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Abstract. We revisit a version of the classic occupancy scheme, where balls are thrown until
almost all boxes receive a given number of balls. Special cases are widely known as coupon-
collectors and dixie cup problems. We show that as the number of boxes tends to infinity, the
distribution of the maximal occupancy count does not converge, but can be approximated by a
convolution of two Gumbel distributions, with the approximating distribution having oscillations
close to periodic on a logarithmic scale. We pursue two approaches: one relies on lattice point
processes obtained by poissonisation of the number of balls and boxes, and the other employs
interpolation of the multiset of occupancy counts to a point process on reals. This way we
gain considerable insight in known asymptotics obtained previously by mostly analytic tools.
Further results concern the moments of maximal occupancy counts and ties for the maximum.

1. Introduction

In the classic sequential occupancy scheme balls are thrown independently in n boxes, with
each ball landing with equal probability 1{n in each box. The allied waiting time problems
concern the distribution of the random number of trials required to satisfy specified occupancy
conditions for boxes [28]. Technically, the random variables in focus here are stopping times that
terminate the allocation process by way of an adapted nonanticipating rule. From the early days
of probability theory such questions attracted much attention and were studied under different
guises. For instance, a problem treated in de Moivre’s seminal treatise [11] asks one ‘to find in
how many trials [a gambler] may with equal chance [i.e., probability about 1{2] undertake with
a pair of common dice to throw all the doublets’. A better known modern textbook example is
the coupon collector’s problem (CCP), which in terms of the occupancy scheme deals with the
number of balls thrown until no empty boxes are left. The model where the balls are thrown
until every box contains more than m balls is sometimes called the dixie cup problem [18].

In the present paper we are not primarily interested in the stopping time itself, i.e., the
required number of balls, but rather in the configuration when the stopping occurs. More
precisely, we study the largest number of balls in a box at that time, and also the second
largest, and so on. Ivchenko in a series of papers [20; 21; 22] studied a wide range of statistics
of the sequential occupancy scheme terminated by a stopping time; a summary of some of
his work is found in [23]. The present note is inspired by his result on the maximum box
occupancy count Mn observed when the stopping occurs as in the CCP or according to a more
general criterion (this appeared as a special case of [21, Theorem 9] and [22, Theorem 2]). The
distribution of Mn does not converge as n Ñ 8 even after suitable normalisation; instead the
approximating asymptotic distribution oscillates on a logarithmic scale. This is a common and
well understood phenomenon when considering asymptotics of discrete random variables that
do not require scaling due to bounded variances. The asymptotic result can formally be stated
either as convergence in distribution of suitable subsequences, or (equivalently) as approximation
in total variation distance with some family of random variables. A simple but typical example
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of this kind is the distribution of the maximum of n i.i.d. geometric random variables (see for
instance [26, Example 4.3], also see Lemma 5.5 in the sequel for a general framework).

In this paper we employ the familiar device of embedding the occupancy scheme in a Poisson
process, to link directly properties of Mn with the extreme value theory [14; 43]. This way we
identify the asymptotic distribution with a discretised convolution of two Gumbel distributions
(Theorem 4.4). The benefits of the poissonisation of the number of balls in the occupancy
problems have been long known [15; 31; 36]. A novel element in our proof is the use of ‘bi-
poissonisation’, which amounts to also replacing fixed number of boxes n by random, thus
achieving independence of multiplicities of occupancy counts for each given time. Moreover,
the time evolution of the occupancy model as a whole becomes similar to the processes familiar
from studies in population dynamics and queueing theory, which sheds a new light on the
processes of small counts (Section 7). A competing approach we pursue here (Section 6) relies on
interpolating the multiset of integer occupancy counts to a point process on R, then showing that
it can be approximated by a Poisson process with a suitable (exponential) rate, with all points
rounded to integers. Extending the result about Mn we show that a similar approximation holds
for any given number of maximal order statistics of the box occupancy counts (Theorem 5.6).

We also discuss (Section 9) the asymptotics of moments for Mn and other stopped maximal
order statistics of occupancy counts. Complementing the previous studies [19; 21; 22; 36; 45],
we obtain these indirectly by means of new exponential tail estimates, which might be of inde-
pendent interest for other contexts related to the extreme value theory.

Sampling from a discrete distribution outputs repeated values. Criteria are known to ensure
that ties for the maximum do not vanish asymptotically [5]. In particular, for the geometric
source distribution the probability of such a tie is known to undergo tiny fluctuations on the
logarithmic scale [9; 35]. In this direction, we examine (Section 10) the multiplicity of Mn,
and show that the fluctuations turn even smaller due to a smoothing effect caused by random
stopping.

Following [21; 22], we consider the occupancy process stopped when there remain only ℓ boxes
that contain at most m balls each. Thus the case m “ 0 and ℓ “ 0 corresponds to the CCP. The
integer parameters m ě 0 and ℓ ě 0 will be fixed throughout the paper; many variables below
depend on them, but this will not be shown in the notation. (The parameters ℓ in [21] and m
in [22] can be allowed to vary with n, but we will only focus on the case of fixed values where
the results turn out to be most interesting.)

1.1. Notation. For common probability distributions we use the self-explaining notation, for

instance Poissonptq, Geometricpαq. For identity and convergence in distribution we write
d
“ and

d
Ñ, respectively. The total variation distance between the distributions of random elements X
and Y is denoted dTVpX,Y q. The symbols t u, r s and t u denote, respectively, the floor, the
ceiling and the fractional part functions. For shorthand we set L :“ log n and logL :“ log log n.
Unspecified limits and asymptotic relations such as op1q, fn „ gn (meaning fn{gn Ñ 1, or
equivalently fn “ gnp1 ` op1qq) and fn — gn (meaning that fn “ Opgnq and gn “ Opfnq) all
presume n Ñ 8. We say that some limit holds uniformly in x “ opfnq if it holds uniformly
for all x with |x| ď gn for any function gn “ opfnq; the uniformity in x “ Opfnq is understood
similarly. Opp1q means bounded in probability (i.e., tight), and opp1q means convergence to 0
in probability. The term ‘with high probability’ (w.h.p.) will mean that a certain event has
probability converging to one as n Ñ 8, and ‘almost surely’ (a.s.) will mean an event of
probability one.
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2. The poissonised occupancy scheme

We will be dealing with a standard continuous-time version of the discrete sequential occupancy
scheme. Let pΠiptq, t ě 0q, i P Zą0, be i.i.d. replicas of a Poisson counting process pΠptq, t ě 0q

with unit rate. We interpret Πiptq as the number of balls allocated into box i by time t; this
box occupancy count appears in the literature under different names such as score or load, to
mention a few.

The problem with n boxes concerns the occupancy counts Πiptq for i P rns, where rns :“
t1, . . . , nu. The aggregate arrival process to the batch of n boxes is Poisson with rate n. Given
such an arrival occurring at time t, the ball is allocated into each of the n boxes with the same
probability 1{n, independently of the past allocations. Thus the random sequence of states of
the set of n boxes follows the same dynamics as in the classic discrete-time occupancy scheme
studied in detail in [36]. But keep in mind that the time scale differs from the discrete case in
that the mean number of balls dropped in t units of continuous time is nt.

The advantage of the poissonised model is the exact independence among the boxes, whereas
in the discrete-time occupancy scheme the independence only holds asymptotically for large
number of balls [31; 36]. Moreover, the adopted setting with infinitely many Πi’s allows one to
consistently define the occupancy schemes for all n on the same probability space.

For point and cumulative probabilities of the Poisson distribution we use the notation

prptq “ e´t t
r

r!
, Prptq “

r
ÿ

i“0

piptq, P rptq “ 1 ´ Prptq, (2.1)

where r P Zě0, t ě 0. These are further related via the standard formulas

P rptq “ prptq
8
ÿ

i“1

ti

pr ` 1q ¨ ¨ ¨ pr ` iq
, (2.2)

Prptq “

ż 8

t
prpsqds, (2.3)

where (2.3) connects Gamma and Poisson distributions. If t, r Ñ 8 so that lim sup t{r ă 1,
then from (2.2) follows the asymptotics

P rptq „
t

r ´ t
prptq. (2.4)

Let, as in the Introduction, m ě 0 and ℓ ě 0 be fixed integers. Define τn to be the first time
when there remain only ℓ out of n boxes that contain at most m balls each, that is

τn :“ mintt ě 0 : Πiptq ą m for all but ℓ indices i P rnsu (2.5)

(we assume n ą ℓ to ensure 0 ă τn ă 8 a.s.). In particular, for m “ 0, ℓ “ 0 this is the
time when each of the n boxes becomes occupied by at least one ball, which is the termination
condition in the CCP. The case ℓ “ 0,m ě 1 aligns with the dixie cup problem.

Since the Poisson distribution is discrete, repetitions among the occupancy counts Πiptq occur
with positive probability. Let Mn,1ptq ě ¨ ¨ ¨ ě Mn,nptq be the nonincreasing sequence of order
statistics of Π1ptq, . . . ,Πnptq. The order statistics capture the allocation of some random number
of indistinguishable balls into n indistinguishable boxes. From a combinatorial viewpoint, this
can be regarded as a generalised partition of an integer into n parts which can be zero. The
same data can be equivalently encoded in the sequence of multiplicities

µn,rptq :“ #ti P rns : Mn,iptq “ ru, r P Zě0, (2.6)
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that count repetitions among the box occupancy counts. In particular, µn,0ptq is the number of
empty boxes. By independence among the boxes

µn,rptq
d
“ Binomialpn, prptqq, r P Zě0, (2.7)

and the joint distribution of the multiplicities is multinomial with infinitely many classes. The
study of multiplicities for large number of balls and boxes is a central theme in the occupancy
problems [36].

The equivalence of the two descriptions of the allocation of balls is established by the relations

Mn,iptq ď k ðñ

8
ÿ

j“1

µn,k`jptq ď i ´ 1 (2.8)

for i P rns, k P Zě0. Specifically, for the largest box occupancy count we have

Mn,1ptq “ maxtr : µn,rptq ą 0u. (2.9)

With these notations, the number of balls thrown by time t has the threefold representation

n
ÿ

i“1

Πiptq “

n
ÿ

i“1

Mn,iptq “

8
ÿ

r“0

rµn,rptq, (2.10)

Note also that the random variables of our primary interest are the largest few occupancy
numbers when we stop (which are the same in the discrete-time and continuous-time models),
that is Mn,ipτnq’s with i less than some bound not depending on n. We therefore use the
shorthand notation

Mn,i :“ Mn,ipτnq. (2.11)

We also sometimes use the even shorter notation

Mn :“ Mn,1 “ Mn,1pτnq (2.12)

for the maximum box occupancy count when the allocation is stopped.

3. Preliminaries on point processes

Throughout we will be exploiting basic facts on Poisson and related point processes as found in
many excellent texts [30; 33; 37; 43]. In this section we remind the bare minimum, also using
this opportunity to introduce constructions needed in later sections.

A point process H on R (or a more general Polish space) is a random locally finite Borel
measure with values in Zě0. Such point process can be represented as a (finite or infinite) sum

H “
ÿ

i

δηi (3.1)

of Dirac masses at random points ηi. We will sometimes with a minor abuse of notation write
this as H “ tηiu, thus identifying the point process with the multiset tηiu of its points, that is
its atoms endowed with some multiplicities. (We prefer the measure-theoretic term ‘atom’ to
make difference with nonrandom points of the background space.) The intensity measure of H
is the function that assigns ErHpAqs to each Borel set A. We call H simple if the multiplicity of
each atom is one almost surely.

Recall that a Poisson point process is a point process H where HpAq (the number of points
in A) has a Poisson distribution for every Borel set A, and these numbers for different, disjoint
sets are independent.
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3.1. Transformations of Poisson processes. The unit rate Poisson process Π on R` is a
simple point process whose atoms are representable as sums ηi “ E1 ` ¨ ¨ ¨ `Ei, where the terms
are independent with standard exponential distribution, so the ith atom has Gammapi, 1q (aka
Erlang) distribution satisfying

Prηi ď ts “ P i´1ptq, t ě 0. (3.2)

The intensity measure of Π is the Lebesgue measure on the halfline.
Inhomogeneous Poisson point processes are uniquely characterised by their intensity measures.

Such processes on R can be constructed from Π by the measure-theoretic pushforward Π ˝ f´1,
which is implemented through transporting the atoms with function f ; thus the multiset tηiu
is mapped to tfpηiqu. The intensity measure of Π ˝ f´1 is the pushforward of the Lebesgue
measure by f .

An important role in the extreme-value theory is played by the exponential Poisson process
Ξ on R, obtained as pushforward of Π by fptq “ ´ log t, thus with the intensity measure

E rΞpdxqs “ e´xdx, x P R. (3.3)

(The name is not common but has been used in the literature, see [7, Section 6.2.2].) The atoms
of Ξ comprise a decreasing to ´8 sequence of random variables ξi :“ ´ log ηi, with distribution,
by (3.2),

Prξi ď xs “ Pi´1pe´xq, x P R, (3.4)

and thus with density, see (2.3),

e´xpi´1pe´xq, x P R. (3.5)

In particular, the largest atom ξ1 of Ξ has the (standard) Gumbel distribution

Prξ1 ď xs “ e´e´x
, x P R. (3.6)

The best known instance i “ 1, as well as the distributions (3.4) with i ą 1, were introduced in
[17], which justifies the notation Gumbelpiq for the distribution (3.4) of ξi. In this nomenclature
the (standard) Gumbel distribution becomes Gumbelp1q. For each i there is an associated
scale-location family of distributions.

We define Ξb :“ Ξ ` b, b P R, to be the translation of Ξ with atoms ξi ` b; these have shifted
Gumbelpiq distributions

Prξi ` b ď xs “ Pi´1pe´x`bq, x P R. (3.7)

Thus, Ξb “ tξi ` bu is a Poisson process with intensity measure eb´xdx, x P R.

3.2. Lattice point processes. For a point process with nonatomic intensity measure the prob-
ability of an atom occurring at fixed location is zero. In contrast to that, a point process on the
integer lattice Z is in essence a two-sided random sequence of multiplicities at integer locations.
In particular, a lattice Poisson point process is identifiable with an array of independent Poisson
random variables with given parameters.

We denote by ΞÒ

b the lattice counterpart of Ξb obtained by applying the ceiling function:

ΞÒ

b :“ trξi ` bsu. (3.8)

We choose rounding up (rather than down) to have the intensity measures agreeing on semi-
closed intervals p´8, rs, r P Z, thus forcing the distribution functions of the respective atoms
to coincide at integers:

Prrξi ` bs ď rs “ Prξi ` b ď rs “ Pi´1pe´r`bq, r P Z. (3.9)
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In the case i “ 1, b “ 0 we obtain a natural discrete analogue of the Gumbel distribution.

The intensity measure of ΞÒ

b is supported by Z, with masses comprising a two-sided geometric
sequence

ErΞÒ

bptruqs “ E rΞbpr ´ 1, rss “

ż r

r´1
eb´x dx “ e´r`bpe ´ 1q, (3.10)

hence with the right tail

ErΞÒ

bpr,8ss “ ErΞÒ

brr ` 1,8ss “ E rΞbpr,8ss “ e´r`b. (3.11)

3.3. The marking theorem and the Poisson shift. In plain terms, a basic version of the
marking theorem says that if ηi’s are random atoms of some Poisson point process H and random
‘marks’ ζi’s are i.i.d. independent of H, then the pairs pηi, ζiq define a bivariate Poisson process
in a product space. This proves very useful to construct other Poisson processes as transforms
tfpηi, ζiqu. In particular, if H is on R and ζi’s are real-valued, then the pairwise sums ηi ` ζi
are atoms defining another Poisson process, whose intensity measure is the convolution of the
intensity measure of H and the distribution of ζ1.

For a general point process H on R and h ě 0 we define its Poisson shift Th ˝ H as the above

operation with atom-wise adding of independent ζi
d
“ Poissonphq. Note that if H has k atoms

at the same location x, then each of them contributes to Th ˝ H a unit mass at x shifted by an
independent Poisson variable.

Notably, on the exponential Poisson process Ξ the Poisson shift acts in distribution like a
deterministic translation

Th ˝ Ξ
d
“ Ξpe´1qh. (3.12)

The proof follows by a simple calculation found in [7, p. 153] and the formula Ereζ1s “ ehpe´1q.

Applying Th to the lattice process ΞÒ yields a distributional copy of ΞÒ

pe´1qh, as is clear from

(3.12) since ζi’s are integer-valued.
The Poisson flow with initial state H is the Markov measure-valued process pTh ˝ H, h ě 0q,

where each atom independently of the others undergoes unit jumps to the right at the unit rate.
If H is a Poisson point process then so is also every Th ˝ H. See the recent monograph [13] for
the general theory of measure-valued processes.

3.4. Mixed binomial point processes. A Poisson point process with finite intensity measure
has a random sum representation

H “

N
ÿ

i“1

δηi , (3.13)

where the random variables η1, η2, . . . are i.i.d., and N is an independent from ηi’s Poisson
random variable whose parameter is equal to the total mass of the intensity measure.

The latter form is an instance of the more general mixed binomial point process (MBPP)
[30], where N is allowed to have arbitrary distribution on Zě0. Conditionally on N “ n, such a
MBPP is just a scatter of n i.i.d. random points. A subprocess obtained by restricting H to a
Borel set A is again a MBPP

H|A “

N
ÿ

i“1

1tηi P Auδηi
d
“

pN
ÿ

j“1

δ
pηj , (3.14)
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where pN has a mixed binomial distribution BinomialpN,αq with α “ Prη1 P As, and pηj ’s are
i.i.d. with distribution Pr pη1 P Bs “ Prη1 P B | η1 P As. If N has a Poisson (respectively,

binomial) distribution then also pN has a Poisson (respectively, binomial) distribution.
For another MBPP

H1 “

N 1
ÿ

i“1

δηi , (3.15)

that only differs from H by the distribution of the total count, presuming N,N 1, ηi’s defined
on the same probability space, we will have tN “ N 1u “ tH “ H1u. Therefore, for the total
variation distance we have the identity

dTVpH,H1q “ dTVpN,N 1q, (3.16)

which follows from the definition of the distance as the infimum of the non-coincidence proba-
bility PrH ‰ H1s taken over all couplings.

3.5. Weak convergence. Weak convergence (convergence in distribution) of point processes
is defined using the ‘vague topology’ in the space of locally finite measures; this means roughly
convergence in the weak topology of restrictions on compact subsets. Note that convergence in
the weak topology on R is defined only for a.s. finite point processes with an a.s. finite limit
process, which is a situation not applicable here. Instead, the point processes treated in this
paper are point processes H on R such that Hpx,8q ă 8 a.s. for every x P R; for such point
processes we may use the representation H “

ř8
i“1 δηi with η1 ě η2 ě . . ., setting formally

ηi “ ´8 if the sequence of atoms is finite. Note that ηi Ñ ´8 as i Ñ 8 since point processes
are assumed to be locally finite, that is finite on every compact set.

A technical note is that a point process on R such that Hpx,8q ă 8 a.s. for every x P R,
also can be regarded as a point process on p´8,8s; we will not actually put any atoms at
`8, but the inclusion of `8 in the background space increases the family of compact sets (for
example, rx,8s becomes compact), which makes the vague topology stronger. We will use this
one-point closure and note that convergence of point processes in the vague topology on p´8,8s

is equivalent to the finite dimensional convergence of the ordered sequence of atoms, as shown by
the following lemma (cf. [25, Lemma 4.4] with a trivial change of variables p´8,8s Ñ p0,8s).

Lemma 3.1. Suppose that Hn, 1 ď n ď 8, are point processes on p´8,8s, and write Hn “

tηn,iu
Nn
i“1 with ηn,1 ě ηn,2 ě . . . and 0 ď Nn ď 8. If some Nn ă 8, define further ηn,i “ ´8

for i ą Nn. Then Hn
d

Ñ H8, in the vague topology for measures on p´8,8s, if and only if

pηn,1, ηn,2, . . . q
d

Ñ pη8,1, η8,2, . . . q in the standard sense that all finite dimensional distributions
converge. □

4. Stopped maximum

Recall the notation Mn :“ Mn,1pτnq for the maximum box occupancy count observed as the
allocation is stopped at time τn. The distribution of Mn was studied by Ivchenko in the frame-
work of the classic discrete-time occupancy scheme. We here study its distribution using the
poissonised continuous-time scheme.

4.1. Stopping time. Let m ě 0 and ℓ ě 0 be fixed, and consider the stopping time τn in (2.5),
which can be alternatively defined through the multiplicities as

τn “ mintt : µn,0ptq ` ¨ ¨ ¨ ` µn,mptq “ ℓu, (4.1)

where we assume n ą ℓ.



8 ALEXANDER GNEDIN, SVANTE JANSON AND YAAKOV MALINOVSKY

First, the distribution of the stopping time follows readily by identifying τn with the pℓ` 1qst
last time when one of n boxes receives its pm ` 1qst ball. The distribution of the pm ` 1qst
arrival time to a particular box is Gammapm ` 1, 1q, whence by independence among the boxes

Prτn P dts “ n

ˆ

n ´ 1

ℓ

˙

pPmptqqℓpPmptqqn´ℓ´1pmptqdt, t ě 0. (4.2)

In greater detail, the event defining τn occurs when one box receives its pm ` 1qst ball, ℓ boxes
contain at most m balls each, and the remaining n ´ ℓ ´ 1 boxes contain at least m ` 1 balls
each. By exchangeability of the boxes, the distribution of Mn conditional on τn will not change
if we also condition on the indices of the boxes that satisfy the said constraints.

This implies the following fact noticed in [21, Lemma 1].

Fact 4.1. Conditioned on τn “ t, the subsequence of n ´ ℓ ´ 1 stopped occupancy numbers
of boxes that received at least m ` 1 balls (strictly) before time t is i.i.d. and independent of
the complementing subsequence (also i.i.d.) of ℓ boxes with at most m balls. Moreover, both
subsequences have truncated Poissonptq distributions: the first one on tm` 1,m` 2, . . .u and the
second on t0, . . . ,mu.

For t Ñ 8 the truncated Poisson distribution on t0, . . . ,mu converges to the Dirac measure

δm, because pr`1ptq{prptq “ t{pr ` 1q Ñ 8. Since τn
p

Ñ 8, w.h.p. the number of boxes with
exactly m balls immediately before stopping is ℓ` 1 and no box contains lesser number of balls,
whence by monotonicity in the stopping condition in (4.1)

τn “ suptt : µn,mptq “ ℓ ` 1u w.h.p. (4.3)

(where sup∅ :“ 8), which gives yet another, asymptotic, interpretation of τn in terms of the
sole multiplicity µn,mptq. The relation (4.3) holds a.s. for m “ 0.

We emphasise (4.3) to match the temporal domain we need here with a classification of
asymptotic regimes for the growing number of balls in [36]. In the terminology of this book, the
range of τn is the right m-domain, which for the poissonised model can be characterised by the

properties µn,mptq “ Opp1q, µn,rptq “ opp1q for r ă m, and µn,rptq
p

Ñ 8 for r ą m.

4.2. Approximating the distribution of Mn. We turn to the stopped maximum. By the
virtue of the adopted stopping condition we cannot have Mn ă m` 1, and for values r ě m` 1
conditioning on the indices yields

PrMn ď r | τn “ ts “

PrMn ď r | Πnpt´q ă Πnptq “ m ` 1 and Πiptq ď m ă Πjptq for 1 ď i ď ℓ ă j ď n ´ 1s.

Since the event defined by the condition entails Mn “ maxpΠℓ`1ptq, . . . ,Πn´1ptqq (if n ą ℓ ` 1),
by independence the last formula becomes

PrMn ď r | τn “ ts “

n´1
ź

j“ℓ`1

PrΠjptq ď r | Πjptq ě m ` 1s “

ˆ

1 ´
P rptq

Pmptq

˙n´ℓ´1

. (4.4)

Integrating out the stopping time we obtain the unconditional distribution of the stopped max-
imum in the form of a mixture

PrMn ď rs “

ż 8

0

ˆ

1 ´
P rptq

Pmptq

˙n´ℓ´1

Prτn P dts, r ě m ` 1. (4.5)

Finding the asymptotics of (4.5) requires approximating both the mixing distribution and the
integrand.
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The first part is a customary task from the extreme-value theory, which we include for com-
pleteness. The stopping time τn has the same distribution as the pℓ ` 1qst order statistic for n
i.i.d. Gammapm ` 1, 1q random variables. The constant

αn :“ L ` m logL ´ logm! (4.6)

is a well known op1q approximation to the upper 1{n-quantile of Gammapm ` 1, 1q, see [14,
p. 156]. With this centering, we have for any fixed s P R,

Pmpαn ` sq „
Lm

m!
e´αn´s “

1

n
e´s (4.7)

and thus Binomial
`

n, Pmpαn ` sq
˘ d

Ñ Poissonpe´sq. Hence,

Prτn ď αn ` ss “ P rBinomialpn, Pmpαn ` sqq ď ℓs Ñ Pℓpe
´sq, (4.8)

which means that we have weak convergence

τn ´ αn
d

Ñ τ (4.9)

to a random variable τ with Prτ ď ss “ Pℓpe
´sq and thus by (3.4) τ

d
“ ξℓ`1 in the notation

there; in other words τ has Gumbelpℓ ` 1q distribution with density (3.5), that is

Prτ P dss “ e´spℓpe
´sq “

1

ℓ!
exp

`

´pℓ ` 1qs ´ e´s
˘

, s P R. (4.10)

For ℓ “ 0 the limit distribution of τn is standard Gumbel, which is a well known result in the
context of CCP and the dixie cup problems [18]. Comparing with Section 3.1, we see that τ can
be realised as the pℓ ` 1qst largest atom of the exponential Poisson process Ξ.

Identifying a proper norming for the integrand (hence Mn) is a much more delicate matter,
requiring a bivariate approximation of the Poisson probabilities. To that end, we introduce

an :“ eL `

ˆ

pe ´ 1qm ´
1

2

˙

logL ´ log
´

pe ´ 1qm!e´1
?

2πe
¯

, (4.11)

where the choice of the constant term is the matter of convenience. Set further

bn :“ tanu , cn :“ tanu (4.12)

so an “ bn ` cn is the decomposition in integer and fractional parts. The next lemma is our
main technical tool, giving asymptotics of Poisson probabilities in a vicinity of αn and bn. For
the time being we may ignore the connection L “ log n and just treat L as a large parameter.

Lemma 4.2. Let t “ tpL, uq ě 0 and integer r “ rpL, vqě 0 for large enough L be given by

t :“ L ` m logL ` u, (4.13)

r :“ eL `

ˆ

pe ´ 1qm ´
1

2

˙

logL ` v. (4.14)

Then, as L Ñ 8,

P rptq „
1

e ´ 1
prptq, (4.15)

log prptq “ ´L ` pe ´ 1qu ´ v ´ log
?

2πe ´
1

2
log

´

1 `
v

eL

¯

´
peu ´ vq2

2peL ` vq
` O

ˆ

logL

L1{2

˙

(4.16)

uniformly in u, v within the range
u

L
` 1 ě ε, (4.17)

|eu ´ v| “ OpL1{2q (4.18)
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for any fixed ε ą 0.

Proof. It follows readily from the assumptions (4.17)–(4.18) that t, r Ñ 8 with L “ Opt ^ rq

and t{r Ñ 1{e. This gives the asymptotics in (4.15) by the virtue of (2.4).
For (4.16), Stirling’s formula yields

log prptq “ ´t ` r log

ˆ

et

r

˙

´ log
?

2π ´
1

2
log r ` O

`

r´1
˘

. (4.19)

To work out the second term of (4.19), write et´ r “ eu´ v ` pm` 1{2q logL and note that for

large L the assumptions (4.17)–(4.18) further imply pet ´ rq{r “ OpL´1{2q along with

eL ` v ą eL ` eu ` OpL1{2q ą εeL ` OpL1{2q ą εL. (4.20)

With all this in hand we calculate by expanding the logarithm

r log

ˆ

et

r

˙

“ et ´ r ´
pet ´ rq2

2r
` O

´

L´1{2
¯

“ eu ´ v ` pm ` 1{2q logL ´
peu ´ vq2

2peL ` vq
` O

´

L´1{2 logL
¯

. (4.21)

Another logarithm expansion gives

log r “ logpeLq ` log
´

1 `
v

eL

¯

` OpL´1 logLq. (4.22)

Plugging the last two formulas in (4.19), we obtain (4.16) by careful bookkeeping. □

Applying (4.15) with L “ log n results in the tail asymptotics

P bn`kpαn ` sq „ n´1epe´1qs`cn´k, (4.23)

uniformly in s and k satisfying s ě ´p1 ´ εqL, and |es´ k| “ opL1{2q, and k “ opLq, which hold
in particular if s, k assume values in a bounded range. For times t “ αn ` s in (4.5) we have
Pmptq Ñ 0 locally uniformly in s. Making use of (4.23) we approximate the integrand to arrive
at the following theorem.

Theorem 4.3. For every fixed k P Z, as n Ñ 8,

PrMn ´ bn ď ks “

ż 8

´8

pℓpe
´sqe´s exp

´

´epe´1qs`cn´k
¯

ds ` op1q

“
1

ℓ!

ż 8

´8

exp
´

´e´s ´ pℓ ` 1qs ´ epe´1qs`cn´k
¯

ds ` op1q. (4.24)

□

A peculiar feature of this result (which is a common phenomenon for asymptotics of discrete
random variables that do not require scaling) is that the distribution defined by (4.24) has,
asymptotically, periodic fluctuations on the log n scale. Thus, weak convergence of the centered
stopped maximum only holds along certain subsequences pnjq and there are different possible
limit distributions; more precisely, we see from (4.24) (or (4.26) below) that convergence in
distribution holds for any subsequence such that cn converges. In [21], equation (4.5) was
manipulated using the change of variable z “ nPm´1ptq, which lead to a representation equivalent
to (4.24) via the substitution z “ e´s.

The following equivalent reformulation of Theorem 4.3 in terms of the total variation distance
is new to our knowledge.
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Theorem 4.4. Let bn and cn be given by (4.11)–(4.12). Then

lim
nÑ8

dTVpMn ´ bn, Znq “ 0 (4.25)

with
Zn :“ rξ1 ` pe ´ 1qτ ` cns, (4.26)

where ξ1 is standard Gumbel-distributed and independent of τ
d
“ Gumbelpℓ` 1q given by (4.10).

Note that the distribution of Zn depends on n through the constant 0 ď cn ď 1, which is
the source of the oscillations. Recall also that the variables Mn depend on the fixed parameters
m ě 0 and ℓ ě 0; in Theorem 4.4, bn and cn depend on m, and τ depends on ℓ. In the special case
ℓ “ 0 (CCP and dixie cup problem), ξ1 and τ are two independent standard Gumbel variables.

Proof. Using (4.10) and (3.6), we can write the first integral in (4.24) as
ż 8

´8

exp
`

´epe´1qs`cn´k
˘

P rτ P dss “

ż 8

´8

P rξ1 ď ´pe ´ 1qs ´ cn ` ksP rτ P dss

“ P rξ1 ď ´pe ´ 1qτ ´ cn ` ks “ P rξ1 ` pe ´ 1qτ ` cn ď ks

“ P rZn ď ks , (4.27)

using also (4.26). Hence (4.24) yields

PrMn ´ bn ď ks “ PrZn ď ks ` op1q, for every k P Z. (4.28)

It is easy to see, using that the sequence pcnq is bounded, that (4.28) is equivalent to (4.25), see
[26, Lemma 4.1] (or Lemma 5.5 in what follows). □

We have stated Theorem 4.4 with (roughly) centered variables Mn ´ bn. The result can also
be stated without centering as follows.

Theorem 4.5. Let an be given by (4.11). Then

lim
nÑ8

dTVpMn, rξ1 ` pe ´ 1qτ ` ansq “ 0, (4.29)

where ξ1 is standard Gumbel-distributed and independent of τ
d
“ Gumbelpℓ` 1q given by (4.10).

Proof. We have dTVpMn ´ bn, Znq “ dTVpMn, Zn ` bnq, and since bn is an integer,

Zn ` bn “
P

ξ1 ` pe ´ 1qτ ` cn ` bn
T

“
P

ξ1 ` pe ´ 1qτ ` an
T

, (4.30)

using (4.12). Thus (4.29) is an immediate consequence of Theorem 4.4. □

5. Maximal occupancy counts at fixed and random times

For the classic occupancy scheme the multivariate asymptotics of order statistics were explored
in [19; 45] by the method of moments. The approach in [36] relies on poissonisation and a
conditioning relation connecting to the multinomial distribution. This work revealed that the
maximum occupancy count may exhibit different asymptotic behaviours depending on how the
number of balls compares to n. Parallel studies in the extreme-value theory confirmed that the
maximum of n Poisson variables with fixed parameter is asymptotically degenerate [1] and later
focused on an instance of the triangular scheme, where a continuous Gumbel limit exists [2].
In this section we contribute to the past development by treating the occupancy scheme in the
framework of point processes and introducing a simple tool to deal with dependence among the
multiplicities.

As in the previous section, we deal with the time range t “ αn ` Op1q (corresponding to the
right m-domain recalled in Section 4.1), that is t “ αn ` s, where αn is defined by (4.6) and s is
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allowed to vary in a large but bounded range. With the norming suggested by Lemma 4.2, we
introduce a lattice point process Ms

n with n atoms

Mn,ipαn ` sq ´ bn, i P rns, (5.1)

each corresponding to some box occupancy count Πjpαn ` sq, j P rns. Representing via multi-
plicities,

Ms
n :“

8
ÿ

k“´8

µn,bn`kpαn ` sqδk. (5.2)

Intuitively, the point process Ms
n captures a few maximal occupancy counts, which are rare

among the n boxes for the temporal regime in focus. An obstacle on the way of approximating
Ms

n for large n is the dependence among the multiplicities, which persists in the poissonised
scheme through the identity

ř

r µn,rptq “ n. Our strategy to circumvent the dependence makes
use of replacing the fixed number of boxes with a random number to pass to a Poisson point

process pMs
n, then compare pMs

n with a suitable exponential Poisson process Ξb.

5.1. Bi-poissonisation. We randomise the poissonised occupancy scheme by introducing an
auxiliary unit-rate Poisson point process N “ tθiu with atoms θ1 ă θ2 ă . . ., independent of
Π1,Π2, . . .. We associate with θi the ith box, and treat the whole arrival process Πi to this box
as a random mark attached to θi. Geometrically, the now bivariate point data can be plotted
in the positive quadrant of the pθ, tq-plane, by first erecting a vertical line at each site θi of the
θ-axis, then populating line i with the atoms of Πi. (The resulting planar point process has the
intensity measure dθdt but is not Poisson.) In this picture, the bi-poissonised occupancy scheme
with size parameter n corresponds to the configuration of atoms in a vertical strip of width n.

For shorthand we write N “ Nr0, ns whenever n ě 0 appears in formulas as fixed parameter
(which need not be integer). In the bi-poissonised occupancy scheme the box occupancy counts
at time t ě 0 are

Π1ptq, . . . ,ΠN ptq, (5.3)

where the number of boxes is random, N
d
“ Poissonpnq; in particular with probability e´n the

number of boxes is zero. For varying n the models are consistent, so that for n1 ă n the model
with a smaller number of boxes is obtained from the larger model by discarding some number of
boxes Npn1, ns. The number of balls allocated by time t, equal to

řN
i“1 Πiptq, has a compound

Poisson distribution with p.g.f. z ÞÑ exp
`

npetpz´1q ´ 1q
˘

.

We denote by xMn,iptq, pµn,rptq, pτn the bi-poissonised counterparts of the fixed-n random vari-
ables and set them equal to zero in the event N takes a small value and they are not defined in a
natural way. For instance, in the event N ă ℓ ` 1 we set pτn “ 0 for the stopping time which, as
before, terminates the allocation process as soon as the number of boxes with at most m balls
becomes ℓ. Such conventions do not impact the envisaged distributional asymptotics.

The technical benefit of poissonising the number of boxes relates to the marking theorem,
which for many applications can be used in the following transparent form. Let P1, . . . ,Pk

(1 ď k ď 8) be a collection of mutually exclusive properties of a countable subset of r0,8s,
such that a unit-rate Poisson point process possesses one of them almost surely. Let Nj be the
set of atoms θi whose Πi satisfies Pj . Then N1, . . . ,Nk are independent Poisson processes.

This applied, immediately gives that the bi-poissonised multiplicities are independent in r
(for fixed n, t) and satisfy

pµn,rptq
d
“ Poissonpnprptqq, r P Zě0. (5.4)
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A further consequence concerns independence in the time domain. For r ě 1 define the rth

arrival point process pRn,r to be the set of rth atoms of Πi’s for i ď N . That is, instant t

accomodates an atom of pRn,r if one of N boxes receives its rth ball at time t. (In the occupancy
problems these times are sometimes called r-records, see [12] and references therein.)

Proposition 5.1. Each point process pRn,r, r P Zą0, is Poisson, with the intensity measure

ErpRn,rpdtqs “ npr´1ptqdt, t ě 0, (5.5)

or, equivalently,

ErpRn,rrt,8ss “ nPr´1ptq, t ě 0. (5.6)

Proof. For θi an atom of N and ηi the rth arrival in Πi, we have that the pairs pθi, ηiq comprise

a bivariate Poisson process. Projecting these for i ď N yields pRn,r, which is thus Poisson. □

The proposition bears some similarity with the r-records (rank r observations) in the sense of

extreme-value theory [43, Section 4.6]. The major difference, however, is that the pRn,r’s are not
independent for different values of r.

The bi-poissonised stopping time pτn identifies as the pℓ`1qst rightmost atom of pRn,m`1, hence
Proposition 5.1 yields an explicit formula for the distribution

Prpτn ď ts “ PℓpnPmptqq, (5.7)

analogous to (4.2). This can be manipulated to show that pτn´αn
d

Ñ τ , where τ
d
“ Gumbelpℓ`1q

as in the fixed-n model. (Alternatively, condition on N to prove pτn´αN
d

Ñ τ and use |αN ´αn| “

opp1q.) This becomes most elementary in the CCP case ℓ “ 0,m “ 0, where the centering
constant is αn “ L and the distribution function coincides exactly with the standard Gumbel
distribution on p´L,8q:

Prpτn ´ L ď ss “ expp´ne´s´Lq “ e´e´s
, s ě ´L, (5.8)

which entails that the value pτn “ 0 has positive probability e´n.

5.2. Approximating Ms
n by pMs

n. By the marking theorem the multiplicities pµn,rptq, r P Zě0,
for each fixed t are independent, as said above, which makes

pMs
n :“

8
ÿ

k“´8

pµn,bn`kpαn ` sqδk (5.9)

a lattice Poisson point process, with mean multiplicity

npbn`kpαn ` sq (5.10)

(equal to zero for k ă ´bn or s ď ´αn) at site k P Z. We proceed with estimating the proximity

of Ms
n to pMs

n restricted to a region containing the few largest atoms with high probability.
For bn as in (4.12) and rn ă bn yet to be chosen, consider bn ´ rn as a truncation level for the

occupancy counts. The number of boxes i ď n with Πipαn ` sq ą bn ´ rn is a binomial random
variable X with parameters n and P bn´rnpαn ` sq. Likewise the number of boxes i ď Npnq

satisfying this condition is a Poisson random variable Y with the same mean ErXs “ ErY s. A
criterion for selecting the truncation level is that the mean number of overshoots goes to 8 but
the overshoot probability for any particular box i approaches 0. Choosing rn „ αL with some
0 ă α ă e ´ 1, Stirling’s formula gives the asymptotics

´ logpP bn´rnpαn ` sqq „ βL (5.11)
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with some 0 ă β ă 1 depending on α. This entails the desired nP bn´rnpαn ` sq Ñ 8 and
P bn´rnpαn ` sq Ñ 0, to enable application of Prohorov’s Poisson-binomial bound (see e.g. [4,
p. 2, and also (1.6) and (1.23)] and the references there) that becomes

dTVpX,Y q “ Opn´β1

q, (5.12)

for any β1 ă β, in fact locally uniformly in s. Appealing to the identity (3.16) for MBPP’s this
translates as

dTVpMs
n|r´rn,8s , pMs

n|r´rn,8sq “ Opn´β1

q (5.13)

(where rn grows logarithmically as above). For fixed positive integer K, the events

tX ă Ku “ tMn,Kpαn ` sq ď bn ´ rnu “ tMn,Kpαn ` sq ´ bn ď ´rnu, (5.14)

tY ă Ku “ txMn,Kpαn ` sq ď bn ´ rnu “ txMn,Kpαn ` sq ´ bn ď ´rnu (5.15)

have much smaller probabilities, also as a consequence of (5.11), and by a coupling argument

we can force the K top atoms of Ms
n and pMs

n to coincide. From this, we obtain that, for any
fixed K,

dTV

`

pMn,ipαn ` sqqKi“1, pxMn,ipαn ` sqqKi“1

˘

“ Opn´β1

q. (5.16)

We remark that it is possible to improve on the above by letting K grow as a small power of n,
this way extending the approximation to cover some intermediate order statistics.

5.3. Coupling by the index of box. An alternative coupling of a fixed number of maximal
occupancy counts in the fixed-n and bi-poissonised models only uses symmetry and not distri-
bution of the counts. For fixed t ą 0 and n ą K there exist K distinct boxes whose ordered
occupancy counts are Mn,1ptq, . . . ,Mn,Kptq. If Mn,K ą Mn,K`1 the set of such boxes is uniquely
determined, otherwise we choose at random a suitable number from the boxes with Mn,K balls.
The labels of thus selected K boxes is a random sample from rns; let I be the largest index

in the sample. For N
d
“ Poissonpnq, if N ą K define pI similarly, leaving the index undefined

otherwise. For ε ą 0, if the event A :“ tI _ pI ď n ´ nε ă N ă n ` nεu occurs then we can
couple in such a way that

pMn,iptqqKi“1 and pxMn,iptqqKi“1 (5.17)

are equal. Using exchangeability we obtain estimates (at least if nε is an integer)

PrI ą n ´ nεs ď Kε, Pr|N ´ n| ă nε, pI ą n ´ nεs ď
2Kε

1 ´ ε
. (5.18)

Choosing ε „ 2
a

L{n, these dominate the known tail bound Pr|N ´ n| ě nεs ď 2e´nε2{3

(following from Bennet’s inequality, see also [24, Corollary 2.3 and Remark 2.6]); hence the total

variation distance between the vectors in (5.17) does not exceed PrAcs ă 7K
?
Ln´1{2 for n not

too small.

5.4. Approximating pMs
n by an exponential process. By passing to the Poisson point pro-

cess pMs
n the approximation problem is reduced to asymptotics of the intensity measure. For

Poisson random variables X and Y , we have that dTVpX,Y q ď |ErXs ´ E rY s|. From this the
total variation distance between lattice Poisson processes does not exceed the ℓ1-distance be-
tween their intensity measures, seen as sequences of point masses at integer locations. (Stronger
bounds exist, as follows from [27, Theorem 2.2(i) and its proof], but we do not need them.)

The intensity measure of ΞÒ

b has masses growing exponentially fast in the negative direction.
This forces us to impose a less generous truncation than in Section 5.2 to keep the quality of
approximation high.



MAXIMAL COUNTS IN THE STOPPED OCCUPANCY PROBLEM 15

Proposition 5.2. For r1
n „ β logL with any 0 ă β ă 1{2, locally uniformly in s,

dTVp pMs
n|r´r1

n,8s , ΞÒ

pe´1qs`cn
|r´r1

n,8sq Ñ 0. (5.19)

Proof. We first restrict both Poisson processes to the interval p´r1
n , L

1{4q. Within this range we

approximate the point masses of the intensity measure of ΞÒ

pe´1qs`cn
by their pMs

n-counterparts;

recall that these intensities are given by (3.10) and (5.10). To that end, Lemma 4.2 is applied

with u “ Op1q and v varying in the range from ´r1
n `Op1q to L1{4 `Op1q. A simple calculation,

using (4.6), (4.11) and (4.12), shows that the pointwise relative approximation error for the
point masses is then given by the last three terms in (4.16), which altogether are estimated as

cL´1{2 logL for some c ą 0, as one easily checks. Since for the exponential process

E rΞÒ

bp´r1
n,8ss — er

1
n (5.20)

(locally uniformly in b), the ℓ1-distance between the mean measures on p´r1
n , L

1{4q is of the order

Oper
1
nL´1{2 logLq, which is in fact op1q by our choice of r1

n. By this very token and (4.15), for

both processes the total mean measure of rL1{4,8s is Opexpp´L1{4qq, which makes a negligible
contribution to the total variation distance in (5.19). □

Clearly, (5.19) combined with (5.13) yields the desired approximation

dTVpMs
n|r´r1

n,8s , ΞÒ

pe´1qs`cn
|r´r1

n,8sq Ñ 0. (5.21)

Obviously from (5.20), for any fixed K, for both processes the K largest atoms exceed ´r1
n

w.h.p., whence with the notation of Section 3 we obtain as a corollary

Theorem 5.3. For every K P Zą0, as n Ñ 8 locally uniformly in s P R

dTV

`

pMn,ipαn ` sq ´ bnqKi“1 , prξi ` pe ´ 1qs ` cnsqKi“1

˘

Ñ 0, (5.22)

where ξi
d
“ Gumbelpiq is the decreasing sequence of atoms of Ξ.

Remark 5.4. (The need for a condition for convergence in distribution.) The more general
asymptotic regime tn „ α log n was addressed in [36, Ch. II, Section 6, Theorem 2]. Adjusted to
the poissonised model, the cited result claims a weak convergence of Mn,1ptq ´ rpn, tq provided
an (integer) centering constant r “ rpn, tq is chosen so that nprptq Ñ λ, for some λ P p0,8q.
However, for the generic sequence ptnq with such asymptotics the required centering need not
exist, as exemplified by Lemma 4.2 in the case α “ 1. Thus in essense the weak convergence
necessitates an additional constraint on ptnq to avoid oscillations of certain Poisson probabilities.

△

Oscillatory asymptotics for a sequence of distributions involve closeness to a set of accumu-
lation points of the sequence. Leaving aside the periodicity patterns, this fits in the following
broad scenario. Let pS, dq be a metric space, and let γ ÞÑ Hγ be a continuous map from a
compact interval (or, more generally, some compact metric space) J into S.

Lemma 5.5. Let pGnq be a sequence in S and let ρpnq be a sequence in J . Then the following
are equivalent.

(i) For any subsequence pnjq and γ P J such that ρpnjq Ñ γ as j Ñ 8, we have Gnj Ñ Hγ.
(ii) As n Ñ 8,

dpGn, Hρpnqq Ñ 0. (5.23)

Furthermore, if these hold, then pGnq is relatively compact.
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Proof. (ii)ñ(i). If (ii) holds and ρpnjq Ñ γ, then dpGnj , Hρpnjqq Ñ 0 by (ii), and dpHρpnjq, Hγq Ñ

0 by the assumption on H. Consequently, dpGnj , Hγq Ñ 0.
(i)ñ(ii). Consider any subsequence pnjq. Since the set J is compact, we may select a sub-

subsequence pn1
jq such that n1

j Ñ γ for some γ P J , and thus Gn1
j

Ñ Hγ by the assumption (i).

Furthermore, Hρpn1
jq Ñ Hγ by continuity. Consequently, as j Ñ 8,

dpGn1
j
, Hρpn1

jqq ď dpGn1
j
, Hγq ` dpHγ , Hρpn1

jqq Ñ 0. (5.24)

Hence every subsequence has a subsubsequence for which (5.23) holds; as is well-known, this
implies (5.23) for the full sequence.

Finally, if (i) and (ii) hold, then for any subsequence pnjq we may select a subsubsequence pn1
jq

such that ρpn1
jq converges, which by (i) implies that pGn1

j
q converges. Hence, pGnq is relatively

compact. □

Applying the lemma to the setting of Theorem 5.3, we take for pS, dq the space of probability
distributions on ZK with d “ dTV, J :“ r0, 1s, and ρpnq :“ cn. Then (5.22) is an instance
of (5.23), and (i) in Lemma 5.5 describes subsequential limits in distribution, for subsequences
with cn Ñ γ for some γ P r0, 1s.

5.5. Stopped maxima. We have now all prerequisites to derive one of our main results, a
multivariate extension of Theorems 4.3 and 4.4, from Fact 4.1. The latter says that conditionally
on τn “ t, the n´ ℓ´ 1 box occupancy counts exceeding m at this time, excluding the box that
gets the ball at τn, are i.i.d. with the truncated Poisson distribution

PrΠiptq “ r | Πiptq ě m ` 1s “
prptq

Pmptq
, r ě m ` 1. (5.25)

Recall also the shorthand notation Mn,i “ Mn,ipτnq for the box occupancies when the allocation
is stopped.

Theorem 5.6. For every K P Zą0, as n Ñ 8,

dTV

`

pMn,i ´ bnqKi“1 , prξi ` pe ´ 1qτ ` cnsqKi“1

˘

Ñ 0, (5.26)

where τ
d
“ Gumbelpℓ ` 1q is independent of Ξ.

Proof. For t “ αn`Op1q we have Pmptq “ Opn´1q, therefore the asymptotics in Lemma 4.2 hold
for the truncated Poisson distribution in (5.25) as well; we may also replace n by n´ℓ´1 without
changing the result. In view of this, it follows from the fact mentioned before the theorem that
the approximation in Theorem 5.3 remains valid also for pMn,ipτnq ´ bnqKi“1 conditioned on
τn ´ αn “ s, locally uniformly in s. In other words, conditionally on τn and with Ξ “ tξiu
independent of τn,

dTV

`

pMn,ipτnq ´ bnqKi“1 , prξi ` pe ´ 1qpτn ´ αnq ` cnsqKi“1

˘

Ñ 0, (5.27)

uniformly for τn ´αn in a compact set. Recall that τn ´αn
d

Ñ τ . In particular, τn ´αn is tight,
and thus it follows that (5.27) holds also unconditionally.

If cnj Ñ c0 for some subsequence pnjq then furthermore, along the subsequence,

prξi ` pe ´ 1qpτn ´ αnq ` cnsq
K
i“1

d
Ñ prξi ` pe ´ 1qτ ` c0qsq

K
i“1 (5.28)

by the mapping theorem [8, Theorem 5.1] (since x ÞÑ rxs a.s. is continuous at ξi ` pe´ 1qτ ` c0);
since the random variables in (5.28) take values in the countable set ZK , it follows by Scheffé’s
lemma that (5.28) holds also in total variation. Hence, (5.27) implies that, along pnjq,

dTV

`

pMn,ipτnq ´ bnqKi“1 , prξi ` pe ´ 1qτ ` c0qsqKi“1

˘

Ñ 0. (5.29)
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Finally, Lemma 5.5 enables us to pass from the convergence of subsequences to the claimed
approximation (5.26). □

5.6. Equivalent formulations. By analogy with Theorem 4.5, we may formulate Theorem 5.6
in an equivalent way for the non-centered variables Mn,i “ Mn,ipτnq.

Theorem 5.7. For every K P Zą0, as n Ñ 8,

dTV

`

pMn,iq
K
i“1 , prξi ` pe ´ 1qτ ` ansqKi“1

˘

Ñ 0, (5.30)

where τ
d
“ Gumbelpℓ ` 1q is independent of Ξ “ tξiu.

As emphasised in Section 3.5, it is technically convenient to regard the point processes in
focus as point processes on p´8,8s, although they never have an atom at 8. Let N p´8,8s

be the space of locally finite integer-valued measures on p´8,8s, and regard a point process
on p´8,8s as a random element of N p´8,8s. The space N p´8,8s is equipped with the
vague topology, which is metrisable (and Polish) [6, Proposition 3.1]. Using this framework we
can state Theorem 5.6 in the following equivalent form that involves a limit of the entire set
tΠipτnqun1 “ tMn,iu

n
1 regarded as a point process.

Theorem 5.8. Let d be any metric on the space N p´8,8s that induces the vague topology.
Then

d
`

tMn,i ´ bnuni“1 , trξi ` pe ´ 1qτ ` cnqsu8
i“1

˘

Ñ 0. (5.31)

Proof. Consider a subsequence pnjq such that cnj Ñ c0 for some c0 P r0, 1s. Then, by the virtue
of Lemma 3.1, we obtain from (5.29) that, along the subsequence,

d
`

tMn,i ´ bnuni“1 ,
␣

rξi ` pe ´ 1qτ ` c0s
(8

i“1

˘

Ñ 0. (5.32)

The result now follows from Lemma 5.5. □

At last, instead of looking at few rightmost atoms, we may restrict our point processes to a
vicinity of 8. This leads by the virtue of Lemma 3.1 (and Lemma 5.5) to the following equivalent
version.

Theorem 5.9. For every r P Z

dTV

`

Mτn´αn
n |rr,8s,Ξ

Ò

pe´1qτ`cn
|rr,8s

˘

Ñ 0. (5.33)

6. Proof of the main result by interpolation

Theorem 5.8 shows that the lattice point process of stopped counts tΠipτnquni“1 may be approx-
imated by the exponential Poisson process Ξ that is shifted and then has all atoms rounded to
integers. We present here an alternative proof based on the idea of interpolation of the lattice
process to R, that amounts to artificially adding the ‘missing’ fractional parts to the atoms
and then showing convergence to an exponential Poisson process on R. By this approach, the
oscillations are revealed only at the final stages of the argument.

The shift operation on Ξ from Section 3.1 makes sense for arbitrary point process on R. Thus,
for a point process H “ tηiu and a real number b, we let H ˘ b denote the shifted processes

H ` b :“ tηi ` bu, H ´ b :“ tηi ´ bu (6.1)

obtained by translating each atom the same way.
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For convenience of notation, let Wt
d
“ Poissonptq, and let W 1

t and W 2
t have the truncated

(conditioned) distributions W 1
t

d
“ pWt | Wt ě m ` 1q and W 2

t
d
“ pWt | Wt ď mq. By Fact 4.1, if

we condition on τn “ t, then the occupancy numbers tΠipτnquni“1 are given by

tΠ1
iptqu

n´ℓ´1
i“1 Y tΠ2

j ptquℓj“1 Y tm ` 1u, (6.2)

where all random variables are independent and have the distributions Π1
iptq

d
“ W 1

t and Π2
j ptq

d
“

W 2
t . The last ℓ ` 1 of the numbers in (6.2) are ď m ` 1 and may be ignored, as will be seen

below, so only the n ´ ℓ ´ 1 numbers Π1
iptq are important asymptotically.

Let E
d
“ Exponentialp1q and consider R

d
“ pE | E ă 1q; thus R is a random variable in r0, 1q

with the distribution function

PrR ď xs “
1 ´ e´x

1 ´ e´1
, 0 ď x ď 1. (6.3)

Let Ri (i ě 1) be independent copies of R, also independent of all other variables. We define,
for a given t “ tn, the modified variables

rΠ1
i :“ Π1

iptnq ` Ri (6.4)

and note that we are back to integer counts via Π1
iptnq “ trΠ1

iu.
Let sn and xn be any bounded sequences of real numbers, and consider only n that are so

large that log n ` sn ě 0. Let, recalling (4.6), (4.11), and L :“ log n,

tn :“ αn ` sn, (6.5)

yn :“ an ` xn, (6.6)

kn :“ tynu, (6.7)

x1
n :“ kn ´ an. (6.8)

Note that

xn ´ x1
n “ yn ´ kn “ tynu P r0, 1q. (6.9)

Then, for i ď n ´ ℓ ´ 1 we have, with W 1
tn as above and independent of Ri, using (6.3),

PrrΠ1
i ą yn | τn “ tns “ PrW 1

tn ` Ri ą yns

“ PrW 1
tn ą kns ` PrW 1

tn “ knsPrRi ą yn ´ kns

“ PrW 1
tn ą kns ` PrW 1

tn “ kns
e´pyn´knq ´ e´1

1 ´ e´1
. (6.10)

We have tn Ñ 8, and thus PrWtn ď ms Ñ 0. Hence, by Lemma 4.2 and simple calculations,

PrW 1
tn “ kns “ PrWtn “ kn | Wtn ą 0s “ PrWtn “ kns

`

1 ` op1q
˘

“
e ´ 1

n
epe´1qsn´x1

n`op1q. (6.11)

and similarly

PrW 1
tn ą kns “ PrWtn ą kns

`

1 ` op1q
˘

“
1

n
epe´1qsn´x1

n`op1q. (6.12)

Then (6.10)–(6.12) yield, recalling (6.6) and (6.9),

PrrΠ1
i ą an ` xns “

1

n
epe´1qsn´x1

n`op1q `
e ´ 1

n
epe´1qsn´x1

n`op1q e
´pyn´knq ´ e´1

1 ´ e´1

“
1

n
epe´1qsn´x1

n

´

eop1q ` eop1q
`

e1´pxn´x1
nq ´ 1

˘

¯
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“
1

n

´

epe´1qsn`1´xn ` op1q

¯

. (6.13)

Let x P R and choose xn :“ x ` pe ´ 1qsn ` 1. Furthermore, define

pΠipsnq :“ rΠ1
i ´ an ´ pe ´ 1qsn ´ 1 “ Π1

iptnq ` Ri ´ an ´ pe ´ 1qsn ´ 1. (6.14)

Then (6.13) yields

PrpΠipsnq ą xs “ PrrΠ1
i ą an ` xns “

1

n

´

e´x ` op1q

¯

. (6.15)

Note that pΠipsnq depends on the chosen bounded sequence sn, both directly and through tn,
but the right-hand side of (6.15) does not.

The random variables pΠipsnq are independent for 1 ď i ď n´ℓ´1. Consequently, if we define
the point process

pΞ1
nrsns :“

␣

pΠipsnq
(n´ℓ´1

i“1

“
␣

Π1
iptnq ` Ri

(n´ℓ´1

i“1
´ an ´ pe ´ 1qsn ´ 1, (6.16)

then (6.15) shows by the standard Poisson convergence of binomial distributions that, still for
any bounded sequence sn,

pΞ1
nrsnspx,8s

d
Ñ Poisson

`

e´x
˘

. (6.17)

Since Ξpx,8s
d
“ Poisson

`

e´x
˘

, cf. (3.3), we thus obtain from (6.17)

pΞ1
nrsnspAq

d
Ñ ΞpAq (6.18)

for every interval A “ px,8s.
This is not quite enough to show convergence in distribution in the space N p´8,8s, but it

is not far from it. Let U be the family of all finite unions
Ťk

1puj , vjs with ´8 ă uj ă vj ď 8.
For any such set A P U , we can use (6.15) for x “ uj and vj , j “ 1, . . . , k, and conclude that

PrpΠipsnq P As “
1

n

`

µpAq ` op1q
˘

, (6.19)

where dµpxq “ e´x dx is the intensity measure of Ξ, and it follows as above that (6.18) holds
for every A P U . This implies convergence

pΞ1
nrsns

d
Ñ Ξ (6.20)

in N p´8,8s, see for example [30, Theorem 4.15]. (In the terminology there, U is a dissecting
ring, and we may take I “ U ; both conditions in the theorem follow from (6.18) for A P U . See
also the version in [29, Proposition 16.17].) Alternatively, (6.20) follows easily from (6.15) using
[30, Corollary 4.25]; we leave the details to the reader.

Define Sn :“ τn ´ αn, and recall from (4.9) that

Sn
d

Ñ τ, with τ
d
“ Gumbelpℓ ` 1q. (6.21)

Define also the point processes

rΞn :“
␣

Πipτnq ` Ri

(n

i“1
, (6.22)

pΞnrsns :“ rΞn ´ pe ´ 1qSn ´ an ´ 1 “
␣

Πipτnq ` Ri ´ pe ´ 1qSn ´ an ´ 1
(n

i“1
. (6.23)

Then, by (6.5) and (6.2),
`

rΞn | Sn “ sn
˘

“
`

rΞn | τn “ tn
˘ d

“ tΠ1
iptnq ` Riu

n´ℓ´1
i“1 Y tΠ2

j ptnq ` Rn´ju
ℓ
j“0, (6.24)
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where we for convenience let Π2
nptnq :“ m ` 1. (We have only equality in distribution in (6.24),

since the equality involves a harmless relabelling of R1, . . . , Rn.) Hence, also using (6.23) and
(6.16),

`

pΞnrsns | Sn “ sn
˘

“
`

rΞn | Sn “ sn
˘

´ pe ´ 1qsn ´ an ´ 1

d
“ pΞ1

nrsns Y
␣

Π2
j ptnq ` Rn´j ´ pe ´ 1qsn ´ an ´ 1

(ℓ

j“0
, (6.25)

For 0 ď j ď ℓ, we have Π2
j ptnq ď m ` 1 and thus, recalling sn “ Op1q,

Π2
j ptnq ` Rn´j ´ pe ´ 1qsn ´ an ´ 1 “ ´an ` Op1q Ñ ´8. (6.26)

Hence, if A P U is as above, then for large n, the final multiset in (6.25) is disjoint from A,

and thus (6.25) shows that (6.18) holds also for
`

pΞnrsns | Sn “ sn
˘

, which, as for (6.20) above,
implies

`

pΞnrsns | Sn “ sn
˘ d

Ñ Ξ (6.27)

in N p´8,8s. (Alternatively, this follows from (6.20), (6.25), and (6.26) using Lemma 3.1.)
We have shown (6.27) for any bounded sequence sn. Thus Lemma 6.1 below applies and

yields
`

pΞnrsns, Sn

˘ d
Ñ pΞ, τq, (6.28)

with Ξ and τ
d
“ Gumbelpℓ`1q independent. Consequently, by (6.23) and the continuous mapping

theorem,
␣

Πipτnq ` Ri ´ an ´ 1
(n

1
“ pΞnrsns ` pe ´ 1qSn

d
Ñ Ξ ` pe ´ 1qτ. (6.29)

This is our continuous version of Theorems 5.6–5.8, where we have added artificial fractional
parts Ri in order to get a nice limit Ξ ` pe ´ 1qτ consisting of the Poisson process Ξ with an
independent random shift pe ´ 1qτ .

To obtain the desired conclusions about the occupancy counts it now remains only to remove

the fractional parts. Arrange rΠi :“ Πipτq ` Ri in decreasing order as rΠp1q ě rΠp2q ě . . . , and
note that then

Mn,i “ trΠpiqu. (6.30)

Lemma 3.1 shows that (6.29) is equivalent to, with Ξ “ tξiu
8
i“1 as in Section 3.1,

`

rΠpiq ´ an ´ 1
˘K

i“1

d
Ñ

`

ξi ` pe ´ 1qτ
˘K

i“1
(6.31)

for every fixed K ě 1.
We write as in (4.12) an “ bn ` cn where bn :“ tanu is an integer and cn :“ tanu P r0, 1q is the

fractional part. Consider a subsequence such that cn Ñ γ for some γ P r0, 1s. Then, along this
subsequence, it follows from (6.31) that

`

rΠpiq ´ bn
˘K

i“1

d
Ñ

`

ξi ` pe ´ 1qτ ` 1 ` γ
˘K

i“1
. (6.32)

The K variables on the right-hand side of (6.32) have continuous distributions, and are thus a.s.
not integers; hence, the vector on the right-hand side is a.s. a continuity point of the mapping
F : RK Ñ RK given by pziq

K
1 ÞÑ ptziuq

K
1 . Consequently, by [8, Theorem 5.1], we may apply this

mapping F and conclude, using (6.30) and (6.32), that
`

Mn,i ´ bn
˘K

i“1
“
`

trΠpiq ´ bnu
˘K

i“1

d
Ñ

`

tξi ` pe ´ 1qτ ` 1 ` γu
˘K

i“1
“
`

rξi ` pe ´ 1qτ ` γs
˘K

i“1
.

(6.33)
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This yields Theorem 5.6 by Lemma 5.5, again taking d “ dTV and letting Gn and Hγ be
distributions of the random vectors on left and right sides of (6.33).

Theorems 5.7 and 5.8 follow easily as in Section 5.5.

6.1. A general lemma. We used in the proof above the following simple lemma on joint
convergence using conditional distributions. We admit this may belong to the folklore, and give
a detailed proof since we are not aware of any explicit reference.

Lemma 6.1. Let pXn, Ynq, n ě 1, be a sequence of pairs of random variables taking values in
X ˆ Y for some Polish spaces X and Y. Let X be a random variable in X and suppose that
there exists regular conditional distributions LpXn | Yn “ yq, y P Y, such that, as n Ñ 8, for
any convergent sequence yn Ñ y in Y,

pXn | Yn “ ynq
d

Ñ X. (6.34)

Suppose further that Yn
d

Ñ Y as n Ñ 8, for some random variable Y in Y. Assume, as we may,
that X and Y are independent. Then, as n Ñ 8,

pXn, Ynq
d

Ñ pX,Y q. (6.35)

The assumption (6.34) means that LpXn | Yn “ ynq converges to the distribution LpXq. Note
that the limit distribution does not depend on y.

Proof. Let A Ď X and B Ď Y be such that PrX P BAs “ 0 and PrY P BBs “ 0 (i.e., these are
continuity sets for X and Y ). We have

PrpXn, Ynq P A ˆ Bs “ E rPrXn P A | Yns1tYn P Bus , (6.36)

where we use the regular conditional distributions in the assumption. By the Skorohod coupling
theorem [29, Theorem 4.30], we may assume that Yn Ñ Y almost surely. Then (6.34) implies
PrXn P A | Yns Ñ PrX P As a.s. (since A is an X-continuity set), and Yn Ñ Y implies
1tYn P Bu Ñ 1tY P Bu a.s. (since B is a Y -continuity set). Consequently, (6.36) implies by the
dominated convergence theorem that

PrpXn, Ynq P A ˆ Bs Ñ E rPpX P Aq1tY P Bus “ PrX P AsPrY P Bs

“ PrpX,Y q P A ˆ Bs. (6.37)

This implies (6.35) by [8, Theorem 3.1]. □

7. Dynamical aspects

7.1. Small counts. The number of empty boxes decreases each time a box receives its first ball.
Functional limit theorems for this process in the setting of the discrete-time occupancy scheme
were first obtained by Sevastyanov [44] through asymptotic analysis of the multivariate p.g.f.
of the finite-dimensional distributions. For the regime of interest here, Theorem 5 of the cited
paper showed (in a minor disguise) the convergence to an exponential Poisson process (see also
[36, Ch. 4 Section 5]). In the context of CCP an equivalent result was proved quite recently by
another method for the process of first arrivals (see [39, Theorem 4.3.38] and references therein),
although the connection with [44] was apparently overlooked. Ilienko [18, Theorem 3.1] used
the poissonised scheme to identify the Poisson limits for the processes of r-th arrivals.

We aim next to demonstrate, in the framework of the bi-poissonised occupancy scheme, how
the time evolution of small counts connects to the processes of rth arrivals.
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Recall from Proposition 5.1 that the pre-limit processes pRn,r of r-arrivals (r ě 1) are nonho-
mogeneous Poisson point processes with intensity measure npr´1ptqdt, t ě 0. Let

αn,r :“ L ` pr ´ 1q logL ´ logpr ´ 1q! (7.1)

which is (4.6) with m “ r ´ 1. Employing (2.3) and (4.7) to control the intensity measure, we
obtain for every fixed r ě 1 convergence of Poisson point processes in the form of their counting
functions

ppRn,rpαn,r ` s,8s, s P Rq
d

Ñ pΞps,8s, s P Rq. (7.2)

In fact, it is easy to see that on every fixed interval pa,8s, the intensities converge in L1, and
thus the intensity measures in total variation, and (7.2) follows. Taking the de-poissonisation of
the numbers of balls and boxes for granted, (7.2) recovers the cited results from [18; 39].

We stress that the r-arrival processes have no common asymptotic time scale, meaning that
pRn,r1pαn,r ` s,8s for r1 ă r converges in probability to 0, and for r1 ą r converges in probability
to 8. These relations are just features of the right pr ´ 1q-domain in terms of [36].

Sevastyanov’s result on convergence of the process of empty boxes is equivalent to the r “ 1
instance of (7.2) by the virtue of identity

N ´ pµn,0ptq “ pRn,1ptq, (7.3)

which holds pathwise a.s. for all t ě 0, and just says that the number of empty boxes de-

creases each time some box receives its first ball. In this formula N
d
“ Poissonpnq, pµn,0ptq

d
“

Poissonpne´tq, with N ´ pµn,0ptq and pµn,0ptq being independent for each fixed t. The number
of empty boxes ppµn,0ptq, t ě 0q is a pure-death process with unit death rate per capita, and

ppRn,1ptq, t ě 0q is a Poisson process with the exponential jump rate ne´t.
To generalise for all r ě 1, we observe that

pµn,r´1ptq `

r´2
ÿ

k“0

pµn,kptq “ pRn,rpt,8s, t ě 0. (7.4)

The term pµn,r´1ptq is placed separately to emphasise that the remaining sum is asymptotically
negligible for t “ αn,r `Op1q (which corresponds to the right pr ´ 1q-domain of [36]). We center
and use (7.2), which, using that the separated term in (7.4) dominates the rest, yields (again in
the Skorohod space Dp´8,8s):

Proposition 7.1. For r P Zą0, as n Ñ 8,

ppµn,r´1pαn,r ` sq, s P Rq
d

Ñ pΞps,8s, s P Rq. (7.5)

Notably, although ppµn,rptq, t ě 0q for r ą 0 is a nonmonotonic birth-death process with upward
jumps occuring at rate npr´1ptq and downward at rate one per capita, in the limit there are only
downward jumps at times of a nonhomogeneous Poisson process. This feature of the occupancy
scheme in the right pr ´ 1q-domain is new to our knowledge.

7.2. Parallels with queueing theory. For a more comprehensive picture of the dynamics,
the bi-poissonised model should be considered as a whole. Representing the occupancy counts
as a random measure on the integer lattice, in the form

8
ÿ

r“0

pµn,rptqδr “

N
ÿ

i“1

δ
xMn,i

, (7.6)
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and letting the time t ě 0 vary defines a Markov process with values in the space of point
measures N p´8,8s, with the random starting state Nδ0 (compare with nδ0 for the fixed-n
poissonised scheme) and transitions driven by a Poisson flow

8
ÿ

r“0

pµn,rpt ` hqδr
d
“ Th ˝

8
ÿ

r“0

pµn,rptqδr. (7.7)

In intuitive terms, we may think of a box as a particle jumping at unit probability rate,
independently of other particles, from one site on the lattice to the next on its right, with each
such move caused by a new ball added to the box. Site 0 has a distinguished role as a source

emitting particles that proceed to enter site 1 at epochs of the Poisson process pRn,1 with nonho-
mogeneous rate ne´t. The configuration on Zą0 (representing the multiplicities of nonzero box
counts) evolves like an infinite network of infinite-server queues connected in series [38] (also
known as a tandem of Mt{M{8 queues). In this context, the facts like independence of multi-
plicities in (5.4) and features of the arrival processes in Proposition 5.1 appear as specialisation
of properties of open networks with Poisson inputs [32]. Other way round, our large n results on
the occupancy problem for times t “ αn,r ` Op1q (as well as results for other temporal regimes
[36]) admit transparent interpretation in terms of a heavy-traffic approximation for the series of
infinite-server queues with exponential input rate ne´t.

A similar representation has been used to study a continuous-time growth process of random
permutations [16]. In that model, like in other combinatorial processes related to tandem net-
works, the focus is on convergence to stationarity of the configuration of particles on any fixed
finite set of sites, see [3] for examples.

8. Asymptotic independence of extreme occupancy counts

8.1. Asymptotic independence. The bi-poissonised multiplicities pµn,rptq’s for different r are
only independent for every fixed t (and n) but not as processes: e.g. the larger the number of
boxes with r balls, the higher is the likelihood that the number of boxes with r ` 1 balls will
increase in the nearest time. Nevertheless, Theorem 5.6 suggests that the independence of Ξ
and τ stems from some kind of weak dependence of a vector of K maximal and a vector of K
minimal occupancy counts for times t “ αn`Op1q. With the latter shown, we will be in position

to approximate the joint distribution of the measure-valued process p pMs
n, s P Rq taken together

with pτn ´ αn, thus putting (5.26) (through the bi-poissonised version of the result) in light of
the theorem on continuity of compositions [46].

To introduce the appropriate independence concept formally, consider a bivariate sequence
of random elements pXn, Ynq taking values in a product Polish space X ˆ Y. We say that Xn

and Yn are asymptotically independent if for independent X 1
n and Y 1

n with X 1
n

d
“ Xn, Y 1

n
d
“ Yn it

holds that

lim
nÑ8

dTVppXn, Ynq, pX 1
n, Y

1
nqq “ 0. (8.1)

(Then every subsequential weak limit will be a product measure.) See [10, Condition AI-4]) for
this and weaker forms of asymptotic independence.

We are interested in times around the instant L “ log n. The covering interval with endpoints

t0 :“
2

3
L, t1 :“ L ` pK ´ 1q logL (8.2)

will serve our purpose. The processes in the next lemma are to be considered as random elements
of the space of cadlag functions endowed with the Skorohod topology.



24 ALEXANDER GNEDIN, SVANTE JANSON AND YAAKOV MALINOVSKY

Lemma 8.1. For K ą 1 and t0, t1 given by (8.2) the K-variate extreme-value processes

ppxMn,n´i`1ptqqKi“1, t P rt0, t1sq and ppxMn,iptqqKi“1, t P rt0, t1sq (8.3)

are asymptotically independent.

Proof. For the time being let us regard boxes with at most K balls as ‘small’ and the others as
‘big’. Accordingly, we split the sequence of multiplicities into two blocks

Sptq “ ppµn,rptqqKr“0, Bptq “ ppµn,rptqq8
r“K`1, (8.4)

which for every fixed t are independent, and stem from two complementary collections of boxes.
The block Sptq of small box multiplicities is a Markov process, whose lifetime until absorption

at zero is L ` K logL ` Opp1q, in consequence of the discussion around the centering constant
(4.6) (now with K assuming the role of m). The lifetime exceeds t1 by logL ` Opp1q, hence at
time t1 w.h.p. the number of small boxes is at least K and, by monotonicity, the K minimal
occupancy counts for all t ď t1 are due to small boxes. So we are reduced to show that the
process of small box multiplicities on rt0, t1s is asymptotically independent of the K maximal
box occupancy counts.

To that end, for times t ě t0 we further decompose the process of big boxes as

Bptq “ B1ptq ` B2ptq, (8.5)

where B1ptq is the sequence of multiplicities representing occupancy counts of those big boxes
that contained more than K balls already at time t0, and B2ptq appears due to the increase
of the content of small boxes. Independence of the blocks at t0 and the Poisson flow dynamics
entail that the processes pSptq, t ě t0q and pB1ptq, t ě t0q are independent. It remains to show
that for the range t P rt0, t1s, the nonzero multiplicities in Bptq that account for the K maximal
box occupancy counts coincide w.h.p. with their counterparts in B1ptq. That is to say, we assert
that boxes small at time t0 are unlikely to overtake the largest ones at later stages up to time
t1.

Indeed, by Theorem 5.3 (with m “ 0) and (5.16), for every ε ą 0 w.h.p.

pe ´ εqL ă xMn,KpLq ď xMn,1pLq ă pe ` εqL, (8.6)

where we recall L “ log n. Hence, by monotonicity for t ě t0, also

2

3
pe ´ εqL ă xMn2{3,Kpt0q ď xMn,Kpt0q ď xMn,Kptq. (8.7)

On the other hand, the total number
řK

r“0 pµn,rpt0q of small boxes existing at time t0 has a
Poisson distribution with mean

nPKpt0q ď ne´t0tK0 ă n1{3LK . (8.8)

Hence it satisfies
řK

r“0 pµn,rpt0q ă n1{2 w.h.p., which implies that the maximum number of balls
any of these boxes can contain at a later time t (i.e., the index of the largest nonzero component

of B2ptq) for t0 ď t ď t1 ă t0 ` L{2 does not exceed K ` J , where J
d
“ xMn1{2,1pL{2q. By (8.6)

xMn1{2,1pL{2q ă pe ` εq
L

2
ă

2

3
pe ´ εqL (8.9)

w.h.p. for ε ă e{7. Comparing with (8.7) yields K ` J ă xMn,Kpt0q w.h.p., which shows the
claim above that w.h.p. for t P rt0, t1s the K largest box occupancy counts are not represented.
by B2ptq. Thus, in (8.3) the K-variate minimal process coincides w.h.p. with the K minimal
counts contributing to S, and the maximal process coincides w.h.p. with the K maximal counts
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contributing to B1, where S and B1 are independent. The proof is completed by appealing to
[10, Proposition 3] which ensures the asserted asymptotic independence. □

Corollary 8.2. pτn and ppxMn,iptqqKi“1, t ě 0q are asymptotically independent for each K P Zą0.

Proof. We may assume K ě m ` 2 to have w.h.p. t0 ă pτn ă t1, for the bounds defined in (8.2).
The truncated stopping time τ 1

n “ ppτn _ t0q ^ t1 is adapted to the minimal process in (8.3),
hence asymptotically independent of the maximal process. Since τ 1

n “ pτn w.h.p. we can apply
[10, Proposition 3] again. □

8.2. Stopped maxima via continuity of compositions. The value of a random process at a
random time is sometimes referred to as composition. The continuity of compositions theorems
connect convergence of such evaluations with the convergence of underlying processes and times.
We sketch the ingredients needed for an alternative proof of Theorem 5.6 following this thread.

Firstly, we have observed a weak convergence of τn ´ αn to some random variable τ . As a
next step, with a minor extra effort Theorem 5.3 extends to a functional approximation result
in the sense of Lemma 5.5. In particular, for n running along a subsequence of integers with
cn Ñ c0 P r0, 1s, the functional convergence

pMs
n, s P Rq

d
Ñ pΞÒ

pe´1qs`c0
, s P Rq, (8.10)

follows from the marginal convergence for each fixed s “ s0 and the fact that both processes
are driven by the same Poisson flow. Convergence (8.10) and the asymptotic independence in
Corollary 8.2 allow one to control the joint distribution to show that

pτn ´ αn, pMs
n, s P Rqq

d
Ñ

´

τ, pΞÒ

pe´1qs`c0
, s P Rq

¯

, (8.11)

where τ and the limit process are independent. The composition theorem from [46, Corollary
13.3.2, p. 433] now applies to yield convergence of the stopped point process

Mτn´αn
n

d
Ñ ΞÒ

pe´1qτ`c0
(8.12)

along the subsequence. Finally, the full extent of Theorem 5.6 with oscillatory asymptotics
obtains by Lemma 5.5.

A version of the following formula for the joint distribution of stopped maximum and its
multiplicity was stated in [21, Theorem 12] without proof.

Corollary 8.3. For fixed k P Z, j P Zą0 and Mn :“ Mn,1pτnq,

PrMn ´ bn “ k, µn,bn`kpτnq “ js “
ż 8

´8

p0

´

epe´1qs`cn´k
¯

pj

´

pe ´ 1qepe´1qs`cn´k
¯

e´spℓpe
´sqds ` op1q. (8.13)

Proof. We need to compute the analogous probability for the stopped approximating process

ΞÒ

pe´1qτ`cn
. Recalling the intensity measure (3.10)–(3.11) we obtain PrΞÒ

brk ` 1,8s “ 0s “

p0peb´kq and PrΞÒ

bptkuq “ js “ pjppe´1qeb´kq, for the events which determine a j-fold rightmost
atom at location k. Conditionally on τ “ s, we multiply these probabilities while setting
b “ pe ´ 1qs ` cn, then integrate in s over the Gumbelpℓ ` 1q density of τ given in (3.5). □

9. Exponential tail estimates and moments

We proceed with uniform in (large) n exponential tail estimates for the maximal stopped occu-
pancy counts in the fixed-n poissonised scheme. Apparently the underlying light-tail phenome-
non has not been given due attention in the literature. We take therefore first a wider view on
maximal order statistics, complementing the established theory found in [14; 42].
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9.1. The general setting. Consider a sequence of distribution functions Fn on R`, and let
Xn,1 ě ¨ ¨ ¨ ě Xn,n be an ordered i.i.d. sample from Fn. Suppose it is possible to choose an
approximate upper 1{n quantile, i.e. to find xn satisfying

c´n
´1 ď Fnpxnq ď c`n

´1, (9.1)

where Fn :“ 1 ´ Fn and c´, c` are some positive constants. If Fn is continuous then, of course,
a 1{n quantile can be chosen exactly. Assuming that

Fnpx ` yq

Fnpxq
ď Ce´cy for θxn ď x ď xn and y ě 0, (9.2)

with some positive constants c, C, and θ P p0, 1q, we wish to conclude on a similar tail estimate
for the centered statistic Xn,i ´ xn with fixed i.

Lemma 9.1. Under the assumptions (9.1) and (9.2), for y ě 0 and fixed i ě 1,

PrXn,i ´ xn ą ys ď pc`Cqe´cy, (9.3)

PrXn,i ´ xn ď ´ys ď C2e
´c2ecp1´θqy

, (9.4)

with some constant C2 ą 0 and c2 “ c´{p2Cq.

Proof. For the right tail estimate we only need the upper bound in (9.1) and that (9.2) holds
with x “ xn. Granted that, we have for y ą 0

PrXn,i ´ xn ą ys ď PrXn,1 ´ xn ą ys “ 1 ´ Fn
n pxn ` yq ď nFnpxn ` yq

ď nFnpxnqCe´cy ď pc`Cqe´cy. (9.5)

The left tail requires more effort. For 0 ď y ď xn write the exact formula

PrXn,i ´ xn ď ´ys “

i´1
ÿ

j“0

ˆ

n

j

˙

F
j
npxn ´ yqFn´j

n pxn ´ yq. (9.6)

To bound this sum from the above we recall that the binomial distribution is stochastically
increasing as the success probability increases; therefore it is enough to estimate Fnpxn ´ yq

from below. Inverting (9.2), we find

Fnpxn ´ yq

Fnpxnq
ě C´1ecy, 0 ď y ď p1 ´ θqxn. (9.7)

Hence, noting for 0 ď y ď p1 ´θqxn that C´1ecyFnpxnq ď 1 by (9.7), we obtain for the binomial
sum in (9.6) an upper bound

i´1
ÿ

j“0

ˆ

n

j

˙

`

C´1ecyFnpxnq
˘j`

1 ´ C´1ecyFnpxnq
˘n´j

ď

i´1
ÿ

j“0

1

Cjj!

`

nFnpxnq
˘j
ecjy exp

`

´pn ´ jqFnpxnqC´1ecy
˘

ď

i´1
ÿ

j“0

cj1e
j

j!
exp pcjy ´ 2c2e

cyq ď C1 exp pciy ´ 2c2e
cyq ď C2e

´c2ecy (9.8)

where c1 “ c`{C, c2 “ c´{p2Cq, and C1, C2 are some constants; the final inequality holds
since suppaz ´ eczq ă 8 for every a, c ą 0. This implies (9.4) for 0 ď y ď p1 ´ θqxn. In
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particular, the bound (9.8) is valid for the cutoff y “ p1 ´ θqxn. Therefore, for the remaining
range p1 ´ θqxn ď y ď xn we have

PrXn,i ´ xn ď ´ys ď PrXn,i ´ xn ď ´p1 ´ θqxns ď C2e
´c2ecp1´θqxn

ď C2e
´c2ecp1´θqy

. (9.9)

Consequently, combining (9.8) and (9.9), we obtain (9.4). □

The striking asymmetry between the right and left tails is partly explained by a similar
behaviour of the maximal point in the exponential process Ξ, which has the Gumbel distribution
(3.6). Even so the above estimates do not presume approximability or convergence of Xn,i’s in
distribution. Replacing the double exponent in (9.4) by a weaker exponential bound, we have

Pr|Xn,i ´ xn| ą ys ď C0e
´cy (9.10)

with suitable C0 ą 0. This two-sided estimate will be sufficient for our purposes, but see Lemma
9.2 below.

9.2. Gamma and Poisson examples. We illustrate the obtained tail bounds for maximal
order statistics in two examples relevant to our stopped occupancy problem.

If F is Gammapm ` 1, 1q with m ě 0, then the hazard rate hpxq “ F 1pxq{F pxq is increasing
to 1. From this, (9.2) holds in the form

F px ` yq

F pxq
“ exp

ˆ

´

ż x`y

x
hpzqdz

˙

ď e´hpxqy ď e´p1´εqy, ε ą 0, (9.11)

for large enough x.
For another example, suppose Fn is Poissonptnq with tn „ L “ log n. The Poisson distribution

also has an increasing hazard rate (as being log-concave); thus for xn „ eL, and hence tn{xn Ñ

e´1, (2.4) gives

P xn`kptnq

P xnptnq
ď

ˆ

P xn`1ptnq

P xnptnq

˙k

ď e´p1´εqk, k ą 0, (9.12)

for large enough n, similarly to the Gamma example above.

9.3. Tail estimates for stopped maximal occupancy counts. We combine the Gamma
and Poisson bounds to obtain tail estimates for Mn,ipτnq. The idea comes from the property
of the Poisson distribution in Lemma 4.2, which tells us that for t „ L an increment u of the
parameter is compensated by about v “ pe ´ 1qu change of the quantile.

Throughout the subsection, k is a nonnegative integer; C1, C2, . . . and c1, c2, . . . are strictly
positive constants that may disagree with those in Section 9.1.

Lemma 9.2. For any fixed i ě 1 and ε ą 0, there exist constants C¨ and c¨ (that may depend
on i and ε) such that for all n ě i and k ě 0,

PrMn,ipτnq ´ bn ą ks ď C1e
´p1´εqk{e, (9.13)

PrMn,ipτnq ´ bn ď ´ks ď C2e
´c1ec2k ď C3e

´k. (9.14)

Proof. The estimates (9.13)–(9.14) are more or less trivial for each fixed n, so we may assume
that n is large when needed.

We consider first τn. Recall the realisation of τn as a maximal order statistic from Gammapm`

1, 1q, and note that αn is an approximate upper 1{n quantile, see (4.6)–(4.7). Taking xn “ αn,
we see from (9.11) that (at least for large n) (9.2) holds with c “ 1 ´ ε and θ “ ε. Hence,
Lemma 9.1 yields

Prτn ´ αn ą k{es ď C4e
´p1´εqk{e, (9.15)
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Prτn ´ αn ă ´k{es ď C5e
´c3ep1´2εqk{e

. (9.16)

Consider now Mn,ipτnq. For the right tail, the event Mn,ipτnq ´ bn ą k implies that either
τn ´ αn ą k{e, or τn ´ αn ď k{e and then Mn,ipαn ` k{eq ´ bn ą k. Thus with the account of
Mn,i ď Mn,1,

PrMn,ipτnq ´ bn ą ks ď Prτn ´ αn ą k{es ` PrMn,1pαn ` k{eq ´ bn ą ks. (9.17)

For the first part on the right-hand side, we apply (9.15). For the second part, we have a bound

PrMn,1pαn ` k{eq ´ bn ą ks “ 1 ´ pPbn`kpαn ` k{eqqn ď nP bn`kpαn ` k{eq ď C2e
´k{e, (9.18)

where the last inequality follows from Lemma 4.2 with t “ αn ` k{e and r “ bn ` k and thus
u “ k{e`Op1q and v “ k`Op1q, by discarding some negligible or negative terms in (4.15)–(4.16).
This proves (9.13).

For the left tail, the event Mn,ipτnq´bn ď ´k implies that either τn´αn ă ´k{e, or otherwise
τn ´ αn ě ´k{e and then Mn,ipαn ´ k{eq ´ bn ď Mn,ipτnq ´ bn ď ´k. Splitting this way yields

PrMn,ipτnq ´ bn ď ´ks ď Prτn ´ αn ă ´k{es ` PrMn,ipαn ´ k{eq ´ bn ď ´ks, (9.19)

where the first part is estimated using (9.16). To bound the left tail of Mn,ipαn ´ k{eq, we only
need to take care of k within the range k ď bn, since otherwise PrMn,ipαn ´k{eq´bn ď ´ks “ 0.
We consider first k ď p1 ´ εqbn using Lemma 4.2 with t “ αn ´ k{e and r “ bn ´ k, and thus
u “ ´k{e ` Op1q and v “ ´k ` Op1q; note that in this range

u

L
ě ´

p1 ´ εqbn
eL

` op1q „ ´p1 ´ εq (9.20)

and thus (4.17) holds. The right-hand side of (4.16) becomes ´L ` k{e ` Op1q, and thus (4.15)
yields

P bn´kpαn ´ k{eq ě c4n
´1ek{e. (9.21)

The event Mn,ipαn ´ k{eq ´ bn ď ´k holds when less than i of the occupancy counts Πjpαn ´

k{eq, j P rns, are greater than bn ´ k. We may thus argue as in (9.6) and (9.8) (with Fnpxn ´ yq

replaced by P bn´kpαn ´ k{eq) and obtain from (9.21)

PrMn,ipαn ´ k{eq ´ bn ď ´ks ď C6e
ik{e´c4ek{e

. (9.22)

The first inequality in (9.14) follows from (9.19), (9.16), and (9.22), under our assumption
kn ď p1 ´ εqbn. The remaining range p1 ´ εqbn ď k ď bn is dealt with as in (9.9).

Finally, the second inequality in (9.14) is trivial. □

The proof shows (replacing ε by ε{3) that we may take c2 as p1 ´ εq{e.

9.4. Moments of the stopped maximal occupancy counts: approximability. Comple-
menting Theorem 5.6, we assert that the analogous result also holds for the mean and higher
moments, in the natural sense.

Theorem 9.3. For fixed i, k P Zą0, as n Ñ 8,

ErpMn,ipτnq ´ bnqks “ Errξi ` pe ´ 1qτ ` cnsks ` op1q. (9.23)

Proof. The exponential tail bounds in Lemma 9.2 imply that the sequence pMn,ipτnq ´ bnqk is
uniformly integrable. If the fractional parts cnj converge to some c0 along a subsequence pnjq,
then Theorem 5.6 ensures a weak convergence

Mnj ,ipτnj q ´ bnj

d
Ñ rξi ` pe ´ 1qτ ` c0s, (9.24)
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which together with the uniform integrability imply the convergence of all moments along pnjq.
The assertion now readily follows from the fact that every infinite set of positive integers contains
such pnjq (see Lemma 5.5). □

9.5. Computing the asymptotic moments. Extending notation (4.26), denote the approx-
imating variable

Zn,j :“ rξj ` pe ´ 1qτ ` cns, (9.25)

where ξj
d
“ Gumbelpjq and τ

d
“ Gumbelpℓ ` 1q are independent. These have the familiar

characteristic functions, which are easily shown from e.g. the density (3.5),

Ereixξj s “
Γpj ´ ixq

pj ´ 1q!
, Ereixτ s “

Γpℓ ` 1 ´ ixq

ℓ!
(9.26)

and expected values
Erξjs “ γ ´ Hj´1, Erτ s “ γ ´ Hℓ, (9.27)

where γ
.
“ 0.57721 is the Euler constant and Hk :“

řk
j“1 1{j (so H0 :“ 0).

To evaluate the mean of (9.25) we may apply [26, Theorem 2.3], which asserts that for a
continuous random variable X with characteristic function φ

E rXs “ E pXq `
1

2
`

ÿ

kPZzt0u

φp2πkq

2πik
, (9.28)

provided φpxq “ Op|x|´εq for x Ñ ˘8. For (9.25) this condition is readily justified using the
functional recursion

Γpk ´ ixq “ p´ixqk Γp´ixq, (9.29)

where pxqℓ denotes the Pochhammer factorial, together with the reflection formula [40, 5.5.1 and
5.5.3], which yield (see also [40, 5.11.9]),

|Γpixq|2 “
π

x sinhπx
„

2π

|x|
e´π|x|, x Ñ ˘8. (9.30)

Applying (9.28) and (9.26)–(9.27), for i ě 1 and ℓ ě 0,

ErZn,js “ γe ´ Hj´1 ´ pe ´ 1qHℓ `
1

2
` cn

`
ÿ

kPZzt0u

Γpj ´ 2πikqΓpℓ ` 1 ´ 2πpe ´ 1qikq

pj ´ 1q! ℓ!
¨
e2πikcn

2πik
. (9.31)

Consequently, (9.23) yields, recalling (4.12),

E rMn,js “ bn ` EZn,j ` op1q

“ an ` γe ´ Hj´1 ´ pe ´ 1qHℓ `
1

2

`
ÿ

kPZzt0u

Γpj ´ 2πikqΓpℓ ` 1 ´ 2πpe ´ 1qikq

pj ´ 1q! ℓ!
¨
e2πikcn

2πik
` op1q. (9.32)

The sum in (9.31) and (9.32) is a Fourier series with small and rapidly decreasing coefficients,
as is seen from (9.29)–(9.30).

For example, in the case j “ 1, ℓ “ 0 (CCP and dixie cup problems) the coefficients have
asymptotics

p2πkq´1
∣∣Γp1 ´ pe ´ 1q2πikqΓp1 ´ 2πikq

∣∣ “
πpe ´ 1q1{2

psinhp2π2kq sinhp2pe ´ 1qπ2kqq1{2
(9.33)
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„ 2πpe ´ 1q1{2e´eπ2k.

The terms with k “ ˘1 are the largest by far and have the absolute value about 0.18379 ¨ 10´10;
hence the sum in (9.31) makes to the mean a small, oscillating on the log n scale contribution,
whose amplitude does not exceed 4 ¨ 10´11.

The Fourier coefficients increase with j and ℓ, though remain small. For instance, for ℓ “ 0
the coefficient for k “ ˘1 is bounded in absolute value, for all j ě 1, by (since |E re2πikξj s| ď 1)

pe ´ 1q
∣∣Γp´ipe ´ 1q2πq

∣∣ .
“ 0.56552 ¨ 10´7. (9.34)

Replacing τ in (9.25) by a constant gives random variables approximating (unstopped) max-
imal order statistics from a Poisson distribution, as in Theorem 5.22. In that setting the first
Gamma factor in the sum (9.31) disappears, making the fluctuations somewhat larger. The
intensity measure of our approximating process ΞÒ has masses decreasing geometrically, so nat-
urally the maxima in the occupancy scheme behave similarly to the maxima in samples from a
geometric distribution (see for the latter [34] and [26, Example 4.3]). Making this comparison,
it should be noted that in the occupancy regime of interest here the parameter of Poisson dis-
tribution (the mean number of balls) changes together with n (the number of boxes), but the
parameter of the asymptotic geometric distribution is a fixed value 1´e´1 that does not depend
on n (see (4.15)).

Similar Fourier series with small coefficients (typically involving a Gamma function) are also
known from many different problems, see e.g. the examples in [41] and [26, Sections 2 and 4] and
the references there. In the present situation, the terms in the sum in (9.32) contain a product
of two Gamma functions, which makes the coefficients even smaller than in many other similar
examples.

The technique from [26] may be further applied to obtain formulas for the variance and higher
moments of Zn,j .

10. Multiplicity of the maximum

Finally we consider the multiplicity of the stopped maximum occupancy count,

Qn :“ minti : Mn,i ą Mn,i`1u “ µn,r˚pτnq, (10.1)

where r˚ “ maxtr : µn,rpτnq ą 0u. The distribution of Qn does not converge, because of
oscillations, but we can obtain a good approximation by turning to its counterpart for a randomly
shifted exponential process.

For a shift parameter u P R let χjpuq be the probability that the rightmost atom of ΞÒ

pe´1qτ`u

has multiplicity j.

Theorem 10.1. As n Ñ 8, for every fixed j P Zą0,

PrQn “ js “ χjpanq ` op1q “ χjpcnq ` op1q, (10.2)

where an and cn “ tanu are given by (4.11)–(4.12), and χj introduced above is a continuous,
1-periodic function, representable by the Fourier series

χjpuq “

`

1 ´ e´1
˘j

j

¨

˝1 `
ÿ

kPZzt0u

Γpj ´ 2πikqΓpℓ ` 1 ´ 2πpe ´ 1qkiq

pj ´ 1q!ℓ!
e2πiku

˛

‚. (10.3)

Proof. The approximability (10.2) follows straight by Theorem 5.26 (or Corollary 8.3). The
continuity and 1-periodicity of χj both follow from (3.8) and the exponential intensity (3.10),
since for c P Z the shift

ΞÒ

b`c
d
“ ΞÒ

b ` c (10.4)
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preserves the multiplicity of the maximum; in particular, χjpanq “ χjpcnq.
To prove (10.3) we start with evaluating a simpler probability, denoted qjpuq, of the event that

the rightmost atom of ΞÒ
u has multiplicity j ě 1. Arguing as in Corollary 8.3, and manipulating

the Poisson probabilities,

qjpuq “
ÿ

kPZ
pjppe ´ 1qeu´kqp0peu´kq

“ p1 ´ e´1qj
ÿ

kPZ
p0ppe ´ 1qeu´kqp0peu´kq

epu´k`1qj

j!

“ p1 ´ e´1qj
ÿ

kPZ
p0peu´k`1q

epu´k`1qj

j!

“ p1 ´ e´1qj
ÿ

kPZ
pjpe

u´k`1q

“ p1 ´ e´1qj
ÿ

kPZ
pjpe

u´kq. (10.5)

We cannot evaluate this sum explicitly, but it is easy to find its Fourier transform:

pqjpkq :“

ż 1

0
e´2πikuqjpuq du

“

`

1 ´ e´1
˘j

j!

ÿ

rPZ

ż 1

0
ejpu´rqe´eu´r

e´2πiku du

“

`

1 ´ e´1
˘j

j!

ż 8

´8

ejue´eue´2πiku du

“

`

1 ´ e´1
˘j

ℓ!

ż 8

0
e´vvj´2πik´1 dv

“

`

1 ´ e´1
˘j

j!
Γpj ´ 2πikq. (10.6)

The Fourier coefficient (10.6) appeared in [9] without proof (in Lemma 4.3 of that paper the
value λ “ 1 corresponds to the case of sampling from Geometricp1´e´1q), and was also identified
in [34] by the calculus of residues.

We return to χj and note that, for u P R,

χjpuq “ E rqjppe ´ 1qτ ` uqs. (10.7)

We calculate the Fourier coefficients again: for k P Z,

pχjpkq “

ż 1

0
e´2πikuχjpuq du “ E

ż 1

0
e´2πikuqjppe ´ 1qτ ` uq du

“ E
ż 1

0
e´2πikpv´pe´1qτqqjpvq dv “ pqjpkq ¨ E re2πikpe´1qτ s

“

`

1 ´ e´1
˘j

j!
Γpj ´ 2πkiq

Γpℓ ` 1 ´ 2πpe ´ 1qkiq

ℓ!
, (10.8)

where by the change of variable we used 1-periodicity, and for the last step we used (10.6) and

the characteristic function (9.26) of τ
d
“ Gumbelpℓ ` 1q. This completes the proof of (10.3).
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The last step of the proof can also be interpreted as follows: The formula (10.7) implies that
χj is the convolution of qj and the density function of ´pe´1qτ , and (10.8) then is the standard
fact that the Fourier transform of the convolution of two functions is the product of their Fourier
transforms. □

The Fourier series in (10.3) is similar to (9.31). As there, the Fourier coefficients in (10.3)
decrease rapidly as |k| increases, and the sum is a very small oscillating term. For example, for
j “ 1 and ℓ “ 0, we have already for k “ ˘1, similarly to (9.33),∣∣

pχ1p˘1q
∣∣ “ p1 ´ e´1q

∣∣Γp1 ¯ 2πiqΓp1 ¯ 2πpe ´ 1qiq
∣∣

“ p1 ´ e´1q

´ π ¨ 2π

sinhp2π2q
¨

π ¨ 2πpe ´ 1q

sinhp2pe ´ 1qπ2q

¯1{2

« 4π2pe ´ 1q3{2e´eπ2´1 .
“ 0.730 ¨ 10´10. (10.9)

Hence, χ1puq varies about its ‘mean’ 1 ´ e´1 with small amplitude of the order 10´10. The
oscillations are somewhat larger for larger j, but still small, and thus χjpuq is well approximated
by its mean p1 ´ e´1qj{j. Hence, Theorem 10.1 implies that for large n, the distribution of Qn

is for practical purposes well approximated by the logarithmic distribution

PrQn “ js «
p1 ´ e´1qj

j
, j “ 1, 2, . . . (10.10)

In particular, the maximum is unique with probability close to 1 ´ e´1.
As mentioned in the proof, qj has appeared in connection with the multiplicity of the maximum

in a sample from Geometricp1 ´ e´1q. For this case Brands, Steutel and Wilms [9, Remark 2]
observe that the fluctuations of q1 are on the scale 10´4. For the stopped maximum occupancy
count these are smaller, again due to the smoothing resulting from the randomisation.

11. Numerics

In Table 1, we compare, for the CCP case m “ ℓ “ 0, the results of simulations of Mn with
the expectation En of the approximation in (4.29). By (4.12) and (9.25), this approximation
can be written as bn ` Zn,1; thus, En “ bn ` E rZn,1s. Furthermore, by (9.31) and (9.33), En

equals

an ` γe `
1

2
(11.1)

within the precision used here; see also (9.32). Due to computational complexity, we used 100,000
Monte Carlo simulations for n “ 10 and n “ 100; 10,000 simulations for n “ 103, 104, 105, 150,000;
1,000 simulations for n “ 200,000; 250,000; 500,000; and 300 simulations for n “ 106. For each

considered value of n, we report the mean of the simulated value ĄMn of Mn, and the standard
deviation of this mean, in columns three and four, respectively.

In Table 2, we compare, for various pairs pℓ,mq and for n “ 102, 103, 104, 105, the results of
simulations of Mn with the expected value En from the approximation in (4.29). In a similar
manner to Table 1, and using (9.31) and (9.33), the quantity En equals

an ` γe ´ pe ´ 1q

ℓ
ÿ

j“1

1

j
`

1

2
(11.2)

within the level of precision used here; see also (9.32). The number of Monte Carlo simulations
is abbreviated by MC and reported in the table. For each considered triple pn, ℓ,mq, we report
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Table 1

n En mean(ĄMn) std(mean(ĄMn))
10 5.95083 5.71614 0.00677

100 11.86333 11.66791 0.00750
1,000 17.91967 17.76950 0.02410

10,000 24.03490 23.90320 0.02471
100,000 30.18241 30.10330 0.02494
150,000 31.26727 31.17440 0.02457
200,000 32.03735 32.09200 0.08153
250,000 32.63485 32.45600 0.07721
500,000 34.49189 34.44200 0.08071

1,000,000 36.35032 36.12333 0.15089

the mean of the simulated value ĄMn of Mn in the sixth column, and the standard deviation of
this mean in the seventh column.

Table 2

n MC ℓ m En mean(ĄMn) std(mean(ĄMn))

100 105

0 1 14.48746 14.83162 0.00818
0 2 15.92055 17.48246 0.00876
0 3 16.65695 19.86110 0.00922
5 0 7.93992 7.94814 0.00412
10 0 6.83053 6.77567 0.00358
25 0 5.30644 5.03896 0.00289

1,000 104

0 1 21.24050 21.48190 0.02576
0 2 23.37030 24.58420 0.02748
0 3 24.80341 27.27850 0.02844
10 0 12.88688 12.88840 0.01240
50 0 10.18877 9.94790 0.01108
100 0 9.00629 8.54890 0.00926

10,000 103

0 1 27.85005 28.16300 0.08306
0 3 32.40160 34.61200 0.08886
0 5 34.88438 39.89800 0.09507
10 0 19.00211 19.00500 0.04169
100 0 15.12153 14.89000 0.03272

1,000 0 11.17276 10.08900 0.02649

100,000 102

0 1 34.38098 34.72000 0.23956
0 2 37.38853 38.31000 0.32495
0 3 39.69937 41.60000 0.26967
0 5 42.94900 47.39000 0.25776

100 0 21.26903 21.23000 0.13015
1,000 0 17.32026 16.73000 0.09832
10,000 0 13.36454 11.47000 0.08343
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