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Abstract

The effects of a time-dependent evolution parameter on the m
versus =z relation and the N(m) versus m relations are derived,

for standard cosmology and for the Hoyle-Narlikar theory.




1. Introduction

Canuto and Narlikar (1980) derive various observationally relevant
relations for the Hoyle-Narlikar cosmology. They attempt to eliminate the
evolution parameter between the m versus z relation and the N(m)
versus m relation and obtain a relation involving only observable
quantities. However, their derivation is incorrect since the relation
obtained for QSO:s uses a variable evolution parameter e, while e 1is

assumed to be constant in the derivation.

The purpose of this paper is to find the correct form of the m
versus z and N(m) versus m relations for the case of a time-dependent
e . This is of interest since comparisons with observations is the only
way of testing the validity of cosmologies. The basic calculations will
be carried out for an arbitrary Robertson-Walker metric. The results will
later be specialized to the standard cosmology and the Hoyle-Narlikar
theory. A numerical computation gives results differing from the predic-

tions by Canuto and Narlikar (1980) by 0.7 magnitudes for distant QSO:s.




2. Basic theory

We assume that the objects under study have absolute luminosities

given by

L(t) = Lo(t/to)"e(t) . (2.1)

Note that any luminosity function may be written as in (2.1) with some
function e(t) . We prefer to work with e(t) rather than L(t) since
this faciliates comparisons with the case of a constant e . (Presumably,
e(t) varies slowly.)

Note also that, for a given luminosity function L(t) , e(t) depends
on the present epoch to - The evolution during a small interval of time

(¢, t +dt) 1is not given by e(t) but by the logarithmic derivative
= e(t) + e(t)t Q,n(t/to) . (2.2)

(In this paper 2n denotes natural logarithms and log = lOlog.)
el(t) does not depend on to . Given el(t), L(t) and e(t) may be
obtained by integration. Obviously, e, =e when e is constant. (It is

the failure to distinguish between e and e, that makes the analysis

1
in Canuto and Narlikar 1980 for QSO:s invalid.)

We assume a standard Robertson-Walker metric

dt” = dt — + szez‘ -mzsinze d(pz) (2.3)
c 1 -ko

2 .2 RXt) ,do”
- =g (
and will derive relations between the time & when the light now observed
was emitted, the coordinate 0 , the apparent magnitude m and other
properties of objects with the absolute luminosity (2.1). The redshift is

given by the well-known formula




l1+z = RO/R(t) . (2.4)

In the standard Friedmann models, the apparent luminosity is given by

2
. - L(;) - L(t)ARZ(t) _ (2.5)
4m(Ry0) " (1 +2) 4mR, O

In the Hoyle-Narlikar theory, photons are not conserved and a further
factor G(t)/GO = to/t enters, cf. Canuto and Narlikar (1980). Following
these authors we write G(t)/GO = (t/to)_g , where g=0 for general

relativity and g =1 for the Hoyle-Narlikar theory. Thus

L 2
0 R (t t.-e(t)-
¢ = ; (2) 5 e(t)-g (2.6)
41 R g 0
0
i.e.
m=my + 5logo - 5 logR+ 2.5(e +g)log(t/t0) . (2.7)

Since light travels along a null geodesic

do /1 —ko?

& - T TR (2.8)
(2.7), (2.8) and (2.2) yield
£n109‘5=—52———~'1‘1“’2—53+25-€1+g (2.9)
dt oR(t) R ' t :

We assume that dm/dt is negative so that more distant objects
are dimmer. The total number of objects with magnitude not exceeding m
then is given by the (present-day) density n, multiplied by the volume

of the sphere with coordinate radius O:

ag
N(m) = ng f 4 R st s (2.10)
0 1 -ks?

Consequently,

AN _ o j362 /A -ke? . (2.11)

do 00




The chain

dm 9n 10 N do dt/ dt
_ 02 c <5 C/l-—k62+5_1é
g 5 9. -1/2 R(t) oR(L) R
[ s%(1 -ks") ds
0
3 03 2,0 1
='§ /l“kO + — - =
¢ 2 2,-1/2 c 2
3 [ s“(1 -ks") d
0
When the space is flat, k =0, this simplifies to
d logN(m) _ 3 oR _10R -1
g cs At T g (e

rule and (2.8) - (2.11) yield

(2.12)

(2.13)




3. Standard cosmology

In the Friedmann model with k =0, R/RO = (t/to)z/3 whence

ORO = 3cto(1 -(1 +z)_1/2), oR/c = 2(/1+z - 1) and oR/ect = 3(/1+z - 1).
Thus (since g =0) we obtain from (2.13)

d logN(m) - 0.6

. (3.1)
dm 1+(2-1.5 e) (VI +z - 1)

m 1is expressed in z and e or e by

o +5log(l+z - (1 +z)1/2) - 3.75 elog(l +2z) =

m = m

1

172, 3.75 % €(%)
me + 51log(l +z (1 +2) ) 10 4 T35 dz . (3.2)

For the models with k =+1 no explicit formulas are available, but

numerical results are readily obtained.




4, Hoyle-Narlikar cosmology

In the Hoyle-Narlikar theory k=0 and R = Ro(t/‘co)l/2 whence

ORO = 2ctOz/(1 +z) (Canuto and Narlikar 1980). Thus % = 7z and
OR . .
T 2z . (2.13) yields (since g=1)
d logN(m) _ 0.6 _ 0.6 (4.1)
dm 1+(1l-e, -g)z 1~-e,z ° :
1 1
(This is the formula derived by Canuto and Narlikar (1980) but with e
replacing e .)
(2.7) may be rewritten as
m = m(') + 51logcz + 2.5(e +g)log(t/t0) =
' 2.5 o el(t)
=mo+51ogcz—5glog(1+z)—Q'1rllo { T dt =
5 z el(z)
— ot - -
m0+ 5 logcz 5 log (1 +2z) 10 (J) 173 dz . (4.2)
d log N(m) _

Canuto and Narlikar (1980) take =
1

derive e = 55 (for z > 1/3) . We obtain from (4.1) instead

0.75 for QSO:s and

1
e = 55 (for QSO:s, z > 1/3). (4.3)

(4.2) and (4.3) yield, for the relevant range of =z

»

m = m'd + 41log(cz) - 4log(l +2) . (4.4)

If we adjust the constant term such that this coincides with Canuto
and Narlikar’s formula (with e=1/5z) for =z = 1/3, we obtain signifi-
cantly smaller magnitudes. Numerical values of the difference are given

below.
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