
CYCLIC AND ALTERNATING U-STATISTICS

SVANTE JANSON

Abstract. We define cyclic U-statistics as a variant of U -statistics based on
variables X1, . . . , Xn that are assumed to be cyclically ordered. We also define
alternating U-statistics where in the definition terms are summed with alternating
sings (in three different ways). Only U -statistics of order 2 are considered. The
definitions are inspired by special cases studied by Chebikin (2008) and Even-
Zohar (2017) for random permutations.

We show limit theorems similar to well-known results for standard U -statistics,
but with some differences between the different versions. In particular, we find
both “nondegenerate” normal limits and “degenerate” non-normal limits.

1. Introduction

U -statistics were introduced by Hoeffding [10] as statistics of the form

Ūn “ Ūnpfq “ Ūnpf ;X1, . . . , Xnq :“
ÿ

fpXi1 , . . . , Ximq (1.1)

where m (the order of the U -statistic) and n are integers with 1 ď m ď n, the
sum is over all pnqm “ n!{pn ´ mq! different m-tuples i1, . . . , im of distinct indices
in t1, . . . , nu, X1, . . . , Xn is a sequence of random variables taking values in some
measurable space X , and f : Xm Ñ R is a measurable function, called the kernel
of the U -statistic. (Hoeffding [10] and many later authors include in the definition
a normalization factor 1{pnqm; this is often convenient, but in the present paper
we choose to omit such factors in the definitions.) The random variables Xi are
usually assumed to be independent and identically distributed (i.i.d.), and this will
be assumed in the present paper. We will also assume that the kernel f is square
integrable in the sense E |fpX1, . . . , Xmq|2 ă 8, which we write as f P L2 “ L2pXmq.

In the definition (1.1), the order of the variables X1, . . . , Xn does not matter; in
other words, the indices 1, . . . , n are used for labelling but their order does not matter
and any other labels could be used. Another definition of U -statistics where the
order of the variables matters is obtained by summing only over increasing sequences
i1 ă ¨ ¨ ¨ ă im:

Un “ Unpfq “ Unpf ;X1, . . . , Xnq :“
ÿ

i1ă¨¨¨ăim

fpXi1 , . . . , Ximq. (1.2)

Note that if f is symmetric, as is often assumed, the definitions (1.1) and (1.2)
differ only by an unimportant factor m!. In fact, Ūn in (1.1) remains the same if f
is replaced by its symmetrization; hence we may as well assume that f in (1.1) is
symmetric, and therefore (1.1) can be seen as a special case of the more general (1.2).
(Although many applications use only the symmetric version (1.1), or equivalently
(1.2) with a symmetric kernel f , there are also many applications that require the
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asymmetric version (1.2).) The literature on U -statistics and applications of them
is enormous, and we will in the sequel only give a few relevant references.

In the present paper we consider four modifications of the definitions above, de-
fined in the following two subsections. As in (1.1) and (1.2), we may include f and
the variables Xi in the notation, but we often omit them when they are clear from
the context. Our main results are theorems on the asymptotic distribution of these
modifications, stated in Sections 4–6 and summarized for convenience in Section 7.
The results are similar to the well-known results for classical U -statistics, which we
state for comparison in Section 3, although the details in the limit theorems differ
between the different versions. In particular, in the classical case Unpfq there is a
well-known dichotomy of the kernels f into a nondegenerate case with variance of
order n3 and an asymptotically normal distribution, and a degenerate case with a
variance of order n2 only and with a non-normal limit distribution; all but one of the
versions studied here exhibit the same two cases, but not necessarily for the same
kernels; however, for one version (Theorem 5.1) there is no “nondegenerate” case.
Furthermore, for some versions there is an exceptional third, futher degenerate and
almost trivial case, with variance of order n and again a normal limit distribution.
In the degenerate case, for all versions, the limit distribution can be expressed as
a (possibly infinite) linear combination of centred squares of independent standard
normal variables, where the coefficients are the eigenvalues of a certain integral op-
erator with kernel derived from the kernel f of the U -statistic, although again the
details differ between the differnt versions; see e.g. (3.6). (From an abstract point of
view, the limit distribution is a Wiener chaos of order 2, see e.g. [12, in particular
Theorem 6.1].)

Some simple examples are given in Section 8; this includes applications to the
writhe and alternating inversion number of a uniformly random permutation, pre-
viously defined and studied in [6] and [2]. These two examples were the inspiration
of the definitions and results in the present paper.

Some further results and open problems are given in Section 9.
Appendix A contains the proof of the well-known Theorem 3.1 for classical U -

statistics, included for completeness; we also reuse parts of the appendix in other
proofs. Appendix B collects some formulas for cumulants. Appendix C gives further
calculations for one example from Section 8.

As mentioned above, in the degenerate cases, the asymptotic distribution is de-
scribed by the eigenvalues of an integral operators. Consequently, some proofs and
most examples require finding such eigenvalues; this is straightforward in our cases,
but we include details for completeness.

1.1. Cyclic U-statistics. For this version, we regard the indices 1, . . . , n as circu-
larly ordered instead of linearly ordered. We regard the indices as elements of the
cyclic group Zn “ Z{nZ; we therefore assume again that X1, . . . , Xn are i.i.d. ran-
dom variables, and extend the notation to Xi for all i P Z by Xi :“ Xj if i ” j
pmod nq and j P t1, . . . , nu.

We consider only the case m “ 2 and then define the cyclic U -statistic

U˝
n “ U˝

npfq :“
ÿ

iPZn

ÿ

1ďjăn{2

fpXi, Xi`jq. (1.3)

Note that if we regard the elements of Zn as lying on a circle in the natural way,
then for any pair of distinct i, j P Zn, the sum (1.3) contains the term fpXi, Xjq if
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the shortest path from i to j goes in the positive direction, and the term fpXj , Xiq if
the shortest path goes in the negative direction; for even n, no terms fpXi, Xi`n{2q

appears at all.
One example of a cyclic U -statistic appears in a paper by Even-Zohar [6] where

he studies the writhe of permutations and framed knots, see Example 8.5 for details.
In particular, [6] studies the writhe of a uniformly random permutation and finds
its asymptotic distribution. The writhe of a uniformly random permutation can
be written as a cyclic U -statistic (1.3) (see Example 8.5 again), and this example
is the motivation for the present paper, where we study general cyclic U -statistics
(assuming only that f P L2) and prove general limit theorems; in particular, this
gives an alternative proof of the limit theorem by Even-Zohar [6] (where the theorem
is proved by quite different methods).

Remark 1.1. If fpx, yq is a symmetric function, then we have

U˝
n “

#

Un, n is odd

Un ´
řn{2

i“1 fpXi, Xi`n{2q n is even,
(1.4)

where it is easily seen that the sum appearing for even n is asymptotically negligible.
(If f P L2, this sum has variance Opnq since its terms are i.i.d., while Un except in
trivial cases has variance of order at least n2.) Hence, we do not really obtain
anything new for symmetric f . The main interest seems to be in the opposite case,
when f is antisymmetric. We will in the sequel give special attention to the cases of
symmetric and antisymmetric kernels.

Note that every f may be decomposed as a sum of a symmetric and an antisym-
metric part; hence a U -statistic of order m “ 2 (of any of the versions studied here)
can be written as a sum of a symmetric and an antisymmetric U -statistic; We will
see in Theorem 4.1 and Remark 4.4 that for the cyclic U -statistic U˝

n, the two parts
are asymptotically independent, and thus can be treated separately. However, for
the other U -statistics considered here, including the classical Un, this decomposition
is of limited value since the two parts typically are dependent, also asymptotically.
For an interesting example of this, largely taken from [14], see Example 8.2. △

Remark 1.2. A variation of the definition (1.3) is the more symmetrical

rU˝
npfq :“

ÿ

iPZn

ÿ

1ďjăn{2

fpXi, Xi`jq ´
ÿ

iPZn

ÿ

1ďjăn{2

fpXi, Xi´jq. (1.5)

However, replacing i by i` j in the second sum yields

rU˝
npfq “

ÿ

iPZn

ÿ

1ďjăn{2

`

fpXi, Xi`jq ´ fpXi`j , Xiq
˘

“ U˝
npgq, (1.6)

where gpx, yq :“ fpx, yq ´ fpy, xq. Hence, cyclic U -statistics of the form (1.5) are
special cases of U˝

n, and therefore need not be considered further. Note that the
function g arising here always is antisymmetric; conversely, if f is antisymmetric,

then (1.6) implies U˝
npfq “ rU˝

np12fq. Consequently, the version rU˝
n is equivalent to

the special case of U˝
n for antisymmetric kernels only. △

1.2. Alternating U-statistics. One of the results in [6] is that the writhe of a uni-
formly random permutation has the same distribution as the bi-alternating inversion
number, which is defined in [6] in analogy to the alternating inversion number defined
in [2], see Example 8.6; it is also shown in [6] that the alternating and bi-alternating
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inversion numbers of a uniformly random permutation, although similarly defined,
have quite different asymptotic distributions.

These numbers are defined as versions of the usual inversion number of a per-
mutation. It is well-known that the usual inversion number of a uniformly random
permutation can be written as a U -statistic. Again we study corresponding modifi-
cations of general U -statistics. We consider again only the case of order m “ 2, so
that (1.2) becomes

Un “ Unpfq :“
ÿ

1ďiăjďn

fpXi, Xjq. (1.7)

We then define the alternating U -statistics

U´`
n “ U´`

n pfq :“
ÿ

1ďiăjďn

p´1qi`1fpXi, Xjq, (1.8)

U`´
n “ U`´

n pfq :“
ÿ

1ďiăjďn

p´1qjfpXi, Xjq, (1.9)

U´´
n “ U´´

n pfq :“
ÿ

1ďiăjďn

p´1qi`jfpXi, Xjq. (1.10)

We also call U´´
n bi-alternating. (As in [6] for a special case, see Example 8.5.)

Remark 1.3. Define

f˚px, yq :“ fpy, xq. (1.11)

Then, by replacing Xi by Xn`1´i, it follows that

U`´
n pfq

d
“

ÿ

1ďiăjďn

p´1qjfpXn`1´i, Xn`1´jq “ p´1qn
ÿ

1ďkăℓďn

p´1qk`1fpXℓ, Xkq

“ p´1qnU´`
n pf˚q. (1.12)

Consequently, up to a trivial change of sign and replacing f by f˚, U`´
n is the same

as U´`
n , and thus it suffices to consider the latter. On the other hand, as noted in [6]

for the example in Example 8.6, we will see that U´´ in general is quite different. △

2. Preliminaries

2.1. Some notation. We assume throughout thatX1, X2, . . . are i.i.d. random vari-
ables with values in some measurable space X , and let ν be the common distribution
of Xi. We let X denote any random variable with this distribution. Thus pX , νq is
a probability space, which we for simplicity also denote by X .

We define pX :“ X ˆ r0, 1s, where (as always below), r0, 1s is equipped with the
Lebesgue measure ℓ.

We assume also that f : X 2 Ñ R is a given function such that f P L2pX 2q, i.e.,

E |fpX1, X2q|2 “

ż

XˆX
|fpx, yq|2 dνpxqdνpyq ă 8. (2.1)

We define

µ :“ E fpX1, X2q. (2.2)

We will mainly consider real-valued functions, but to apply functional analysis
it will sometimes be convenient to also consider complex-valued fuctions. When
it is necessary to distinguish them, we use L2

CpX q for the complex Hilbert space
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of complex-valued functions g on X such that
ş

X |g|2 dν ă 8, and L2
RpX q for the

subspace of real-valued functions (this is a real Hilbert space).
All functions are assumed to be measurable. We will sometimes omit “a.s.” or

“a.e.” when this is obvious.
For a function g : X ˆ X Ñ C, let Tg denote the integral operator on L2pX q

defined by

Tgφpxq :“

ż

X
gpx, yqφpyq dνpyq, φ P L2pX q. (2.3)

We will only consider the case when g P L2pX ˆ X q; it is well-known that then, for
every h P L2pX q, the integral in (2.3) converges for a.e. x and that Tgh P L2pX q,
so that Tg is well-defined, and furthermore that Tg is a Hilbert–Schmidt operator
on L2pX q, and thus in particular compact (and bounded). (See e.g. [3, Proposition
II.4.7 and Exercise IX.2.19].) We will also use the notation (2.3) for other measure

spaces, in particular X 2 “ X ˆ X and pX “ X ˆ r0, 1s.
Recall that a bounded operator T on a Hilbert space H is self-adjoint (also called

Hermitian, or symmetric) if xTh, ky “ xh, Tky for all h, k P H. It is easily seen that
if g is real-valued and symmetric (i.e., gpx, yq “ gpy, xq), then Tg is self-adjoint.

Eigenvalues of operators are always counted with multiplicities; sets of eigenvalues
are thus in general really multisets.

We will occasionally also use tensor notation for functions and operators. If g
and h are (real- or complex-valued) functions defined on measure spaces Y and Z,
then g b h denotes the function py, zq ÞÑ gpyqhpzq defined on Y ˆ Z. It is well
known that if pφαqαPA and pψβqβPB are orthonormal bases in L2pYq and L2pZq, then
pφα b ψβqαPA,βPB is an orthonormal basis in L2pY ˆ Zq. If g P L2pY ˆ Yq, and
h P L2pZ ˆ Zq, then g b h can be regarded as a kernel on Y ˆ Z, and it is easily
seen that

Tgbhpφb ψq “ pTgφq b pThψq, φ P L2pYq, ψ P L2pZq. (2.4)

We write also Tg b Th :“ Tgbh. (This is a special case of tensor products of linear
operators on Hilbert, or more general, spaces, but we have no need for the general
theory.) It follows from (2.4) that if φ is an eigenfunction of Tg with eigenvalue λ
and ψ is an eigenfunction of Th with eigenvalue ρ, then φb ψ is an eigenfunction of
Tg b Th “ Tgbh with eigenvalue λρ.

For a function f on X ˆ X , we define its symmetric and antisymmetric parts by,
recalling (1.11),

fs :“
1
2pf ` f˚q and fa :“

1
2pf ´ f˚q. (2.5)

Thus f “ fs `fa. We also define (as another form of symmetrization) the symmetric

function pf on pX ˆ pX by (recall that pX :“ X ˆ r0, 1sq

pf
`

px, tq, py, uq
˘

:“

#

fpx, yq, t ă u,

fpy, xq, t ą u.
(2.6)

(For completeness, we may define pf
`

px, tq, py, uq
˘

:“ 0 when t “ u; this case has
measure 0 and is therefore irrelevant.) Note that, with pν :“ ν ˆ ℓ,

ż

pX 2

| pfppx, pyq|2 dpνppxq dpνppyq
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“

ż

r0,1s2

ż

X 2

| pf
`

px, tq, py, uq
˘

|2 dνpxqdνpyq dt du

“

ż

r0,1s2

ż

X 2

|fpx, yq|2 dνpxq dνpyqdtdu “

ż

X 2

|fpx, yq|2 dνpxq dνpyq. (2.7)

In some cases (when studying U´` and U`´) we need also the corresponding

antisymmetric function on pX ˆ pX defined by

qf
`

px, tq, py, uq
˘

:“

#

fpx, yq, t ă u,

´fpy, xq, t ą u.
(2.8)

For a real number x, we let txu be x rounded down to the nearest integer. The
complex unit is denoted i. (This should not be confused with i, often used to denote
indices.) 1tEu denotes the indicator function of an event E . The sign function sgn
is given by

sgnpxq :“

$

’

&

’

%

1, x ą 0,

0, x “ 0,

´1, x ă 0.

(2.9)

We let
d

ÝÑ,
p

ÝÑ, and
a.s.
ÝÑ denote convergence of random variables in distribution,

in probability, and almost surely, respectively.
Given a sequence panqn, we let Yn “ OL2panq mean that Yn are random variables

such that ∥Yn∥L2 :“ pE r|Yn|2sq1{2 “ Opanq. Similarly, Yn “ oL2panq means that
∥Yn∥L2 “ opanq, in other words that Yn{an Ñ 0 in L2.

Unspecified limits are as n Ñ 8.

2.2. Hoeffding’s decomposition. As said above, we assume f P L2pX 2q. The
basis of our work (as for many previous results for U -statistics) is the orthogonal
decomposition introduced (in the symmetric case) by Hoeffding [10]. In the case
m “ 2 treated here, the orthogonal decomposition is:

fpx, yq “ fH ` f1pxq ` f2pyq ` f12px, yq (2.10)

where

fH :“ E fpX1, X2q “

ż

XˆX
fpx, yqdνpxq dνpyq “ µ, (2.11)

f1pxq :“ E fpx,Xq ´ fH “

ż

X
fpx, yqdνpyq ´ fH, (2.12)

f2pyq :“ E fpX, yq ´ fH “

ż

X
fpx, yqdνpxq ´ fH, (2.13)

f12px, yq :“ fpx, yq ´ f1pxq ´ f2pyq ´ fH. (2.14)

Equivalently, (2.12)–(2.14) can be written

f1pX1q “ E rfpX1, X2q | X1s ´ E fpX1, X2q, (2.15)

f2pX2q “ E rfpX1, X2q | X2s ´ E fpX1, X2q, (2.16)

f12pX1, X2q “ fpX1, X2q ´ E rfpX1, X2q | X1s ´ E rfpX1, X2q | X2s ` E fpX1, X2q.
(2.17)
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Of course, (2.14) makes (2.10) trivial, but the point is that the four terms in the
sum in (2.10) are orthogonal in L2pX 2q, which is easily verified from the definitions
(2.11)–(2.17), which imply

E f1pXq “ E f2pXq “ 0, (2.18)

E f12px,Xq “ E f12pX, yq “ E f12pX1, X2q “ 0. (2.19)

Lemma 2.1. Let pi, jq and pk, lq be two pairs of indices with i ‰ j, k ‰ l, and ti, ju ‰

tk, lu (i.e., pi, jq ‰ pk, lq and pi, jq ‰ pl, kq). Then f12pXi, Xjq and f12pXk, Xlq are
uncorrelated and thus E

“

f12pXi, Xjqf12pXk, Xlq
‰

“ 0.

Proof. A simple consequence of (2.19) and the standing assumption that pXiq are
i.i.d. □

Remark 2.2. If f is symmetric, then f1 “ f2, and furthermore, f12 is symmetric.
On the other hand, if f is antisymmetric, then fH “ 0, f1 “ ´f2, and f12 is
antisymmetric. △

2.3. Three distributions. The limit distributions below will, apart from normal
distributions, be given by (possibly infinite) linear combinations of independent
copies of the following three random variables.

(i) If ζ P Np0, 1q, then ζ2 has a χ2p1q “ Γp12 , 2q distribution. We will use the

centred variable ζ2 ´ 1, which has mean 0, variance

Var
`

ζ2 ´ 1
˘

“ 2, (2.20)

and characteristic function

E eitpζ
2´1q “ e´itp1 ´ 2itq´1{2, t P R. (2.21)

(ii) Lévy’s stochastic area, which we denote by η, is the stochastic integral

η :“

ż 1

0
B1pxq dB2pxq ´

ż 1

0
B2pxq dB1pxq (2.22)

where B1pxq and B2pxq are two independent Brownian motions. See e.g. [17],
[24], [21, Theorem II.43 and its Corollary]. For us this background is not
important; we only need that the stochastic area is a random variable η with
the characteristic function

E eitη “
1

coshptq
, t P R. (2.23)

The stochastic area has variance, from (2.22) or from (2.23),

Var η “ 1, (2.24)

and density 1
2 coshpπx{2q

, ´8 ă x ă 8.

(iii) Thirdly, we define ϑ by ϑ :“
ş1
0 B1pxqdB2pxq, i.e., “the first half of the sto-

chastic area (2.22)”. This random variable has the characteristic function, see
e.g. [24, (1)] (or as a consequence of the calculations in Example 8.2 and (2.31)
below).

E eiϑ “
1

cosh1{2ptq
, (2.25)

and hence variance

Varϑ “ 1
2 . (2.26)
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Remark 2.3. The characteristic function (2.23) of the difference of the two sto-
chastic integrals in (2.22) thus equals the product of their characteristic functions,
which both are (2.25); however, the two integrals are not independent. Their joint
characteristic function is given by, see [24, (1)],

E
”

exp
´

is

ż 1

0
B1pxq dB2pxq ` it

ż 1

0
B2pxq dB1pxq

¯ı

“

´

cosh2
´s´ t

2

¯

`

´s` t

s´ t

¯2
sinh2

´s´ t

2

¯2¯´1{2
. (2.27)

△

Remark 2.4. We will frequently use sums
řR

r“1 λrpζ2r ´ 1q where pλrqR1 is a finite

or infinite sequence of real numbers with
řR

r“1 λ
2
r ă 8, and ζr P Np0, 1q are inde-

pendent. Note that this sum converges in L2 (and a.s.), and is thus well defined also

when R “ 8. Furthermore, it is easily seen from (2.21) that the sum
řR

r“1 λrpζ2r ´1q

has a characteristic function whose square extends to a meromorphic function in the
complex plane with poles (counted with multiplicity) at the points 1{p2iλrq and
nowhere else. Thus the distribution of the sum determines the coefficients pλrqR1 (up
to order).

By the representations in Lemma 2.5 below, the same holds for sums
řR

r“1 λrηr
and

řR
r“1 λrϑr.

It follows also that the distribution of the sum is not normal, since its characteristic
function is not entire. This alternatively follows by the Lévy–Cramér theorem [4].

△

Obviously, if ϑ1 and ϑ2 are i.i.d. with the distribution (2.25), then ϑ1 ` ϑ2 and
ϑ1 ´ ϑ2 have the distribution (2.23). The following lemma shows further relations
between variables in (i)–(iii) above.

Lemma 2.5. let ζk,j P Np0, 1q be independent. Then

rϑ :“
8
ÿ

k“´8

1

p2k ´ 1qπ

`

ζ2k,1 ´ 1
˘ d

“

8
ÿ

k“1

1

p2k ´ 1qπ

`

ζ2k,1 ´ ζ2k,2
˘

(2.28)

has the distribution of ϑ in (2.25), and

rη :“
8
ÿ

k“1

1

p2k ´ 1qπ

`

ζ2k,1 ` ζ2k,2 ´ ζ2k,3 ´ ζ2k,4
˘

(2.29)

has the distribution of the stochastic area η in (2.23).

Proof. All sums converge in L2, cf. Remark 2.4. We obtain the second equality (in
distribution) in (2.28) by combining in the first sum the terms for k and 1 ´ k.

The difference ζ2k,1 ´ ζ2k,2 has the characteristic function, see (2.21),

E eitpζ
2
k,1´ζ2k,2q

“ p1 ´ 2itq´1{2p1 ` 2itq´1{2 “ p1 ` 4t2q´1{2, (2.30)

and consequently, rϑ has the characteristic function

E eitrϑ “

8
ź

k“1

´

1 `
4t2

p2k ´ 1q2π2

¯´1{2
“

`

coshptq
˘´1{2

, (2.31)



CYCLIC AND ALTERNATING U -STATISTICS 9

where the last equality is well-known, see e.g. [20, (4.36.2)]. Since rη
d
“ rϑ` rϑ1 where

rϑ1 is an independent copy of rϑ, it follows that rη has the characteristic function

E eitrη “
`

E eitrϑ
˘2

“
1

coshptq
, (2.32)

which agrees with (2.23). □

Formulas for the cumulants of these variables are given in Appendix B.

3. Background: classical U-statistics

As a background, we summarize in the following theorem some known result on the
asymptotic distribution of U -statistics of the standard type (1.2) in the special case
of order m “ 2. The general case with arbitrary (fixed) m ě 2 is similar with mainly
notational complications; the only essential difference is that degeneracies of higher
order may occur and then the limiting distributions are much more complicated
(although such cases are rarely seen in applications). We restrict ourselves to m “ 2
because this is the case relevant for the cyclic and alternating U -statistics discussed
in the present paper, and also because it may be easier to see the general ideas in
this somewhat simpler case. (We do not know any reference where all these results
are collected and presented for the case m “ 2.) For completeness, we give a proof
in Appendix A.

For further results and for the general case with arbitrary m, we refer to, for
example, [10; 11; 22; 5] for the symmetric case (1.1), and [12, Chapter 11.1–2] for the
general (asymmetric) case (1.2). For the strong law of large numbers, see Section 9.2.

In the theorem, note in particular the dichotomy between the nondegenerate case
with σ2 ą 0 and then variance of order n3 and asymptotically normal distribution
(see (ii)), and the degenerate case in (iii)–(v) with σ2 “ 0 and then variance of
smaller order n2 and a non-normal limit distribution.

Theorem 3.1. With notations and assumptions as in Section 2, the following holds.

(i) We have

EUnpfq “
`

n
2

˘

µ (3.1)

and, as n Ñ 8, we have the weak law of large numbers

1
`

n
2

˘Unpfq
p

ÝÑ µ. (3.2)

(ii) As n Ñ 8,

n´3VarrUnpfqs Ñ σ2 :“ 1
3

`

E rf1pXq2s ` E rf2pXq2s ` E rf1pXqf2pXqs
˘

(3.3)

and

n´3{2
`

Unpfq ´
`

n
2

˘

µ
˘ d

ÝÑ Np0, σ2q. (3.4)

Furthermore, σ2 ą 0 unless f1pXq “ f2pXq “ 0 a.s.
(iii) If f1pXq “ f2pXq “ 0 a.s., and thus σ2 “ 0, then

VarrUnpfqs “
`

n
2

˘

VarrfpX1, X2qs “ 1
2n

2VarrfpX1, X2qs `Opnq. (3.5)
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Moreover, there exists a finite or infinite sequence of real numbers pλrqR1 such
that

n´1
`

Unpfq ´
`

n
2

˘

µ
˘ d

ÝÑ W :“
R

ÿ

r“1

1
2λrpζ2r ´ 1q, (3.6)

where pζrqR1 are independent standard normal variables. The coefficients pλrqR1
are the nonzero eigenvalues (with multiplicities) of the self-adjoint integral op-
erator T

pf´µ
on L2pX ˆ r0, 1s, ν ˆ ℓq (where ℓ is Lebesgue measure) defined as

in (2.3) using (2.6). We have

VarW “ 1
2

R
ÿ

r“1

λ2r “ 1
2 VarrfpX1, X2qs ă 8. (3.7)

(iv) In the special case of (iii) where furthermore f is symmetric, the coefficients
pλrqR1 in (3.6) are the nonzero eigenvalues (with multiplicities) of the self-
adjoint integral operator Tf´µ on L2pX , νq.

(v) In the special case of (iii) where furthermore f is antisymmetric, then also

n´1Unpfq
d

ÝÑ W :“

Q
ÿ̀

q“1

λaqηq, (3.8)

where pηqq
Q`

1 are independent random variables with the stochastic area distri-

bution (2.23), and the coefficients pλaqq
Q`

1 are the positive numbers such that
the imaginary number iλaq is an eigenvalue of the anti-self-adjoint operator Tf
on L2

CpX , νq. We have

VarW “

Q
ÿ̀

q“1

pλaqq2 “ 1
2 VarrfpX1, X2qs. (3.9)

As said above, the proof is given in Appendix A.

Remark 3.2. As a sanity check, we note that if f is symmetric, then the nonzero
eigenvalues of the operators T

pf´µ
in (iii) and Tf´µ in (iv) are the same, so the

conclusions agree. In fact, if f is symmetric, the (2.6) yields

pf
`

px, tq, py, uq
˘

“ fpx, yq. (3.10)

Letting 1 denote the function on r0, 1s2 that is constant 1, we thus have, using the

tensor notation in (2.4), pf “ f b 1 and consequently

T
pf

“ Tf b T1. (3.11)

T1 is the integral operator T1gptq “
ş1
0 gpuq du; this is the projection onto the constant

functions and has a single nonzero eigenvalue 1. Consequently, T
pf

“ Tf b T1 has

the same nonzero eigenvalues as Tf . (In this simple case, this can also easily be
seen directly from (3.10); the eigenfunctions of T

pf
with nonzero eigenvalues are the

functions of the form φpx, tq “ φ1pxq where φ1 is an eigenfunction of Tf with the
same eigenvalue.) △
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4. Cyclic U-statistics

We next give the corresponding result for cyclic U -statistics.

Theorem 4.1. With notations and assumptions as in Section 2, the following holds
for the cyclic U -statistic U˝

npfq in (1.3).

(i) We have

E rU˝
npfqs “ ntn2 uµ “ n2

2 µ`Opnq, (4.1)

and, as n Ñ 8, we have the weak law of large numbers

2

n2
U˝
npfq

p
ÝÑ µ. (4.2)

(ii) As n Ñ 8,

n´3VarrU˝
npfqs Ñ σ2 :“ 1

4 Var
“

f1pXq ` f2pXq
‰

“ 1
4

`

E rf1pXq2s ` E rf2pXq2s ` 2E rf1pXqf2pXqs
˘

(4.3)

and

n´3{2
´

U˝
npfq ´ n2

2 µ
¯

d
ÝÑ Np0, σ2q, (4.4)

Furthermore, σ2 ą 0 unless f1pXq ` f2pXq “ 0 a.s.
(iii) If f1pXq ` f2pXq “ 0 a.s., and thus σ2 “ 0, then

VarrU˝
npfqs “ ntn2 uVarrf12pX1, X2qs “ 1

2n
2Varrf12pX1, X2qs `Opnq. (4.5)

Moreover, there exist finite or infinite sequences of real numbers pλsrqR1 and

pλaqq
Q`

1 such that

n´1 pU˝
npfq ´ E rU˝

npfqsq
d

ÝÑ W :“
R

ÿ

r“1

1
2λ

s
rpζ2r ´ 1q `

Q
ÿ̀

q“1

λaqηq (4.6)

where pζrqR1 are standard normal variables and pηqq
Q`

1 have the stochastic area
distribution (2.23), and all are independent. The coefficients pλsrqR1 in (4.6) are
the nonzero eigenvalues (with multiplicities) of the self-adjoint integral operator
Tf12s on L

2pX , νq, where, recalling (2.5), f12s :“ pf12 ` f˚
12q{2 is the symmetric

part of f12. Similarly, the coefficients pλaqq
Q`

1 are the positive numbers such
that the imaginary number iλaq is an eigenvalue of the anti-self-adjoint operator

Tf12a on L2
CpX , νq, where f12a :“ pf12 ´ f˚

12q{2 is the antisymmetric part of f12.
We have

R
ÿ

r“1

pλsrq2 “ Varrf12spX1, X2qs, (4.7)

Q
ÿ̀

q“1

pλaqq2 “ 1
2 Varrf12apX1, X2qs, (4.8)

and

VarW “ 1
2

R
ÿ

r“1

pλsrq2 `

Q
ÿ̀

q“1

pλaqq2 “ 1
2 Varrf12pX1, X2qs. (4.9)
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Proof. We start by closely following the proof in Appendix A of the corresponding
classical result for the usual U -statistics in Theorem 3.1.

Note that the cyclic U -statistic U˝
n in (1.3) is a sum of ntn2 u “ 1

2n
2 `Opnq terms.

This shows (4.1).
We substitute the decomposition (2.10) into the definition (1.3). Note that each

i P Zn occurs in tn2 u terms in the double sum (1.3), and so does every value of
i` j P Zn. Hence,

U˝
npfq “ E rU˝

npfqs `

Yn

2

]

n
ÿ

i“1

f1pXiq `

Yn

2

]

n
ÿ

i“1

f2pXiq `
ÿ

iPZn

ÿ

1ďjăn{2

f12pXi, Xi`jq.

(4.10)

Each of the first two sums is a sum of i.i.d. random variables with mean zero and finite
variance; hence these sums areOL2pn1{2q, and the corresponding terms are OL2pn3{2q.
Furthermore, the final double sum is a sum of Opn2q identically distributed terms
that are uncorrelated by Lemma 2.1 and have mean zero, and thus the double sum
is OL2pnq “ oL2pn3{2q.

In the rest of the proof we replace f by f ´ µ (which does not change f1, f2,
or f12); hence we may and do assume without loss of generality that µ “ 0. Thus
E rU˝

npfqs “ 0 by (4.1).
(i) and (ii): By (4.10) and the comments after it,

n´3{2U˝
npfq “ n´3{2n

2

n
ÿ

i“1

`

f1pXiq ` f2pXiq
˘

` oL2p1q. (4.11)

Since the variables Xi are i.i.d., (4.11) implies immediately both (4.3) and, by the
classical central limit theorem (together with the Cramér–Slutsky theorem [8, The-
orem 5.11.4]), (4.4). Any of these implies (4.2), and (4.1) was proved above.

(iii): Since f1pXiq ` f2pXiq “ 0 a.s., the first two sums in (4.10) cancel. Hence,
using also our simplifying assumption µ “ 0, we now have U˝

npfq “ U˝
npf12q, and we

may simplify the notation by assuming f “ f12. Then, Lemma 2.1 shows that (1.3)
is a sum of ntn2 u uncorrelated, identically distributed, terms, and (4.5) follows.

It will be convenient to consider even n, so we first note that for any n ě 1, by
(1.3) and some bookkeeping,

U˝
2n`1pfq “ U˝

2npfq `

n
ÿ

i“1

fpXi, Xi`nq `

n
ÿ

i“1

fpX2n`1, Xiq `

2n
ÿ

i“n`1

fpXi, X2n`1q.

(4.12)

(As a check, note that the total number of terms is p2n`1qn in U˝
2n`1 and 2npn´1q

in U˝
2n, and that every term in U˝

2n appears also in U˝
2n`1.) Each of the three sums

in (4.12) is, by Lemma 2.1, a sum of n uncorrelated variables, and it follows that

it is OL2pn1{2q. Hence it suffices to prove (4.6) for even n; the case of odd n then
follows.

We consider thus U˝
2n, where we assume n ě 2. Define

rXi :“ pXi, Xi`nq, i “ 1, . . . , n. (4.13)

Then p rXiq
n
1 is an i.i.d. sequence of random variables in X 2. Define the function F

on X 4 “ X 2 ˆ X 2 by

F
`

px1, x2q, py1, y2q
˘

:“ fpx1, y1q ` fpy1, x2q ` fpx2, y2q ` fpy2, x1q. (4.14)
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It now follows from the definitions (1.3) and (1.2) that

U˝
2npfq “ UnpF ; rX1, . . . , rXnq. (4.15)

Consequently, we may use the classical result Theorem 3.1 for the usual U -statistics,

applied to F and p rXiq. Recall that we have f1 “ f2 “ 0 and that we have assumed
µ “ 0, which clearly implies also (using that pXiqi are i.i.d.)

FH “ EF p rX1, rX2q “ EF
`

pX1, X2q, pX3, X4q
˘

“ 0. (4.16)

Furthermore, (2.12) applied to F yields, using (4.14),

F1px1, x2q “ EF
`

px1, x2q, pX3, X4q
˘

“ E fpx1, X3q ` E fpX3, x2q ` E fpx2, X4q ` E fpX4, x1q

“ f1px1q ` f2px2q ` f1px2q ` f2px1q “ 0 (4.17)

and similarly F2px1, x2q “ 0. (This follows also from (4.15) and (4.5), which show
that VarrUnpF qs “ VarrU˝

2npfqs “ Opn2q, together with (3.3).)
Hence, Theorem 3.1(iii) applies, and shows that (3.6) holds for UnpF q; it remains

to find the eigenvalues λr of T
pF
, where T

pF
is the integral operator on L2pX 2 ˆ r0, 1sq

with kernel, by (2.6) and (4.14),

pF
`

px1, x2, tq, py1, y2, uq
˘

“
`

fpx1, y1q ` fpy1, x2q ` fpx2, y2q ` fpy2, x1q
˘

1tt ă uu

`
`

fpy1, x1q ` fpx1, y2q ` fpy2, x2q ` fpx2, y1q
˘

1tt ą uu

“ pf
`

px1, tq, py1, uq
˘

` pf
`

py1, tq, px2, uq
˘

` pf
`

px2, tq, py2, uq
˘

` pf
`

py2, tq, px1, uq
˘

“ pf
`

px1, tq, py1, uq
˘

` xf˚
`

px2, tq, py1, uq
˘

` pf
`

px2, tq, py2, uq
˘

` xf˚
`

px1, tq, py2, uq
˘

.
(4.18)

We pause for a general observation on this type of kernels. Let

L2
0pX ˆ r0, 1sq :“

!

h P L2pX ˆ r0, 1sq :

ż

X
hpx, tqdνpxq “ 0 for a.e. t P r0, 1s

)

(4.19)

and let, for j “ 1, 2, Mj be the subspace of L
2pX ˆX ˆ r0, 1sq consisting of functions

of the type gpx1, x2, tq “ hpxj , tq for some h P L2
0pX ˆ r0, 1sq.

If gj P Mj for j “ 1, 2, then with obvious notation,
ż

XˆXˆr0,1s

g1px1, x2, tqg2px1, x2, tq dνpx1q dνpx2q dt

“

ż

XˆXˆr0,1s

h1px1, tqh2px2, tqdνpx1qdνpx2qdt “ 0. (4.20)

Thus M1 and M2 are orthogonal subspaces of L2pX ˆ X ˆ r0, 1sq. Let M1 ‘M2 by
their direct sum; this is also a subspace of L2pX ˆ X ˆ r0, 1sq.

Lemma 4.2. Let i, j P t1, 2u. Suppose that g is a function in L2
`

pX ˆX ˆ r0, 1sq2
˘

of the form g
`

px1, x2, tq, py1, y2, uq
˘

“ hpxi, yj , t, uq where
ş

X hpx, y, t, uq dνpxq “ 0

for a.e. y P X and t, u P r0, 1s. Then Tg maps L2pX ˆ X ˆ r0, 1sq into the subspace
Mi. Furthermore, Tg maps M3´j to 0.

Proof. Simple consequences of the definitions and Fubini’s theorem. □
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To continue the proof of Theorem 4.1, we see from (4.18) that pF is a sum of 8
terms, each of them of the type in Lemma 4.2. Hence, T

pF
maps L2pX ˆ X ˆ r0, 1sq

intoM1‘M2, and thus all eigenfunctions for a nonzero eigenvalue belong toM1‘M2.
Hence, to find the nonzero eigenvalues, it suffices to consider the restriction of T

pF
to

M1 ‘M2.
Let ψ1 ` ψ2 P M1 ‘ M2, with ψj P Mj , and let (with a minor abuse of notation)

ψj denote also the corresponding function in L2
0 :“ L2

0pX ˆ r0, 1sq. Then, by (4.18)
and Lemma 4.2 (which also shows that some terms vanish),

T
pF
pψ1 ` ψ2qpx1, x2, tq “ T

pf
ψ1px1, tq ` T

xf˚ψ1px2, tq ` T
pf
ψ2px2, tq ` T

xf˚ψ2px1, tq,

(4.21)

where the four terms on the right-hand side belong toM1,M2,M2,M1, respectively.
Since ψ1 `ψ2 is an eigenfunction with eigenvalue λ if and only if the left-hand side of
(4.21) equals λψ1px1, tq`λψ2px2, tq, it follows by separating both sides of (4.21) into
their components in M1 and M2 (or, equivalently, by separating terms depending on
x1 from terms depending on x2) that ψ1 ` ψ2 is an eigenfunction with eigenvalue
λ ‰ 0 if and only if

#

T
pf
ψ1 ` T

xf˚ψ2 “ λψ1,

T
xf˚ψ1 ` T

pf
ψ2 “ λψ2.

(4.22)

By adding and subtracting these equations, we obtain the equivalent system
#

pT
pf

` T
xf˚qpψ1 ` ψ2q “ λpψ1 ` ψ2q,

pT
pf

´ T
xf˚qpψ1 ´ ψ2q “ λpψ1 ´ ψ2q.

(4.23)

Let, for 0 ‰ λ P C and an operator T on a vector space, EλpT q denote the eigenspace
th : Th “ λhu. The map ψ1 ` ψ2 ÞÑ pψ1 ` ψ2, ψ1 ´ ψ2q is a bijection of M1 ‘ M2

onto L2
0 ˆL2

0, and (4.23) shows that this bijection maps the eigenspace EλpT
pF
q onto

EλpT
pf` xf˚q ‘ EλpT

pf´ xf˚q. In particular, the dimensions agree, which shows that the

multiset of nonzero eigenvalues of T
pF
equals the union of the multisets of nonzero

eigenvalues of T
pf` xf˚ and T

pf´ xf˚ . We analyze these separately.

First, recalling (1.11) and (2.5), f ` f˚ “ 2fs is symmetric, and thus, by (2.6),
{f ` f˚px, y, t, uq “ 2pfspx, y, t, uq “ 2fspx, yq. Hence, the corresponding eigenvalues
are 2 times the eigenvalues λsr of Tfs . (Cf. Remark 3.2.) The contribution from the
eigenvalues of T

pf` xf˚ to the limit (in distribution) (3.6) of n´1UnpF q is thus

R
ÿ

r“1

1
2p2λsrqpζ2r ´ 1q “

R
ÿ

r“1

λsrpζ2r ´ 1q. (4.24)

On the other hand, f ´ f˚ “ 2fa is antisymmetric. Its eigenvalues on the pos-

itive imaginary axis are p2iλaqq
Q`

1 , and thus it follows from Lemma A.2 that the
contribution from the eigenvalues of T

pf´ xf˚ to the limit (3.6) is

Q
ÿ̀

q“1

2λaqηq. (4.25)

It follows from (3.6) also that the contributions in (4.24) amd (4.25) are independent.
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Consequently, recalling (4.15), (3.6) for UnpF q implies that

1

n
U˝
2npfq “

1

n
UnpF q

d
ÝÑ

R
ÿ

r“1

λsrpζ2r ´ 1q ` 2

Q
ÿ̀

q“1

λaqηq. (4.26)

This shows that 1
2nU

˝
2npfq has the limit W in (4.6). In other words, (4.6) holds for

even n, which as said above implies the general case.
Finally, (4.7) follows from (A.28) applied to fs, and (4.8) follows from (A.37)

applied to fa. The first equality in (4.9) follows from (4.6); the second follows from
(4.7) and (4.8) since fs and fa are orthogonal. □

Remark 4.3. If f is symmetric, then we obtain the same asymptotic results for U˝
n

as in Theorem 3.1 for Un. This is nothing new, since, as noted in Remark 1.1, in
this case U˝

n “ Un for odd n, and U˝
n “ Un `OL2pn1{2q for even n.

On the other hand, if f is antisymmetric, then f2pxq “ ´f1pxq, and thus U˝
n is

always of the degenerate type, while Un is nondegenerate unless f1pxq “ 0. In the
latter case, when f is antisymmetric and f “ f12, we again find the same asymptotic
results for U˝

n and Un, this time less obviously. △

Remark 4.4. Note that, rather surprisingly, (4.6) shows that in the degenerate case
(iii), the contributions to U˝

npfq from the symmetric and antisymmetric parts of f
decouple, so that W is a sum of two independent components. Equivalently, by the
Cramér–Wold device and applying the theorem to sfs ` tfa for s, t P R, n´1U˝

npfsq
and n´1U˝

npfaq converge jointly in distribution to the two independent sums in (4.6).
There is no such decoupling for the standard U -statistic Un, or for any of the

alternating U -statistics, as will be seen in Example 8.2. Hence, the decoupling for
U˝
n seems to be an effect of the larger (cyclical) symmetry of U˝

n. △

5. Bi-alternating U-statistics

We next give the corresponding result for the bi-alternating U -statistic U´´. The
result is similar to Theorems 3.1 and 4.1, but the alternating signs in the definition
(1.10) lead to cancellations and as a result there is no case corresponding to the
nondegenerate case for standard or cyclic U -statistics; the main case corresponds to
the degenerate case in the previous theorems. There is also a rather uninteresting
new case (v), included for completeness, with an even smaller variance Opnq and
U´´
n pfq reduced to a sum of i.i.d. variables.

Theorem 5.1. With notations and assumptions as in Section 2, the following holds
for the bi-alternating U -statistic U´´

n pfq in (1.10).

(i) We have

E rU´´
n pfqs “ ´tn2 uµ “ Opnq, (5.1)

and, as n Ñ 8, we have the weak law of large numbers

1
`

n
2

˘U´´
n pfq

p
ÝÑ 0. (5.2)

(ii) We have

VarrU´´
n pfqs “ 1

2n
2Varrf12pX1, X2qs `Opnq. (5.3)
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Moreover, there exists a finite or infinite sequence of real numbers pλrqR1 such
that

n´1
`

U´´
n pfq ´ E rU´´

n pfqs
˘ d

ÝÑ W :“
R

ÿ

r“1

1
2λrpζ2r ´ 1q (5.4)

where pζrqR1 are independent standard normal variables. The coefficients pλrqR1
in (5.4) are the nonzero eigenvalues (with multiplicities) of the self-adjoint
integral operator T

yf12
on L2pX ˆ r0, 1s, ν ˆ ℓq. We have

VarW “ 1
2

R
ÿ

r“1

λ2r “ 1
2 Varrf12pX1, X2qs. (5.5)

(iii) In the special case of (ii) where furthermore f is symmetric, the coefficients
pλrqR1 in (5.4) are the nonzero eigenvalues (with multiplicities) of the self-
adjoint integral operator Tf12 on L2pX , νq.

(iv) In the special case of (ii) where furthermore f is antisymmetric, then also

n´1U´´
n pfq

d
ÝÑ W :“

Q
ÿ̀

q“1

λaqηq, (5.6)

where pηqq
Q`

1 are independent random variables with the stochastic area distri-

bution (2.23), and the coefficients pλaqq
Q`

1 are the positive numbers such that
the imaginary number iλaq is an eigenvalue of the anti-self-adjoint operator Tf12
on L2

CpX , νq. We have

VarW “

Q
ÿ̀

q“1

pλaqq2 “ 1
2 Varrf12pX1, X2qs. (5.7)

(v) If f12 “ 0, then

VarrU´´
2n pfqs “ 2nσ2e `Op1q, (5.8)

VarrU´´
2n`1pfqs “ p2n` 1qσ2o `Op1q, (5.9)

where

σ2e :“ 1
2

`

Varrf1pXqs ` Varrf2pXqs
˘

, (5.10)

σ2o :“ 1
2 Varrf1pXq ` f2pXqs. (5.11)

Furthermore,

p2nq´1{2
`

U´´
2n pfq ´ E rU´´

2n pfqs
˘ d

ÝÑ Np0, σ2e q, (5.12)

p2n` 1q´1{2
`

U´´
2n`1pfq ´ E rU´´

2n`1pfqs
˘ d

ÝÑ Np0, σ2oq. (5.13)

Proof. We follow the proofs of Theorems 3.1 and 4.1, with some differences. First,
(5.1) follows immediately from (1.10) and

ÿ

1ďiăjďn

p´1qi`j “

n
ÿ

j“1

p´1qj
j´1
ÿ

i“1

p´1qi “

n
ÿ

j“1

p´1qj`11tj is evenu “ ´

Yn

2

]

. (5.14)
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We substitute the decomposition (2.10) into the definition (1.10), and obtain by
simple calculations

U´´
n pfq “ E rU´´

n pfqs ´

n
ÿ

i“1

1tn´ i is odduf1pXiq ´

n
ÿ

j“1

1tj is evenuf2pXjq

`
ÿ

1ďiăjďn

p´1qi`jf12pXi, Xjq. (5.15)

Each of the first two sums is a sum of tn2 u i.i.d. random variables with mean zero and

finite variance; hence these sums are OL2pn1{2q. The final double sum is a sum of
`

n
2

˘

terms that are uncorrelated by Lemma 2.1 and have mean zero, and up to sign

have the same distribution; hence the double sum has variance
`

n
2

˘

Varrf12pX1, X2qs.
It is also easily seen that the double sum is orthogonal to the two other sums, and
(5.3) follows.

The weak law of large numbers (5.2) is a consequence of (5.1) and (5.3).
(ii): As in the other proofs, we replace f by f ´ µ. In the rest of the proof we

thus may assume that µ “ 0, and thus EU´´
n “ 0. By (5.15), then

U´´
n pfq “ U´´

n pf12q `OL2pn1{2q, (5.16)

so it suffices to consider U´´pf12q, and we may, without loss of generality, for (no-
tational) simplicity assume f “ f12.

Again it will be convenient to consider even n, and we note that (1.10) implies

U´´
2n`1pfq “ U´´

2n pfq `

2n
ÿ

i“1

p´1qi`1fpXi, X2n`1q. (5.17)

The sum in (5.17) is, by Lemma 2.1 and our assumption f “ f12, a sum of 2n

uncorrelated variables with means 0, and it follows that it is OL2pn1{2q. Hence it
suffices to prove (5.4) for even n.

We consider thus U´´
2n , where we assume n ě 2. We now define (cf. (4.13) for the

cyclic U -statistic)

rXi :“ pX2i´1, X2iq, i “ 1, . . . , n. (5.18)

Again, p rXiq
n
1 is an i.i.d. sequence of random variables in X 2. We now define the

function F on X 4 “ X 2 ˆ X 2 by

F
`

px1, x2q, py1, y2q
˘

:“ fpx1, y1q ´ fpx1, y2q ´ fpx2, y1q ` fpx2, y2q, (5.19)

and it follows from the definitions (1.10) and (1.2) that

U´´
2n pfq “ UnpF ; rX1, . . . , rXnq ´

n
ÿ

i“1

fpX2i´1, X2iq. (5.20)

The final sum in (5.20) is OL2pn1{2q, as a sum of n i.i.d. variables with zero mean,
and is thus negligible in (5.4). Consequently, we may use Theorem 3.1 for the usual

U -statistics, applied to F and p rXiq. Recall that we have assumed f “ f12 and thus
f1 “ f2 “ 0 “ µ, which clearly implies also

FH “ EF p rX1, rX2q “ EF
`

pX1, X2q, pX3, X4q
˘

“ 0. (5.21)

Furthermore, (2.12)–(2.13) applied to F yield, similarly to (4.17),

F1px1, x2q “ F2px1, x2q “ 0. (5.22)
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(Again, this follows also from (5.20) and (5.3), which show that VarrUnpF qs “ Opn2q,
together with (3.3).)

Hence, Theorem 3.1(iii) applies, and shows that (3.6) holds for UnpF q. It remains
to find the eigenvalues λr of T

pF
, where T

pF
now is the integral operator on L2pX 2 ˆ

r0, 1sq with kernel, by (2.6) and (5.19),

pF
`

px1, x2, tq, py1, y2, uq
˘

“
`

fpx1, y1q ´ fpx1, y2q ´ fpx2, y1q ` fpx2, y2q
˘

1tt ă uu

`
`

fpy1, x1q ´ fpy1, x2q ´ fpy2, x1q ` fpy2, x2q
˘

1tt ą uu

“ pf
`

px1, tq, py1, uq
˘

´ pf
`

px1, tq, py2, uq
˘

´ pf
`

px2, tq, py1, uq
˘

` pf
`

px2, tq, py2, uq
˘

.
(5.23)

It follows again from Lemma 4.2 that T
pF
maps L2pX ˆ X ˆ r0, 1sq into M1 ‘ M2,

and thus all eigenfunctions for a nonzero eigenvalue belong to M1 ‘M2.
Let ψ1 ` ψ2 P M1 ‘ M2, with ψj P Mj , and let again (with a minor abuse of

notation) ψj denote also the corresponding function in L2
0 :“ L2

0pX ˆ r0, 1sq. Then,
by (5.23) and Lemma 4.2,

T
pF
pψ1 ` ψ2qpx1, x2, tq “ T

pf
ψ1px1, tq ´ T

pf
ψ2px1, tq ´ T

pf
ψ1px2, tq ` T

pf
ψ2px2, tq,

(5.24)

and it follows that ψ1 ` ψ2 is an eigenfunction with eigenvalue λ ‰ 0 if and only if
#

T
pf
ψ1 ´ T

pf
ψ2 “ λψ1,

´T
pf
ψ1 ` T

pf
ψ2 “ λψ2.

(5.25)

These equations imply λpψ1 `ψ2q “ 0, and thus ψ2 “ ´ψ1; furthermore in this case
the system simplifies to 2T

pf
ψ1 “ λψ1. Hence, if the nonzero eigenvalues of T

pf
are

pλrqR1 , then the nonzero eigenvalues of T
pF
are p2λrqR1 .

Consequently, (5.20) and Theorem 3.1(iii) applied to F show that

1

n
U´´
2n pfq “

1

n
UnpF q ` oL2p1q

d
ÝÑ

R
ÿ

r“1

λrpζ2r ´ 1q. (5.26)

This shows that 1
2nU

´´
2n pfq has the limit W in (5.4). In other words, (5.4) holds for

even n, and thus in the general case.
The first equality in (5.5) follows from (5.4); the second follows from (A.28) applied

to xf12 together with (2.7) applied to f12.
(iii) and (iv): These follow from (ii) as in the proof of Theorem 3.1. Alternatively,

we may note that (ii) shows that 1
nU

´´
n pfq has the same limit (in distribution) as

1
nUnpf12q, and thus (iii) and (iv) follow directly from the corresponding parts (iv)
and (v) in Theorem 3.1.

(v): When f12 “ 0 and µ “ 0, (5.15) simplifies to

U´´
n pfq “ ´

n{2
ÿ

k“1

f1pX2k´1q ´

n{2
ÿ

k“1

f2pX2kq (5.27)

when n is even, and

U´´
n pfq “ ´

pn´1q{2
ÿ

k“1

`

f1pX2kq ` f2pX2kq
˘

(5.28)
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when n is odd. The summands in (5.27)–(5.28) are independent, and (5.8)–(5.9)
follow directly; furthermore, (5.12)–(5.13) follow from the central limit theorem. □

Remark 5.2. As noted above, there is for the bi-alternating U -statistic U´´
n no case

similar to the nondegenerate cases in Theorems 3.1 and 4.1 with a variance of order
n3. In fact, apart from (5.1) and (v), we can summarize Theorem 5.1 by saying that
(as noted in the proof above), 1

nU
´´
n pf ´ µq has the same asymptotic distribution

as 1
nUnpf12q. However, these variables are not the same for finite n; in fact, they

are asymptotically uncorrelated, as is easily seen using Lemma 2.1. Moreover, they
converge to two independent copies of the same W ; this may be seen by adapting
the method in the proof to show that for any constants s, t P R,

s ¨
1

n
U´´
n pf ´ µq ` t ¨

1

n
Unpf12q

d
ÝÑ s

R
ÿ

r“1

1
2λrpζ2r ´ 1q ` t

R
ÿ

r“1

1
2λrpζ̃2r ´ 1q, (5.29)

where ζr, ζ̃r are independent standard normal variables. We omit the details. △

The following connection with U˝
n was noted (and used) by [6] (in a special case).

Proposition 5.3. If f is antisymmetric, and n is odd, then

U˝
npfq

d
“ U´´

n pfq. (5.30)

Proof. More precisely, we show that

U˝
npf ;X2, X4, . . . , X2nq “ U´´

n pX1, X2, . . . , Xnq, (5.31)

where the indices are interpreted modulo n as in Section 4; then (5.30) follows since
pXiq

n
1 are i.i.d. Note that since n is odd, i ÞÑ 2i is a bijection of the index set Zn

onto itself; hence the left-hand side of (5.31) contains all variables X1, . . . , Xn, but
in different order.

It follows from the definitions, and the assumption that f is antisymmetric, that
both sides of (5.31) are sums containing

`

n
2

˘

term of the type ˘fpXi, Xjq, one for each
unordered pair ti, ju with i ‰ j. We only have to verify that the signs agree. On the
left-hand side, we have one term fpX2i, X2i`2jq for every i P rns and j P rpn´ 1q{2s,
where rns :“ t1, . . . , nu. Letting k ” 2i pmod nq and l ” 2pi ` jq pmod nq be the
representatives with k, l P rns, then either k ă l and l ´ k “ 2j is even, or l ă k and
k ´ l “ n´ 2j is odd; conversely, every such pair pk, lq corresponds to a unique pair
pi, jq P rnsˆrpn´1q{2s. Since f is antisymmetric, a term fpXk, Xlq with l ă k equals
´fpXl, Xkq, and thus we see that the left-hand side of (5.30) contains fpXk, Xlq for
k ă l with k ´ l even, and (interchanging k and l), ´fpXk, Xlq for k ă l with k ´ l
odd; this is the same as U´´

n in (1.10). □

Remark 5.4. Proposition 5.3 does not hold for even n, simply because U˝
n and U´´

n

then are sums of different numbers of terms and thus, even when f “ f12, they have in
general different variances (using Lemma 2.1). However, for antisymmetric f , (5.30)

holds approximatively with an error OL2pn1{2q also for even n as a consequence of
(4.12) and (5.17). Note also that (5.30) fails in general for symmetric f , even if f “

f12; for an example let fpx, yq :“ px´ pqpy ´ pq and X P Beppq with 1
2 ă p ă 1. △
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6. Singly alternating U-statistics

We turn to U´`
n and U`´

n in (1.8)–(1.9). We note first that by arguing as in (4.12)
and (5.17), we see that

U´`
n pfq “

ÿ

1ďiăjďn

p´1qi`1fpXi, Xjq “
ÿ

2ďiăjďn`1

p´1qi`1fpXi, Xjq `OL2pn1{2q

d
“ ´U´`

n pfq `OL2pn1{2q. (6.1)

The error term will be negligible in most of our asymptotic results below; in par-
ticular, (6.1) implies that any distributional limit found for n´3{2U´`

n or n´1U´`
n

has to be symmetric. The same holds for U`´
n by the same argument, or by (1.12).

(Note that Un, U
˝
n, and U´´

n can have asymmetric asymptotic distributions, see
Example 8.1.)

Theorem 6.1. With notations and assumptions as in Section 2, the following holds.

(i) We have

E rU`´
n pfqs “ p´1qn

Yn

2

]

µ. (6.2)

(ii) As n Ñ 8,

n´3VarrU`´
n pfqs Ñ σ2 :“ 1

3 E rf2pXq2s (6.3)

and

n´3{2
`

U`´
n pfq ´ E rU`´

n pfqs
˘ d

ÝÑ Np0, σ2q. (6.4)

(iii) If f2pXq “ 0 a.s., and thus σ2 “ 0, then

VarrU`´
n pfqs “ 1

2n
2Varrf12pX1, X2qs `Opnq. (6.5)

Moreover, there exists a finite or infinite sequence of real numbers pλrqR1 such
that

n´1
`

U`´
n pfq ´ E rU`´

n pfqs
˘ d

ÝÑ W :“
R

ÿ

r“1

1
2λrpζ2r ´ 1q, (6.6)

where pζrqR1 are independent standard normal variables. The coefficients pλrqR1
in (6.6) are the nonzero eigenvalues (with multiplicities) of the self-adjoint
operator on pL2pX ˆ r0, 1s, ν ˆ ℓqq2 given in block form by

1
2

˜

´T
yf12

T
}f12

´T
}f12

T
yf12

¸

. (6.7)

We have

VarW “ 1
2

R
ÿ

r“1

λ2r “ 1
2 Varrf12pX1, X2qs ă 8. (6.8)

(iv) In the special case of (iii) where furthermore f is symmetric, then also

n´1
`

U`´
n pfq ´ E rU`´

n pfqs
˘ d

ÝÑ W :“
R

ÿ

r“1

λrϑr, (6.9)
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where pϑrqR1 are i.i.d. with the distribution (2.25), and the coefficients pλrqR1
are the nonzero eigenvalues (with multiplicities) of the integral operator Tf on
L2pX , νq. We have

VarW “ 1
2

R
ÿ

r“1

λ2r “ 1
2 Varrf12pX1, X2qs. (6.10)

(v) In the special case of (iii) where furthermore f is antisymmetric, then also

n´1U`´
n pfq

d
ÝÑ W :“

Q
ÿ̀

q“1

λaqηq, (6.11)

where pηqq
Q`

1 are independent random variables with the stochastic area distri-

bution (2.23), and the coefficients pλaqq
Q`

1 are the positive numbers such that
the imaginary number iλaq is an eigenvalue of the anti-self-adjoint operator Tf
on L2

CpX , νq. We have

VarW “

Q
ÿ̀

q“1

pλaqq2 “ 1
2 Varrf12pX1, X2qs. (6.12)

(vi) If f2 “ f12 “ 0, then

VarrU`´
n pfqs “ nσ21 `Op1q (6.13)

where

σ21 :“ 1
2 Varrf1pXqs. (6.14)

Furthermore,

n´1{2
`

U`´
n pfq ´ E rU`´

n pfqs
˘ d

ÝÑ Np0, σ21q. (6.15)

Proof. We follow the proofs of Theorems 4.1 and 5.1, again with some differences;
we omit some details that are the same as above. First, (i) follows immediately from
(1.9) and

ÿ

1ďiăjďn

p´1qj “

n
ÿ

i“1

n
ÿ

j“i`1

p´1qj “

n
ÿ

i“1

p´1qn1tn´ i is oddu “ p´1qn
Yn

2

]

. (6.16)

We substitute the decomposition (2.10) into the definition (1.9), and obtain by
simple calculations

U`´
n pfq “ E rU`´

n pfqs ` p´1qn
n

ÿ

i“1

1tn´ i is odduf1pXiq `

n
ÿ

j“1

p´1qjpj ´ 1qf2pXjq

`
ÿ

1ďiăjďn

p´1qjf12pXi, Xjq. (6.17)

The first sum in (6.17) has variance Opnq, the second has variance Opn3q and the
final (double) sum has variance Opn2q.

As in the other proofs, we replace f by f ´ µ. In the rest of the proof we thus
may assume that µ “ 0, and thus EU`´

n “ 0.
(ii): The first and third sums in (6.17) can be ignored, and the remaining second

sum is a sum of independent variables. Hence, a simple calculation yields (6.3), and
(6.4) follows by the central limit theorem.
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(iii): We obtain (6.5) from (6.17). For (6.6), it follows from (6.17) that it suffices
to consider U`´pf12q, and thus we may, without loss of generality, for simplicity
assume f “ f12. Again it will be convenient to consider even n, and we note that
(since f “ f12) (1.9) implies

U`´
2n`1pfq “ U`´

2n pfq ´

2n
ÿ

i“1

fpXi, X2n`1q “ U`´
2n pfq `OL2pn1{2q. (6.18)

Hence it suffices to prove (6.6) for even n. We consider thus U`´
2n pfq, where we

assume n ě 2. We use again the definition (5.18) of rX, so that p rXiq
n
1 is an i.i.d.

sequence of random variables in X 2. We now define the function F on X 4 “ X 2ˆX 2

by

F
`

px1, x2q, py1, y2q
˘

:“ ´fpx1, y1q ` fpx1, y2q ´ fpx2, y1q ` fpx2, y2q, (6.19)

and it follows from the definitions (1.9) and (1.2) that

U`´
2n pfq “ UnpF ; rX1, . . . , rXnq `

n
ÿ

i“1

fpX2i´1, X2iq

“ UnpF ; rX1, . . . , rXnq `OL2pn1{2q. (6.20)

Consequently, we may use Theorem 3.1 applied to F and p rXiq; we have again FH “

F1 “ F2 “ 0, so Theorem 3.1(iii) applies.
It remains to find the eigenvalues λr of the integral operator T

pF
on L2pX 2 ˆr0, 1sq

which has kernel, by (6.19) and recalling both (2.6) and (2.8),

pF
`

px1, x2, tq, py1, y2, uq
˘

“
`

´fpx1, y1q ` fpx1, y2q ´ fpx2, y1q ` fpx2, y2q
˘

1tt ă uu

`
`

´fpy1, x1q ` fpy1, x2q ´ fpy2, x1q ` fpy2, x2q
˘

1tt ą uu

“ ´ pf
`

px1, tq, py1, uq
˘

` qf
`

px1, tq, py2, uq
˘

´ qf
`

px2, tq, py1, uq
˘

` pf
`

px2, tq, py2, uq
˘

.
(6.21)

It follows again from Lemma 4.2 that T
pF
maps L2pX ˆ X ˆ r0, 1sq into M1 ‘ M2,

and thus all eigenfunctions for a nonzero eigenvalue belong to M1 ‘M2.
Let ψ1 ` ψ2 P M1 ‘ M2, with ψj P Mj , and let again ψj denote also the corre-

sponding function in L2
0pX ˆ r0, 1sq. Then, by (6.21) and Lemma 4.2,

T
pF
pψ1 ` ψ2qpx1, x2, tq “ ´T

pf
ψ1px1, tq ` T

qf
ψ2px1, tq ´ T

qf
ψ1px2, tq ` T

pf
ψ2px2, tq,

(6.22)

and it follows that ψ1 ` ψ2 is an eigenfunction with eigenvalue λ ‰ 0 if and only if
#

´T
pf
ψ1 ` T

qf
ψ2 “ λψ1,

´T
qf
ψ1 ` T

pf
ψ2 “ λψ2.

(6.23)

Hence the nonzero eigenvalues of T
pF
are the nonzero eigenvalues of the operator

´

´T
pf
T

qf

´T
qf
T

pf

¯

on L2
0p pX q ˆ L2

0p pX q. These are the same as the nonzero eigenvalues on

L2p pX q ˆL2p pX q, since both T
pf
and T

qf
map L2p pX q into L2

0p pX q. (Cf. Lemma 4.2.) We

denote these eigenvalues by 2λr, as in the statement, and obtain by (6.20) and (3.6)

n´1U`´
2n pfq “ n´1UnpF ; rX1, . . . , rXnq ` opp1q

d
ÝÑ

R
ÿ

r“1

λrpζ2r ´ 1q, (6.24)
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which proves (6.6) for even n, and thus, by (6.18), in general.
Regard t1, 2u as a measure space with mass 1 at each of the two points. Then,

the operator in (6.7) can be regarded as the operator TG on L2pX ˆ r0, 1s ˆ t1, 2uq

with kernel G given by the block form

G :“ 1
2

˜

´ pf qf

´ qf pf

¸

. (6.25)

It follows that, using (2.7) and its counterpart for qf ,
ż

p pXˆt1,2uq2
|G|2 “

2

4

ż

pX 2

| pf |2 `
2

4

ż

pX 2

| qf |2 “

ż

X 2

|f |2. (6.26)

Hence, (6.8) follows from (6.6) and (A.28).
(iv): Since f is symmetric and f2pXq “ 0 a.s., we also have f1pXq “ 0 a.s., and

thus (since we assume µ “ 0) f “ f12. Furthermore, the definitions (2.6) and (2.8)
yield

pf
`

px, tq, py, uq
˘

“ fpx, yq, (6.27)

qf
`

px, tq, py, uq
˘

“ fpx, yq sgnpu´ tq. (6.28)

Hence, if we define the symmetric function Hs on pr0, 1s ˆ t1, 2uq2 by the block form

Hs

`

pt, αq, pu, βq
˘

:“
1

2

ˆ

´1 sgnpu´ tq
´ sgnpu´ tq 1

˙

, t, u P r0, 1s;α, β P t1, 2u,

(6.29)

then we can regard the kernel G in (6.25) as the tensor product fbHs in the natural
way, and thus

TG “ Tf b THs , (6.30)

where both Tf and THs are self-adjoint. It follows, by the same argument as in
the proof of Lemma A.2 in a similar case, that if Tf has the nonzero eigenvalues
tλr : r P Ru andHs has the nonzero eigenvalues tρs : s P Su, then TG has the nonzero
eigenvalues tλrρs : r P R, s P Su. The eigenvalues ρs are given by Lemma 6.4 below.
Hence, the limit in (6.6) is

W “

R
ÿ

r“1

8
ÿ

k“´8

1
2λr

2

p2k ´ 1qπ
pζ2r,k ´ 1q “

R
ÿ

r“1

λr

8
ÿ

k“´8

1

p2k ´ 1qπ
pζ2r,k ´ 1q

“:
R

ÿ

r“1

λrϑr, (6.31)

where ϑr are i.i.d. and by Lemma 2.5 have the distribution (2.25).
Finally, (6.10) follows from (6.9) and (2.26) together with (6.8).
(v): Since f is antisymmetric, we again see that f2pXq “ 0 a.s. implies f1pXq “ 0

a.s., and thus f “ f12. The definitions (2.6) and (2.8) now yield

pf
`

px, tq, py, uq
˘

“ fpx, yq sgnpu´ tq. (6.32)

qf
`

px, tq, py, uq
˘

“ fpx, yq. (6.33)
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Hence, if we now define the antisymmetric function Ha on pr0, 1s ˆ t1, 2uq2 by the
block form

Ha

`

pt, αq, pu, βq
˘

:“
1

2

ˆ

´ sgnpu´ tq 1
´1 sgnpu´ tq

˙

, t, u P r0, 1s;α, β P t1, 2u

(6.34)

then we have again (6.30), where now both Tf and THa are anti-self-adjoint, and
thus have imaginary eigenvalues. It follows that if Tf has the nonzero eigenvalues
tiλ1

q : q P Qu and Ha has the nonzero eigenvalues tiρs : s P Su, then TG has

the nonzero eigenvalues t´λ1
qρs : q P Q, s P Su. The eigenvalues iρs are given by

Lemma 6.5 below. Hence, the limit in (6.6) is, cf. (6.31),

W “
ÿ

qPQ

8
ÿ

k“´8

λ1
q

´1

p2k ´ 1qπ
pζ2r,k ´ 1q “:

ÿ

qPQ
λ1
qϑq, (6.35)

where pϑqqqPQ are i.i.d. and by Lemma 2.5 have the distribution (2.25). Furthermore,
since f is real, the nonzero eigenvalues of Tf are symmetric with respect to the real

axis, and are thus p˘iλaqq
Q`

q“1. Hence, we can rewrite (6.35) as

W “

Q
ÿ̀

q“1

pλaqϑq ´ λaqϑ
1
qq “

Q
ÿ̀

q“1

λaqpϑq ´ ϑ1
qq “

Q
ÿ̀

q“1

λaqηq, (6.36)

where all ϑq and ϑ1
q are i.i.d. with the distribution (2.25), and thus ηq :“ ϑq ´ϑ1

q are
i.i.d. with the distribution (2.23) by (2.25), see also Lemma 2.5.

Finally, (6.12) follows from (6.11) and (2.24) together with (6.8).
(vi): Follows from (6.17) and the central limit theorem. □

Remark 6.2. As noted after (6.1), the limits in distribution in Theorem 6.1 have
to be symmetric random variables. This is obvious in (ii) and (iv)–(vi), but in
(iii), it implies that the set of eigenvalues pλrqR1 has to be symmetric, i.e., pλrqR1
equals p´λrqR1 up to order. This can also be seen from (6.7): the measure-preserving

bijection ppx, pyq ÞÑ ppy, pxq of pX ˆ pX onto itself induces a unitary equivalence of the
operator (6.7) with its negative. As a consequence, the limit in (6.6) can also be
written

W “
ÿ

λrą0

1
2λrpζ2r ´ ζ̃2r q, (6.37)

where ζr, ζ̃r are independent standard normal variables. △

Theorem 6.3. With notations and assumptions as in Section 2, the following holds.

(i) We have

EU´`
n pfq “

Yn

2

]

µ. (6.38)

(ii) All conclusions of Theorem 6.1(ii)–(vi) hold also for U´`pfq instead of U`´pfq,
provided f2 is replaced by f1 and conversely.

Proof. This follows from (1.12) and Theorem 6.1 (applied to f˚) together with the
following observations. First, f˚

1 “ f2, f
˚
2 “ f1, and pf˚q12 “ pf12q˚. Secondly, the

factor p´1qn in (1.12) does not matter in (ii), since the limits are symmetric, see
Remark 6.2. Thirdly, the operator (6.7) and its counterpart for f˚

12 are unitarily
equivalent and thus have the same eigenvalues, with the unitary equivalence induced
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by the measure-preserving bijection
`

px, tq, py, uq
˘

ÞÑ
`

py, 1 ´ uq, px, 1 ´ tq
˘

of pX 2

onto itself, since

xf˚
12

`

px, tq, py, uq
˘

“ xf12
`

py, 1 ´ uq, px, 1 ´ tq
˘

(6.39)

and similarly for |f˚
12 and |f12. □

Lemma 6.4. Let Hs be the symmetric function on pr0, 1s ˆ t1, 2uq2 given by (6.29).
Then the eigenvalues of THs, all simple, are

˘
2

p2k ´ 1qπ
, k “ 1, 2, 3, . . . . (6.40)

As a sanity check we note that if the eigenvalues in (6.40) are enumerated pλrq8
1 ,

then

ÿ

r

λ2r “
4

π2
¨ 2

8
ÿ

k“1

1

p2k ´ 1q2
“ 1 “

ż

pr0,1sˆt1,2uq2
|Hs|

2 (6.41)

since |Hs| “ 1
2 and r0, 1s ˆ t1, 2u has measure 2; this agrees with (A.28).

Proof. An eigenfunction of THs , with eigenvalue λ, is a pair pφ1, φ2q of functions on
r0, 1s such that

2λφ1ptq “ ´

ż 1

0
φ1puqdu´

ż t

0
φ2puqdu`

ż 1

t
φ2puq du, (6.42)

2λφ2ptq “

ż t

0
φ1puq du´

ż 1

t
φ1puqdu`

ż 1

0
φ2puq du. (6.43)

Suppose λ ‰ 0. It then follows, as in the proof of Lemma A.3, that φ1 and φ2 are
continuously differentiable, and differentiation yields

2λφ1
1ptq “ ´2φ2ptq, (6.44)

2λφ1
2ptq “ 2φ1ptq. (6.45)

Let ω :“ 1{λ. Then the system (6.44)–(6.45) becomes

φ1
1 “ ´ωφ2, (6.46)

φ1
2 “ ωφ1. (6.47)

It follows that φ2
1 “ ´ω2φ1, and thus, for some constants a and b, using also (6.46)

again,

φ1ptq “ a cospωtq ` b sinpωtq, (6.48)

φ2ptq “ a sinpωtq ´ b cospωtq, (6.49)

Furthermore, taking t “ 0 in (6.42) and (6.43), and integrating using (6.44)–(6.45),

2λφ1p0q “ 2λφ2p0q “ ´

ż 1

0
φ1ptq dt`

ż 1

0
φ2ptqdt

“ ´λ
`

φ2p1q ´ φ2p0q
˘

´ λ
`

φ1p1q ´ φ1p0q
˘

, (6.50)

which implies φ1p0q “ φ2p0q and thus a “ ´b, and then φ1p1q `φ2p1q “ 0 and thus,
by adding (6.48) and (6.49),

cospωq “ 0. (6.51)
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Hence, for some k P Z,
ω “ pk ` 1

2qπ. (6.52)

Conversely, it follows that for each such ω, we obtain an eigenfunction with eigenvalue
λ “ 1{ω by (6.48)–(6.49) with b “ ´a. This shows that eigenvalues are (6.40); we
see also that these eigenvalues are simple.

For completeness we note that 0 is not an eigenvalue, since (6.42)–(6.43) with
λ “ 0 imply that the right-hand sides do not depend on t, and thus φ1ptq “ φ2ptq “ 0
a.e. □

Lemma 6.5. Let Ha be the antisymmetric function on pr0, 1s ˆ t1, 2uq2 given by
(6.34). Then the eigenvalues of THa, all simple, are

˘
2i

p2k ´ 1qπ
, k “ 1, 2, 3, . . . . (6.53)

Proof. We argue as in the proof of Lemma 6.4. An eigenfunction of THa , with
eigenvalue λ, is now a pair pφ1, φ2q of functions on r0, 1s such that

2λφ1ptq “

ż t

0
φ1puqdu´

ż 1

t
φ1puq du`

ż 1

0
φ2puqdu, (6.54)

2λφ2ptq “ ´

ż 1

0
φ1puqdu´

ż t

0
φ2puq du`

ż 1

t
φ2puqdu. (6.55)

Suppose λ ‰ 0. It then follows, that φ1 and φ2 are continuously differentiable, and
differentiation yields

2λφ1
1ptq “ 2φ1ptq, (6.56)

2λφ1
2ptq “ ´2φ2ptq. (6.57)

Let ω :“ ´i{λ. Then the system (6.56)–(6.57) becomes

φ1
1 “ iωφ1, (6.58)

φ1
2 “ ´iωφ2. (6.59)

Thus, for some constants a and b,

φ1ptq “ aeiωt, (6.60)

φ2ptq “ be´iωt. (6.61)

Furthermore, taking t “ 0 in (6.54) and (6.55), and integrating using (6.56)–(6.57),

2λφ1p0q “ 2λφ2p0q “ ´

ż 1

0
φ1ptqdt`

ż 1

0
φ2ptq dt

“ ´λ
`

φ1p1q ´ φ1p0q
˘

´ λ
`

φ2p1q ´ φ2p0q
˘

, (6.62)

which implies first φ1p0q “ φ2p0q and thus a “ b, and then φ1p1q ` φ2p1q “ 0 and
thus, by adding (6.60) and (6.61),

2 cospωq “ eiω ` e´iω “ 0. (6.63)

Hence, for some k P Z,
ω “ pk ` 1

2qπ. (6.64)

Conversely, it follows that for each such ω, we obtain an eigenfunction with eigenvalue
λ “ ´i{ω by (6.60)–(6.61) with b “ a. This shows that eigenvalues are (6.53); we
see also that these eigenvalues are simple.
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By the same argument as in the proof of Lemma 6.4, 0 is not an eigenvalue. □

Remark 6.6. Lemmas 6.4 and 6.5 show that the self-adjoint operators THs and
iTHa have the same eigenvalues, and thus are unitarily equivalent. Operators with
the same eigenvalues appear also in Example 8.2 and Lemma A.3 below. A uni-
tary equivalence between any two of these is given by mapping eigenfunctions to
eigenfunctions with the same eigenvalue but, in spite of the simple explicit forms of
the eigenfunctions found in the proofs (and the great similarties between the proofs
above and below), we do not see a simple explicit form of the unitary equivalences
except for the case of Lemma 6.4 and Example 8.2. △

7. A short summary

Comparing Theorems 3.1, 4.1, 5.1, 6.1, and 6.3 we see strong similarities but
also differences. The nondegenerate cases are similar, with variances of order n3

and normal limits; the proofs show that in these case, the dominating terms are
linear combinations of f1pXiq and f2pXiq, but the details differ because the linear
combinations that appear are different for the different U -statistics. For U´` and
U`´ this is due to partial cancellations caused by the alternating signs, and for U´´

this cancellation is (almost) complete so that the nondegenerate case does not occur
at all. The asymptotic variances in (3.3), (4.3), and (6.3) are in general different,
but note that in the special case when f is antisymmetric, and thus f2 “ ´f1, and
further f1 ‰ 0, it follows that Unpfq and U`´

n pfq (and U´`
n pfq) have the same

asymptotic variance and thus the same asymptotic distribution, while U˝
npfq is of

the degenerate type, and has the same asymptotic distribution as U´´
n pfq.

For the degenerate cases the general pattern is again similar, but details differ in
more subtle and nonobvious ways. To see this clearer, we collect in the corollaries
below the results for the degenerate case when f is symmetric or antisymmetric; we
further assume for simplicity f “ f12, i.e., µ “ 0 “ f1 “ f2, since the degenerate
cases always reduce to this case. Note that the variables f12pXi, Xjq are orthogonal
by Lemma 2.1; hence, when f “ f12, alternating signs do not change the variance
of the U -statistic and do not cause any cancellation, although they may affect the
asymptotic distribution. We let ζr P Np0, 1q, ηq, and ϑr be independent copies of
the variables in Section 2.3.

Corollary 7.1. Suppose that f is symmetric and that f “ f12. Let the nonzero
eigenvalues of Tf be pλrqR1 . Then

n´1Unpfq
d

ÝÑ W :“
R

ÿ

r“1

1
2λrpζ2r ´ 1q. (7.1)

The same result holds for U˝
n and U´´

n . Furthermore,

n´1U`´
n pfq

d
ÝÑ W :“

R
ÿ

r“1

λrϑr. (7.2)

The same result holds for U´`
n .

The limit distributions in (7.1) and (7.2) are different by Remark 2.4 (unless f is
constant and thus both limits are 0).
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Corollary 7.2. Suppose that f is symmetric and that f “ f12. Let the nonzero

eigenvalues of Tf with positive imaginary part be piλaqq
Q`

1 . Then

n´1Unpfq
d

ÝÑ W :“

Q
ÿ̀

q“1

λaqηq. (7.3)

The same result holds for U˝
n, U

´´
n , U`´

n , and U´`
n .

Recall from Remark 5.2 that the fact that two of our U -statistics have the same
limit distribution does not imply that they converge jointly to the same random
variable. On the other hand, Remark 1.1 shows that this happens in the case of
Unpfq and U˝

npfq for symmetric f . See further Section 9.1.
Consider now the general case f “ f12, without any symmetry assumption. In

this case, we have seen in Theorem 4.1(iii) and Remark 4.4 that the contributions to
U˝
npfq from the symmetric and antisymmetric parts are asymptotically independent;

hence the asymptotic distribution in the general case follows from the special cases
in Corollaries 7.1 and 7.2. However, as is shown in Example 8.2, this does not hold
for Un, U

´´
n , U`´

n , or U´`
n .

8. Examples

Examples with nondegenerate, and thus normal, limits are straightforward, so
we concentrate on limits of the more complicated degenerate type. Again, we let
ζ P Np0, 1q, η, and ϑ, with or without subscripts, be independent copies of the
variables in Section 2.3.

Example 8.1. Consider first the simple example where fpx, yq “ xy and X is
real-valued with finite variance σ2X ą 0. Let µX :“ EX. Then the Hoeffding
decomposition (2.10)–(2.14) is given by µ “ µ2X , f1pxq “ f2pxq “ µXpx ´ µXq, and
f12px, yq “ px ´ µXqpy ´ µXq. Hence, if µX ‰ 0, we have the nondegenerate case
with variance of order n3 and normal limits for Un, U

˝
n, U

´`
n , and U`´

n . Recall that
U´´
n never has this behaviour; in this example Theorem 5.1(ii) shows that U´´

n pfq

has the same asymptotic distribution as U´´
n pf12q, which is equivalent to replacing

X by X ´ µX .
Suppose now that µX “ 0. The integral operator Tf is

Tfgpxq “ x

ż

y gpyqdνpyq “ xE rXgpXqs. (8.1)

This operator has a single nonzero eigenvalue σ2X with eigenvector φpxq “ x; hence
Theorem 3.1 yields

n´1Un
d

ÝÑ 1
2σ

2
Xpζ2 ´ 1q, (8.2)

where ζ P Np0, 1q. Theorems 4.1 and 5.1 yield the same result for U˝
n and U´´

n (cf.
Remarks 1.1 and 5.2), while Theorems 6.1(iv) and 6.3 yield

n´1U`´
n

d
ÝÑ σ2Xϑ (8.3)

and the same for U´`
n , with ϑ as in (2.25). These results also follow from Corol-

lary 7.1. △
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Example 8.2. Let X “ pξ1, ξ2q be a random vector in X “ R2, with ξ1 and ξ2

independent and both having variance 1 and symmetric distributions, i.e., ξj
d
“ ´ξj .

(For example, ξ1 and ξ2 may both be Np0, 1q, or uniformly distributed on ˘1.) Let

f
`

px1, x2q, px1
1, x

1
2q

˘

:“ x1x
1
2. (8.4)

Then, writing Xn “ pξn1, ξn2q,

Unpfq “
ÿ

1ďiăjďn

ξi1ξj2 “

n
ÿ

j“1

ξj2

j
ÿ

i“1

ξi1. (8.5)

Note that U`´
n pfq is given by the same sum with ξj2 replaced by p´1qjξj2. Since

we assume p´1qjξj2
d
“ ξj2, and all ξik are independent, it follows that U`´

n pfq has
the same distribution as Unpfq. The same argument applies also to U´`

n pfq, now
replacing ξi1 by p´1qiξi1, and to U´´

n pfq (doing both). Thus, for any n ě 1,

Unpfq
d
“ U´´

n pfq
d
“ U`´

n pfq
d
“ U´`

n pfq. (8.6)

It is shown in [14, p. 83] that

n´1Unpfq
d

ÝÑ

ż 1

0
B1ptqdB2ptq “: ϑ, (8.7)

where Bkptq are independent Brownian motions and thus ϑ is as in Section 2.3. (This
is a consequence of (8.5) and Donsker’s theorem applied to

řn
i“1 ξi1 and

řn
i“1 ξi2;

see [14] for the nontrivial technical details.) By (8.6), we have the same asymptotic
distribution (8.7) for U´´

n pfq, U`´
n pfq, and U´`

n pfq.
We can also obtain this limit from Theorem 3.1(iii) (or Theorem 5.1(ii)) above;

note that µ “ f1 “ f2 “ 0 so f “ f12. It follows from the definitions (2.6) and (2.3)
that T

pf
is the integral operator on L2pR2 ˆ r0, 1sq given by

T
pf
φpx1, x2, tq “

ż 1

t
E

“

x1ξ2φpξ1, ξ2, uq
‰

du`

ż t

0
E

“

ξ1x2φpξ1, ξ2, uq
‰

du

“ x1

ż 1

t
E

“

ξ2φpξ1, ξ2, uq
‰

du` x2

ż t

0
E

“

ξ1φpξ1, ξ2, uq
‰

du. (8.8)

Consequently, an eigenfunction with a nonzero eigenvalue λ has to be of the form
φpx1, x2, tq “ x1ψ1ptq ` x2ψ2ptq. Substitution in (8.8) then yields

λx1ψ1ptq ` λx2ψ2ptq “ x1

ż 1

t
ψ2puq du` x2

ż t

0
ψ1puqdu (8.9)

and thus

λψ1ptq “

ż 1

t
ψ2puqdu, λψ2ptq “

ż t

0
ψ1puq du. (8.10)

Consequently,

λψ1
1ptq “ ´ψ2ptq, λψ1

2ptq “ ψ1ptq. (8.11)

It is easily seen that (8.11), with the boundary values ψ1p1q “ ψ2p0q “ 0 given by
(8.10), is solved by, with ω :“ 1{λ,

ψ1ptq “ C cospωtq, ψ2ptq “ C sinpωtq, (8.12)
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where we must have

cospωq “ 0. (8.13)

Hence ω “ pk` 1
2qπ, k P Z. The nonzero eigenvalues λ “ 1{ω are thus t 2

p2k`1qπ : k P

Zu, and (3.6) yields

n´1Unpfq
d

ÝÑ

8
ÿ

k“´8

1

p2k ` 1qπ
pζ2k ´ 1q, (8.14)

which by Lemma 2.5 has the same distribution as ϑ in (2.25), which proves (8.7). As
noted above, we have the same limit (8.7) also for U`´

n pfq and U´`
n pfq. In principle,

this can be shown as above from Theorem 6.1, but that would require studying the
more complicated integral operator (6.7).

Consider now the symmetric and antisymmetric parts; for convenience we consider

2fs
`

px1, x2q, px1
1, x

1
2q

˘

“ x1x
1
2 ` x2x

1
1, (8.15)

2fa
`

px1, x2q, px1
1, x

1
2q

˘

“ x1x
1
2 ´ x2x

1
1. (8.16)

Arguing as after (8.8) above, we see that it suffices to consider the subspace of linear
functions tax1 ` by1 : a, b P Cu Ă L2

CpX , νq. This subspace is two-dimensional, and
it is easy to see, in analogy to (8.8) but simpler, that in this subspace, T2fs and T2fa
act by the matrices p 0 1

1 0 q and
`

0 1
´1 0

˘

; the nonzero eigenvalues are thus ˘1 and ˘i,
respectively. Consequently, Theorem 3.1(iv) and (v) yield

2n´1Unpfsq “ n´1Unp2fsq
d

ÝÑ 1
2pζ21 ´ ζ22 q, (8.17)

2n´1Unpfaq “ n´1Unp2faq
d

ÝÑ η. (8.18)

This was also shown in [14, p. 83], representing the limits as
ş1
0 B1ptq dB2ptq ˘

ş1
0 B2ptq dB1ptq in analogy to (8.7) above. See also (2.27), which implies that if
we denote these limits in (8.17)–(8.18) by Ws and Wa, then, as noted in [14], their
joint characteristic function is

E
“

exppisWs ` itWaq
‰

“

´

cosh2ptq ` s2
sinh2ptq

t2

¯´1{2
. (8.19)

In particular, (8.17)–(8.18) hold jointly, but the limits Ws and Wa are not indepen-
dent.

By Corollary 7.1, (8.17) holds also for U˝
npfsq and U´´

n pfsq, while, by (7.2),

2n´1U`´
n pfsq

d
ÝÑ ϑ1 ´ ϑ2

d
“ η (8.20)

and the same for U´`
n pfsq. Similarly, by Corollary 7.2, (8.18) holds also for U˝

npfaq,
U´´
n pfaq, U`´

n pfaq, and U´`
n pfaq. Note that (8.17) and (8.20) show that Unpfsq and

U`´
n pfsq have different limits in distribution; in particular, (8.6) cannot be extended

to fs.
We have so far ignored U˝

npfq, but armed with these results for fs and fa, we
obtain from (4.6) and Lemma 2.5

n´1U˝
npfq

d
ÝÑ 1

4pζ21 ´ ζ22 q ` 1
2η

d
“ 1

4pζ21 ´ ζ22 q `

8
ÿ

k“1

1

2p2k ´ 1qπ

`

ζ2k,1 ` ζ2k,2 ´ ζ2k,3 ´ ζ2k,4
˘

(8.21)



CYCLIC AND ALTERNATING U -STATISTICS 31

This differs, by (2.28) and the uniqueness assertion in Remark 2.4, from the limit
ϑ found in (8.6)–(8.7) for Un, U

´´
n , U`´

n , and U´`
n . (Note that (8.21) contains

some coefficients that are rational, and some that are rational multiples of 1{π.) It
follows similarly that the decoupling of the contributions from the symmetric and
antisymmetric parts that is seen in Theorem 4.1(iii) is unique to U˝

n, and does not
hold for the other U -statistics considered here. △

KOLLA!

Remark 8.3. The formula (8.19) for the joint asymptotic distribution of Unpfsq and
Unpfaq can also be obtained from Theorem 3.1 applied to sfs ` tfa, see Appendix C.
U´´
n pfsq and U´´

n pfaq have the same joint asymptotic distribution, by the same
sign-change argument as for (8.6), but note that this argument does not apply to
U`´
n pfsq and U

`´
n pfaq, as is shown by (8.20). Theorem 6.1 applied to sfs ` tfa shows

that U`´
n pfsq and U`´

n pfaq have a joint asymptotic distribution, which in principle
can be found by arguments similar to Appendix C (but for the more complicated
operator (6.7)); we have not pursued this and leave it as an open problem △

Remark 8.4. In this paper, we generally assume that X1, . . . , Xn are i.i.d. random
variables. However, the definitions (1.1)–(1.3) and (1.7)–(1.10) make sense for any
deterministic or random sequence X1, . . . , Xn. One interesting instance of this is to
let σ “ pX1, . . . , Xnq be a permutation of t1, . . . , nu. If further fpx, yq :“ 1tx ą yu;
then Unpf ;σq is the number of inversions in σ; we will in the following two examples
consider the equivalent (and more symmetric)

fpx, yq :“ sgnpx´ yq “ 21tx ą yu ´ 1. (8.22)

We furthermore take σ to be a uniformly random permutation in the symmet-
ric group Sn. It is well-known that σ can be constructed as the ranks of a se-
quence X1, . . . , Xn of i.i.d. random variables with, say, a uniform distribution on
r0, 1s. Since f only cares about the order relations, it follows that then Unpf ;σq “

Unpf ;X1, . . . , Xnq, and similary for the other U -statistics; hence we are back to the
case of i.i.d. Xi. △

Example 8.5 (writhe). Even-Zohar [6] defines the writhe of a permutation σ P

S2n`1 as, in our notation in Remark 8.4, U˝
2n`1pf ;σq, where fpx, yq :“ sgnpx´yq as

in (8.22), and studied this in the case of a uniformly random permutation σ P S2n`1.
This was motivated by the study of a model for random knots; see [6] for details.
(Only permutations of odd lengths appear in this model.)

The main result of [6] finds the asymptotic distribution of the writhe as n Ñ 8;
this is proved using the method of moments, together with a lengthy (but interesting)
combinatorial calculation of the moments. (The proof actually uses the equivalence
with U´´

2n`1 in Proposition 5.3, which was given in [6] for this case; the moment

calculations there are done for U´´
2n`1.)

As said in Remark 8.4, the distribution of the writhe equals the distribution of
U˝
2n`1pf ;X1, . . . , X2n`1q where Xi P Up0, 1q are i.i.d. Consequently, we may apply

Theorem 4.1. The kernel (8.22) is alternating, and thus µ “ 0. Furthermore,

f1pxq “ E rsgnpx´Xqs “ 2x´ 1, (8.23)

f2pxq “ ´f1pxq “ 1 ´ 2x, (8.24)

f12px, yq “ sgnpx´ yq ´ 2x` 2y, (8.25)
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and we find Varrf12pX1, X2qs “ 1
3 . We apply Theorem 4.1(iii), with f12s “ 0 and

f12a “ f12, and it remains to find the eigenvalues of Tf12a “ Tf12 . Note that the
eigenvalues of Tf are given in Lemma A.3, but here we consider Tf12 .

Suppose that φ is an eigenfunction of Tf12 with eigenvalue iλ. (All eigenvalues are
imaginary, since f12 is antisymmetric.) Then

iλφpxq “

ż x

0
φpyq dy ´

ż 1

x
φpyq dy ´ 2x

ż 1

0
φpyqdy ` 2

ż 1

0
yφpyqdy. (8.26)

Suppose that λ ‰ 0. It follows as in the proof of Lemma A.3 that φ is continuously
differentiable, and then

iλφ1pxq “ 2φpxq ´ 2

ż 1

0
φpyq dy. (8.27)

Let ω :“ ´2{λ. Then (8.27) implies φ2pxq “ iωφ1pxq, and thus

φpxq “ Aeiωx `B (8.28)

for some constants A and B. Simple calculus shows that then (8.26) holds if and
only if B “ 0 and

eiω “ 1, (8.29)

and thus

ω “ 2πk, k P Z. (8.30)

Consequently, if ω ‰ 0 is as in (8.30), then eiωx is an eigenfunction with eigenvalue
iλ “ ´2i{ω “ ´i{pπkq, and the nonzero eigenvalues of Tf12 are t i

πk : 0 ‰ k P Zu. In

the notation of Theorem 4.1 we thus have pλaqq
Q`

1 “ p 1
πk q8

1 , and thus (4.6) yields

1

n
U˝
npfq

d
ÝÑ

8
ÿ

k“1

1

πk
ηk, (8.31)

where ηk are i.i.d. with the stochastic area distribution (2.23). This is equivalent to
the limit theorem in [6, Corollary 2] (there proved by the method of moments) with
the limit represented as in [6, Section 5.3]. For properties and other descriptions of
the limit, see [6]. △

Example 8.6 (alternating inversion number). We continue to consider uniformly
random permutations in Sn as in Remark 8.4 and Example 8.5, using the kernel
f in (8.22). Let X1, . . . , Xn be i.i.d. with Xi P U r0, 1s as in Remark 8.4. Then,
as noted above, Unpf ;σq “ Unpf ;X1, . . . , Xnq is, up to a trivial linear transforma-
tion, the classical inversion number, and U˝

npf ;σq “ U˝
npf ;X1, . . . , Xnq is the writhe

studied in [6]. Furthermore, [6] also defines the alternating inversion number as
U´`
n pf ;σq and the bi-alternating inversion number as U´´

n pf ;σq. The alternating
inversion number U´`

n pf ;σq was (up to the same trivial linear transformation) ear-
lier introduced and studied by [2], who showed that it has the same distribution
as the “inversion number” Unpf ;σq. (This is easily seen by regarding the random
permutation σ as a random linear order on rns, and constructing it recursively, by
inserting a new element n in a random position relative to the previous n ´ 1 ele-
ments; the number of new inversions is uniformly random in t0, . . . , n ´ 1u, and it
follows by induction that Unpf ;σq and U`´

n pf ;σq have the same distribution. And
so has U´`

n pf ;σq by (1.12) since these variables are symmetric.)
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As a consequence, U`´
n pf ;σq and U´`

n pf ;σq have the same asymptotic normal
distribution as Unpf ;σq. From the perspective of our theorems, this follows because
f is antisymmetric, as noted in Section 7.

In contrast, as shown by [6], the bi-alternating inversion number U´´
n pf ;σq has

a different limit distribution, of the degenerate type. As noted above, [6] showed

that U´´
2n`1pf ;σq

d
“ U˝

2n`1pf ;σq, which generalizes to Proposition 5.3; [6] also shows

U´´
2n pf ;σq

d
“ U´´

2n`1pf ;σq, which in contrast seems to be a very special property
for this f . As a consequence, the bi-alternating inversion number has the same
asymptotic distribution as the writhe in (8.31), which was found by different methods
in [6]. △

9. Further results and open problems

9.1. Joint convergence. We may also consider joint convergence of the different
U -statistics Unpfq, U˝

npfq, U´`
n pfq, U`´

n pfq, and U´´
n pfq for the same kernel f . In

the nondegenerate cases, this is straightforward, since the proofs above in all cases
approximate the U -statistic by a linear combination of f1pXiq and f2pXiq, and the
central limit theorem implies that these linear combinations converge jointly (after

normalization by n´3{2) to some jointly normal limits.
Also in the degenerate cases, or when some U -statistics are nondegenerate and

some degenerate (and we thus normalize them differently), the methods above make
it in principle possible to study also asymptotic joint distributions of Un, U

´`, U`´,
and U´´, see Remark 5.2 for a simple example; furthermore, it seems possible to

include also U˝
n by considering rXi :“ pX2i´1, X2i, X2i´1`n{2, X2i`n{2q (for n divisible

by 4). We leave such extensions to the reader.
Note that in all results above showing convergence in distribution to some limit,

both in nondegenerate and degenerate cases, the theorems and proofs also show
convergence of first and second moments. Hence, if U 1

n and U2
n denote two of the

U -statistics in this paper, and Ũ 1
n and Ũ2

n are the corresponding normalized vari-

ables, then the squares |Ũ 1
n|2 and |Ũ2

n|2 are uniformly integrable, see e.g. [8, Theorem

5.5.9]. It follows, by the Cauchy–Schwarz inequality, that also the product Ũ 1
nŨ

2
n is

uniformly integrable, and thus if Ũn and Ũ2
n have limits in distribution jointly, then

the covariance of their limits is the limit of their covariances. In particular, when
the limits are jointly normal, we can easily find their joint distribution.

In the case when both U 1
n and U2

n have limits of the degenerate type, and we
thus may replace f by f12 (up to negligible terms), it follows easily from Lemma 2.1
that, except in the case pUn, U

˝
nq, the two different U -statistics have covariance of

order opn2q because of cancellations caused by the alternating signs. Hence, except
for pUn, U

˝
nq, any joint limits have to be uncorrelated. (In particular, the two limits

cannot be the same random variable, unless they are 0.) We conjecture that, more
strongly, in these cases there is joint convergence to independent limits, but we leave
this as an open problem. On the other hand, pUn, U

˝
nq is different: if we further

assume that f is symmetric, then Unpfq ´ U˝
npfq is negligible, see Remark 1.1, and

thus Unpfq and U˝
npfq jointly converge, after normalization, to the same limit.

9.2. Strong law of large numbers. We stated in (3.2) the weak law of large
numbers for classical U -statistics. There is also a well-known corresponding strong
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law of large numbers, see [11] (the symmetric case) and [13] (the general case):

1
`

n
2

˘Unpfq
a.s.
ÝÑ µ. (9.1)

This extends to the alternating U -statistics in the following, less interesting form;
recall that by (5.1) and (6.2), the expectations are Opnq.

Theorem 9.1. We have, as n Ñ 8, for any f P L2,

1
`

n
2

˘U´´
n pfq

a.s.
ÝÑ 0. (9.2)

The same holds for U´`
n and U`´

n .

Proof. We treat U`´
n ; the same argument works for U´`

n and U´´
n with minor

modifications (and some simplifications). We use (6.17) and treat the terms on the
right-hand side separately. As just noted, the expectation E rU`´

n pfqs “ Opnq, so
the first term in (6.17) is opn2q. The second term has varianc Opnq, and it follows
from Chebyshev’s inequality and the Borel–Cantelli lemma that it is opn2q a.s. For
the third term, let

Sk :“
k

ÿ

j“1

p´1qjf2pXjq, (9.3)

and note that by the law of large numbers, applied to even and odd indices separately,
Sk{k

a.s.
ÝÑ 0, i.e., Sk “ opkq a.s. Then the third term in (6.17) can be written

n
ÿ

j“1

j´1
ÿ

i“1

p´1qjf2pXjq “

n
ÿ

i“1

n
ÿ

j“i`1

p´1qjf2pXjq “

n
ÿ

i“1

pSn ´ Siq “ opn2q a.s. (9.4)

The double sum in (6.17) is U`´
n pf12q. For even n we use (6.20), where the sum

again has variance Opnq and thus a.s. is opn2q, and UnpF q{
`

n
2

˘ a.s.
ÝÑ 0 by (9.1) since

E rF p rX1, rX2qs “ 0 by (6.19). Finally, for odd n, the result follows from (6.18), where
the sum again has variance Opnq. □

Note that this argument does not work for U˝
n, since the definition (4.13) involves

n explicitly, and we therefore cannot apply (9.1) to UnpF q. Moreover, it is not clear
that it is interesting to study the sequence pU˝

npfqq8
n“1 as a stochastic process, since

the point of the definition (1.3) of U˝
n is that the indices are regarded as elements of

Z{nZ. Nevertheless, out of mathematical curiosity, we might ask:

Problem 9.2. Does (9.1) hold for U˝
npfq?

9.3. Functional limit theorems. As another aspect of regarding the sequence
pUnpfqq8

n“1 and its variants as stochastic processes, we may ask for functional limit
theorems of Donsker-type. For the classical U -statistic Unpfq, it is known that,

extending (3.4), n´1{2
`

Utntupfq ´ n2

2 t
2µ

˘

, regarded as a stochastic process with con-
tinuous parameter t ě 0, converges in Dr0,8q, as n Ñ 8, to a continuous centred
Gaussian process; similarly, in the degenerate case, n´1

`

Utntupfq ´E rUtntupfqs
˘

con-
verges to a continuous process whose marginals are of the type (3.6); see e.g. [18],
[19], [9], [12, Remark 11.11] (the symmetric case); [14, p. 83], [12, Remarks 11.11
and 11.25], [13, Theorem 3.2] (the general case). It seems likely that this too extends
to the alternating U -statistics by arguing using (5.20) and (6.20), but we have not
checked the details and leave this to the reader.
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As in Section 9.2, and for the same reason, this argument does not apply to U˝
n;

moreover, it seems less interesting to consider functional limit theorems for U˝
n.

9.4. Moment convergence. As noted in Section 9.1, in all results above showing
convergence in distribution, we also have convergence of first and second moments.

For higher moments, it is known that for the classical normal limit in (3.4), and
any p P p2,8q, all moments and absolute moments of order ď p converge provided
E |fpX1, X2q|p ă 8, see [13, Theorem 3.15]. It seems likely that this extends to the
cyclic and alternating U -statistics considered here, using the methods in the proofs
above, but we have not checked the details and leave this to the reader.

We conjecture that there also is a similar result showing moment convergence in
the degenerate cases, but in this case we are not even aware of a general result for
the classical U -statistic and moment convergence in (3.6).

Appendix A. Proof of Theorem 3.1

We give here a proof of Theorem 3.1, which contains some known result on the
asymptotic distribution of U -statistics of the standard type (1.2) in the special case
of order m “ 2. We give a proof for completeness, and because we reuse parts of it
for other proofs; we also find it instructive to give complete proofs in the case m “ 2,
which avoids some minor complications for larger m. For previous proofs and for
the general case with arbitrary m, see, for example, [10; 7; 22; 5] for the symmetric
case, and [12, Chapter 11.1–2] for the general (asymmetric) case.

Proof of Theorem 3.1. To prove Theorem 3.1, we note first that (3.1) is immediate
from the definitions (1.2) and (2.2).

We have, by (1.2) and (2.10),

Unpfq “
ÿ

1ďiăjďn

fpXi, Xjq

“
`

n
2

˘

fH `

n
ÿ

i“1

pn´ iqf1pXiq `

n
ÿ

j“1

pj ´ 1qf2pXjq `
ÿ

1ďiăjďn

f12pXi, Xjq

“: SpHq
n ` Sp1q

n ` Sp2q
n ` Sp12q

n . (A.1)

Here S
pHq
n “

`

n
2

˘

µ “ EUnpfq. In the sequel, we may replace f by f´µ; this does not
affect f1, f2, or f12. (Note also that when f is antisymmetric, µ “ E fpX1, X2q “

´E fpX2, X1q “ ´µ and thus µ “ 0 so f ´ µ “ f is still antisymmetric.) We may
thus without loss of generality assume that µ “ 0, and hence EUnpfq “ 0.

We next study the variances of the sums in (A.1). The random vectors
`

f1pXiq, f2pXiq
˘

are i.i.d., with mean 0 and finite second moments. Hence,

VarrSp1q
n s “

n
ÿ

i“1

pn´ iq2Varrf1pXqs „ 1
3n

3Varrf1pXqs, (A.2)

VarrSp2q
n s “

n
ÿ

j“1

pj ´ 1q2Varrf2pXqs „ 1
3n

3Varrf2pXqs, (A.3)

CovrSp1q
n , Sp2q

n s “

n
ÿ

i“1

pn´ iqpi´ 1qCovrf1pXq, f2pXqs

„ 1
6n

3Covrf1pXq, f2pXqs. (A.4)
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Consequently, recalling (3.3),

VarrSp1q
n ` Sp2q

n s “ n3
`

1
3 Varrf1pXqs ` 1

3 Varrf2pXqs ` 2
6 Covrf1pXq, f2pXqs ` op1q

˘

“ n3
`

σ2 ` op1q
˘

. (A.5)

Turning to S
p12q
n , we note that the terms f12pXi, Xjq are identically distributed

and have mean 0, and that they are orthogonal; this follows from (2.17), which
implies that E rf12pX1, X2q | X1s “ E rf12pX1, X2q | X2s “ 0, and thus, for example,

E rf12pX1, X2qf12pX1, X3qs “ E
“

E rf12pX1, X2q | X1sE rf12pX1, X3q | X1s
‰

“ 0. (A.6)

Consequently,

VarrSp12q
n s “

ÿ

1ďiăjďn

Varrf12pXi, Xjqs “
`

n
2

˘

Varrf12pX1, X2qs. (A.7)

The variance of S
p12q
n is thus Opn2q, while S

p1q
n `S

p2q
n typically has a larger variance

of order n3. Hence, the sum (A.1) is dominated by S
p1q
n `S

p2q
n , except in the case that

σ2 “ 0 when these terms vanish (as we will see below), and therefore (A.1) reduces to

S
p12q
n . This is the reason for the two different cases (ii) and (iii) in Theorem 3.1; the

generic case (ii), i.e., assuming σ2 ą 0, the nondegenerate case, and the degenerate
case (iii) with σ2 “ 0. We treat these cases separately below, after completing the
proof of (i).

(i): We have already shown (3.1). Furthermore, (A.5) and (A.7) imply

VarrUnpfqs “ Opn3q, (A.8)

and thus (3.2) follows. (Actually, with convergence in L2.)
(ii): We apply the standard central limit theorem for triangular arrays (see for

example [8, Theorem 7.2.4] or [15, Theorem 5.12]) to S
p1q
n `S

p2q
n . It is easily verified

that the triangular arrays
`

n´3{2pn´iqf1pXiq
˘

iďn
and

`

n´3{2pi´1qf2pXiq
˘

iďn
satisfy

the Lindeberg condition, and thus so does the summed array
`

n´3{2ppn´ iqf1pXiq `

pi´ 1qf2pXiqq
˘

iďn
. Consequently, the central limit theorem yields, using (A.5),

n´3{2pSp1q
n ` Sp2q

n q
d

ÝÑ Np0, σ2q. (A.9)

(If σ2 “ 0 then (A.9) still holds, as a trivial consequence of (A.5).) Furthermore,

as noted above, (A.7) implies that Varrn´3{2S
p12q
n s “ n´3VarrS

p12q
n s Ñ 0, and thus

n´3{2S
p12q
n

p
ÝÑ 0. Hence, (3.4) follows from (A.9) and (A.1) by the Cramér–Slutsky

theorem [8, Theorem 5.11.4].
Finally, (3.3) can be written

3σ2 “ E rpf1pXq ` 1
2f2pXqq2s ` 3

4 E rf2pXq2s, (A.10)

which implies that σ2 “ 0 if and only if f1pXq “ f2pXq “ 0 a.s., which completes
the proof for the nondegenerate case (ii).

We turn to the degenerate case σ2 “ 0 in (iii)–(v). In this case we thus have

f1pXiq “ f2pXiq “ 0 a.s., and consequently S
p1q
n “ S

p2q
n “ 0 and, by (A.1) again,

Unpfq “ Sp12q
n . (A.11)

We first treat the symmetric case (iv).
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(iv): We apply Lemma A.1 below, noting that (A.29) holds by (2.12) and the
assumption that f1pXq “ 0 a.s. (and our simplifying assumption fH “ µ “ 0 in
this proof). This shows that fpx, yq “ f12px, yq has an orthogonal expansion (A.27),
for some R ď 8 and some orthonormal sequence of functions φr P L2

RpX q, which
furthermore satisfy (A.30), which is equivalent to EφrpXq “ 0. The orthonormality
means that

E rφrpXqφqpXqs “

ż

X
φrpxqφqpxq dνpxq “ δrq. (A.12)

In other words, pφrpXqqR1 is a sequence of uncorrelated random variables with mean
0 and variance 1.

Suppose first that R ă 8, so that the sum (A.27) is finite. Then (1.2), the
symmetry of f , and (A.27) yield

2Unpfq “ 2
ÿ

1ďiăjďn

fpXi, Xjq “

n
ÿ

i,j“1

fpXi, Xjq ´

n
ÿ

i“1

fpXi, Xiq

“

n
ÿ

i,j“1

R
ÿ

r“1

λrφrpXiqφrpXjq ´

n
ÿ

i“1

R
ÿ

r“1

λrφrpXiq
2

“

R
ÿ

r“1

λr

ˆ

´

n
ÿ

i“1

φrpXiq

¯2
´

n
ÿ

i“1

φrpXiq
2

˙

. (A.13)

Now let n Ñ 8. By the law of large numbers, for each r,

n´1
n

ÿ

i“1

φrpXiq
2 p

ÝÑ E rφrpXq2s “ 1. (A.14)

Furthermore, by the central limit theorem, since E rφrpXqs “ 0 and E rφrpXq2s “ 1
as remarked above,

n´1{2
n

ÿ

i“1

φrpXiq
d

ÝÑ ζr P Np0, 1q. (A.15)

Moreover, since the variables φrpXq are uncorrelated, the limit in (A.15) holds jointly
for all r ď R, with the limits ζr uncorrelated and thus independent. Combining
(A.13)–(A.15) yields

2n´1Unpfq “

R
ÿ

r“1

λr

ˆ

´

n´1{2
n

ÿ

i“1

φrpXiq

¯2
´ n´1

n
ÿ

i“1

φrpXiq
2

˙

d
ÝÑ

R
ÿ

r“1

λr
`

ζ2r ´ 1
˘

. (A.16)

This proves (3.6) when R ă 8.
If R “ 8, let, for N P N,

fN px, yq :“
N
ÿ

r“1

λrφrpxqφrpyq. (A.17)
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Then the case just proven applies to fN , and thus, for each fixed N ă 8, as n Ñ 8,

2n´1UnpfN q
d

ÝÑ

N
ÿ

r“1

λr
`

ζ2r ´ 1
˘

. (A.18)

As N Ñ 8, the right-hand side converges to
ř8

r“1 λr
`

ζ2r ´ 1
˘

in L2 and a.s., and in
particular in distribution. Furthermore, by (A.7) applied to Unpf ´ fN q,

E
“

pUnpfq ´ UnpfN qq2
‰

“ Var
“

Unpf ´ fN q
‰

“
`

n
2

˘

Var
`

pf ´ fN qpX1, X2q
˘

“
`

n
2

˘

ż

X 2

´

8
ÿ

N`1

λrφrpxqφrpyq

¯2
dνpxqdνpyq

“
`

n
2

˘

8
ÿ

N`1

λ2r . (A.19)

Hence,

E
“

pn´1Unpfq ´ n´1UnpfN qq2
‰

ď

8
ÿ

N`1

λ2r Ñ 0 (A.20)

as N Ñ 8, uniformly in n. The result (3.6) now follows from (A.18) and (A.20), see
e.g. [1, Theorem 4.2].

Finally, by (3.6) and (2.20),

VarW “

R
ÿ

r“1

`

1
2λr

˘2
Var

`

ζ2r ´ 1
˘

“ 1
2

R
ÿ

r“1

λ2r (A.21)

and thus (3.7) holds by (A.28) in Lemma A.1.
(iii): Now consider the general degenerate case, where f1 “ f2 “ 0, and further as

above without loss of generality fH “ µ “ 0, but no symmetry assumption is made.
We use the following trick to reduce to the symmetric case. (See [12, Remark 11.21]
for the case of general order m.)

Let pZiq
8
1 be an i.i.d. sequence of random variables, independent of pXiq

8
1 , with

each Zi uniformly distributed on r0, 1s. Consider the random variables pXi :“ pXi, Ziq

in pX :“ X ˆ r0, 1s and define the function pf : pX 2 Ñ R by (2.6). Note that this

definition makes pf a symmetric function on pX ˆ pX . Furthermore, if we condition on
the sequence pZiq

n
1 , and assume as we may that Z1, . . . , Zn are distinct, then, letting

π be the permutation of t1, . . . , nu that makes Zπp1q ă ¨ ¨ ¨ ă Zπpnq,

Unp pf ; pX1, . . . , pXnq “ Unp pf ; pXπp1q, . . . , pXπpnqq “ Unpf ;Xπp1q, . . . , Xπpnqq, (A.22)

where the first equality holds by the symmetry of pf and the second by the definitions

of pf (in (2.6)) and π. Consequently, conditioned on pZiq
n
1 we have

Unp pf ; pX1, . . . , pXnq
d
“ Unpf ;X1, . . . , Xnq, (A.23)

and hence (A.23) holds also unconditionally. The result now follows from (iv) applied

to pf and p pXiq
8
1 ; note that this case applies since the definition (2.6) implies that,

with definitions analogous to (2.11)–(2.14),

pfH “

ż

r0,1s2

ż

X2

pf
`

px, tq, py, uq
˘

dνpxq dνpyqdt du “ µ “ 0, (A.24)
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pf1px, tq “

ż

pX
pf
`

px, tq, py, uq
˘

dνpyqdu “

#

f1pxq, t ă u

f2pxq, t ą u

*

“ 0 (A.25)

and, by symmetry, pf2px, tq “ pf1px, tq “ 0. Furthermore, (3.7) for f follows from the

same formula for pf , since (2.7) shows that Varr pfp pX1, pX2qs “ VarrfpX1, X2qs.
(v): This is proved directly in [14, Theorem 2.1] by different methods, relating

Un in the asymmetric case to the stochastic area process. We give here a different
proof, by combining the general result in (iii) with Lemma A.2 below, which finds

the eigenvalues λr of T
pf
and shows that the limit variable W :“

řR
r“1

1
2λrpζ2r ´ 1q

in (3.6) also has the representation (3.8). The formula (3.9) follows from (3.7) and
(A.37). □

Lemma A.1. If f P L2pX ˆ X q is real and symmetric, then Tf defined by (2.3),
i.e.,

Tfgpxq :“

ż

X
fpx, yqgpyq dνpyq, (A.26)

is a self-adjoint Hilbert–Schmidt operator on L2
CpX q. Hence Tf is compact and has

thus at most countably many nonzero eigenvalues, each of them real and each having
a finite-dimensional eigenspace. Let pλrqRr“1 (where 0 ď R ď 8) be an enumeration
of the nonzero eigenvalues (with multiplicities) of Tf . It is then possible to find

a corresponding orthonormal sequence of real-valued eigenfunctions pφrqR1 P L2
RpX q

such that Tfφr “ λrφr for every r.

For any such pλrqR1 and pφrqR1 , fpx, yq has a (finite or infinite) orthogonal expan-
sion

fpx, yq “

R
ÿ

r“1

λrφrpxqφrpyq (A.27)

which converges in L2pX 2q because

R
ÿ

r“1

λ2r “

ż

X 2

fpx, yq2 dνpxq dνpyq ă 8. (A.28)

Moreover, if
ż

X
fpx, yq dνpxq “ 0, for ν-a.e. y P X , (A.29)

then
ż

X
φrpxq dνpxq “ 0, for every r ď R. (A.30)

Here and below, r ď R should be interpreted as r ă 8 when R “ 8.

Proof. Since f P L2pX 2q, (A.26) defines a bounded and compact linear operator
Tf on L2

CpX q; furthermore, Tf is a Hilbert-Schmidt operator. Since furthermore f
is real and symmetric, Tf is a self-adjoint operator. By the spectral theorem for
compact and self-adjoint linear operators on a Hilbert space (see e.g. [16, Theorem
28.3] or [23, Theorem 6.4-B]), Tf has a finite or countably infinite set of nonzero
eigenvalues, each with finite multiplicity, so we may arrange the nonzero eigenvalues,
with multiplicities, in a sequence pλrqR1 with R ď 8; we denote the index set also
by R :“ tr P N : r ď Ru. Moreover, the eigenvalues λr are real, and there exists
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a corresponding orthonormal sequence of eigenfunctions pφrqR1 , and this may be
extended to an orthonormal basis pφrqrPRYN where N is a disjoint (possibly empty)
index set such that Tf pφrq “ 0 for every r P N , i.e., each φr is an eigenfunction also
for r P N , with eigenvalue λr :“ 0 when r P N .

Furthermore, since f is real, we may choose all φr to be in L2
RpX q. (By [23,

Theorem 6.4-B] applied to L2
RpX q, or by noting that since also the eigenvalues are

real, the real and imaginary parts of any eigenfunction of Tf are also eigenfunctions
for the same eigenvalue; hence each eigenspace is spanned by the real functions in
it.)

Fix any such sequence pφrqrPR and extension pφrqrPRYN . Since pφrqrPRYN is
an orthonormal basis in L2pX q, it is easily seen (and well-known) that if we define
gbhpx, yq :“ gpxqhpyq for functions g, h P L2pX q, then the set tφrbφs : r, s P RYN u

is an orthonormal basis in L2pX ˆ X q. Hence,

f “
ÿ

r,sPRYN
xf, φr b φsyφr b φs, (A.31)

where the sum converges in L2. By Fubini’s theorem and (A.26),

xf, φr b φsy “

ĳ

XˆX

fpx, yqφrpxqφspyq dνpxqdνpyq “

ż

X
φrpxqTf pφsqpxqdνpxq

“

ż

X
φrpxqλsφspxqdνpxq “ λsxφr, φsy “ λsδrs. (A.32)

This vanishes unless r “ s P R, and thus (A.31) simplifies to, using (A.32) again,

f “
ÿ

rPR
xf, φr b φryφr b φr “

ÿ

rPR
λr φr b φr. (A.33)

This is (A.27), and (A.28) follows because tφr b φsu is an orthonormal basis.
Finally, if (A.29) holds, then for every r P R, by (A.26) and Fubini’s theorem,

λr

ż

X
φrpxq dνpxq “

ż

X
Tf pφrqpxq dνpxq “

ĳ

XˆX

fpx, yqφrpyq dνpyq dνpxq

“

ż

X
φypyq

ż

X
fpx, yqdνpxq dνpyq “ 0. (A.34)

Since λr ‰ 0 for r P R, (A.30) follows. □

Lemma A.2. Let f P L2pX ˆ X q be real and antisymmetric. The the operator Tf
on L2

CpX q is anti-self-adjoint and has purely imaginary eigenvalues. Let pλaqqqPQ`

be an enumeration of the positive real numbers such that iλaq is an eigenvalue of Tf
(counted with multiplicities). Then the multiset of nonzero eigenvalues pλrqR1 of the
self-adjoint operator T

pf
on L2pX ˆ r0, 1sq (counted with multiplicities) equals

!

˘
2

p2k ´ 1qπ
λaq : q P Q`, k P N

)

with each pair pq, kq counted twice. (A.35)

As a consequence, if ζr are i.i.d. standard normal variables and ηq are independent
random variables with the stochastic area distribution (2.23), then

R
ÿ

r“1

1
2λrpζ2r ´ 1q

d
“

ÿ

qPQ`

λaqηq. (A.36)
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Furthermore,

R
ÿ

r“1

λ2r “ 2

Q
ÿ̀

q“1

pλaqq2 “

ż

X 2

fpx, yq2 dνpxqdνpyq ă 8. (A.37)

Proof. In the antisymmetric case, we can write (2.6) as

pf
`

px, tq, py, uq
˘

“ fpx, yq sgnpu´ tq “: fpx, yqhpt, uq, (A.38)

where sgn is the sign function (2.9). Thus, in tensor notation, see (2.4), pf “ f b h
and T

pf
“ Tf b Th.

The functions fpx, yq and hpt, uq “ sgnpu´ tq in (A.38) are both real-valued and
antisymmetric, and thus the corresponding Hilbert–Schmidt integral operators Tf
and Th (acting on L

2
CpX q and L2

Cr0, 1s, respectively) are both anti-self-adjoint. Hence,
´iTf and ´iTh are self-adjoint, and it follows from the spectral theorem, as in the
proof of Lemma A.1, that ´iTf and ´iTh have only real eigenvalues tλaq : q P QYN u

and tρs : s P S Y N 1u, respectively, with λaq ‰ 0 ðñ q P Q and ρs ‰ 0 ðñ s P S
and that there are corresponding families of eigenfunctions tφq : q P Q Y N u and
tψs : s P S Y N 1u which are orthonormal bases in L2

CpX q and L2
Cr0, 1s, respectively.

(However, unlike in Lemma A.1, these eigenfunctions are not real-valued.) Hence,
these functions are eigenfunctions for Tf and Th too, with eigenvalues iλaq and iρs,
respectively. (The eigenvalues and eigenfunctions for Th will be found explicitly in
Lemma A.3.)

It follows that the set of all functions φqbψspx, tq :“ φqpxqψsptq is an orthonormal
basis in L2

CpX ˆ r0, 1sq. Furthermore, as noted in Section 2, the function φq b ψs is
an eigenfunction of T

pf
“ Tf b Th with eigenvalue ´λaqρs. Since these functions form

a basis, it follows that the set of eigenvalues of T
pf
, with multiplicities, is t´λaqρs :

q P Q Y N , s P S Y N 1u. In particular, the nonzero eigenvalues pλrqR1 are

t´λaqρs : q P Q, s P Su. (A.39)

Recall that the nonzero eigenvalues of Tf are tiλaquqPQ, where λ
a
q P R. Since f is

real, the complex conjugate φq is also an eigenfunction, with eigenvalue iλaq “ ´iλaq.
It follows that if we let Q` :“ tq : λaq ą 0u and Q´ :“ tq : λaq ă 0u, then tλaq : q P

Q´u “ t´λaq : q P Q`u. Consequently, we may rewrite (A.39) as

tλr : r ď Ru “ t˘λaqρs : q P Q`, s P Su. (A.40)

We now use Lemma A.3, which shows that the eigenvalues iρs are
!

˘
2i

p2k ´ 1qπ
: k P N

)

. (A.41)

Hence, (A.35) follows from (A.40), noting that for each pair pq, kq, there are two
choices of signs in (A.40) and (A.41) that yield the same λr.

Note that each pair pq, kq thus yields 4 eigenvalues in (A.35), 2 of each sign. Hence,
it follows from (A.35) that, with ζq,k,j P Np0, 1q independent,

R
ÿ

r“1

1
2λrpζ2r ´ 1q

d
“

ÿ

qPQ`

λaq

8
ÿ

k“1

1

p2k ´ 1qπ

`

ζ2q,k,1 ` ζ2q,k,2 ´ ζ2q,k,3 ´ ζ2q,k,4
˘

. (A.42)
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Consequently, (A.36) follows from Lemma 2.5. Finally, (A.37) follows from (A.35)
(or from (A.40)–(A.41)) which yields

R
ÿ

r“1

λ2r “ 4
ÿ

qPQ`

8
ÿ

k“1

´ 2

p2k ´ 1qπ
λaq

¯2
“

16

π2

8
ÿ

k“1

1

p2k ´ 1q2

ÿ

qPQ`

pλaqq2 “ 2
ÿ

qPQ`

pλaqq2,

(A.43)

together with (A.28) for T
pf
(or the corresponding formula for the self-adjoint operator

Tif ). □

Lemma A.3. Let hpt, uq :“ sgnpt´uq. Then the anti-self-adjoint operator Th acting
on L2

Cr0, 1s has eigenvalues, all simple,

˘
2i

p2k ´ 1qπ
, k “ 1, 2, 3, . . .. (A.44)

Proof. Suppose that φ is an eigenfunction with eigenvalue λ. Then, for a.e. t P r0, 1s,

λφptq “ Thφptq “

ż 1

0
sgnpu´ tqφpuq du “ ´

ż t

0
φpuq du`

ż 1

t
φpuq du (A.45)

Suppose first that λ ‰ 0. The right-hand side of (A.45) is a continuous function of
t P r0, 1s, and thus φ can be assumed to be continuous. Then (A.45) holds for every
t P r0, 1s, and the right-hand side of (A.45) is continuously differentiable in p0, 1q;
thus φ is continuously differentiable on r0, 1s. Taking the derivative in (A.45) yields

λφ1ptq “ ´2φptq (A.46)

and thus (for some irrelevant C ‰ 0)

φptq “ Ceiωt with ω “ 2i{λ. (A.47)

Taking t “ 0 and 1 in (A.45) yields

λφp0q “

ż 1

0
φpuqdu “ ´λφp1q, (A.48)

i.e., φp1q “ ´φp0q. This and (A.47) yield eiω “ ´1, and thus

ω “ ˘p2k ´ 1qπ, k “ 1, 2, . . . . (A.49)

Conversely, it is easily checked that each such ω gives an eigenfunction φ by (A.47),
satisfying (A.45) with eigenvalue

λ “
2i

ω
“ ˘

2i

p2k ´ 1qπ
. (A.50)

These are thus the nonzero eigenvalues, and we see from (A.47) that they are simple.

Finally, if (A.45) holds with λ “ 0, then
şt
0 φpuqdu is constant, and thus φptq “ 0

a.e. Hence, 0 is not an eigenvalue. (Equivalently, the eigenfunctions e˘p2k´1qπi form
an orthonormal basis on r0, 1s, as is well-known from Fourier analysis.) □
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Appendix B. Cumulants

The limit distributions in our theorems are, apart form the normal distribution,
given by (possibly infinite) linear combinations of independent copies of the variables
ζ2 ´ 1, η, and ϑ in Section 2.3. We give here some simple results on the cumulants
of such sums; we denote the cumulants of a random variable Y by κmpY q, where
m ě 1. We write for convenience χ :“ ζ2 ´ 1.

The cumulants κmpχq, κmpηq, and κmpϑq are (by definition) obtained by Taylor
expansions of the logarithms of the characteristic functions of χ, η, and ϑ given in
(2.21) (2.23), and (2.25); note that these characteristic functions and their logarithms
are analytic functions of t in a neighbourhood of 0. This yields for m ě 2 the
cumulants, using [20, 4.19.8, 4.28.9, and 24.2.2] for (B.2)–(B.3),

κmpχq “ 2m´1pm´ 1q!, (B.1)

κmpηq “ p´1q1`m{2 2
mp2m ´ 1q

m
Bm “

2mp2m ´ 1q

m
|Bm|, (B.2)

κmpϑq “ 1
2κmpηq “ p´1q1`m{2 2

m´1p2m ´ 1q

m
Bm “

2m´1p2m ´ 1q

m
|Bm|, (B.3)

where Bm denotes the Bernoulli numbers [20, Chapter 24]. For m “ 1, we have
κpχq1 “ κpηq1 “ κpϑq1 “ 0. (These are just the means.) Note that thus κmpηq “

κmpϑq “ 0 for all odd m, which reflects the fact that η and ϑ have symmetric
distributions.

Sums of the type
řR

r“1 λrχr,
řR

r“1 λrηr, and
řR

r“1 λrϑr (where χr are independent
copies of χ, and so on) appear frequently above; they have cumulants that can be

expressed in terms of the sums
řR

r“1 λ
m
r , since the cumulant of a sum of independent

variables equals the sum of their cumulants. Hence, for any finite or infinite sequence
pλrqR1 with

řR
r“1 λ

2
r ă 8,

κm

´

R
ÿ

r“1

λrχr

¯

“

R
ÿ

r“1

λmr ¨ κmpχq, (B.4)

with κmpχq given by (B.1), and similarly for
řR

r“1 λrηr and
řR

r“1 λrϑr.

For example, since η
d
“ ϑ1 `ϑ2, we have κmpηq “ 2κmpϑq for all m ě 1, as is seen

in (B.2)–(B.3). Similarly, since (2.28) can be written

ϑ
d
“

8
ÿ

k“´8

1

p2k ´ 1qπ
χk, (B.5)

we have, for all even m ě 2, using the standard formula [20, 25.6.2] for ζpmq,

κmpϑq “

8
ÿ

k“´8

1

pp2k ´ 1qπqm
κmpχq “ π´m2

`

1 ´ 2´m
˘

ζpmqκmpχq

“
2m

`

1 ´ 2´m
˘

m!
|Bm|κmpχq “

2m
`

1 ´ 2´m
˘

m!
|Bm|2m´1pm´ 1q!, (B.6)

which agrees with (and thus gives a proof of) (B.3) and (B.2). (Recall that the odd
cumulants of ζ and η are 0.)
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For a final example, the limit distribution
ř8

k“1
1
πkηk in (8.31) has cumulants,

using (B.2) and, again, [20, 25.6.2],

κm

´

8
ÿ

k“1

1

πk
ηk

¯

“

8
ÿ

k“1

1

pπkqm
κmpηq “ π´mζpmqκmpηq “

22mp2m ´ 1q

2m ¨m!
B2

m, (B.7)

which agrees with the cumulants given (implicitly) in [6, Corollary 2]. (Note that
the variable W there is twice as big, because of different normalizations.)

Appendix C. A proof of (8.17)–(8.19)

We give here, as another illustration of the theorems and methods in the paper, a
proof of (8.19) and thus (2.27) using Theorem 3.1 and eigenvalue calculations; this
is hardly new, but we do not know a reference. We omit some details.

As said in Remark 8.3, we leave it as an open problem to do similar calculations
for the operator (6.7) in Theorem 6.1, which ought to lead to an explicit (more or less
complicated) formula for the joint characteristic function of the limits in distribution
of n´1U`´

n pfsq and n´1U`´
n pfaq,

Let fs and fa be as in (8.15)–(8.16), and let s, τ P R. (We use τ here, since we
want to use t P I as one of the coordinates in X ˆ r0, 1s.) Take, suppressing the
argument ppx1, x2q, px1

1, x
1
2qq,

fs,τ :“ s ¨ 2fs ` τ ¨ 2fa “ ax1x
1
2 ` bx2x

1
1, (C.1)

where a :“ s`τ , b :“ s´τ . Similarly as in (8.8)–(8.10), we see that an eigenfunction
of T

yfs,τ
with nonzero eigenvalue λ has to be of the form x1ψ1ptq ` x2ψ2ptq, and the

eigenvalue equation is equvalent to the system

λψ1ptq “ a

ż 1

t
ψ2puqdu` b

ż t

0
ψ2puqdu, (C.2)

λψ2ptq “ b

ż 1

t
ψ1puq du` a

ż t

0
ψ1puqdu. (C.3)

This is in turn equivalent to the system of differential equations

λψ1
1ptq “ pb´ aqψ2ptq, (C.4)

λψ1
2ptq “ pa´ bqψ1ptq, (C.5)

with the initial values

λψ1p0q “ a

ż 1

0
ψ2puq du, λψ2p0q “ b

ż 1

0
ψ1puqdu. (C.6)

Assume sτ ‰ 0, or equivalently a ‰ ˘b. (This excludes the cases fs and fa already
studied, which are somewhat special.) Let

ω “
a´ b

λ
. (C.7)

The general solution to (C.4)–(C.5) then is, for some real (or complex) A and B,

ψ1ptq “ A cospωxq `B sinpωxq, (C.8)

ψ2ptq “ A sinpωxq ´B cospωxq, (C.9)

and (C.6) yields, using (C.7) and (C.4)–(C.5), the conditions

pa´ bqψ1p0q “ ωλψ1p0q “ aω

ż 1

0
ψ2puq du “ aψ1p0q ´ aψ1p1q, (C.10)
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pa´ bqψ2p0q “ ωλψ2p0q “ bω

ż 1

0
ψ1puqdu “ bψ2p1q ´ bψ2p0q, (C.11)

which simplify to

bψ1p0q “ aψ1p1q, aψ2p0q “ bψ2p1q (C.12)

or

bA “ apA cosω `B sinωq, (C.13)

´aB “ bpA sinω ´B cosωq. (C.14)

Regarding (C.13)–(C.14) as a system of linear equations in pA,Bq, it follows that
there is a solution to (C.2)–(C.3), and thus an eigenvalue λ, if and only if the deter-
minant of the system (C.13)–(C.14) is 0, i.e., if

0 “ pa cosω ´ bqpa´ b cosωq ´ ab sin2 ω “ pa2 ` b2q cosω ´ 2ab. (C.15)

Furthermore, since we assume a ‰ ˘b, it is easily seen that then the system (C.13)–
(C.14) has rank 1 and thus a one-dimensional space of solutions pA,Bq; hence, the
eigenvalue λ is simple. Let

ω0 :“ arccos
2ab

a2 ` b2
. (C.16)

Then the complete set of solutions ω to (C.15) is t˘ω0 ` 2kπu, k P Z, and hence, by
(C.7), the nonzero eigenvalues of T

yfs,τ
are (all simple)

˘
a´ b

ω0 ` 2kπ
“ ˘

2τ

ω0 ` 2kπ
, k P Z. (C.17)

Consequently, (3.6) and (2.21) yield

n´1Unps ¨ 2fs ` τ ¨ 2faq “ n´1Unpfs,τ q
d

ÝÑ Ws,τ (C.18)

where, using also the product expansion for cosine [20, 4.22.2],

E reiWs,τ s “
ź

λ

e´iλ{2p1 ´ iλq´1{2 “

8
ź

k“´8

´´

1 ´
2iτ

ω0 ` 2πk

¯´

1 `
2iτ

ω0 ` 2πk

¯¯´1{2

“

8
ź

k“´8

∣∣∣1 `
2iτ

ω0 ` 2πk

∣∣∣´1
“

8
ź

k“´8

∣∣∣∣∣ 1 ` ω0`π
p2k´1qπ

1 ` ω0`π`2iτ
p2k´1qπ

∣∣∣∣∣
“

8
ź

k“1

∣∣∣∣∣∣
1 ´

pω0`πq2

p2k´1q2π2

1 ´
pω0`π`2iτq2

p2k´1q2π2

∣∣∣∣∣∣ “

∣∣∣ cospω0{2 ` π{2q

cospω0{2 ` π{2 ` iτq

∣∣∣ “

∣∣∣ sinpω0{2q

sinpω0{2 ` iτq

∣∣∣
“

∣∣∣ sinpω0{2q

sinpω0{2q coshpτq ` i cospω0{2q sinhpτq

∣∣∣
“

`

cosh2pτq ` cot2pω0{2q sinh2pτq
˘´1{2

. (C.19)

Furthermore, by (C.16),

cot2pω0{2q “
1 ` cospω0q

1 ´ cospω0q
“

pa` bq2

pa´ bq2
“
s2

τ2
. (C.20)

It follows from (C.18)–(C.20) that (8.17) and (8.18) hold jointly, with limits Ws and
Wa having the joint characteristic function (8.19). (The cases s “ 0 or τ “ 0, implicit
in (8.18) and (8.17), follow by continuity.)
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