
MOMENTS OF BALANCED PÓLYA URNS

SVANTE JANSON

Abstract. We give bounds for (central) moments for balanced Pólya
urns under very general conditions. In some cases, these bounds imply
that moment convergence holds in earlier known results on asymptotic
distribution. The results overlap with previously known results, but are
here given more generally and with a simpler proof.

1. Introduction

A (generalized) Pólya urn contains balls of different colours. A ball is
drawn at random from the urn, and is replaced by a (possibly random) set
of balls that depends on the colour of the drawn balls. This is repeated ad
infinitum, and we study the asymptotic composition of the urn. For details,
and the assumptions used in the present paper, see Section 2.1.

Asymptotic results for Pólya urns, including asymptotic distributions (af-
ter suitable normalization), have been proved by many authors under various
conditions and in varying generality, beginning with the pioneering papers
by Markov [17] and Eggenberger and Pólya [9]; for the history of Pólya urns,
see e.g. Mahmoud [16]; see also the references in [11] and [14].

It is well-known that the asymptotic behaviour of a Pólya urn depends
on the eigenvalues of the intensity matrix of the urn defined in (2.4) below,
and in particular on the two largest (in real part) eigenvalues λ1 and λ2.
In particular, if the urn satisfies some irreducibility condition (and some
technical conditions) there is a dichotomy (or trichotomy if the critical case
Reλ2 =

1
2λ1 is considered separately):

(i) If Reλ2 ⩽ 1
2λ1 (a small urn), then the number of balls of a given colour

is asymptotically normal.
(ii) If Reλ2 >

1
2λ1 (a large urn), then this is not true: then there are limits

in distribution, but the limiting distributions have no simple descrip-
tion and are (typically, at least) not normal; furthermore, there may
be oscillations so that suitable subsequences converge in distribution
but not the full sequence.

See for example [11, Theorems 3.22–3.24] for general results of this type.
Pouyanne [18] showed more precise results for large urns (not necessarily
irreducible) that are balanced, see Section 2.1. As another example, for urns
that are triangular (and thus not irreducible), the asymptotic distribution
still depends in important ways on the eigenvalues of A, but in a more
complicated way, see [14]. (Note that we see again a dichotomy between

Date: 20 May, 2025.
2010 Mathematics Subject Classification. 60C05; 60F25.
Partly supported by the Knut and Alice Wallenberg Foundation.

1



2 SVANTE JANSON

small and large urns for the triangular urns in [12, Theorem 1.3(i)–(iii)] but
not in [12, Theorem 1.3(iv)–(v)].)

In the present paper we give no results on asymptotic distributions; in-
stead we consider as a complement the question whether moment conver-
gence holds in such results on asymptotic distributions. This too is not a
new subject. For example, for balanced small urns with 2 colours, Bern-
stein [5, 6] showed asymptotic normality in the small urn case and gave
results on mean and variance; Bagchi and Pal [2] (independently, but 45
years later) gave another proof of asymptotic normality using the method of
moments and thus proving moment convergence as part of the proof. Other
examples are Bai and Hu [3, 4], who consider a version of Pólya urns allow-
ing time-dependent replacements and show for small urns both asymptotic
normality and (implicitly) asymptotic results for mean and variance. The
results by Pouyanne [18] for balanced large urns include convergence in Lp

for any p, and thus moment convergence. Janson and Pouyanne [15] proved
moment convergence for irreducible small urns; the method there combined
the known result on asymptotic normality in this case, and moment esti-
mates by the method of [18] leading to uniform integrability. Janson [13]
gave asymptotics for mean and variance of balanced small urns (consistent
with known results on asymptotic normality in the irrdeucible case, but
more general).

In the present paper (as in many of the references above) we consider
only balanced urns, but otherwise our conditions are very general. (For
example, we allow random replacements.) The main purpose of the paper
is to prove general bounds for moments of an arbitrary fixed order (see
Section 3); these bounds imply uniform integrability and can thus in many
cases be combined with known results on convergence in distribution to
show that moment convergence hold in the latter results (see for example
Theorem 3.2). Our results are to a large extent not new, but as far as we
know stated in greater generality than earlier; moreover, the method of proof
seems simpler that the ones used earlier. For earlier related results, as said
above, Pouyanne [18] showed moment convergence for balanced large urns;
Janson and Pouyanne [15] showed moment bounds (and thus convergence)
for balanced small irreducible urns; Janson [13] treated first and second
moments for balanced (and often small) urns – the method used here is a
further development and simplification of the method in [13].

We do not make any assumptions on the structure of the urn in this paper
(except being balanced). However, the results are particularly adapted to
the irreducible case, where the bounds that we obtain match the normaliza-
tions in the known results on asymptotic normality, thus showing that these
results hold with moment convergence. The results below apply also to, for
example, balanced triangular urns, but in that case the results are in general
less sharp and there is often a gap between the general bounds proved here
and the moment convergence proved for such urns in [14, Theorem 12.5].
For example, for a balanced triangular urn with 2 colours, see [14, Example
14.4 Case 4] and [12, Theorem 1.3(v)], the bounds below are sharp if the
urn is large but not if it is small.
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Our results for balanced urns are very general, but that leaves one obvious
open problem:

Problem 1.1. In the present paper, we consider only balanced urns. We
leave it as a challenging open problem to prove (or disprove?) similar results
for unbalanced urns.

In fact, it seems that only essentially trivial examples are known of an
unbalanced urn where (after suitable normalization) convergence in distri-
bution holds with all moments. In the negative direction, [14, Example 14.2]
gives an example (an unbalanced diagonal urn) with convergence in distri-
bution to a limit with infinite mean; hence moment convergence does not
hold. However, this counterexample seems rather special and is maybe not
typical.

Section 2 gives definitions and some other preliminaries. Section 3 con-
tains the statements of the main results, which are proved in Sections 4–6.
Appendix A gives some further, more technical, results, and Appendix B a
proof of a simple lemma for which we do not know a reference.

Acknowledgement. This paper owes much to an anonymous referee of
my earlier paper [13] dealing with first and second moments. The referee
suggested an alternative method of proof of results there, using Lemma A.2
below, and also said that this could be extended to prove convergence of
higher moments. I am very grateful for that suggestion, which (although
not used in [13]) I have developed and further simplified, leading to the
present paper.

2. Preliminaries and notation

2.1. Definition and assumptions. A (generalized) Pólya urn process is
defined as a discrete-time Markov process of the following type:

(PU1) The state of the urn at time n is given by the vectorXn = (Xn1, . . . , Xnq)
∈ [0,∞)q for some given integer q ⩾ 2, where Xni is interpreted as
the number of balls of colour i in the urn; thus balls can have the q
colours (types) 1, . . . , q. The urn starts with a given vector X0.

(PU2) Each colour i has a given activity (or weight) ai ⩾ 0, and a (generally
random) replacement vector ξi = (ξi1, . . . , ξiq). At each time n+1 ⩾
1, the urn is updated by drawing one ball at random from the urn,
with the probability of any ball proportional to its activity. Thus,
the drawn ball has colour i with probability

aiXni∑
j ajXnj

. (2.1)

If the drawn ball has colour i, it is replaced together with ∆Xnj

balls of colour j, j = 1, . . . , q, where the random vector ∆Xn =
(∆Xn1, . . . ,∆Xnq) has the same distribution as ξi and is independent
of everything else that has happened so far. Thus, the urn is updated
to Xn+1 = Xn +∆Xn.

In many applications, the numbers Xnj and ξij are integers, but that is
not necessary; as is well-known, the Pólya urn process is well-defined also
for real Xni and ξij , with probabilities for the different replacements still
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given by (2.1); the “number of balls” Xni may thus be any nonnegative real
number. (This can be interpreted as the amount (mass) of colour i in the
urn, rather than the number of discrete balls.) The replacements ξij are thus
in general random real numbers; we allow them to be negative, meaning that
balls may be subtracted from the urn. However, we always assume that X0

and the random vectors ξi are such that, for every n ⩾ 0, a.s.

each Xni ⩾ 0 and
∑
i

aiXni > 0, (2.2)

so that (2.1) really gives meaningful probabilities, and the process does not
stop due to lack of balls to be removed. An urn with such initial conditions
and replacement rules is called tenable.

Note that we allow some activities ai = 0 (as long as (2.2) holds); this
means that balls of colour i never are drawn. (This is useful in some appli-
cations, see e.g. [11].)

For simplicity, we assume throughout this paper also:

(PU3) The initial state X0 is nonrandom.

Remark 2.1. The results below can be extended to random X0 by condi-
tioning on X0, but we have not checked exactly what conditions are needed,
and we leave this to the reader.

We will in the present paper (as in [13]) only consider balanced Pólya
urns, defined as follows:

(PU4) The Pólya urn is balanced if∑
j

ajξij = b > 0 (2.3)

(a.s.) for some constant b and every i. In other words, the added
activity after each draw is fixed (nonrandom and not depending on
the colour of the drawn ball).

The balance condition (PU4) together with (PU3) imply that the denom-
inator in (2.1) (i.e., the total activity in the urn) is deterministic for each n,
see (4.2)–(4.3). This is a significant simplification, assumed in many papers
on Pólya urns, and luckily satisfied in many applications.

2.2. Some notation. We regard all vectors as column vectors. We use
standard notations for (real or complex) vectors and matrices (of sizes q
and q × q, respectively), in particular ′ for transpose; we also use · for the
bilinear scalar product defined by u · v = u′v for any vectors u, v ∈ Cq.
(This is the standard scalar product for u, v ∈ Rq, but note the abscence of
conjugation in general.) We denote the standard Euclidean norm for vectors
by | · |, and denote the operator norm for matrices by ∥ · ∥.

Let a := (a1, . . . , aq)
′ be the vector of activities. Thus, the balance con-

dition (2.3) can be written a · ξi = b a.s. for all i.
We let [q] := {1, . . . , q}, the (finite) set of colours.
For a random variable (or vector) X, we denote the usual Lp-norm by

∥X∥p := (E |X|p)1/p, p ⩾ 1.
We let C denote unspecified constants, possibly different at each occur-

rence. They will in general depend on the Pólya urn, i.e., on q, X0 and the
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distribution of ξi, i ∈ [q], but the do not depend on n. We similarly use Cp

for constants that also may depend on the power p ⩾ 2.

2.3. The intensity matrix. The intensity matrix of the Pólya urn is the
q × q matrix

A := (aj E ξji)
q
i,j=1. (2.4)

Note that, for convenience and following [11] and [13], we have defined A so
that the element (A)ij is a measure of the intensity of adding balls of colour
i coming from drawn balls of colour j; the transpose matrix A′ is often used
in other papers. (We may unfortunately have contributed to notational
confusion by this choice in [11].) It is well-known that the intensity matrix
A and in particular its eigenvalues and eigenvectors have a central role for
asymptotical results.

2.4. Eigenvalues and spectral decomposition. We shall use the Jor-
dan decomposition of the matrix A in the following form. There exists a
decomposition of the complex space Cq as a direct sum

⊕
λEλ of generalized

eigenspaces Eλ, such that A − λI is a nilpotent operator on Eλ; here I is
the identity matrix and λ ranges over the set σ(A) of eigenvalues of A. (In
the sequel, λ will always denote an eigenvalue.) In other words, there exist
projections Pλ, λ ∈ σ(A), that commute with A and satisfy∑

λ∈σ(A)

Pλ = I, (2.5)

APλ = PλA = λPλ +Nλ, (2.6)

where Nλ = PλNλ = NλPλ is nilpotent. Moreover, PλPµ = 0 when λ ̸=
µ. We let νλ ⩾ 0 be the integer such that Nνλ

λ ̸= 0 but Nνλ+1
λ = 0.

(Equivalently, in the Jordan normal form of A, the largest Jordan block
with λ on the diagonal has size νλ+1.) Hence νλ = 0 if and only if Nλ = 0,
and this happens for all λ if and only if A is diagonalizable.

The eigenvalues of A are denoted λ1, . . . , λq (repeated according to their
algebraic multiplicities); we assume that they are ordered with decreasing
real parts: Reλ1 ⩾ Reλ2 ⩾ . . . , and furthermore, when the real parts are
equal, in order of decreasing νj := νλj

. In particular, if λ1 > Reλ2, then
νj ⩽ ν2 for every eigenvalue λj with Reλj = Reλ2.

Recall that the urn is called small if Reλ2 ⩽ 1
2λ1 and large if Reλ2 >

1
2λ1.

In the balanced case, by (2.4) and (2.3),

a′A =
( q∑
i=1

ai(A)ij

)
j
=
( q∑
i=1

aiaj E ξji

)
j
=
(
aj E(a · ξj)

)
j
= ba′, (2.7)

i.e., a′ is a left eigenvector of A with eigenvalue b. Thus b ∈ σ(A). We shall
assume that, moreover, b is the largest eigenvalue, i.e.,

λ1 = b. (2.8)

This is a very weak assumption; see [13, Appendix A] where it is shown that
there are counterexamples but only in a trivial manner. In particular, the
following is shown there.
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Lemma 2.2 ([13, Lemma A.1]). If the Pólya urn is tenable and balanced,
and moreover any colour has a nonzero probability of ever appearing in the
urn, then Reλ ⩽ b for every λ ∈ σ(A), and, furthermore, if Reλ = b then
νλ = 0. We may thus assume λ1 = b.

The eigenvalue b may be multiple; a well-known example is the classical
Pólya urn for which A = bI, and thus all q eigenvalues are equal to b.
In most other applications, the eigenvalue b is simple. This implies that
the corresponding left and right eigenspaces are 1-dimensional, and thus the
corresponding left and right eigenvectors u1 and v1 are unique up to constant
factors. By (2.7), a′ is a left eigenvector so we may then take u1 = a.
Furthermore, we have the following general result from linear algebra; for
completeness we give a proof in Appendix B since we do not know a good
reference.

Lemma 2.3. Suppose that the eigenvalue λ1 = b is simple. Then there is a
unique right eigenvector v1 with

u1 · v1 = a · v1 = 1. (2.9)

Furthermore, the projection Pλ1 is given by

Pλ1 = v1u
′
1. (2.10)

Consequently, for any vector v ∈ Cq,

Pλ1v = v1u
′
1v = v1a

′v = (a · v)v1. (2.11)

3. Main results

We state here our main results, using the notation and assumptions above.
Proofs are given in Section 4. We begin with a general upper bound for the
moments.

Theorem 3.1. Assume that the Pólya urn is tenable and balanced with
λ1 = b. Let p ⩾ 2 and suppose that

E |ξij |p < ∞ for all i, j ∈ [q]. (3.1)

Then, for every n ⩾ 2,

∥∥Xn − EXn

∥∥
p
⩽


Cpn

1/2, Reλ2 < λ1/2,

Cpn
1/2(log n)ν2+

1
2 , Reλ2 = λ1/2,

Cpn
Reλ2/λ1(log n)ν2 , Reλ2 > λ1/2,

(3.2)

for some constant Cp not depending on n.

As said in the introduction, in many cases the asymptotic distribution of
the urn is known. Furthermore, for an irreducible urn, under some technical
conditions, the bound in (3.2) equals (apart from the constant Cp) the right
normalizing factor, see for example [11, Theorems 3.22–24]. In particular, for
a small irreducible urn (again under some conditions), we have asymptotic
normality as in (3.3) or (3.4) below. The following theorem shows that then
also all moments (ordinary and absolute) converge.

Theorem 3.2. Assume that the Pólya urn is tenable and balanced, and
suppose that (3.1) holds for every p ⩾ 1.
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(i) Assume that Reλ2 < λ1/2 and that, as n → ∞, we have asymptotic
normality

Xn − EXn√
n

d−→ N(0,Σ) (3.3)

for some matrix Σ. Then (3.3) holds with convergence of all moments.
In particular, the covariance matrix Cov[Xn]/n → Σ.

(ii) Assume that Reλ2 = λ1/2 and that, as n → ∞, we have asymptotic
normality

Xn − EXn√
n(log n)2ν2+1

d−→ N(0,Σ) (3.4)

for some matrix Σ. Then (3.4) holds with convergence of all moments.
In particular, the covariance matrix Cov[Xn]/

(
n(log n)2ν2+1

)
→ Σ.

We may also estimate different spectral projections separately and get a
sharper result than Theorem 3.1.

Theorem 3.3. Assume that the Pólya urn is tenable and balanced. Let
p ⩾ 2 and suppose that (3.1) holds. Let λ be an eigenvalue of A. Then, for
every n ⩾ 2,

∥∥Pλ(Xn − EXn)
∥∥
p
⩽


Cpn

1/2, Reλ < b/2,

Cpn
1/2(log n)νλ+

1
2 , Reλ = b/2,

Cpn
Reλ/b(log n)νλ , Reλ > b/2,

(3.5)

for some constant Cp not depending on n.

As in Theorem 3.2, one can often combine Theorem 3.3 with a central
limit result for a specific components Pλ(Xn − EXn) (or for suitable linear
combinations u · (Xn−EXn)) and obtain moment convergence in the latter
results, cf. [11, Remark 3.25] and [1, Theorem 3]; we leave the details to the
reader.

For the special case λ = λ1, and further assuming that this eigenvalue is
simple, we have as a complement the following almost trivial result.

Theorem 3.4. Assume that the Pólya urn is tenable and balanced and that
λ1 = b is a simple eigenvalue. Then

Pλ1(Xn − EXn) = 0. (3.6)

When Reλ ⩽ b/2, we have under quite general condition asymptotic
normality of Pλ(Xn −EXn), for example as a consequence of [11, Theorem
3.15]. In such cases, we obtain from Theorem 3.3 also moment convergence
of Pλ(Xn − EXn), by the same argument as in the proof of Theorem 3.2.

Remark 3.5. The assumption (3.1) on finite moments of the replacements
is a very weak restriction in the balanced case studied here. For example, for
a balanced and tenable urn such that every colour may appear with positive
probability (which we may assume without loss of generality) and all activ-
ities ai > 0, we necessarily have all ξij bounded by some constant, and thus
(3.1) holds, see [13, Remark 2.5]. Nevertheless, we note for completeness
that if we assume only that (3.1) holds for a single p ⩾ 2, then our proof of
Theorem 3.2 in Section 4 yields only moment convergence for moments of
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order strictly less that p; however, we show in Appendix A a modification
of the argument which yields convergence also of moments of order p in this
case.

4. Proofs of main results

We prove here the main results in Section 3, using some lemmas postponed
to the following sections. We begin with standard arguments, partly copying
from [13].

Let In be the colour of the n-th drawn ball, and let

∆Xn := Xn+1 −Xn (4.1)

and
wn := a ·Xn, (4.2)

the total weight (activity) of the urn. We note first that the assumption
that the urn is balanced implies a ·∆Xn = b a.s., and thus (4.1)–(4.2) imply
that wn is deterministic with

wn = w0 + nb, (4.3)

where the initial weight w0 = a ·X0.
Next, let Fn be the σ-field generated by X1, . . . , Xn. Then, by the defi-

nition of the urn,

P
(
In+1 = j | Fn

)
=

ajXnj

wn
(4.4)

and consequently, recalling (2.4),

E
(
∆Xn | Fn

)
=

q∑
j=1

P
(
In+1 = j | Fn

)
E ξj =

1

wn

q∑
j=1

ajXnj E ξj

=
1

wn

( q∑
j=1

(A)ijXnj

)
i

=
1

wn
AXn. (4.5)

Define
Yn := ∆Xn−1 − E

(
∆Xn−1 | Fn−1

)
, n ⩾ 1. (4.6)

Then, Yn is Fn-measurable and, obviously,

E
(
Yn | Fn−1

)
= 0. (4.7)

In other words, (Yn)
∞
1 is a martingale difference sequence.

Furthermore, similarly to (4.5) and using the assumption (3.1),

E
(
|∆Xn|p | Fn

)
=

q∑
j=1

P
(
In+1 = j | Fn

)
E |ξj |p ⩽ Cp a.s. (4.8)

Hence, E |∆Xn|p ⩽ Cp, or equivalently

∥∆Xn∥p ⩽ Cp, (4.9)

which by (4.6) implies

∥Yn∥p ⩽ Cp. (4.10)

By (4.1), (4.6) and (4.5),

Xn+1 = Xn + Yn+1 + w−1
n AXn =

(
I + w−1

n A
)
Xn + Yn+1. (4.11)
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Consequently, by induction, for any n ⩾ 0,

Xn =

n−1∏
k=0

(
I + w−1

k A
)
X0 +

n∑
ℓ=1

n−1∏
k=ℓ

(
I + w−1

k A
)
Yℓ, (4.12)

where (as below) an empty matrix product is interpreted as I.
We define the (deterministic) matrix products

Fi,j :=
∏

i⩽k<j

(
I + w−1

k A
)
, 0 ⩽ i ⩽ j, (4.13)

and write (4.12) as

Xn = F0,nX0 +

n∑
ℓ=1

Fℓ,nYℓ. (4.14)

Taking the expectation we find, since EYℓ = 0 by (4.7), and the Fi,j and
X0 are nonrandom,

EXn = F0,nX0. (4.15)

Hence, (4.14) can also be written

Xn − EXn =

n∑
ℓ=1

Fℓ,nYℓ. (4.16)

Proof of Theorem 3.3. It follows from (4.16) that

Pλ(Xn − EXn) =

n∑
ℓ=1

PλFℓ,nYℓ. (4.17)

We now use Lemma 5.1 below and conclude using (4.10) that∥∥Pλ(Xn − EXn)
∥∥
p
⩽ Cp

( n∑
ℓ=1

∥∥PλFℓ,n

∥∥2)1/2

. (4.18)

The result follows by Lemma 6.2. □

Proof of Theorem 3.4. By (4.2) and (4.3), a ·Xn = wn is deterministic, and
thus

a · (Xn − EXn) = a ·Xn − E(a ·Xn) = 0. (4.19)

The result now follows from (2.11) in Lemma 2.3. □

Proof of Theorem 3.1. First, if Reλ2 = λ1 = b, then we simply use Minkowski’s
inequality, which by (4.9) yields

∥Xn∥p ⩽ ∥X0∥p +
n−1∑
i=0

∥∆Xi∥p ⩽ Cp + Cpn ⩽ Cpn. (4.20)

Hence, ∥EXn∥p ⩽ ∥Xn∥p ⩽ Cpn and ∥Xn −EXn∥ ⩽ Cpn, which is (3.2) in
the case Reλ2 = λ1.

In the rest of the proof, suppose instead that Reλ2 < λ1. In particular
(since eigenvalues are counted with multiplicities), λ1 is a simple eigenvalue.
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Thus Theorem 3.4 applies and shows Pλ1(Xn −EXn) = 0. The decomposi-
tion (2.5) thus yields

Xn − EXn =
∑
λ ̸=λ1

Pλ(Xn − EXn), (4.21)

and Minkowski’s inequality yields

∥Xn − EXn∥p ⩽
∑
λ ̸=λ1

∥Pλ(Xn − EXn)∥p. (4.22)

We estimate the terms on the right-hand side by Theorem 3.3; the contri-
bution from λ = λ2 dominates all others, and we obtain (3.2). □

Proof of Theorem 3.2. It follows from Theorem 3.3 that for every p ⩾ 1, the
Lp norms of the left-hand sides of (3.3) and (3.4) are bounded as n → ∞. As
is well-known this implies that for every p ⩾ 1, the pth powers |Xn−EXn|p
are uniformly integrable, and hence convergence of moments follows from
the assumed convergence in distribution. □

5. A martingale inequality

We used above the following martingale inequality, which is a simple
consequence of Burkholder’s inequality for the square function. Since we
do not know a reference where this inequality is stated in the form below,
we give a complete proof. Recall that a martingale difference sequence is a
sequence (Yi)

∞
1 of random variables such that the sequence

∑n
i=1 Yi, n ⩾ 1,

is a martingale with respect to some sequence of σ-fields Fn. (The σ-fields
Fn will be fixed below.)

Lemma 5.1. Let p ⩾ 2 and let Yi, i ⩾ 1, be a martingale difference sequence
of random vectors in Cq such that supi ∥Yi∥p < ∞. Then, for any sequence
of (nonrandom) q× q matrices (Ai)

∞
i=1 such that

∑∞
i=1 ∥Ai∥2 < ∞, the sum∑∞

i=1AiYi converges a.s. and in Lp, and∥∥∥∥ ∞∑
i=1

AiYi

∥∥∥∥
p

⩽ Cp

( ∞∑
i=1

∥Ai∥2
)1/2

sup
i

∥Yi∥p. (5.1)

Here Cp is a constant that depends on p and q only.

Proof. Xn :=
∑n

i=1AiYi, n ⩾ 0, is a martingale, and its square function is

Sn(X) :=

( n∑
i=1

|Xi −Xi−1|2
)1/2

=

( n∑
i=1

|AiYi|2
)1/2

. (5.2)

Let B := supi ∥Yi∥p. Minkowski’s inequality yields, for any n ⩾ 1,

∥Sn(X)∥2p =
∥∥Sn(X)2

∥∥
p/2

=

∥∥∥∥ n∑
i=1

|AiYi|2
∥∥∥∥
p/2

⩽
n∑

i=1

∥∥|AiYi|2
∥∥
p/2

⩽
n∑

i=1

∥Ai∥2∥|Yi|2∥p/2 =
n∑

i=1

∥Ai∥2∥Yi∥2p

⩽ B2
n∑

i=1

∥Ai∥2 ⩽ B2
∞∑
i=1

∥Ai∥2, (5.3)
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i.e., ∥Sn(X)∥p ⩽ B
(∑∞

i=1 ∥Ai∥2
)1/2

. We combine this with Burkholder’s
inequality

∥Xn∥p ⩽ Cp∥S(X)n∥p (5.4)

(valid for any martingale and any p ⩾ 1, with some constant Cp depending
on p only), see [7, Theorem 9] or e.g. [10, Theorem 10.9.5]. This yields

∥Xn∥p ⩽ Cp∥Sn(X)∥p ⩽ CpB

( ∞∑
i=1

∥Ai∥2
)1/2

. (5.5)

Consequently, the martingale (Xn)
∞
1 is Lp bounded, and thus converges a.s.

and in Lp to a limit, which satisfies (5.1) by (5.5). □

Remark 5.2. We have in the proof above used a vector-valued version
of Burkholder’s inequality (5.4); this follows immediately (with a constant
Cp depending on q) from the scalar-valued version in the references above
applied to each component. In fact (for p ⩾ 2), (5.4) holds with Cp = p− 1
independent of the dimension q, and, in fact, more generally for Hilbert-
space-valued martingales, see [8, Theorem 3.3].

6. Matrix estimates

We prove here some matrix estimates used in the proofs above. In this
section, we may as well be general and let A be any complex q × q matrix.
Let Pλ, λ ∈ σ(A), be its spectral projections as in (2.5)–(2.6), and let νλ+1
be the dimension of the largest Jordan block for the eigenvalue λ.

Furthermore, we assume that w0 and b > 0 are some given positive num-
bers. We then define wn := w0 + nb > 0 as in (4.3), and define the matrices
Fi,j by (4.13).

Lemma 6.1. With notations as above, for every eigenvalue λ ∈ σ(A),

∥PλFi,j∥ ⩽ C

(
j

i

)Reλ/b (
1 + log

j

i

)νλ
, 1 ⩽ i ⩽ j < ∞. (6.1)

for some constant C not depending on i and j.

Proof. We change basis in Cq so that A is reduced to Jordan normal form.
(This may change the matrix norms, but at most by some multiplicative
constants, which are incorporated in the final C and do not affect the result.)
In this basis, A has one or several Jordan blocks with diagonal element λ.
Multiplying by Pλ kills all Jordan blocks with eigenvalue ̸= λ, and as a result
it suffices to consider a single Jordan block with eigenvalue λ. We may thus
assume that A = λI +N where N is nilpotent, cf. (2.6); more precisely we
have Nνλ+1 = 0 by the definition of νλ. Assume also that i is so large that
wi ⩾ 2|λ|, say, and thus in particular wk + λ ̸= 0 for k ⩾ i. In this case, by
(4.13),

PλFi,j =
∏

i⩽k<j

(
I + w−1

k (λI +N)
)

(6.2)

=
∏

i⩽k<j

(1 + λ/wk)
∏

i⩽k<j

(
I + (wk + λ)−1N

)
. (6.3)
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The first product on the right-hand side of (6.3) is a complex number which
can be estimated by (since we assume wk ⩾ wi ⩾ 2|λ|)∏

i⩽k<j

(1 + λ/wk) = exp

( ∑
i⩽k<j

log(1 + λ/wk)

)

= exp

( ∑
i⩽k<j

( λ

wk
+O

( λ2

w2
k

)))

= exp

( ∑
i⩽k<j

( λ

kb
+O

( 1

k2

)))

= exp

(
λ

b

∑
i⩽k<j

1

k
+O(1)

)
. (6.4)

Hence, ∣∣∣∣ ∏
i⩽k<j

(1 + λ/wk)

∣∣∣∣ = exp
(Reλ

b

(
log j − log i

)
+O(1)

)

⩽ C

(
j

i

)Reλ/b

. (6.5)

We turn to the final (matrix) product in (6.3) and expand it into a poly-
nomial

∑
ℓ aℓN

ℓ in N . The coefficient aℓ of N ℓ is a sum of the product∏ℓ
j=1(wkj + λ)−1 over ℓ-tuples k1 < · · · < kℓ of indices. Hence,

|aℓ| ⩽
( ∑
i⩽k<j

|wk + λ|−1
)ℓ
. (6.6)

We have, similarly to (6.4),∑
i⩽k<j

|wk + λ|−1 =
∑

i⩽k<j

( 1

bk
+O

( 1

k2

))
⩽ C

(
1 + log

j

i

)
. (6.7)

Since N ℓ = 0 for ℓ > νλ, we only have to consider aℓN
ℓ for ℓ ⩽ νλ. Hence,

(6.6)–(6.7) imply∥∥∥ ∏
i⩽k<j

(
I + (wk + λ)−1N

)∥∥∥ ⩽
νλ∑
ℓ=0

C
(
1 + log

j

i

)ℓ
⩽ C

(
1 + log

j

i

)νλ
. (6.8)

Combining (6.3), (6.5) and (6.8) we obtain (6.1).
This proof of (6.1) assumed that i ⩾ i0 for some i0 such that wi0 ⩾ 2|λ|.

However, for i < i0 we may use (6.1) with i = i0 and multiply by the
missing factors in (6.2) (which are bounded) to conclude that (6.1) holds for
all 1 ⩽ i ⩽ j < ∞. □

Lemma 6.2. With notations as above, for every eigenvalue λ ∈ σ(A) and
n ⩾ 2,

n∑
i=1

∥PλFi,n∥2 ⩽


Cn, Reλ < b/2,

Cn log1+2νλ n, Reλ = b/2,

Cn2Reλ/b log2νλ n, Reλ > b/2,

(6.9)

for some constant C not depending on n.
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Proof. This follows from Lemma 6.1 by simple calculations. Let γ := Reλ/b.
If γ < 1

2 , we obtain from Lemma 6.1, by comparing the sum to a convergent
integral,

n∑
i=1

∥PλFi,n∥2 ⩽ C
n∑

i=1

(
i

n

)−2γ (
1 + log

n

i

)2νλ
⩽ Cn

∫ 1

0
x−2γ

(
1 + log

1

x

)2νλ
dx = Cn. (6.10)

If γ = 1
2 we obtain instead

n∑
i=1

∥PλFi,n∥2 ⩽ Cn
n∑

i=1

i−1
(
1 + log n

)2νλ ⩽ Cn(log n)1+2νλ . (6.11)

Finally, if γ > 1
2 , we obtain

n∑
i=1

∥PλFi,n∥2 ⩽ C
n∑

i=1

(n
i

)2γ (
log n

)2νλ ⩽ Cn2γ
(
log n

)2νλ ∞∑
i=1

i−2γ , (6.12)

where the final sum is convergent. □

Appendix A. Uniform integrability

The purpose of this appendix is to prove the following version of Theo-
rem 3.2, useful in the (unusual) case of a balanced urn where the increments
ξi have some but not all moments finite.

Theorem A.1. Assume that the conditions of Theorem 3.2(i) or (ii) holds,
except that (3.1) is assumed only for a single p ⩾ 2. Then (3.3) or (3.4)
holds with convergence of all moments of order less than or equal to p.

Proof. We argue as in the proof of Theorem 3.3 above, but use Lemma A.2
below instead of Lemma 5.1. It follows that if Ln is the random vector on the
left-hand side of (3.5) and rn is the function of n on the right-hand side, then
|Ln/rn|p forms a uniformly integrable sequence. It follows as in the proof of
Theorem 3.1 that the same holds for (3.2); in other words, the left-hand side
of (3.3) or (3.4) has uniformly integrable pth powers. Hence convergence of
pth moments follows from the assumed convergence in distribution. □

The proof above uses the following lemma, which was shown to me by
an anonymous referee of [13]. We do not know any reference, so we give a
complete proof.

Lemma A.2. Let p ⩾ 2 and let Yi, i ⩾ 1, be a martingale difference
sequence of random vectors in Cq such that the variables |Yi|p, i ⩾ 1, are
uniformly integrable. Then the collection of random variables{∣∣∣∣ ∞∑

i=1

AiYi

∣∣∣∣p : Ai ∈ Cq×q,
∞∑
i=1

∥Ai∥2 ⩽ 1

}
(A.1)

is uniformly integrable. (The first sum in (A.1) converges a.s.)

Note that the a.s. convergence of
∑

iAiYi follows from Lemma 5.1, which
also shows that the Lp-norms of these sums are bounded. We obtain Lemma
A.2 from Lemma 5.1 by a simple truncation argument.
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Proof of Lemma A.2. Let ε > 0. By assumption, there exists M = M(ε)
such that

E
∣∣Yi1|Yi|>M

∣∣p < εp, i ⩾ 1. (A.2)

Let

Y ′
i := Yi1|Yi|⩽M − E

(
Yi1|Yi|⩽M | Fi−1

)
, (A.3)

Y ′′
i := Yi1|Yi|>M − E

(
Yi1|Yi|>M | Fi−1

)
. (A.4)

Then Yi = Y ′
i + Y ′′

i . Furthermore,

|Y ′
i | ⩽ 2M a.s., (A.5)

∥Y ′′
i ∥p ⩽ 2

∥∥Yi1|Yi|>M

∥∥
p
< 2ε. (A.6)

Let r := p+ 1 (any fixed r > p will do), and note that (A.5) implies

∥Y ′
i ∥r ⩽ 2M. (A.7)

Let (Ai)
∞
1 be any sequence of matrices with

∑
i ∥Ai∥2 ⩽ 1. Then Lemma 5.1

yields, together with (A.7) and (A.6),∥∥∥∥∑
i

AiY
′
i

∥∥∥∥
r

⩽ 2CrM, (A.8)∥∥∥∥∑
i

AiY
′′
i

∥∥∥∥
p

⩽ 2Cpε, (A.9)

Let δ > 0 and let E be any event with P(E) ⩽ δ. We have
∑

iAiYi =∑
iAiY

′
i +

∑
iAiY

′′
i , and thus (crudely),∣∣∣∣∑
i

AiYi

∣∣∣∣p ⩽ 2p
∣∣∣∣∑

i

AiY
′
i

∣∣∣∣p + 2p
∣∣∣∣∑

i

AiY
′′
i

∣∣∣∣p. (A.10)

Hence, using Hölder’s inequality with s := (r/p)′ = r/(r − p), and (A.8)–
(A.9),

E

(∣∣∣∣∑
i

AiYi

∣∣∣∣p1E
)

⩽ 2p E

(∣∣∣∣∑
i

AiY
′
i

∣∣∣∣p1E
)

+ 2p E

(∣∣∣∣∑
i

AiY
′′
i

∣∣∣∣p1E
)

⩽ 2p
∥∥∥∥∣∣∣∑

i

AiY
′
i

∣∣∣p∥∥∥∥
r/p

∥∥1E∥∥s + 2p E

(∣∣∣∣∑
i

AiY
′′
i

∣∣∣∣p
)

= 2p
∥∥∥∥∑

i

AiY
′
i

∥∥∥∥p
r

P(E)1/s + 2p
∥∥∥∥∑

i

AiY
′′
i

∥∥∥∥p
p

⩽ 2p(2CrM)pδ1/s + 2p(2Cpε)
p. (A.11)

For any η > 0, we can make the right-hand side of (A.11) < η + η by first
choosing ε and then δ small enough. Consequently,

lim
δ→0

sup
P(E)⩽δ,

∑
i ∥Ai∥2⩽1

E

(∣∣∣∣∑
i

AiYi

∣∣∣∣p1E
)

= 0. (A.12)

Finally, the assumption implies supi E |Yi|p < ∞, and thus another appli-
cation of Lemma 5.1 yields sup∑

i ∥Ai∥2⩽1 E
∣∣∑

iAiYi
∣∣p < ∞, which together

with (A.12) shows the uniform integrability of (A.1). □
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Appendix B. Proof of Lemma 2.3

Proof. Consider an eigenvalue λ ̸= λ1 = b. Then (2.6) shows that (A −
λI)Pλ = Nλ, and thus, since νλ < q, (A − λI)qPλ = ((A − λI)Pλ)

q = 0.
(Recall that Pλ is a projection and that it commutes with A.) Hence, for
any vector v ∈ Cq, since u1(A− λI) = (λ1 − λ)u1,

0 = u′1(A− λI)qPλv = (λ1 − λ)qu1Pλv, (B.1)

and consequently

u′1Pλv = 0. (B.2)

This says that u1 is orthogonal to the generalized eigenspace Eλ = PλCq

for every λ ̸= λ1. Since Cq =
⊕

λEλ and u1 ̸= 0, it follows that u1 is not
orthogonal to Eλ1 = {zv1 : z ∈ C}. Hence u1 · v1 ̸= 0 and we may choose v1
such that (2.9) holds.

Since Pλ1 is a projection onto the eigenspace Eλ1 spanned by v1 we have

Pλ1v = (u · v)v1, v ∈ Cq (B.3)

for some vector u with u · v1 = 1. Furthermore,

u′1Pλ1A = u′1APλ1 = λ1u
′
1Pλ1 (B.4)

and thus u′1Pλ1 is a left eigenvector of A with eigenvalue λ1 and thus a
multiple of u1. Since Pλ1 is a projection, it follows that u′1Pλ1 = u′1. Hence
(B.3) implies that, for any v ∈ Cq,

u′1v = u′1Pλ1v = (u · v)(u1 · v1) = u · v. (B.5)

Consequently, u = u1; thus (B.3) yields (2.11), and thus also (2.10). □

References

[1] Krishna B. Athreya and Samuel Karlin: Embedding of urn schemes
into continuous time Markov branching processes and related limit the-
orems. Ann. Math. Statist. 39 (1968), 1801–1817.

[2] A. Bagchi and A. K. Pal: Asymptotic normality in the generalized
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