origin. For this purpose, it is sufficient to replace F (t) with its third-order Taylor
series P + tF ′(0) + 1

2 t
2F ′′(0) + 1

6 t
3F ′′′(0), which gives

E(t) := F ′(0) +
1

2
tF ′′(0) +

1

6
t2F ′′′(0). (5.60)

By substituting (5.60) in (5.56)–(5.59), we obtain

λ(F (t)) = 1 + tρ1(E(t)) + t2ρ2(E(t)) + t3ρ3(E(t)) +O(t4)

= 1 +m1t+
1
2m2t

2 + 1
6m3t

3 +O(t4), (5.61)

where, collecting terms,

m1 := [t1]λ(F (t)) = [t0]ρ1(E(t)) = πtF ′(0)1, (5.62)

1
2m2 := [t2]λ(F (t)) = [t1]ρ1(E(t)) + [t0]ρ2(E(t))

= 1
2π

tF ′′(0)1+ πtF ′(0)QF ′(0)1, (5.63)

1
6m3 := λ(F (t))[t3] = [t2]ρ1(E(t)) + [t1]ρ2(E(t)) + [t0]ρ3(E(t))

= 1
6π

tF ′′′(0)1+ 1
2π

tF ′(0)QF ′′(0)1+ 1
2π

tF ′′(0)QF ′(0)1

+ πtF ′(0)QF ′(0)QF ′(0)1− πtF ′(0)1 · πtF ′(0)Q2F ′(0)1. (5.64)

In our case, we set F (t) = P (et), and it is easy to see from (5.5) that the deriva-

tives are given by F (k)(0) = PGk where G = Diag(g(1), . . . , g(m)). Furthermore,

the relation between the raw moments mi = di

dti

∣∣
t=0

λ(F (t)) and cumulants κi =
di

dti

∣∣
t=0

log λ(F (t)) is as usual:

µ = κ1 = m1, (5.65)

σ2 = κ2 = m2 −m2
1, (5.66)

κ3 = m3 − 3m2m1 + 2m3
1. (5.67)

Plugging in (5.62)–(5.64), and recalling πtP = πt, we get the indicated expressions
in equations (3.15)–(3.17).

Finally, (2.19) yields

QP = Q− I + 1πt = Q′ + 1πt, (5.68)

and as a consequence, since Q1 = 0,

Q2P = Q(QP ) = Q(Q′ + 1πt) = QQ′ = Q′2 +Q′. (5.69)

Substituting these in (3.16)–(3.17) yields (3.18)–(3.19). □

Proof of Corollary 3.3. We obtain (3.20) directly from (3.14) by taking µ = 0 and
x = 0, noting that ϑ(0) = 1/2 by (2.14). To obtain (3.21) we instead take x < 0 and
let x↗ 0, noting that ϑ(0−) = −1/2.

The formula (3.22) then follows from

P(Sn < 0)− P(Sn > 0) = Pn(Sn < 0) + P(Sn ⩽ 0)− 1, (5.70)
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and (3.23) follows from P(Sn = 0) = Pn(Sn ⩽ 0)− P(Sn < 0). □

5.3. Proof of Theorem 3.4.

Proof of Theorem 3.4. Let Ŵk := (Wk−1,Wk); this is easily seen to be a Markov
chain in the state space

Ŵ :=
{
(i, j) ∈ W2 : Pij > 0

}
. (5.71)

We can regard g as a function Ŵ → Z, and then the definition (3.24) yields the same

Sn as (3.7) for the chain (Ŵk)
∞
1 . It is easily seen that the chain (Ŵk)

∞
1 is stationary,

irreducible and aperiodic when (Wk)
∞
0 is, and the condition (3.9) is the same for

both chains. Hence the result follows from Theorem 3.2 applied to (Ŵk)
∞
1 . □

6. The aperiodicity condition and non-degeneracy

The general results above use the aperiodicity condition (3.9). In this section
we give several equivalent forms of it, and also of the condition σ2 > 0 which, as
stated in Theorem 3.2 is a consequence. We consider irreducible and aperiodic finite-
state Markov chains as in Section 3. In particular, we specialize to Litt’s game, and
show that these conditions are always satisfied except for the rather trivial cases in
Examples 6.2, 6.3, and 6.4 below.

6.1. Bad examples. We begin with a few examples where (3.9) fails, illustrating the
reasons for it and showing the consequences. The first two examples are degenerate
with also σ2 = 0.

Example 6.1. Consider Litt’s game with A = HT and B = TH. It is then obvious
by induction that

Ŝn = 1ξn=T − 1ξ1=T ∈ {−1, 0, 1}. (6.1)

Thus (3.12) yields σ2 = 0. Furthermore, it is easily seen that g(Q) = 0 for every
closed pathQ, and thus (3.9) fails. It is easy to see that the matrix P (eit) in Section 5
has an eigenvalue λ(eit) = 1 for every real t, and thus Lemmas 5.7–5.9 fail. It follows
trivially from (6.1) that for every n ⩾ 2,

P(Alice wins) = P(Bob wins) = 1
4 , P(tie) = 1

2 . (6.2)

Hence, (1.5)–(1.7) utterly fail, while (1.8) holds trivially. △

Example 6.2. More generally, let ℓ ⩾ 2 and consider Litt’s game with A = HTℓ−1

and B = Tℓ−1H. Then Alice scores when a run of at least ℓ − 1 tails has begun,

and Bob scores when such a run ends, and again it is obvious that Ŝn ∈ {−1, 0, 1}.
Thus σ2 = 0. Also, again g(Q) = 0 for every closed path Q, and (3.9) fails. As
in Example 6.1, it is easy to see that (1.5)–(1.7) fail, while (1.8) holds trivially by
symmetry (reversing the order of the coin tosses, cf. [8]).

We will see below (Theorem 7.1) that, as stated without proof in [1], this example
and its obvious equivalent variants obtained by interchanging Alice and Bob or H
and T (or both) are the only cases in Litt’s game where σ2 = 0. △

In the following examples, (3.9) fails but σ2 > 0. We will see that Lemma 5.7 fails
for them, and as a consequence also Lemma 5.8; not surprisingly also Lemma 5.9
fails.
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Example 6.3. Consider the trivial case of Litt’s game with ℓ = 1, A = H and
B = T. In this case, Sn is just the number of heads minus the number of tails. Thus,

Sn = 2S′
n − n with S′

n ∈ Bin(n, 12). (6.3)

In particular Sn ≡ n (mod 2) and thus P(Sn = 0) = 0 when n is odd, so (1.7) fails,
and consequently (by symmetry) also (1.5)–(1.6) fail. (Asymptotic expansions of the
probabilities are easily obtained from (6.3), treating n even and n odd separately;
we leave this to the reader.)

Similarly, g(Q) ≡ ℓ(Q) (mod 2) for every path Q (closed or not). As a conse-
quence, (3.9) does not hold, which is the reason why Theorem 3.2 and Corollary 3.3
do not apply. We have σ2 = 1 > 0 by (4.19) (or as a consequence of (6.3)). In the
arguments in Section 5, we have by (5.5)

P (z) =
1

2

(
z z−1

z z−1

)
. (6.4)

This matrix has rank 1, with eigenvalues (z + z−1)/2 and 0, and it follows easily
from (5.8) and (5.14) that

φSn(t) = Gn(e
it) = π1(e

it)tP (eit)n−11 = cosn t, (6.5)

which of course also follows directly from (6.3). Note that P (−1) has an eigenvalue
−1, which means that Lemmas 5.7 and 5.8 do not hold for t = π; similarly, (6.5)
shows that Lemma 5.9 fails for t = π. △

Example 6.4. Consider Litt’s game with A = HH and B = TT. This game is
obviously fair by symmetry, so (1.8) holds trivially (with θAA = θBB = 1

2), and it
is checked below that (1.5)–(1.7) also hold. Thus the conclusions of Theorem 1.1
hold; nevertheless, Theorem 3.2 and Corollary 3.3 do not apply because (3.9) does
not hold. In fact, if we instead use the alphabet A = {0, 1}, we have, recalling (4.2),

g(Wk) = ±1ξk=ξk+1
≡ ξk − ξk+1 + 1 (mod 2), (6.6)

and consequently, g(Q) ≡ ℓ(Q) (mod 2) for every closed path Q, which shows that
(3.9) does not hold.

In this case, it is easy to calculate the distribution of Ŝn+1 = Sn exactly using
the arguments in Section 5. We may simplify the calculations by letting (Wk) be a
sequence of i.i.d. random bits with P(Wk = 0) = P(Wk = 1) = 1

2 , which is a trivial
Markov chain, and use the version (3.24) with g(i, j) := 1i=j=0 − 1i=j=1. It is easily
seen that for this version, (5.9) is modified to

Gn(z) = πt0P (z)
n1 (6.7)

with

P (z) :=
(
Pijz

g(i,j)
)
i,j∈W =

1

2

(
z 1
1 z−1

)
. (6.8)

This matrix has rank 1, with eigenvalues (z + z−1)/2 and 0 (just as (6.4)), and it
follows that, for n ⩾ 1,

P (eit)n = (cos t)n−1P (eit). (6.9)

Hence, (6.7) yields

φSn(t) = Gn(e
it) =

1 + cos t

2
cosn−1 t. (6.10)
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(This factorization has the probabilistic interpretation that Sn has the same distri-

bution as a sum
∑n−1

0 Yj of independent random variables, where Y0 + 1 has the

binomial distribution Bin(2, 12) and Yj = ±1 with probability 1
2 each for j ⩾ 1.) It

follows easily that, for example, with m := ⌊n/2⌋,

P(Sn = 0) = 2−2m−1

(
2m

m

)
=

1√
2πn

+O(n−3/2). (6.11)

We have σ2 = 1, by (4.19) or directly from (6.10) which implies that VarSn = n− 1
2 .

Hence (1.7) holds, and thus (by symmetry) also (1.5)–(1.6).
This is as expected, but note that the next term in the expansion (6.11), of order

n−3/2, will depend on the parity of n. The reason is that the matrix P (eiπ) = P (−1)
has an eigenvalue −1 on the unit circle; thus, although the characteristic function
(6.10) vanishes at t = π, it is not exponentially small for t close to π, as it is in
Section 5 when we assume (3.9) and as a consequence Lemma 5.7 holds. △

We end with an (artificial) example of a different type of Markov chain where
(3.9) fails.

Example 6.5. Consider a stationary Markov chain (Wk) with 4 statesA = {a, b, c, d}
and the transition matrix

P =


0.45 0.45 0.1 0
0.45 0.45 0.1 0
0 0 0 1
0.5 0.5 0 0

 . (6.12)

This is irreducible and aperiodic, with stationary distribution ( 5
12 ,

5
12 ,

1
12 ,

1
12). Let

g(a) = 1, g(b) = −1, g(c) = g(d) = 0. If we partition W as {a, b, d} ∪ {c}, then
g(Wk) = 0 if Wk−1 and Wk are in different parts, but g(Wk) = ±1 if Wk−1 and Wk

are in the same part, and it follows that

g(Wk) ≡ 1Wk=c − 1Wk−1=c + 1 (mod 2). (6.13)

This implies that for any closed path Q,

g(Q) ≡ ℓ(Q) (mod 2), (6.14)

and thus (3.9) does not hold. It is easy to see, e.g. by the calculations below or by
Proposition 6.8, that σ2 > 0.

It follows also from (6.13) and induction that

Sn =

n∑
k=1

g(Wk) ≡ 1W1=d + 1Wn=c + n (mod 2). (6.15)

As n→ ∞, W1 and Wn are asymptotically independent, and thus P(W1 = d,Wn =

c) → 1
122

and P(W1 ̸= d,Wn ̸= c) → 112

122
. Hence, if n is even, then Sn is even with

probability ≈ 122
144 = 61

72 , while if n is odd then Sn is even with probability ≈ 11
72 .

Hence Sn exhibits a strong periodicity, although the Markov chain itself is aperiodic.
In the arguments of Section 5, this is reflected in the easily verified fact that

P (−1) has an eigenvalue −1, and thus ρ(P (−1)) = 1 so Lemma 5.7 fails for t = π.
Lemma 5.7 holds for 0 < t < π, and thus Lemmas 5.8 and 5.9 hold for δ ⩽ t ⩽ π− δ.
Furthermore, for z close to −1, we have in analogy with (5.11) an approximation

Gn(z) = η−(z)λ(z)
n
(
1 +O(cn)

)
(6.16)
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with c < 1, where η−(z) and λ(z) are analytic and λ(−1) = −1; furthermore, λ(z)
is an eigenvalue of P (z), and we have λ(z) = −λ(−z).

We can now argue as in Section 5, but we have to include terms coming from
z = −1. For simplicity, consider

P(Sn = 0) =
1

2π

∫ π

−π
φSn(t) =

1

2π

∫ π

−π
Gn(e

it). (6.17)

Calculations show that λ′(1) = λ′(−1) = 0, λ′′(1) = 5
6 , λ

′′(−1) = −5
6 , η(1) = 1 (as

always), and η(−1) = 25
36 ; (6.17) and standard arguments then yield

P(Sn = 0) =
3√
5πn

(
1 + (−1)n

25

36
+ o(1)

)
. (6.18)

This shows periodicity for P(Sn = 0), and in particular (3.14) does not hold. △

6.2. The aperiodicity condition (3.9). Let L be the subgroup of Z2 generated
by the set

{
(g(Q), ℓ(Q)) : Q is a closed path

}
in (3.9), and let G := Z2/L be the

corresponding quotient. Thus the condition (3.9) says G = {1}.
The projection Π2 : (x, y) 7→ y maps L onto the subgroup L2 of Z generated by

the set of ℓ(Q) for all closed paths Q, and since we assume the aperiodicity (3.4), we
have L2 = Z; in other words, Π2 is onto Z. Consequently, there exists some b ∈ Z
such that (b, 1) ∈ L. Let

L1 := {x ∈ Z : (x, 0) ∈ L}, (6.19)

i.e., the kernel of Π2 regarded as a subgroup of Z. Then

(x, y) ∈ L ⇐⇒ (x, y)− y(b, 1) ∈ L ⇐⇒ x− yb ∈ L1 (6.20)

and thus

L =
{
(z + yb, y) : y ∈ Z, z ∈ L1

}
. (6.21)

Similarly, it follows from (b, 1) ∈ L that every coset (x, y) ∈ G of L has a repre-

sentative of the form (z, 0). Consequently, the homomorphism z 7→ (z, 0) maps Z
onto G, and thus G ∼= Z/L1. Hence, G is a cyclic group. Let N := |G| ∈ N ∪ {∞}.
In particular, (3.9) holds if and only if N = 1. There are two cases:

(i) L1 = {0}, N = ∞, and G ∼= Z. Then (6.21) shows that L = {y(b, 1) : y ∈ Z}.
The definition of L shows that this holds if and only if

g(Q) = bℓ(Q) (6.22)

for every closed path. This is a very degenerate case, see Section 6.3.
(ii) L1 = NZ, 1 ⩽ N < ∞, and G ∼= ZN . It follows from (6.21) that L is a

two-dimensional lattice with basis {(N, 0), (b, 1)}.
In both cases, we identify G with ZN (where Z∞ := Z) in the natural way by the

isomorphism Z/L1 → G.
Every possible step ij with Pij > 0 in the Markov chain generates a vector vij :=

(g(j), 1) in Z2, and thus a corresponding element γij := (g(j), 1) ∈ G. If we sum vij
along a closed path, we get (by definition) an element of L, and thus the sum of γij
along a closed path vanishes in G. Fix an (arbitrary) element o ∈ W, and pick for
every k ∈ W a path Qk from o to k. Let γk ∈ G be the sum of γij along this path.
It is easy to see that since the sum along any closed path is 0, the sum γk does not
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depend on the choice of Qk. Furthermore, if Pij > 0, then we may choose Qj as the
path Qi followed by j, and thus

γj = γi + γij , if Pij > 0. (6.23)

Note also that since (b, 1) ∈ L,

γij = (g(j), 1) = (g(j)− b, 0). (6.24)

Hence, by identifying G with ZN , we simply have γij = g(j)− b in ZN , and thus by
(6.23)

γj = γi + g(j)− b in ZN when Pij > 0. (6.25)

This leads to the following characterizations of (3.9).

Proposition 6.6. Let (Wk) be an irreducible and aperiodic Markov chain on a finite
state space W, and let g : W → Z. Then, with notation as in Sections 3 and 5, the
following are equivalent:

(i) The condition (3.9) does not hold.
(ii) P (eit) has an eigenvalue λ with |λ| = 1 for some t ∈ (0, π].
(iii) The spectral radius ρ

(
P (eit)

)
= 1 for some t ∈ (0, π].

(iv) There exist an integer N ⩾ 2, an integer b, and integers γi, i ∈ W, such that
for every pair i, j ∈ W with Pij > 0,

γj ≡ γi + g(j)− b (mod N). (6.26)

(v) There exists an integer N ⩾ 2, an integer b, and a partition of W into (possibly
empty) sets Wk, k = 1, . . . , N , such that if i ∈ Wk and Pij > 0, then j ∈
Wk+g(j)−b, with the index regarded modulo N .

Proof. First, the proof of Lemma 5.7 shows that every eigenvalue λ of P (eit) satisfies
|λ| ⩽ 1, and thus (ii) ⇐⇒ (iii) by the definition of spectral radius.

Furthermore, (iv) ⇐⇒ (v), since if (iv) holds, we may define Wk := {i : γi ≡ k
(mod N)}, and conversely we may define γi = k for i ∈ Wk.

Lemma 5.7 shows that if (3.9) holds, then (iii) does not hold; thus (iii) =⇒ (i).
Now suppose that (i) holds. This means that in the discussion above, N > 1.

If N < ∞, then (6.25) shows the existence of b and γi such that (6.26) holds. If
N = ∞, then (6.26) holds in Z, and it thus holds for any integer N ⩾ 2. This shows
(i) =⇒ (iv).

Finally, suppose that (iv) holds. Let t = 2π/N and ω := eit = e2πi/N , and let
vi := ω−γi . Then, by (5.5) and (6.26) if Pij > 0, and trivially if Pij = 0,

P (ω)ijvj = Pijω
g(j)−γj = Pijω

b−g(i) = Pijω
bvi, (6.27)

and by summing over j we see that v := (vi)i is an eigenvector of P (ω) with eigenvalue
ωb. Hence (ii) holds. □

Example 6.7. Nagaev [21, Condition C] makes the (rather strong) assumption
that for every pair i, j ∈ W, there exists k ∈ W such that Pik, Pjk > 0. This in
combination with (6.26) implies that

γi ≡ γk − g(k) + b ≡ γj (mod N). (6.28)

Thus, for every j, by choosing i such that Pij > 0 and applying (6.26) again,

g(j) ≡ b (mod N), j ∈ W. (6.29)
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Since [21, Theorem 3] also assumes (in our notation) that (6.29) does not hold for
any N ⩾ 2, we see that the assumptions in [21] imply that Proposition 6.6(iv) cannot
hold, and thus Proposition 6.6 shows that (3.9) holds. △

6.3. The asymptotic variance σ2 = 0. Another exceptional case when Theo-
rem 1.1 fails is when the asymptotic variance σ2 = 0. This is a very degenerate case;
as shown in Proposition 6.8 below, it happens only if, after subtracting a suitable
constant b from g, the sums Sn are deterministically bounded. We will also see that
it cannot happen when (3.9) holds.

Proposition 6.8. Let (Wk) be an irreducible and aperiodic Markov chain on a finite
state space W, and let g : W → Z. Then, with notation as in Sections 3 and 6.2,
the following are equivalent:

(i) σ2 = 0.
(ii) There exists an integer (or real number) b such that deterministically

|Sn − bn| ⩽ C (6.30)

for some constant C, uniformly in n.
(iii) There exists an integer (or real number) b such that

g(Q) = bℓ(Q) (6.31)

for every closed path Q.
(iv) There exist an integer b and integers γi, i ∈ W, such that for every pair i, j ∈ W

with Pij > 0,

γj = γi + g(j)− b. (6.32)

(v) There exists an integer b such that

L = Z(b, 1) = {(yb, y) : y ∈ Z}. (6.33)

(vi) The lattice L is one-dimensional.
(vii) L1 = {0}.
(viii) N = ∞.
(ix) G = Z.
Furthermore, the constant b in (ii), (iii), (iv), and (v) is the same integer.

Proof. The equivalences (vi) ⇐⇒ (v) ⇐⇒ (vii) ⇐⇒ (viii) ⇐⇒ (ix) ⇐⇒ (iii) follow
from the discussion at the beginning of Section 6.2, in particular (6.21) and the text
leading to (6.22). Note that if (6.31) holds for some real number b, then bℓ(Q) ∈ Z
for every closed path Q, and thus bx ∈ Z for every x in the group L2 generated by
the set of all such ℓ(Q). As noted above, the aperiodicity (3.4) implies L2 = Z, and
thus b ∈ Z, so b in (6.31) has to be an integer.

Furthermore, (viii) =⇒ (iv) follows by (6.25) (with N = ∞).
(iv) =⇒ (ii): It follows from (6.32) that

Sn − bn =
n∑

k=1

(g(Wk)− b) = g(W1)− b+
n∑

k=2

(γWk
− γWk−1

)

= g(W1)− b+ γWn − γW1 (6.34)

and thus (6.30) holds with C = maxi∈W |g(i) − b| + 2maxj∈W |γj |. (The same
argument yields (iv) =⇒ (iii) directly, but we do not need this.)

(ii) =⇒ (i): Obvious by the definition (3.12).
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(i) =⇒ (iii): Suppose that (iii) does not hold. Then there exist two closed paths
Q1 and Q2 such that

g(Q1)/ℓ(Q1) ̸= g(Q2)/ℓ(Q2). (6.35)

Let wi be the starting point of Qi. If w2 ̸= w1, choose two paths Q12 and Q21 from
w1 to w2 and from w2 to w1, respectively. We may then construct the closed paths
Q′ := Q12 +Q21 and Q′′ := Q12 +Q2 +Q21, both starting at w1, by concatenation
in the obvious way. Then

g(Q′′) = g(Q12) + g(Q2) + g(Q21) = g(Q′) + g(Q2) (6.36)

and similarly ℓ(Q′′) = ℓ(Q′)+ℓ(Q2); hence it follows from (6.35) that we cannot have
g(Q′)/ℓ(Q′) = g(Q1)/ℓ(Q1) = g(Q′′)/ℓ(Q′′). Consequently, by relabelling either Q′

or Q′′ as Q2, we may assume that (6.35) holds with the same starting point w1 for
both closed paths.

Next, let ℓi := ℓ(Qi) ⩾ 1. Replace Qi by the closed path ℓ3−iQi, i.e., the closed
path Qi repeated ℓ3−i times. This replacement does not change g(Qi)/ℓ(Qi), and
thus (6.35) still holds, but now both closed paths have the same length ℓ1ℓ2.

We may thus assume that (6.35) holds for two closed paths Q1 and Q2 of the
same length ℓ ⩾ 1 and starting from the same point w1 ∈ W; note that this implies
g(Q1) ̸= g(Q2). We now fix these paths, and thus ℓ, and define a sequence of stopping
times for the Markov chain by

T0 := min{n ⩾ 1 :Wn = w1}, (6.37)

Tk := min{n ⩾ Tk−1 + ℓ :Wn = w1}, k ⩾ 1. (6.38)

Thus, at Tk we return to w1, but we only consider returns after a time of at least ℓ.
Since the Markov chain is finite and irreducible, almost surely all Tk are finite.

The Markov property shows that the times Tk are renewal times in the sense that
the process starts again at each Tk. Let τk := Tk − Tk−1, the waiting time of the
k:th “renewal”; then τ1, τ2, . . . are i.i.d. random variables. Using the fact that there
exists some t0 such that from every point in W we may with positive probability
reach w1 within t0 steps, it is easily seen that the tail probability P(τ1 > t) decreases
exponentially as t → ∞; in particular, the moment E τm1 is finite for every m ⩾ 1,
Similarly, ETm

0 <∞.
Consider the two-dimensional process (n, Sn) and its “increments” between the

renewal times Tk defined by

ζk :=
(
Tk − Tk−1, {STk−1+i − STk−1

: 0 ⩽ i ⩽ Tk − Tk−1}
)
, k ⩾ 1, (6.39)

where the second component thus is a random process defined on an integer interval
of random length. The Markov property shows that these increments are i.i.d. We
may thus apply the general result from renewal theory stated in Lemma 6.9 below
and conclude that, with the notation in (6.42)–(6.44), (6.45) holds with convergence
of all moments. In particular,

Var[Sn]

n
= Var

(Sn − an√
n

)
→ σ̃2/µ̃ (6.40)

and thus, recalling (3.12),

σ2 = σ̃2/µ̃. (6.41)

Now recall the closed paths Q1 and Q2 of the same length ℓ constructed above.
For each i = 1, 2, with positive probability the Markov chain starts in w1 and then
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follows Qi for the next ℓ steps; in this case T0 = 1 and T1 = ℓ + 1 so τ1 = ℓ, and
also ST1 − ST0 = g(Qi). Consequently, ST1 − ST0 − aT1 takes two different values
g(Qi) − aℓ with positive probability, and thus σ̃2 > 0 by (6.44) and consequently
σ2 > 0 by (6.41), so (i) does not hold. This completes the proof of (i) =⇒ (iii),
which completes the chain of equivalences. □

We used above the following renewal theoretic lemma, stated here for our Markov
chain and Sn. The lemma follows easily from known general results in renewal
theory; we find it convenient to use a version from [15] that uses a formulation from
[28]. The powerful idea to analyze Markov chains (also with an infinite state space)
by a suitable renewal sequence of stopping times is old, and was for example used
by [12].

Lemma 6.9. Let (Tk)
∞
k=0 be an increasing sequence of (a.s. finite) random times

and let τk := Tk − Tk−1, k ⩾ 1. Assume that the increments ζk defined in (6.39) for
k ⩾ 1 are i.i.d. (Thus, in particular, the increments τk are i.i.d.) Assume also that
for every r ⩾ 1, ET r

0 <∞ and E τ r1 <∞. Let

a := E [ST1 − ST0 ]/E [τ1], (6.42)

µ̃ := E [τ1], (6.43)

σ̃2 := Var[ST1 − ST0 − aτ1]. (6.44)

Then, as n→ ∞,

Sn − an√
n

d−→ N
(
0, σ̃2/µ̃

)
(6.45)

with convergence of all moments.

Proof. Consider first the process only from time T0. Formally we define

S′
n := ST0+n − ST0 (6.46)

and note that (S′
n)

∞
n=0 is a stochastic process that starts at time n = 0 with S′

0 = 0;
define also T ′

n := Tn − T0. Then the increments ζk in (6.39) are the same for (S′
n)

and (T ′
k) as for (Sn) and (Tk). By assumption these are i.i.d.; this means that in the

terminology of [28] and [15], the stochastic process S′
n has regenerative increments

over the times T ′
k.

Since the state space W is finite, the function g is bounded, and thus |S′
T1
| ⩽

C(T1 − T0) = Cτ1; consequently the moment E |S′
T1
|r is finite for every r ⩾ 1.

Moreover, if M1 := sup1⩽n⩽T ′
1
|S′

n| then EM r
1 <∞ by the same argument.

We may now apply [15, Theorems 1.4 and 3.1] and conclude that

S′
n − an√
n

d−→ N
(
0, σ̃2/µ̃

)
(6.47)

with convergence of all moments.
Finally, again since g is bounded, |ST0+n − Sn| ⩽ CT0 and |ST0 | ⩽ CT0, and

consequently

|Sn − S′
n| ⩽ |ST0+n − Sn|+ |ST0 | ⩽ CT0. (6.48)

It follows that, as n→ ∞,

Sn − S′
n√

n
→ 0 (6.49)



30 SVANTE JANSON, MIHAI NICA, AND SIMON SEGERT

in probability, which together with (6.47) implies (6.45). Moreover, since ET p
0 <∞

for every p ⩾ 1, it follows from (6.48) that (6.49) holds in Lp for every p ⩾ 1, which
together with the moment convergence in (6.47) implies that all moments converge
in (6.45) too. □

Corollary 6.10. Let (Wk) be an irreducible and aperiodic Markov chain on a finite
state space W, and let g : W → Z. Then, with notation as in Sections 3, if (3.9)
holds, then σ2 > 0.

Proof. Proposition 6.8 shows that if σ2 = 0, then (6.31) holds and thus (3.9) does
not hold. □

This corollary completes the proof of Theorem 3.2.

7. Back to Litt’s game

We consider again Litt’s game. We begin by showing that the only cases where
σ2 = 0 are the rather trivial cases in Example 6.2 (including Example 6.1). This (in
the form (7.1) below) is stated in Basdevant et al. [1] without proof; since we also
do not know of a proof given elsewhere, we give a complete proof.

Theorem 7.1. For Litt’s game in Section 4, we have σ2 > 0 except in the case
A = HTℓ−1 and B = Tℓ−1H (with q = 2 and some ℓ ⩾ 2) and its variants obtained
by interchanging Alice and Bob or H and T (or both).

Proof. Suppose that A and B are distinct words such that σ2 = 0. By (4.19), this
is equivalent to

1 + θAA − θAB − θBA + θBB = 0. (7.1)

Note first that for any two words U and V of length ℓ, (4.10) yields

0 ⩽ θUV ⩽
ℓ−1∑
k=1

qk−ℓ =
1− q−(ℓ−1)

q − 1
<

1

q − 1
. (7.2)

Hence, (7.1) is impossible if q ⩾ 3, and thus we in the rest of the proof assume q = 2
and take the alphabet to be {H,T}. Furthermore, we have to have ℓ ⩾ 2, since
θUV = 0 when ℓ = 1.

Moreover, if ℓ− 1 /∈ Θ(U, V ), then similarly

θUV ⩽
ℓ−2∑
k=1

2k−ℓ <
1

2
. (7.3)

Hence, (7.1) cannot hold unless ℓ− 1 ∈ Θ(A,B) or ℓ− 1 ∈ Θ(B,A). By symmetry,
we may assume the first, i.e., that the last ℓ − 1 letters in A are the same as the
first ℓ− 1 letters in B. By symmetry, we may also assume that A ends with T. This
means that for some word C of length ℓ− 2 and some letters a, b ∈ {H,T}, we have

A = aCT, B = CTb. (7.4)

Recall from Section 4 that Ŝn = Sn−ℓ+1 =
∑n−ℓ−1

k=1 g(ξk · · · ξk+ℓ−1) where g : A →
Z is given by g = IA − IB; thus

g(A) = 1, g(B) = −1, and otherwise g = 0. (7.5)
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We use [14, Theorem 2] which shows that then the asymptotic variance σ2 = 0 if
and only if there exists a function h : Aℓ−1 → R and a constant µ such that for any
word a1 · · · aℓ we have

g(a1 · · · aℓ) = h(a2 · · · aℓ)− h(a1 · · · aℓ−1) + µ. (7.6)

(In fact, it follows from (7.6) that µ = E g(ξ1 · · · ξℓ) = E g(W1) = 0, and thus µ = 0
is the same as before, see (4.8).)

We have A = aCT by (7.4), and thus aCH ̸= A. Hence, (7.5) and (7.6) yield

0 < g(aCT)− g(aCH) = h(CT)− h(CH). (7.7)

Let ā be the letter in {H,T} distinct from a. Then by (7.6) again and (7.7),

g(āCT)− g(āCH) = h(CT)− h(CH) > 0. (7.8)

Since āCT ̸= A, (7.8) is possible only if āCH = B. Thus, by (7.4),

āCH = B = CTb. (7.9)

Hence, b = H and

āC = CT. (7.10)

By counting the number of Ts on both sides, we see that ā = T, and thus a = H.
Finally, (7.10) shows that CT is invariant under cyclic permutations, and thus must
contain only one letter; hence C = Tℓ−2. The conclusion A = HTℓ−1 and B = Tℓ−1H
now follows from (7.4). □

7.1. The aperiodicity condition for Litt’s game. We next show that for Litt’s
game, also the aperiodicity condition (3.9) is satisfied except in the (more or less triv-
ial) cases in Examples 6.2, 6.4 and 6.3, i.e., in the exceptional cases in Theorem 7.1
and also in the cases (H,T) and (HH,TT) (or vice versa).

Theorem 7.2. For Litt’s game in Section 4, the aperiodicity condition (3.9) holds
except in the cases (all with q = 2)

(i) A = HTℓ−1 and B = Tℓ−1H for some ℓ ⩾ 2 (see Example 6.2),
(ii) A = H and B = T (see Example 6.3),
(iii) A = HH and B = TT (see Example 6.4),

and their variants obtained by interchanging Alice and Bob or H and T (or both).

Proof. Recall that a path Q is a sequence i0, . . . , im in W = Aℓ, with each transition
having a positive probability. The length is defined as m and the value g(Q) is∑m

k=1 g(ik). Define the weight of the path as w(Q) :=
∏m

k=1 Pik−1,ik ; this is the
probability that if the Markov chain starts in i0, it will follow Q for the next m
steps.

To satisfy the aperiodicity condition, it is sufficient to show:

(a) There exists a closed path Q1 such that g(Q1) = 0 and ℓ(Q1) = 1.
(b) There exists a closed path Q2 such that g(Q2) = 1.

In this case, there exists some N ⩾ 1 such that (0, 1) and (1, N) are in the set{
(g(Q), ℓ(Q)) : Q is a closed path

}
in (3.9) and it is clear that these two vectors

together generate Z2; thus (3.9) holds.
The first condition (a) is simple, since for every a ∈ A, a · · · a→ a · · · a is a closed

path in W of length 1. If q ⩾ 3, or q = 2 and at least one of A or B is non-constant,
then at least one of these paths also has value 0, thus satisfying (a). The remaining
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case q = 2 with A = Hℓ and B = Tℓ (or vice versa) is as noted an exception if ℓ ⩽ 2;
if ℓ ⩾ 3, (a) does not hold but we note that the sequences of coin tosses obtained by
repeating HT or HHT yields closed paths Q2 and Q3 with lengths 2 and 3 and value
0, which is just as good since gcd(2, 3) = 1.

To show (b), it is sufficient to show there exists a closed path through A (of length
⩾ 1) that avoids B. Given such a path, we can truncate it to the time of first return
to A to ensure that the value of the path is 1.

Let W (m) be the total weight of all closed paths from A with length m, that
avoid B, with W (0) := 1. It is easily seen that these numbers have the following
generating function:

(I − tP ̸=B)
−1
A,A =

∑
m⩾0

W (m)tm (7.11)

where P ̸=B is given by zero-ing out the column of P corresponding to B.
We need to show that at least one W (m) is non-zero for m > 0. We will do this

by showing that
∑

m⩾0W (m) > W (0) = 1. For this we use the formula (7.16) in
Lemma 7.3 below, which together with (7.11) gives∑

m⩾0

W (m) = (I − P ̸=B)
−1
A,A = QAA +QBB −QAB −QBA. (7.12)

(An alternative proof of (7.12) is given in Appendix B.) The explicit formula (4.27)
now yields ∑

m⩾0

W (m) = 2 + θAA + θBB − θAB − θBA. (7.13)

Hence, by (7.13) and (4.19),∑
m⩾0

W (m) > 1 ⇐⇒ 1 + θAA + θBB − θAB − θBA > 0 ⇐⇒ σ2 > 0, (7.14)

which holds by Theorem 7.1 except in the excluded case (i). □

The proof above used the following lemma. (See also Appendix B.)

Lemma 7.3. Let P be an irreducible stochastic matrix on a finite state space W,
and let π be its stationary distribution. Then, for any B ∈ W, the matrix (I −P ̸=B)
is invertible, and the inverse has the entries, for i, j ∈ W,

(I − P̸=B)
−1
ij = Qij +

(
QBB + (I −Q)iB

) πj
πB

−QBj . (7.15)

In particular, if the stationary distribution π is uniform, then

(I − P ̸=B)
−1
ij = 1i=B +Qij +QBB −QiB −QBj . (7.16)

Proof. Recall the identity (I − P )Q = I − 1πt (2.19). Hence, PQ = Q − I + 1πt.
Thus, using the Kronecker delta δkj := 1k=j ,

(P ̸=BQ)kj =
∑
i ̸=B

PkiQij

= (PQ)kj − PkBQBj

= Qkj − δkj − πj − PkBQBj . (7.17)

Similarly∑
i

(P ̸=B)ki(I −Q)iB = (P (I −Q))kB − PkB(I −Q)BB
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= PkB + (I −Q− 1πt)kB − PkB(1−QBB)

= PkB + δkB −QkB − πB − PkB +QBBPkB

= δkB −QkB − πB +QBBPkB (7.18)

So if we define Mij to be the right hand side of (7.15), then, using
∑

i ̸=B Pki =
1− PkB,

(P ̸=BM)kj =
∑
i

(P ̸=B)ki

(
Qij + (QBB + (I −Q)iB)

πj
πB

−QBj

)
= Qkj − δkj + πj − PkBQBj +

(
(1− PkB)QBB

+ δkB −QkB − πB +QBBPkB

) πj
πB

− (1− PkB)QBj

= −δkj +Qkj + πj − PkBQBj + (QBB + δkB −QkB)
πj
πB

− πj −QBj + PkBQBj

= −δkj +Qkj + (QBB + (I −Q)kB)
πj
πB

−QBj

= −δkj +Mkj . (7.19)

Thus (I − P ̸=B)M = I and the claim follows. □

Remark 7.4. An alternative proof of this lemma proceeds by writing I − P ̸=B =
I−P+uvt = (I−P+1πt)+(uvt−1πt) for appropriate vectors u, v. Since the matrix
I−P +1πt is invertible (Proposition 2.1), we can now apply the standard Woodbury
formula to write (I−P ̸=B)

−1 as a rank-2 correction to (I−P +1πt)−1 = Q+1πt. A
similar argument also works to derive a general formula for rank-k updates to I−P .
The details are straightforward and left to the reader. △

Remark 7.5. The quantity
∑

m⩾0W (m) = (I − P ̸=B)
−1
AA has the alternative prob-

ablistic interpretation the expected number of visits to A before visiting B for a
Markov chain started at A (counting the initial state as a visit). This follows by
considering Ni, the expected number of visits to A before visiting B for a random
walk started at i, and observing the linear relation Ni = 1i=A +

∑
j ̸=B PijNj . △

Proof of Theorem 1.1. By Theorem 7.2, except in the excluded cases and in the case
A = HH and B = TT (or conversely), the condition (3.9) holds and then the result
is given by Theorem 4.2.

In the remaining case A = HH and B = TT, (3.9) fails but σ2 > 0 and (1.5)–(1.8)
still hold by simple direct calculations, see Example 6.4. □

8. Analysis of state space expansion

The proof of Theorem 3.4 involves passing to the expanded state space of pairs
(i, j). In order to modify the explicit moment formulas for this case, it is necessary to
know how the stationary distribution π and group inverse Q are transformed under
this state-space-expansion operation.

The expanded transition matrix P̂ij,i′j′ evidently satisfies

P̂ij,i′j′ = 1j=i′Pj,j′ (8.1)
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We have ∑
ij

πiPi,jP̂ij,i′j′ =
∑
ij

πiPi,j1j=i′Pj,j′

=
∑
i

πiPi,i′Pi′,j′

= πi′Pi′,j′ (8.2)

Therefore the expanded stationary distribution is

Πij = πiPij (8.3)

We also need to work out the expanded group inverse Q̂ := (I − P̂ )g. A simple
induction shows

(P̂ k)ij,i′j′ = (P k−1)j,i′Pi′,j′ (8.4)

for k ⩾ 1. Another way to see this is to note that a length-k path in the extended
state space from (i, j) to (i′, j′) can be decomposed into a length k − 1 path in the
original state spce between j and i′, together with the transition i′ → j.

Therefore, for 0 ⩽ t < 1:

(I − tP̂ )−1
ij,i′j′ = Iij,i′j′ +

∑
k⩾1

tk(P̂ k)ij,i′j′

= Iij,i′j′ +
∑
k⩾1

tk(P k−1)j,i′Pi′,j′

= Iij,i′j′ + Pi′,j′t
∑
k⩾0

tk(P k)j,i′

= Iij,i′j′ + Pi′,j′t(I − tP )−1
j,i′ . (8.5)

Using the group inverse formula in Proposition 2.1 and (8.3) thus yields:

(I − P̂ )gij,i′j′ = lim
t↗1

(
(I − tP̂ )−1

ij,i′j′ − πi′Pi′j′/(1− t)
)

= lim
t↗1

(
1i=i′,j=j′ + tPi′,j′(I − tP )−1

j,i′ − πi′Pi′,j′/(1− t)
)

= 1i=i′,j=j′ + Pi′,j′ lim
t↗1

(
t(I − tP )−1

j,i′ − πi′/(1− t)
)
. (8.6)

Now:

t(I − tP )−1 − 1πt/(1− t) = t(I − tP )−1 − t1πt/(1− t) + (−1 + t)1πt/(1− t)

= t
(
(I − tP )−1 − 1πt/(1− t)

)
− 1πt. (8.7)

Thus, using Proposition 2.1 again,

lim
t↗1

(
t(I − tP )−1 − 1πt/(1− t)

)
= (I − P )g − 1πt. (8.8)

Returning to the previous calculation in (8.6), we thus find by (8.8)

Q̂ij,i′j′ = (I − P̂ )gij,i′j′ = 1i=i′,j=j′ + Pi′,j′(Qj,i′ − πi′), (8.9)

where Q = (I − P )g as before. Consequently, Q̂′ := Q̂− I is given by

Q̂′
ij,i′j′ = Pi′,j′(Qj,i′ − πi′), (8.10)
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Now we can directly apply the explicit moment formulas (3.15)–(3.19) to the ex-
panded state space.

9. Further remarks

9.1. Some extensions. We give here some rather brief comments on extensions of
the basic Theorems 3.2 and 3.4 for finite-state Markov chains. We discuss three such
extensions separately; they may without difficulty be combined.

9.1.1. Higher order expansions. We have in our results only considered one-term
Edgeworth expansions, with an extra term of order n−1/2 and error of order O(n−1).
It is by the methods above possible to obtain also expansions with further terms and
errors of order n−m/2 for, in principle, any integer m. This is achieved by taking
the Taylor expansion in (5.39) to higher order, and then arguing as above and in
[6]. Note, however, that then also γ(t) has to be expanded explicitly in (5.39), and
thus the higher order terms in the expansion will also depend on the first derivatives
λ(m)(1) of the eigenvalue λ(z) at z = 1. These derivatives can be found e.g. by
repeatedly differentiating the characteristic equation

det
(
P (z)− λ(z)I

)
= 0 (9.1)

at z = 1. We leave the details to the reader. See also [5] for asymptotic expansions
with higher order terms for the original HH vs HT problem.

9.1.2. Arbitrary initial values. One generalization of Theorem 3.2 is to add to Sn
some initial value, say h(X1) for a given function h : W → Z; thus now

Sn := h(X1) +
n∑

k=1

g(Wk). (9.2)

An example where this occurs is if Alice and Bob score words of different lengths.
For a simple example, suppose that Alice scores a point when HH appears, while
Bob scores a point when HHT or THT appears. From the third coinflip on, this is
exactly the original problem in disguise, but here Alice may also gain a point when
the second coin is tossed. If we as in Section 4 consider the Markov chain consisting
of Wk given by (4.2), now taking ℓ = 3, then the net score is Sn−2 given by (9.2)
with a suitable g and h := IHHH + IHHT.

In this version, Lemmas 5.2–5.4 still hold, provided we replace π1(z) defined in
(5.6) by

πh1 (z) = (πh1 (z)i)i∈W where πh1 (z)i := π1;iz
g(i)+h(i). (9.3)

However, this modification changes also η(z) by (5.25), and since γ′(0) = iη′(1) by
(5.28), γ′(0) may be modified and is in general no longer 0, so Corollary 5.5 does not
hold. In fact, by taking derivatives in (5.25) and comparing with the original case
with h = 0 (for which η′(1) = γ′(0) = 0 by the proof in Section 5), we see that

η′(1) = 0 +
∑
j∈W

π1;jh(j) = Eh(W1), (9.4)

and hence,

γ′(0) = iη′(1) = iEh(W1). (9.5)

If we still let µ := EXk, and also

∆ := −iγ′(0) = η′(1) = Eh(W1), (9.6)
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then obviously

ESn = nµ+∆. (9.7)

In particular, Lemma 5.4 implies κ1 = µ.
It is now necessary to include a term γ′(0)t = i∆t in the Taylor expansion (5.39).

The rest of the proof goes through if we replace nµ by nµ + ∆, and thus (3.14)
holds with this change. We may then replace x by x−∆/(σ

√
n), which using Taylor

expansions yields

P(Sn − nµ ⩽ xσ
√
n) = Φ(x) +

κ3

6σ3
√
2πn

(1− x2)e−x2/2 − ∆

σ
√
2πn

e−x2/2

+
1

σ
√
2πn

ϑ(xσ
√
n− nµ)e−x2/2 +O

(
n−1

)
. (9.8)

In other words, (3.14) holds with an extra term −∆/(σ
√
2πn)e−x2/2. We omit the

details. In Corollary 3.3, this means an extra term −∆/(σ
√
2πn) in (3.20) and

(3.21), and thus twice as much in (3.22).
This should not be surprising. Consider for simplicity the case µ = 0 and x = 0 in

Corollary 3.3. If h(W ) := 1 deterministically, so we just add 1 to Sn, then P(Sn ⩽ 0)
is decreased by P(Sn = 0), which up to O(1/n) equals 1/(σ

√
2πn) by (3.23). Hence

the result just shown says that if (9.2) holds so the score on the average is increased
by ∆ = Eh(W1) compared to the standard case, then the probability P(Sn ⩽ 0)
shifts by ∆ times as much as if we instead add 1 deterministically.

9.1.3. Arbitrary initial distribution. We have asssumed in Theorems 3.2 and 3.4 that
the Markov chain is stationary. We may generalize to an arbitrary initial distribution
π1 (or, in Theorem 3.4, π0). Then Lemmas 5.2–5.4 still hold, with λ(z) still given
by (5.25). However, as in Section 9.1.2, in general γ′(0) ̸= 0, so Corollary 5.5 does
not hold. (We still have γ′(0) = iη′(1) by (5.28), and η(z) depends on π1 by (5.24).)
If we define µ := κ1, then Lemma 5.4 shows that ESn/n = κ1(Sn)/n → µ, but in
general ESn is not equal to nµ; in fact, (5.33) with m = 1 implies that

ESn − nµ =

n∑
k=1

(EXk − µ) → ∆ := −iγ′(0). (9.9)

As in Section 9.1.2, it is now necessary to include a term γ′(0)t = i∆t in the Taylor
expansion (5.39). This has the same consequences as in Section 9.1.2, and again we
have (9.8) and its consequences.

Again this is not surprising: a different initial distribution implies by (9.9) an
average extra score ∆, and (up to order n−1) the probabilities in Theorem 3.2 and
Corollary 3.3 shift by an amount proportional to this average extra score, just as in
Section 9.1.2.

9.2. Litt’s game with several words each. We observe that our result Theo-
rem 3.2 can be applied to an even more general formulation of Litt’s game, in which
Alice and Bob each have several words that yield positive points for them (this gen-
eralization is considered by [5]); moreover, we may let different words give different
numbers of points. As before, the value of each word is encoded in the function g
(with a ± sign depending on whether it gives points to Alice or Bob).

If we can verify (3.9) holds for the chain so defined, then Theorem 3.2 applies; com-
bining (3.15)–(3.19) with Proposition 4.1 gives explicit formulas for the asymptotics
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directly analogous with the two-word case (although the formulas do not simplify as
much in the general case). Verifying (3.9) in this case is however more difficult, since
we do not have an analogue of Theorem 7.2. However we can often verify (3.9) on
a case-by-case basis by an adaptation of the proof of Theorem 7.2. For example, if
neither Alice nor Bob gets points for H · · ·H, and furthermore [z] Tr(I−P (z))−1 > 0,
then (3.9) holds (and hence everything goes through as in the two-word case). In gen-
eral, it is an interesting question to what extent we can characterize the conditions
under which (3.9) holds in the multiple-word case.
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Appendix A. Taylor expansion of eigenvalues

We give here a direct proof of the Taylor expansion (5.61)–(5.64) of the eigenvalue
λ(F (t)). Both the result and the method are old, but we do not know an explicit
reference so we give the details here for completeness. It is obvious that the calcula-
tions can be continued to the derivative of an arbitrary order, but we need only the
first three derivatives.

Proposition A.1. Let t 7→ F (t) be a C3 (three times continuously differentiable)
map defined on some neighborhood of 0 and with values F (t) in the space of m×m
matrices for some m ⩾ 1. Suppose that F (0) has an eigenvalue λ0 that is (alge-
braically) simple. Let Q be the group inverse of λ0I − F (0) and let ut and v be left
and right eigenvectors of F (0) for the eigenvalue 0, with the normalization utv = 1.
(Such vectors exist since the eigenvalue is simple.) Then, for t in a possibly smaller
neighborhood of 0, F (t) has an eigenvalue λ(t) such that λ(0) = λ0 and t 7→ λ(t) is
C3 with, writing F ′, F ′′, F ′′′ for F ′(0), F ′′(0), F ′′′(0),

λ′(0) = utF ′v, (A.1)

λ′′(0) = utF ′′v + 2utF ′QF ′v. (A.2)

λ′′′(0) = utF ′′′v + 3utF ′′QF ′v + 3utF ′QF ′′v + 6utF ′QF ′QF ′v

− 6(utF ′v)(utF ′Q2F ′v). (A.3)

Proof. By replacing F (t) by F (t)− λ0I we may assume that λ0 = 0. Then Q is the
group inverse of −F (0). (Sorry for the minus sign with our choice of notation!)

The characteristic polynomial f(λ; t) := det(λI − F (t)) has coefficients that are

C3, and λ0 = 0 is a simple root of f(·; 0); thus f(0, 0) = 0 and ∂f
∂λ(0, 0) ̸= 0. Hence

the implicit function theorem shows the existence of a C3 function λ(t) that is a
simple root of f(t), and thus a simple eigenvalue of F (t), with λ(0) = 0. It remains
only to compute the derivatives at 0.

It follows, e.g. using Cramer’s rule, that for small t there exists an eigenvector
v(t) of F (t) such that v(t) is a C3 function of t with

v(0) = v, (A.4)

F (t)v(t) = λ(t)v(t), (A.5)

utv(t) = 1. (A.6)
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We now differentiate the eigenvalue equation (A.5), which yields

λ′(t)v(t) + λ(t)v′(t) = F ′(t)v(t) + F (t)v′(t). (A.7)

Multiply to the left by ut, and note that repeated differentiating of (A.6) yields

utv(k)(t) = 0, k ⩾ 1. (A.8)

Hence, (A.7) yields, using (A.6) and (A.8),

λ′(t) = ut
(
λ′(t)v(t) + λ(t)v′(t)

)
= utF ′(t)v(t) + utF (t)v′(t). (A.9)

Taking t = 0 and recalling utF (0) = 0 we obtain (A.1).
Since Q is the group inverse of −F (0), and F (0)v = 0, we have

Qv = 0. (A.10)

Moreover, (A.8) shows that v′(0) is orthogonal to u, which (since the eigenvalue 0
of F (0) is simple) spans the null space of the transpose matrix F ′(0); hence v′(0) ∈
ran(F (0)), which implies (by (2.16)–(2.17)) that v′(0) = −QF (0)v′(0). Hence (A.7)
implies, using also λ(0) = 0 and (A.10),

v′(0) = −QF (0)v′(0) = −Q
(
λ′(0)v − F ′(0)v

)
= QF ′(0)v. (A.11)

Differentiate (A.7) again; this yields

λ′′(t)v(t) + 2λ′(t)v′(t) + λ(t)v′′(t) = F ′′(t)v(t) + 2F ′(t)v′(t) + F (t)v′′(t). (A.12)

Multiplying to the left by ut yields, using (A.8) and (A.11),

λ′′(t) = utF ′′(t)v(t) + 2utF ′(t)v′(t) + utF (t)v′′(t), (A.13)

which yields (A.2) by taking t = 0 and using (A.11) and (A.8).
Furthermore, just as for v′(0), (A.8) shows that v′′(0) is orthogonal to u, and thus

v′′(0) = −QF (0)v′′(0). Hence (A.12) implies, using λ(0) = 0, (A.10), (A.11), and
(A.1),

v′′(0) = −QF (0)v′′(0) = −2λ′(0)Qv′(0) +Q
(
F ′′(0)v(0) + 2F ′(0)v′(0)

)
= −2(utF ′(0)v)Q2F ′(0)v +QF ′′(0)v + 2QF ′(0)QF ′(0)v. (A.14)

Finally, differentiating (A.13) and taking t = 0 yields, since utF (0) = 0,

λ′′′(0) = utF ′′′(0)v + 3utF ′′(0)v′(0) + 3utF ′(0)v′′(0), (A.15)

and (A.3) follows by substituting (A.11) and (A.14). □

Appendix B. Alternative proof of (7.12)

We give here an independent and more “probabilistic” proof of (7.12) in the proof
of Theorem 7.2; this proof bypasses the matrix computations of Lemma 7.3.

Let V B
A be the number of times that a random walk started from A hits A prior to

hitting B (we count the initial state as a hit). By Remark 7.5, the sum
∑

m⩾0W (m)

in the proof of Theorem 7.2 equals the expectation EV B
A . Recall that the crux of

the proof of Theorem 7.2 was to show that this sum is greater than W (0) = 1, in
other words, that EV B

A > 1. We showed this by showing the formula (7.12), which
is a special case of Lemma 7.3, proved above by algebraic calculations.

We give here an alternative proof of the following special case of Lemma 7.3, which
is sufficient for our use of it in (7.12); the proof uses standard methods and known
results for Markov chains. (We guess that similar arguments can be used to prove
Lemma 7.3 in general, but we have not pursued this.)
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Lemma B.1. Let P be an irreducible stochastic matrix on a finite state space W,
and let π be its stationary distribution. Then, for any distinct states A,B ∈ W,

(I − P ̸=B)
−1
AA = EV B

A = QAA −QBA + (QBB −QAB)
πA
πB

. (B.1)

As a first step in the proof, we introduce the random variable

TB
A := time that a walk started from A first visits A after having visited B. (B.2)

Lemma B.2. With the notation defined above,

EV B
A = πA ETB

A . (B.3)

Proof. Let γ be a random walk starting from A. Define the sequence of random
times T0, T1, . . . as T0 := 0 and

Ti := min{j : j > Ti−1, γj = A, γj′ = B for some Ti−1 < j′ < j}; (B.4)

in other words, Ti is the time of the first return to A after having visited B after Ti−1.
Since the chain is irreducible and finite, all Ti are finite, almost surely. Moreover, by
the Markov property, all Ti − Ti−1 are i.i.d. By definition, T1 − T0 = T1 = TB

A .
We define associated “rewards” as

Vi = #{j : 0 ⩽ j < Ti : γj = A} (B.5)

i.e., the number of visits to A before Ti. Similarly to the above, the differences
Vi−Vi−1 are i.i.d. by the Markov property. Slightly less obviously, we have V1−V0 =
V B
A . This is because T1 is the time of the first visit to A which occurs after the first

visit to B. Therefore, any visits to A prior to T1 must in fact occur prior to the first
visit to B.

By the law of large numbers we thus have, as n→ ∞, a.s.,

Tn
n

=

∑n
i=1(Ti − Ti−1)

n
→ E (T1 − T0) = ETB

A , (B.6)

Vn
n

=

∑n
i=1(Vi − Vi−1)

n
→ E (V1 − V0) = EV B

A , (B.7)

and thus

Vn
Tn

→
EV B

A

ETB
A

. (B.8)

On the other hand, by the Markov chain ergodic theorem, a.s.

Vn
Tn

=
number of visits to A before Tn

Tn
→ πA. (B.9)

Finally, (B.3) follows by comparing (B.8) and (B.9). □

Proof of Lemma B.1. The first equality in (B.1) was noted in Remark 7.5. For the
second equality, we introduce the mean first passage times mij . For distinct i and
j, mij is the average number of steps for a walk started at i to reach j for the first
time. We define, for convenience, mii := 0.

We can express ETB
A in terms of the mean first passage times. Indeed, waiting

for the first visit to A after passing through B is equivalent to waiting for the first
visit to B, and then subsequently waiting for the first visit to A thereafter. So by
linearity of expectation,

ETB
A = mAB +mBA. (B.10)
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Combining with Lemma B.2, we thus have

EV B
A = πA(mAB +mBA). (B.11)

On the other hand, the mean first passage times are known to be closely related
to the entries of the group inverse. More precisely, we have

Qij = πj(τ
′
j −mij), i, j ∈ W, (B.12)

where τ ′j :=
∑

k ̸=j πkmkj [13, Corollary 11.7]. As a simple consequence,

mij =
Qjj −Qij

πj
. (B.13)

Combining (B.13) with (B.11) yields the second equality in (B.1). □
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[29] S. H. Siraždinov. Refinement of limiting theorems for stationary Markov chains.
(Russian) Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 1143–1146.

SJ: Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala,
Sweden

Email address: svante.janson@math.uu.se
URL: http://www2.math.uu.se/∼svantejs/papers

MN: Department of Mathematics and Statistics, University of Guelph, 50 Stone
Road E, Guelph, ON N1G 2W1, Canada

Email address: nicam@uoguelph.ca
URL: https://nicam.uoguelph.ca/

SS: New York, NY, USA
Email address: simonsegert@gmail.com


