
INVARIANTS OF POLYNOMIALS AND BINARY FORMS

SVANTE JANSON

Abstract. We survey various classical results on invariants of polyno-
mials, or equivalently, of binary forms, focussing on explicit calculations
for invariants of polynomials of degrees 2, 3, 4.

1. Introduction

The purpose of this survey is to collect various classical (mainly 19th
century) results on invariants of polynomials, focussing on explicit formulas
for invariants of polynomials of degrees 2, 3, 4. Invariants of polynomials
are equivalent to invariants of binary forms, so we begin (Section 2) with a
summary of definitions and some key result for these, mainly based on Schur
[18]; some other books on invariants (which we only partly have consulted)
are Dickson [6], Elliott [7], Glenn [8], Hilbert [10], Olver [16]. See these books
for further results and proofs. Some formulas below have been calculated
using Maple.

The theory is really simpler and more symmetric for binary forms, and
the obvious correspondence between binary forms and polynomials (see Sec-
tion 3) makes it in principle trivial to transfer the definitions and results to
polynomials. Nevertheless, since polynomials are so common in other parts
of mathematics, we find it interesting to perform this translation explicitly
and to give detailed formulas for polynomials.

Remark 1.1. The formulas are purely algebraic and are valid for any
ground field of characteristic 0, for example Q, R or C.

The formulas give invariants also for fields of finite characteristic, at least
as long as it does not divide any denominator (for degree ≤ 4, only charac-
teristic 2 or 3 may have such problems), but there are also other invariants
in finite characteristic. One example is the invariant [5]

a20a2 + a0 a
2
2 + a0 a

2
1 + a21a2 − a30 − a32 (1.1)

of a quadratic polynomial a0x
2 + a1x + a2 in F3. (Cf. Section 7, and note

that (1.1) does not vanish for f(x) = x2, unlike the discriminant ∆.) See
further [6] and, for example, [19].

We ignore trivial complications with the invariant that is identically 0; for
example, we may say that there is no invariant of some type, really meaning
that there is no such invariant that is not identically zero. Similarly, we for
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simplicity may say that an invariant Φ is the only invariant of some type,
really meaning this up to constant factors, i.e. that every such invariant
is a multiple cΦ of Φ (in other words, the space of such invariants is 1-
dimensional). Note also that constant factors in the definition of specific
invariants usually are uninteresting, and different choices of such factors
often are made in different references.

When giving examples of different notations in other papers and books,
we use subscripts; for example, A[18] means A in [18].

We denote falling factorials by

(n)k := n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
=

(
n

k

)
k! . (1.2)

2. Invariants of binary forms

We begin by collecting some definitions and general results. See e.g.
Elliott [7], Hilbert [10], Kung and Rota [14] and Schur [18] for further details.
(In particular, see [14] for the umbral calculus, which is a useful method to
describe and study invariants and covariants, but which will not be used
here.)

Warning. Note that the notation in these and many other references is
different, since the forms there are written as

∑n
i=0

(
n
i

)
aix

n−iyi instead of
(2.2) below; i.e., ai [7] = ai [10] = ai [18] = ǎi, where

ǎi :=
ai(
n
i

) . (2.1)

The variables ǎi are often more convenient for theoretical purposes, see e.g.
Example 2.9 below and [18, Satz 2.18] or [14], and they are generally used
in standard treatments, but for our purposes we prefer our ai, and will only
rarely use ǎi.

Remark 2.1. The definitions in this section extend to forms in any number
n ≥ 2 variables, but we will only consider the binary case. See [7], [10] and
[18, I].

A homogeneous binary form of degree (order) n can be written as

f(x) = f(x, y) =

n∑
i=0

aix
n−iyi. (2.2)

We write x := (x, y) and a := (a0, . . . , an). (We regard these as row vectors.)
We sometimes use instead the notation (x1, x2) = (x, y). We further write
∂x = ∂1 = ∂/∂x = ∂/∂x1 and ∂y = ∂2 = ∂/∂y = ∂/∂x2, and note that, for
0 ≤ i ≤ n,

ai = ai(f) =
1

(n− i)!
∂n−ix f(0, 1) =

1

(n− i)! i!
∂n−ix ∂iyf, (2.3)
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and thus

ǎi =
1

n!
∂n−ix ∂iyf. (2.4)

We use occasionally subscripts 〈n〉 to denote the degree of the considered
forms or polynomials; for example ai 〈n〉.

A 2×2 matrix T =
(
α β
γ δ

)
acts on the variables (to the right) by x′ = xT

and on forms (to the left) by

Tf(x) := f(xT ) = f(αx+ γy, βx+ δy). (2.5)

This gives an action of the general linear group GL(2) on the set of all binary
forms of degree n.

Definition 2.2. A (projective) invariant (of binary forms of a given degree
n) is a homogeneous polynomial Φ(f) in the coefficients a such that

Φ(Tf) = |T |wΦ(f) (2.6)

for some number w and all f and T ∈ GL(2). The number w is the weight
(or index ) of Φ. We denote the degree of Φ by ν. (We generally use ν for the
degree and w for the weight, sometimes without comment; similarly we later
use µ for the order of covariants and seminvariants. There are no standard
notations; some examples of other notations are i[7] = i[8] = g[10] = r[18] = ν
for the degree and w[7] = k[8] = p[10] = p[18] = w for the weight. Further
p[7] = m[8] = n[10] = k[18] = n for the degree of the form and ω[8] = m[18] = µ
for the order, see below.)

The weight w is necessarily an integer. Taking T = λI, which gives
Tf = λnf , we see that

nν = 2w. (2.7)

Hence w ≥ 0, and w > 0 except in the trivial case ν = 0 when the invariant
is a constant.

Remark 2.3. If Φ satisfies the more general equation Φ(Tf) = cTΦ(f) for
some collection of numbers cT , then necessarily cT = |T |w for some w, so
Φ is an invariant as defined above. Similarly, in definitions below, we may
equivalently allow arbitrary factors cT in (2.8), (2.14), (2.16), (2.31), (2.32);
these necessarily have to have the given form |T |w or αµ|T |w for some w and
µ.

Remark 2.4. The identity (2.6) is a polynomial identity in the entries of T ,
and thus it extends to all 2× 2 matrices T , also singular. Thus Φ(Tf) = 0
whenever T is singular, except in the trivial case ν = w = 0 when Φ is a
constant. The same applies to similar formulas below.

Definition 2.5. Similarly, a joint invariant of several forms f1, . . . , f`, of
degrees n1, . . . , n`, is a polynomial in the coefficients of f1, . . . , f`, homoge-
neous of degrees ν1, . . . , ν`, respectively, such that

Φ(Tf1, . . . , T f`) = |T |wΦ(f1, . . . , f`) (2.8)
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for some w, the weight of Φ, and all f1, . . . , f` and T ∈ GL(2).

In this case we have

n1ν1 + · · ·+ n`ν` = 2w. (2.9)

Again w is an integer with w ≥ 0, and w > 0 except in the trivial case of a
constant invariant.

Remark 2.6. The assumption that Φ is homogeneous separately in the
coefficients of each fj is no real restriction, since any invariant polynomial
Q can be decomposed into homogeneous components which are invariant.

Example 2.7. The apolar invariant of two binary forms f(x, y) =
∑n

i=0 aix
n−iyi

and g(x, y) =
∑n

i=0 bix
n−iyi of the same degree n is

A(f, g) :=

n∑
i=0

(−1)ii! (n− i)! aibn−i = n!

n∑
i=0

(−1)i
aibn−i(

n
i

)
= n!

n∑
i=0

(−1)i
(
n

i

)
ǎib̌n−i

= f(∂y,−∂x)g(x, y) = g(−∂y, ∂x)f(x, y). (2.10)

This is a joint invariant of f and g of degrees ν1 = ν2 = 1 and weight n.
(Our definition differs from [18] by a factor n!: A[18](f, g) = A(f, g)/n!.)
The apolar invariant is also called transvectant, see Example 2.15 below.
Using (2.3), we also have

A(f, g) =
n∑
i=0

(−1)i(∂n−ix f · ∂ixg)(0, 1). (2.11)

Note that A(g, f) = (−1)nA(f, g); hence the apolar invariant is symmetric
in f and g if n is even, and antisymmetric if n is odd.

The apolar invariant is the only joint invariant with degrees ν1 = ν2 = 1
of two binary forms of the same degree, and there are no such invariants of
binary forms of different degrees [18, Satz 2.6].

See Example 2.16 for a generalization.

Example 2.8. Taking f = g in Example 2.7 we obtain the apolar invariant
(or transvectant, see Example 2.15) of a single binary form

A(f, f) :=

n∑
i=0

(−1)ii! (n− i)! aian−i; (2.12)

this is an invariant of degree ν = 2 and weight w = n, for any even n. (Note
that A(f, f) = 0 when n is odd.)

In fact this is the only invariant of degree 2; if n is odd there is thus no
such invariant [18, Satz 2.5].
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Example 2.9. If n = 2q is even, then the Hankel determinant

Han(f) =
∣∣ǎi+j∣∣qi,j=0

, with ǎl = al/
(
n
l

)
, (2.13)

is an invariant of degree ν = q+1 = n/2+1 and, by (2.7), weight w = q(q+1).
The Hankel determinant is also called the catalecticant.

2.1. Covariants.

Definition 2.10. More generally, a (projective) covariant is a polynomial
Ψ(f ; x) = Ψ(a; x) in x and the coefficients a of f such that

(i) Ψ is homogeneous in a of some degree ν, the degree of Ψ;
(ii) Ψ is homogeneous in x of some degree µ, the order of Ψ;
(iii)

Ψ(Tf ; xT−1) = |T |wΨ(f ; x) (2.14)

for some integer w, the weight of Ψ, and all forms f (of degree n)
and all T ∈ GL(2).

Hence, an invariant is a covariant of order 0.
The relation (2.7) generalizes to

nν = m+ 2w. (2.15)

Definition 2.11. Similarly, a joint covariant of forms f1, . . . , f` of degrees
n1, . . . , n` is a polynomial Ψ(f1, . . . , f`; x) = Ψ(a1, . . . ,a`; x) in the coeffi-
cients aj of fj , j = 1, . . . , `, that is homogeneous in each aj of degree νj ,
homogeneous in x of degree µ, the order of Ψ, and such that

Ψ(Tf1, . . . , T f`; xT
−1) = |T |wΨ(f1, . . . , f`; x) (2.16)

for some integer w, the weight of Ψ, and all forms f1, . . . , f` and all T ∈
GL(2).

We now have
n1ν1 + · · ·+ n`ν` = m+ 2w. (2.17)

Example 2.12. The form f(x) itself is a covariant of degree ν = 1, order
µ = n and weight w = 0.

Example 2.13. The Hessian covariant

H(f) = H(f ; x) :=

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣
1≤i,j≤2

(2.18)

is a covariant of degree ν = 2, order µ = 2(n− 2) and weight w = 2. (Other
notation: H[10] = (n(n− 1))−2H.)

Example 2.14. The Jacobian determinant

J(f1, f2) = J(f1, f2; x) :=

∣∣∣∣ ∂fi∂xj

∣∣∣∣
1≤i,j≤2

(2.19)

is a joint covariant of degrees ν1 = ν2 = 1, order n1 + n2 − 2 and weight
w = 1. Note that J is antisymmetric; J(g, f) = −J(f, g), and J(f, f) = 0.
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Example 2.15. The k:th transvectant {f, g}k is a joint covariant of two
forms f and g of arbitrary degrees n1 and n2, defined by

{f, g}k =
( ∂

∂x1

∂

∂y2
− ∂

∂x2

∂

∂y1

)k
f(x)g(y)

∣∣∣
y=x

=

k∑
i=0

(−1)i
(
k

i

)
∂kf

∂xk−i1 ∂xi2

∂kg

∂xi1∂x
k−i
2

. (2.20)

Here k ≥ 0 is an arbitrary positive integer, but it is easy to see that {f, g}k =
0 unless k ≤ min(n1, n2). (Trivially {f, g}0 = fg.) It is easy to see that
{f, g}k is a joint covariant of degrees ν1 = ν2 = 1, order n1 + n2 − 2k and
weight w = k. (Other notations: {f, g}k = (n1)k(n2)k(f, g)k [1] = (f, g)k[8] =

(n1)k(n2)k(f, g)k [10] = (f, g)
(k)
[16] = [f, g]k[17].)

Furthermore, {f, g}k = (−1)k{g, f}k, so {f, g}k is symmetric if k is even
and anti-symmetric if k is odd. In particular, {f, f}k = 0 for odd k, but for
even k ≤ n, {f, f}k is a non-trivial covariant of degree 2, order 2n− 2k and
weight k. (Other notations: fk [10] := 1

2(f, f)k [10] = 1
2(n)−2k {f, f}k.)

The first transvectant is the Jacobian covariant in Example 2.14:

{f, g}1 = J(f, g). (2.21)

The second transvectant {f, f}2 is (twice) the Hessian covariant in Ex-
ample 2.13:

{f, f}2 = 2H(f). (2.22)

Furthermore, in the case n1 = n2 = n = k, {f, g}n is of order 0, i.e., an
invariant. In this case, by a binomial expansion in (2.20), (2.4) and (2.10),

{f, g}n =

n∑
i=0

(
n

i

)
(−1)i

( ∂

∂x1

∂

∂y2

)n−i( ∂

∂x2

∂

∂y1

)i
f(x)g(y)

=
n∑
i=0

(
n

i

)
(−1)in! ǎi n! b̌n−i

= n!A(f, g). (2.23)

Hence the apolar invariant equals (apart from a factor 1/n!) the nth transvec-
tant {f, g}n.

For relations between transvectants, and interpretations in terms of rep-
resentations of SL2, see Abdesselam and Chipalkatti [1].

Example 2.16. As shown in (2.23), the transvectant {f, g}n of two binary
forms of equal degree n is (apart from a constant factor) their apolar in-
variant. More generally, if f and g are binary forms of degrees n and m
with n ≥ m ≥ 0, the apolar covariant {f, g} is defined as the highest non-
trivial transvectant (i.e., the mth transvectant), which by (2.20) and a short
calculation can be expressed as

{f, g} := {f, g}m = m! g(−∂2, ∂1)f(x1, x2). (2.24)
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(Hence, if m = n, {f, g} = n!A(f, g), so the apolar covariant then reduces to
the apolar invariant in Example 2.7, except for the trivial but inconvenient
factor n!.)

By Example 2.15, {f, g} is a joint covariant of degrees ν1 = ν2 = 1, order
µ = n−m and weight w = m.

Note the asymmetry in the definition; we assume n ≥ m.

Example 2.17. The kth Gundelfinger covariant Gk(f), for k = 0, 1, . . . , is
the (k + 1)× (k + 1) determinant

Gk(f) :=

∣∣∣∣ ∂2kf(x, y)

∂x2k−i−j∂yi+j

∣∣∣∣
0≤i,j≤k

; (2.25)

this is a covariant of degree ν = k+ 1, order µ = (k+ 1)(n− 2k) and weight
w = k(k+ 1), see [9] and [13]. Note that G0(f) = f and G1(f) = H(f), the
Hessian covariant; further Gk(f) = 0 if k > n/2. If n is even and k = n/2,
then, by (2.4) and (2.13),

Gn/2(f) =
∣∣n! ǎi+j

∣∣n/2
i,j=0

= n!n/2+1 Han(f), (2.26)

a constant times the Hankel determinant (catalecticant) in Example 2.9.

A covariant Ψ of order µ can be written Ψ(f ; x) = Φ(f)xµ1 + . . . ; we call
the coefficient Φ(f) the source or leading coefficient of Ψ. (And similarly
for joint covariants.) The source of Ψ is thus given by

Φ(f) := Ψ(f ; 1, 0); (2.27)

equivalently,
Φ(f) := 1

µ!∂
µ
1 Ψ(f ; x). (2.28)

Conversely, by (2.14), Ψ can be recovered by

Ψ(f ;x, y) = x−2wΦ
(
T (1)
x,yf

)
= x−wΦ

(
T (2)
x,yf

)
= xµΦ

(
T (3)
x,yf

)
, (2.29)

where

T (1)
x,y :=

(
x y
0 x

)
, T (2)

x,y :=

(
x y
0 1

)
, T (3)

x,y :=

(
1 y/x
0 1

)
. (2.30)

2.2. Seminvariants.

Definition 2.18. A seminvariant (of binary forms of degree n) is a homo-
geneous polynomial Φ(f) in the coefficients a such that

Φ(Tf) = αµ|T |wΦ(f) (2.31)

for some µ,w ≥ 0 and all f and T of the form
(
α 0
γ δ

)
. The number µ is the

order and w is the weight of Φ. We denote the degree of Φ by ν.

Definition 2.19. Similarly, a joint seminvariant of several forms f1, . . . , f`,
of degrees n1, . . . , n`, is a polynomial Φ(f1, . . . , f`) in the coefficients of
f1, . . . , f`, homogeneous of degrees ν1, . . . , ν`, respectively, such that

Φ(Tf1, . . . , T f`) = αµ|T |wΦ(f1, . . . , f`). (2.32)
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for some µ,w ≥ 0, the order and weight of Φ, and all f1, . . . , f` and T =(
α 0
γ δ

)
.

In other words, a (joint) seminvariant is an invariant for the subgroup of

GL(2) given by
{(

α β
γ δ

)
∈ GL(2) : β = 0

}
=
{(

α 0
γ δ

)
: αδ 6= 0

}
.

We still have (2.15) and (2.17), respectively. In fact, these are equivalent
to invariance for all T = λI =

(
λ 0
0 λ

)
. Consequently, if (2.15) or (2.17) holds,

it is enough that (2.31) or (2.32) holds for T of the form
(
α 0
γ 1

)
; these are the

transformations (x, y) 7→ (αx + γy, y), which form a group A(1) obviously
isomorphic to the group of affine maps x 7→ αx+ γ in one dimension.

Furthermore,we say that a coefficient ai has weight i, and more generally
that a monomial ak00 a

k1
1 a

k2
2 · · · has weight k1 + 2k2 + · · · . A polynomial in

a = (a0, . . . , an) is isobaric if all its terms has the same weight, and then
this is said to be the weight of the polynomial. It is easily seen that the
invariance (2.31) or (2.32) holds for all T of the form

(
1 0
0 δ

)
if and only if

Φ is isobaric of weight w. (In this case, (2.31)=(2.6) and (2.32)=(2.8).)
Consequently, the invariance (2.31) or (2.32) holds for all diagonal matrices
T if and only if Φ is homogeneous and isobaric and (2.15) or (2.17) holds.
This leads to the following characterization, see [18, §II.2].

Theorem 2.20. The following are equivalent for a polynomial Φ in the
coefficients of one or several binary forms.

(i) Φ is a (joint) seminvariant
(ii) Φ is homogeneous and invariant for A(1).
(iii) Φ is homogeneous and isobaric and invariant for all T of the form

( 1 0
t 1 ), i.e., translations (x, y) 7→ (x+ t, y). (For such T , the invari-

ance is simply Φ(Tf) = Φ(f) or Φ(Tf1, . . . , T f`) = Φ(f1, . . . , f`).)
(iv) Φ is homogeneous and isobaric and satisfies the Cayley–Aronhold

differential equation

Ω(Φ) :=
n∑
i=1

(n− i+ 1)ai−1
∂Φ

∂ai
= 0; (2.33)

for a joint seminvariant Φ(a1, . . . ,a`), with aj = (a1,j , . . . , anj ,j),
the equation takes the form

Ω(Φ) :=
∑̀
j=1

nj∑
i=1

(nj − i+ 1)ai−1,j
∂Φ

∂ai,j
= 0, (2.34)

where thus Ω =
∑`

j=1 Ωj.

In (iii), it suffices to consider the special T = ( 1 0
1 1 ), i.e., (x, y) 7→ (x+y, y).

Remark 2.21. Using ǎi := ai/
(
n
i

)
as in [18], (2.33) becomes

Ω(Φ) =
n∑
i=1

iǎi−1
∂Φ

∂ǎi
= 0. (2.35)
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Remark 2.22. There is also a dual differential operator

Ω∗(Φ) :=
n−1∑
i=0

(i+ 1)ai+1
∂Φ

∂ai
=

n−1∑
i=0

(n− i)ǎi+1
∂Φ

∂ǎi
, (2.36)

and similarly for joint seminvariants with Ω∗ :=
∑

j Ω∗j . The differential
equation

Ω∗(Φ) = 0 (2.37)

holds for invariants Φ, but not for other seminvariants. In fact, (2.37) is a
necessary and sufficient condition for a seminvariant Φ to be an invariant
[18, Sätze 2.1–2.2]. (Other notations: D[18] = Ω, ∆[18] = Ω∗.)

Obviously, an invariant is a seminvariant. Moreover, there is an important
correspondence between covariants and seminvariants.

Theorem 2.23. For any n, there is a one-to-one correspondence between
covariants Ψ and seminvariants Φ, such that Φ is the source of Ψ; see
(2.27)–(2.29).

More generally, for any n1, . . . , n`, there is a one-to-one correspondence
between joint covariants and joint seminvariants given by taking the source
(leading coefficient).

The degrees, order and weight are preserved by this correspondence.

Remark 2.24. Another way to recover the covariant Ψ from its source Φ
is by the formula [18, pp. 56–58]

Ψ =

µ∑
j=0

(Ω∗)j(Φ)

j!
xµ−j , (2.38)

where µ is the order. Since further (Ω∗)µ+1Φ = 0, the sum can also be
written

∑∞
j=0(Ω

∗)j(Φ)xµ−j/j! .

Remark 2.25. We have defined the weight of a covariant so that it equals
the weight of its source. It is easy to see, arguing as for Theorem 2.20, that
if we give x weight 1 and y weight 0, then a covariant is isobaric, with each
term of weight w+ µ. (Some references, e.g. [8], call our w the index of the
covariant, and call w + µ the weight, but we do not make this definition.
Note that if we instead give x weight 0 and y weight −1, then the covariant
is isobaric with weight w.)

Example 2.26. The source of f(x), i.e., the seminvariant corresponding to
f(x), see Example 2.12, is a0. This has degree 1, order n, weight 0.

Example 2.27. The Hessian seminvariant H0 is the source of the Hessian
covariant H in Example 2.13. It is, by a simple calculation,

H0(f) := 2n(n− 1)a0a2 − (n− 1)2a21 = n2(n− 1)2(ǎ0 ǎ2 − ǎ21). (2.39)

H0 has degree 2, order 2n− 4 and weight 2.
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Example 2.28. The Jacobian joint seminvariant of two binary forms f(x) =∑n1
i=0 aix

n1−iyi and g(x) =
∑n2

i=0 bix
n2−iyi, corresponding to the Jacobian

joint covariant in Example 2.14, is, by a simple calculation,

n1a0b1 − n2b0a1 = n1n2(ǎ0b̌1 − b̌0ǎ1). (2.40)

This has degrees ν1 = ν2 = 1, order n1 + n2 − 2 and weight 1.

Example 2.29. The source gk of the kth Gundelfinger covariant in Exam-
ple 2.17 is, by (2.25), (2.27) and (2.4),

gk(f) = Gk(f ; 1, 0) =

∣∣∣∣ ∂2kf

∂x2k−i−j∂yi+j
(1, 0)

∣∣∣∣
0≤i,j≤k

=

∣∣∣∣ 1

(n− 2k)!

∂nf

∂xn−i−j∂yi+j

∣∣∣∣
0≤i,j≤k

=
(
(n)2k

)k+1∣∣ǎi+j∣∣ki,j=0
. (2.41)

This is a seminvariant of degree ν = k + 1, order µ = (k + 1)(n − 2k) and
weight w = k(k + 1) by Example 2.17.

Cf. the special cases in Example 2.27 (k = 1) and Example 2.9 (n = 2k).

Example 2.30. The source τk(f, g) of the transvectant {f, g}k is given by,
using (2.28), (2.20), (2.23), (2.11), (2.3) and (2.1),

τk(f, g) =
1

(n1 + n2 − 2k)!
∂n1+n2−2k
1

(( ∂

∂x1

∂

∂y2
− ∂

∂x2

∂

∂y1

)k
f(x)g(y)

∣∣∣
y=x

)
=

1

(n1 + n2 − 2k)!

(( ∂

∂x1
+

∂

∂y1

)n1+n2−2k( ∂

∂x1

∂

∂y2
− ∂

∂x2

∂

∂y1

)k
f(x)g(y)

∣∣∣
y=x

)
=

1

(n1 + n2 − 2k)!

( ∂

∂x1

∂

∂y2
− ∂

∂x2

∂

∂y1

)k( ∂

∂x1
+

∂

∂y1

)n1+n2−2k
f(x)g(y)

∣∣∣
y=x

=
1

(n1 − k)! (n2 − k)!

( ∂

∂x1

∂

∂y2
− ∂

∂x2

∂

∂y1

)k
∂n1−k
1 f(x)∂n2−k

1 g(y)
∣∣∣
y=x

=
1

(n1 − k)! (n2 − k)!

{
∂n1−k
1 f, ∂n2−k

1 g
}
k

=
k!

(n1 − k)! (n2 − k)!
A〈k〉

(
∂n1−k
1 f, ∂n2−k

1 g
)

=
k!

(n1 − k)! (n2 − k)!

k∑
i=0

(−1)i
(
∂n1−i
1 f · ∂n2−k+i

1 g
)
(0, 1)

=
k!

(n1 − k)! (n2 − k)!

k∑
i=0

(−1)i(n1 − i)! ai (n2 − k + i)! bk−i

=
n1!n2!

(n1 − k)! (n2 − k)!

k∑
i=0

(−1)i
(
k

i

)
ǎi b̌k−i. (2.42)
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Note from Example 2.15 that τ1(f, g) is the Jacobian seminvariant in
Example 2.28, and τ2(f, f) = 2H0(f), the Hessian seminvariant in Exam-
ple 2.27, while if n1 = n2 = n, then τn(f, g) = {f, g}n is n!A(f, g), the
apolar invariant in Example 2.7. Further, the special case n2 = k yields the
source of the apolar covariant in Example 2.16.

The group GL(2) is generated by the subgroup A(1) and the reflection
ρ = ( 0 1

1 0 ) which interchanges x and y. Hence, Φ is invariant if and only it
is invariant under both A(1) and ρ, i.e., if and only if it is a seminvariant
that is invariant under ρ. We have ρ(x, y) = (y, x) and thus, by (2.5),
ρf(x, y) = f(y, x). We denote ρf by f †. It follows from (2.2) that if f has
coefficients a = (a0, . . . , an) as in (2.2), then f † has coefficients

a† := (an, . . . , a0). (2.43)

This leads to the following companion to Theorem 2.20, which can be used
together with Theorem 2.20 to find convenient criteria for invariants.

Theorem 2.31. The following are equivalent for a polynomial Φ in the
coefficients of one or several binary forms.

(i) Φ is a (joint) invariant.

(ii) Φ is a (joint) seminvariant and Φ(a†) = (−1)wΦ(a) or Φ(a†1, . . . ,a
†
`)

= (−1)wΦ(a1, . . . ,a`).
(iii) Φ is a (joint) seminvariant of order µ = 0.
(iv) Φ is a (joint) seminvariant and nν = 2w or n1ν1 + · · ·+ n`ν` = 2w

for the degree(s) and the weight (i.e., (2.7) or (2.9) holds).

Proof. (i)⇐⇒ (ii) by the discussion above.
(i)⇐⇒ (iii) by the correspondence in Theorem 2.23 and the fact that an

invariant is a covariant of order 0 and conversely.
(iii)⇐⇒ (iv) by (2.15) and (2.17). �

It is obvious that we can take linear combinations of (joint) invariants,
covariants or seminvariants with the same degrees, weights and orders. Fur-
thermore, a product of (joint) invariants, covariants or seminvariants is al-
ways another invariant, covariant or seminvariant, with degrees, weights and
orders in the factors added. Consequently, an isobaric polynomial in invari-
ants is another invariant; the same is true for covariants and seminvariants
provided the result also is homogeneous in the coefficients a0, . . . , an.

We say that a set B of invariants (etc.) is a basis if every invariant (etc.),
of forms of the given degree(s), is a (necessarily isobaric) polynomial in
elements of B. (Less formally, one also says that the invariants in B are
all invariants, thus really meaning that every invariant is a polynomial of
invariants in B.) It is proved by Gordan (and more generally by Hilbert),
that for any n, there exists a finite basis of the invariants (covariants or
seminvariants).

We have also the following.
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Theorem 2.32. A covariant of a sequence of covariants Ψ1(a1, . . . ,al; x),
Ψ2(a1, . . . ,al; x), . . . is itself a covariant.

Example 2.33. As said in Example 2.12, the form f(x) itself is a covariant
of degree 1, order n and weight 0. Thus f2 is a covariant of degree 2, order
2n and weight 0. Hence, see Example 2.8, the apolar invariant A(f2, f2) is
an invariant (note that 2n is even); it is easily seen that this invariant has
degree 4 and weight 2n, cf. (2.7). (It is shown in [18, p. 42] that A(f2, f2)
does not vanish identically for any n ≥ 2.)

Example 2.34. The Hessian covariant H(f ; x) in Example 2.13 has degree
2 and order 2n − 4; hence the apolar invariant A(H(f ; x), H(f ; x)) is an
invariant of degree 4 and, by (2.7), weight 2n. (It is shown in [18, p. 43]
that A(H(f), H(f)) does not vanish identically for any n ≥ 2.)

2.3. Rational invariants. By definition, invariants etc. are required to
be polynomials in the coefficients. A few times we will consider a minor
extension.

Definition 2.35. A rational invariant (joint invariant, covariant, etc.) is a
rational function of the coefficients that has the invariance property (2.6)
(etc.).

It is easily seen that a rational invariant is the same as a quotient of two
invariants (etc.) [18, Satz 1.4]. Note that a rational invariant may be infinite
or undefined for certain values of the coefficients.

We will in the sequel sometimes use rational seminvariants of the form
a−k0 Φ, where Φ is a seminvariant. Another interesting case is the following.

Definition 2.36. An absolute invariant is a rational invariant with weight
w = 0; it is thus a rational function of the coefficients that satisfies

Φ(Tf) = Φ(f) (2.44)

for all T ∈ GL(2).

By (2.6), there are no non-trivial invariants that are absolute invariants;
we have to consider rational invariants here. Any absolute invariant is the
quotient Φ1/Φ2 of two invariants of the same weight, and thus the also the
same degree; conversely, any such quotient is an absolute invariant. One
example is given in Example 9.2.

2.4. Dimensions. The set of all covariants of degree ν and weight w of
binary forms of a given degree n is a linear space. We let N(n, ν, w) be its
dimension, i.e., the number of linearly independent covariants of this degree
and weight. By Theorem 2.23, N(n, ν, w) is also the dimension of the linear
space of seminvariants of degree ν and weight w. (Theorem 2.23 yields an
isomorphism between the two linear spaces.) Note that we get the invariants
of degree ν by taking w = nν/2 (provided this is an integer), see (2.7) and
(2.15).
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The numberN(n, ν, w) can be computed as follows by a formula by Cayley
(the first complete proof was given by Sylvester), see [18, Sätze 2.21–2.22].

Let
[
n
k

]
q

be the Gaussian polynomial defined by[
n

k

]
q

:=

∏n
i=1(1− qi)∏k

i=1(1− qi)
∏n−k
j=1 (1− qj)

=

∏n
i=n−k+1(1− qi)∏k

i=1(1− qi)
. (2.45)

(See further e.g. Andrews [2].) We let [qw]P (q) denote the coefficient of qw

in a polynomial P (q).

Theorem 2.37. If 2w ≤ nν, then

N(n, ν, w) = [qw]

(
(1− q)

[
n+ ν

n

]
q

)
= [qw]

(
(1− q)

[
n+ ν

ν

]
q

)

= [qw]

∏ν+n
i=ν+1(1− qi)∏n
i=2(1− qi)

= [qw]

∏n+ν
i=n+1(1− qi)∏ν
i=2(1− qi)

= [qw]

[
n+ ν

n

]
q

− [qw−1]

[
n+ ν

n

]
q

. (2.46)

If 2w > nν, then N(n, ν, w) = 0.

It follows that if we fix n and w, N(n, ν, w) is the same for all ν ≥ w, and
is given by a simple generating function; see also Remark 3.20 below.

Corollary 2.38. If n ≥ 2 and ν ≥ w, then

N(n, ν, w) = [qw]
n∏
i=2

(1− qi)−1. (2.47)

Proof. The factors 1− qi with i ≥ ν + 1 > w do not affect [qw]. �

3. Invariants of polynomials

We may identify the binary form f̃(x, y) =
∑n

i=0 aix
n−iyi and the poly-

nomial f(x) =
∑n

i=0 aix
n−i; this gives a one-to-one correspondence between

binary forms of degree n and polynomials of degree (at most) n described

by f(x) = f̃(x, 1) and, conversely, f̃(x, y) = ynf(x/y). We let Pn denote
the set of all such polynomials

∑n
i=0 aix

n−i.

Remark 3.1. When n is given, we will say “polynomial of degree n” for
any polynomial

∑n
i=0 aix

n−i, even if a0 = 0. (As just said, this gives a cor-
respondence with binary forms of degree n.) This thus includes polynomials
of lower degrees. See further Subsection 3.2.

A transform T =
(
α β
γ δ

)
acts on binary forms by (2.5); this transfer to

the action

Tf(x) = (βx+ δ)nf
(αx+ γ

βx+ δ

)
(3.1)

on polynomials.
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We define a (projective) invariant or seminvariant of a polynomial f (of
some given degree) as an invariant or seminvariant of the corresponding

binary form f̃ ; similarly, a (projective) covariant is a polynomial Ψ(a;x)
of some degree µ (or less) in x such that the corresponding binary form

Ψ̃(a;x, y) of degree µ is a covariant of the form f̃ ; these definitions extend
to joint invariants etc. in the obvious way.

Thus, a polynomial Φ(f) in the coefficients of a polynomial f(x) =∑n
i=0 aix

n−i is an invariant if

Φ
(

(βx+ δ)nf
(αx+ γ

βx+ δ

))
= (αδ − βγ)wΦ

(
f(x, y)

)
(3.2)

for all f and
(
α β
γ δ

)
.

Similarly, by Theorem 2.20(ii), a polynomial Φ(f) in the coefficients of a
polynomial f(x) =

∑n
i=0 aix

n−i is a (projective) seminvariant if it is homo-
geneous and invariant for A(1), i.e.

Φ
(
f(αx+ γ)

)
= αµ+wΦ

(
f(x, y)

)
(3.3)

for all f and (α, γ). In other words, a seminvariant is the same as an affine
invariant for polynomials. (However, we continue to use the traditional
term seminvariant).

The same applies with obvious modifications to joint invariants and sem-
invariants.

Example 3.2. If f is a polynomial of degree n and f̃ the corresponding

binary form, then x∂f̃∂x + y ∂f̃∂y = nf̃ . It follows after some calculations that,

for y = 1,∣∣∣∣∣∣
∂2f̃
∂x2

∂2f̃
∂x∂y

∂2f̃
∂x∂y

∂2f̃
∂y2

∣∣∣∣∣∣ =

∣∣∣∣∣ ∂2f̃
∂x2

(n− 1)∂f̃∂x
(n− 1)∂f̃∂x n(n− 1)f̃

∣∣∣∣∣ = n(n− 1)f̃
∂2f̃

∂x2
− (n− 1)2

(∂f̃
∂x

)2
.

Hence the Hessian covariant, see Example 2.13, of a polynomial f of degree
n is the polynomial

H(f ;x) := n(n− 1)f(x)f ′′(x)− (n− 1)2(f ′(x))2. (3.4)

The source of H(f) is a seminvariant H0(f) of degree 2, order 2n − 4 and
weight 2; by Example 2.27, it is given by

H0(f) = 2n(n− 1)a0a2 − (n− 1)2a21. (3.5)

Example 3.3. Similar calculation show that the Jacobian joint covariant
of two polynomials f and g of degrees n1 and n2 is given by

J(f, g) = n2f
′g − n1fg′. (3.6)

In particular, it follows from (3.4) and (3.6) that

H(f) = (n− 1)J〈n−1,n〉(f
′, f). (3.7)
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Example 3.4. The calculations in Example 3.2 generalize to the Gundelfin-
ger covariants in Example 2.17 and show that the kth Gundelfinger covariant
of a polynomial f of degree n is the determinant

Gk(f ;x) =

∣∣∣∣(n− 2k + i+ j)!

(n− 2k)!
f (2k−i−j)(x)

∣∣∣∣
0≤i,j≤k

=

∣∣∣∣(n− i− j)!(n− 2k)!
f (i+j)(x)

∣∣∣∣
0≤i,j≤k

. (3.8)

Theorems 2.20 and 2.31 translate to criteria for (joint) invariants and
seminvariants of polynomials. For example, we have the following.

Theorem 3.5. A polynomial Φ in the coefficients of one or several polyno-
mials is a (joint) seminvariant if and only if Φ is homogeneous and isobaric
and invariant for all translations x 7→ x+ x0, i.e., Φ(f(x+ x0)) = Φ(f(x))
or Φ(f1(x+ x0), . . . , f`(x+ x0)) = Φ(f1, . . . , f`).

Theorem 3.6. The following are equivalent for a polynomial Φ in the co-
efficients of one or several binary forms.

(i) Φ is a (joint) invariant.

(ii) Φ is a (joint) seminvariant and Φ(a†) = Φ(a) or Φ(a†1, . . . ,a
†
`) =

Φ(a1, . . . ,a`).
(iii) Φ is a (joint) seminvariant of order µ = 0.
(iv) Φ is a (joint) seminvariant and nν = 2w or n1ν1 + · · ·+ n`ν` = 2w

for the degree(s) and the weight (i.e., (2.7) or (2.9) holds).

Here a† is given by (2.43); if a are the coefficients of f , then these are the
coefficients of the reflected polynomial f †(x) := xnf(1/x).

3.1. Derivatives. The derivative f ′(x) is not a (projective) covariant. (If
it were, it would be of order µ = n − 1 and its source would be na0; how-
ever, na0 is a seminvariant of order n, not n− 1, so (2.15) would not hold.)

Nevertheless, it is, as well as higher derivaties f (j), obviously invariant un-
der translations (and affine maps), and Theorem 3.5 implies the following,
together with the obvious generalization to joint seminvariants.

Theorem 3.7. If Φ〈m〉 is a seminvariant of polynomials of degree m ≤ n,

then Φ〈m〉(f
(n−m)) is a seminvariant of polynomials of degree n. If Φ〈m〉 has

degree ν, weight w and order µ, then Φ(f (n−m)) has the same degree ν and
weight w, while the order is increased to µ+ (n−m)ν.

(This theorem is equivalent to [18, Satz 2.18]; note that the form given
there requires using the variables ǎi.)

Proof. The formula for the order follows from (2.15). �

Remark 3.8. In particular, even if Φ is an invariant (µ = 0), Φ(f (n−m)) is
not; it is only a seminvariant since its order is (n−m)ν > 0. It follows that

the covariant corresponding to Φ(f (n−m)) can not be obtained immediately
from the covariant corresponding to Φ.
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Recall that we use subscripts 〈n〉 (on coefficients or seminvariants) to
denote the degree of the considered polynomials. We have

ai 〈n−1〉(f
′) = (n− i)ai(f), ǎi 〈n−1〉(f

′) = nǎi(f), (3.9)

and, more generally,

ai 〈m〉(f
(n−m)) = (n− i)n−m ai(f), ǎi 〈m〉(f

(n−m)) = (n)n−m ǎi(f). (3.10)

Example 3.9. Applying the Hessian seminvariant for degree n − 1 to f ′,
we obtain by (2.39)

H0 〈n−1〉(f
′) = 2(n− 1)(n− 2)na0(n− 2)a2 − (n− 2)2((n− 1)a1)

2

= (n− 2)2H0(f), (3.11)

so, apart from a constant factor, we obtain the Hessian covariant for degree
n.

Example 3.10. Similarly, for the Jacobian joint seminvariant in Exam-
ple 2.28,

J〈n1−1,n2〉(f
′, g) = (n1 − 1)J(f, g). (3.12)

Example 3.11. For the kth Gundelfinger seminvariant we obtain by (2.41)
and (3.9), generalizing (3.11),

gk 〈n−1〉(f
′) =

(
(n− 1)2k

)k+1∣∣ǎi+j 〈n−1〉(f ′)∣∣ki,j=0

=
(
(n− 1)2k

)k+1∣∣nǎi+j(f)
∣∣k
i,j=0

=
(
n(n− 1)2k

)k+1∣∣ǎi+j(f)
∣∣k
i,j=0

= (n− 2k)k+1gk(f). (3.13)

Example 3.12. The kth transvectant seminvariant τk(f, g) is by (2.42)
obtained by applying the apolar invariant to suitable derivatives:

τk 〈n1,n2〉(f, g) =
k!

(n1 − k)! (n2 − k)!
A〈k〉

(
f (n1−k), g(n2−k)). (3.14)

As a consequence,

τk 〈n1−1,n2〉(f
′, g) = (n1 − k)τk 〈n1,n2〉(f, g) (3.15)

and, more generally,

τk 〈n1−`1,n2−`2〉(f
(`1), g(`2)) = (n1 − k)`1(n2 − k)`2τk 〈n1,n2〉(f, g), (3.16)

so, apart from a constant factor, we obtain the kth transvectant seminvariant
of the original fumctions. Note the special cases in Example 3.9 (k = 2,
`1 = `2 = 1) and Example 3.10 (k = 1, `1 = 1, `2 = 0).
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3.2. Restriction to lower degree. Let Φ be a seminvariant of polyno-
mials of degree (at most) n. If m < n, then Pm ⊂ Pn, so every poly-
nomial of degree m can be regarded as a polynomial

∑n
i=0 aix

n−i with
a0 = · · · = an−m−1 = 0; thus, Φ(f) is defined for every such polynomial.
(See Remark 3.1.)

Note that we write a polynomial of degree m < n as
∑m

j=0 aj 〈m〉x
m−j =∑n

i=0 ai 〈n〉x
n−i, and thus

ai 〈n〉 =

{
ai−(n−m) 〈m〉, if i ≥ n−m
0. if i < n−m.

(3.17)

We denote the restriction of a seminvariant Φ to polynomials of degree m
by Φ|〈m〉.

Theorem 3.13. A seminvariant Φ of polynomials of degree n is also a
seminvariant of polynomials of any given lower degree n− j. If Φ has degree
ν, weight w and order µ, then its restriction Φ|〈n−j〉 has degree ν, weight
w − jn and order µ+ jn.

Proof. It is an immediate consequence of Theorem 3.5 that Φ|〈n−j〉 is a
seminvariant. The degree is the same, but the weight of each ai is decreased
by j by (3.17), and thus the new weight is w − jν. The new order is by
(2.15) given by

(n− j)ν − 2(w − jν) = n− 2w + jν = m+ jν. �

In particular, Φ|〈n−j〉 has order µ + jν ≥ ν > 0 for any seminvariant Φ
and any j > 0; hence, a non-trivial restriction is never an invariant, even if
Φ is an invariant.

Example 3.14. The restriction H0|〈n−1〉 of the Hessian seminvariant in
Example 3.2 is, recalling a0 = 0,

−(n− 1)2a21 〈n〉 = −(n− 1)2a20 〈n−1〉. (3.18)

This has degree 2, weight 0 and order 2n − 2, in agreement with Theo-
rem 3.13.

Example 3.15. Combining Theorem 3.13 and Theorem 3.7, we see that if Φ
is a seminvariant of polynomials of degree n, then so is Φ(f ′) = Φ|〈n−1〉(f ′),
and more generally Φ(f (j)) for every j ≥ 1. If Φ has degree ν, weight w and
order µ = nν−2w, then Φ(f ′) is a seminvariant with degree ν, weight w−ν
and order µ+ 2ν.

3.3. Reduced form. The reduced form of a polynomial f(x) =
∑n

i=0 aix
n−i

of degree n is the polynomial

f̂(x) =

n∑
i=0

âix
n−i := f

(
x− a1

na0

)
; (3.19)
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note that â0 := a0 and â1 = 0. The reduced form is thus the unique
translation f(x − x0) of f with vanishing coefficient for the second highest
degree xn−1. Explicitly, by (3.19) and binomial expansions,

âi =
i∑

j=0

aj

(
n− j
n− i

)(
− a1
na0

)i−j
. (3.20)

The coefficient âi is a0 times a polynomial of degree i in (aj/a0)
n
j=1, and

thus ai−10 âi is a polynomial in a0, . . . , an. This polynomial is homogeneous
of degree i and, as is easily checked, isobaric with weight i. Furthermore,
the reduced form is the same for all translations f(x−x0), so its coefficients
are translation invariant.

Theorem 3.16. The coefficients âi of the reduced form of f are rational
seminvariants; more precisely âi is a seminvariant divided by ai−10 . The

seminvariant ai−10 âi has degree and weight ν = w = i and thus order µ =
(n− 2)i.

Example 3.17. The constant term

ân = f̂(0) = f
(
− a1
na0

)
=

n∑
j=0

aj

(
− a1
na0

)n−j
(3.21)

is a real seminvariant and an−10 ân = an−10 f(−a1/na0) is a seminvariant of
degree and weight n and order n(n− 2).

Note that every coefficient âi can be obtained as the constant term of a

derivative f̂ (n−i) = f̂ (n−i), cf. Theorem 3.7.

Example 3.18. The first non-trivial reduced coefficient is

â2 = a0

(
n

2

)(
a1
na0

)2

−a1(n−1)
a1
na0

+a2 = a2−
(n− 1) a21

2na0
=

H0

2n(n− 1) a0
,

(3.22)
see (2.39). The seminvariant a0â2 is thus a constant times the Hessian
seminvariant H0.

Every homogeneous and isobaric polynomial in â2, . . . , ân times a power
as0 is a rational seminvariant, and a seminvariant if the exponent s is large
enough. Conversely, every seminvariant Φ is translation invariant, and thus

Φ(f) = Φ(f̂); hence every seminvariant is a polynomial in a0 and â2, . . . , ân.
Up to powers of a0, every seminvariant is thus a polynomial in the sem-
invariants ai−10 âi. However, these seminvariants do not form a basis (when
n ≥ 3), since we may need need negative powers of a0 in the representation.
For example, for n = 3, by (8.3)–(8.5),

∆ = −4a0 â
3
2 − 27a20 â

2
3 =
−4(a0â

2
2)

3 − 27(a20â3)
2

a20
. (3.23)

In general, we have the following theorem.
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Theorem 3.19. If Φ is a seminvariant with degree ν and weight w, then

Φ = aν−w0 G
(
(ai−10 âi)

n
i=2

)
(3.24)

for some isobaric polynomial G of weight w. Consequently, Φ is a polynomial
in a0 and a0â2, . . . , a

n−1
0 ân if and only if ν ≥ w.

If ν ≥ w, then (3.24) gives a one-to-one correspondence between sem-
invariants with degree ν and weight w, and isobaric polynomials G

(
(ai−10 âi)

n
i=2

)
of weight w.

Proof. Each term ai−10 âi has the same degree and weight, and thus so has

every (isobaric) polynomial G
(
(ai−10 âi)

n
i=2

)
in them, while a0 has degree 1

and weight 0. Hence an isobaric term as0G
(
(ai−10 âi)

n
i=2

)
has weight v and

degree s + v for some w, and thus we must have v = w and s = ν − v =
ν − w. �

By Example 4.2 below, the discriminant ∆ has ν = 2(n − 1) and w =
n(n− 1), so ν − w = −(n− 2)(n− 1) < 0 for any n ≥ 3, and then ∆ is not
a polynomial in a0 and ai−10 âi.

Remark 3.20. In the case ν ≥ w, we see again that the dimensionN(n, ν, w)
is independent of ν as long as ν ≥ w. Moreover, N(n, ν, w) then equals the
number of isobaric monomials of weight w in (âi)

n
i=2; this number has the

generating function
∏n
i=2(1 − qi)−1, which yields another proof of Corol-

lary 2.38.

4. Invariants and roots

Let the polynomial f of degree n have roots ξ1, . . . , ξn (possibly in some
extension of the ground field). Then, as is well-known,

ai = (−1)ia0ei(ξ1, . . . , ξn), (4.1)

where ei is the i:th symmetric polynomial; note that ei has degree i. If Φ(f)
is a seminvariant, we can thus write Φ(f) as a polynomial Φ∗(ξ1, . . . , ξn; a0).

Theorem 4.1. A polynomial Φ∗(ξ1, . . . , ξn; a0) is a seminvariant of degree
ν and weight w if and only if Φ∗(ξ1, . . . , ξn; a0) = aν0ϕ(ξ1, . . . , ξn) where

(i) ϕ is symmetric in ξ1, . . . , ξn;
(ii) ϕ is homogeneous of degree w in ξ1, . . . , ξn;

(iii) ϕ is translation invariant, i.e., ϕ(ξ1−x0, . . . , ξn−x0) = ϕ(ξ1, . . . , ξn).
Equivalently, ϕ(ξ1, . . . , ξn) is a polynomial in the differences ξj − ξn.

(iv) ν ≥ degξ1
(
ϕ(ξ1, . . . , ξn)

)
, the degree of ξ1 in ϕ(ξ1, . . . , ξn).

Furthermore, Φ∗ is an invariant if and only the above holds and nν = 2w;
in this case

(ξ1 · · · ξn)νϕ(ξ−11 , . . . , ξ−1n ) = (−1)wϕ(ξ1, . . . , ξn). (4.2)
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Proof. Recall that every symmetric polynomial is a polynomial in e1, . . . , en.
Then use Theorem 3.5 and (4.1) and note that each ξj has weight 1 by
the fact that ai has weight i. This might yield terms containing negative
powers of a0, and (iv) is necessary and sufficient for Φ to be a polynomial in
a0, . . . , an. The symmetry Φ(a†) = (−1)wΦ(a) translates to (4.2). We omit
the details. �

Example 4.2. The discriminant of f is

∆(f) := a2n−20 ∆0(f) = a2n−20

∏
1≤i<j≤n

(ξi − ξj)2, (4.3)

This is symmetric and has degree w = n(n − 1) in ξ1, . . . , ξn. It follows
from Theorem 4.1, since ν = 2(n−1), that the discriminant ∆ is an invariant
of degree ν = 2(n−1) and weight w = n(n−1). (Other notation: ∆ = D[18].)

Example 4.3. The sum
∑

1≤i<j≤n(ξi−ξj)2 satisfies (i)–(iii) in Theorem 4.1,

and has degree 2 in ξ1, so a20
∑

1≤i<j≤n(ξi− ξj)2 is a seminvariant. We have,

using (4.1),

∑
1≤i<j≤n

(ξi − ξj)2 = (n− 1)
n∑
i=1

ξ2i − 2
∑

1≤i<j≤n
ξiξj

= (n− 1)
( n∑
i=1

ξi

)2
− 2n

∑
1≤i<j≤n

ξiξj = (n− 1)
(−a1
a0

)2
− 2n

a2
a0
,

so

a20
∑

1≤i<j≤n
(ξi − ξj)2 = (n− 1)a21 − 2na0a2 = − 1

n− 1
H0(f), (4.4)

where H0 is the Hessian seminvariant in Examples 2.27 and 3.2.

Example 4.4. Let ξ := 1
n

∑n
i=1 ξi = −a1/na0. Then the roots of the re-

duced polynomial f̂ are ξ1 − ξ, . . . , ξn − ξ. Any symmetric homogeneous
polynomial in ξ1 − ξ, . . . , ξn − ξ satifies Theorem 4.1(i)–(iii), and multiplied
by a suitable power of a0, it is thus a seminvariant. Since any such polyno-
mial can be written as an isobaric polynomial in âi/a0, this also follows by
Theorem 3.16 or Theorem 3.19.

In particular, the elementary symmetric polynomials ek yield the rational
seminvariants

ek(ξ1 − ξ, . . . , ξn − ξ) = (−1)kâk/a0. (4.5)

Example 4.5. As another example of the construction in Example 4.4,
consider the power sum

Sk :=

n∑
i=1

(ξi − ξ)k (4.6)
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and the seminvariant ak0Sk. Note that S0 = n is a constant and S1 = 0.
Further,

S2 =

n∑
i=1

ξ2i − nξ
2

=
1

2n

n∑
i,j=1

(ξi − ξj)2, (4.7)

so by (4.4),

a20S2 = − 1

n(n− 1)
H0(f). (4.8)

Furthermore, Sk can be expressed in e1, . . . , ek by the standard generating
function identity

log

( ∞∑
k=0

ek(−t)k
)

=
n∑
i=1

log(1− tξi) = −
∞∑
k=1

Sk
tk

k
. (4.9)

which leads to the classical Newton’s identities (with e0 = 1 and ek = 0 for
k > n),

kek =
k∑
i=1

(−1)i−1ek−iSi, k ≥ 1. (4.10)

In our situation, the arguments are ξ1 − ξ, . . . , ξn − ξ; thus S1 = e1 = 0 and
we have, for example,

S2 = e21 − 2e2 = −2e2, (4.11)

S3 = 3e3, (4.12)

S4 = −4e4 + 2e22. (4.13)

Thus, by (4.5) and Example 3.18, we obtain the seminvariants

a20S2 = −2a20e2 = −2a0â2 = − 1

n(n− 1)
H0, (4.14)

a30S3 = 3a30e3 = −3a20â3, (4.15)

a40S4 = −4a40e4 + 2(a20e2)
2 = −4a30â4 + 2(a0â2)

2. (4.16)

Note that ak0Sk has degree and weight ν = w = k (see Theorem 4.1).

Example 4.6. Consider the random variable X = ξY , where Y ∈ {1, . . . , n}
is a random index (with uniform distribution). Then X has mean EX = ξ
and centred moments

E(X − EX)k = E(X − ξ)k = 1
nSk. (4.17)

Thus, ak0 E(X − EX)k equals n−1 times the seminvariant in Example 4.5.
Kung and Rota [14, §7.6] suggested studying the cumulants χk of X,

k ≥ 2. These are defined by the generating function

exp

( ∞∑
k=1

χk
tk

k!

)
= E etX =

∞∑
k=0

EXk t
k

k!
, (4.18)
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and thus, since χ1 = EX = ξ,

exp

( ∞∑
k=2

χk
tk

k!

)
= E et(X−ξ) =

∞∑
k=0

1

n
Sk
tk

k!
. (4.19)

By expanding, we obtain the standard formulas for χk as a polynomial in
S1, . . . , Sk, or, using (4.9), in e1, . . . , ek. For example,

χ2 = E(X − EX)2 =
1

n
S2 = − 2

n
e2, (4.20)

χ3 = E(X − EX)3 =
1

n
S3 =

3

n
e3, (4.21)

χ4 = E(X − EX)4 − 3
(
E(X − EX)2

)2
=

1

n
S4 −

3

n2
S2
2 = − 4

n
e4 +

2n− 12

n2
e22.

(4.22)

It follows from (4.19) that ak0χk is an isobaric polynomial in aj0Sj , j =
2, . . . , k, and thus a seminvariant, with degree and weight ν = w = k. For
example, by (4.20)–(4.22) and (4.14)–(4.16),

a20χ2 = − 2

n
a20e2 = − 2

n
a0â2 = − 1

n2(n− 1)
H0, (4.23)

a30χ3 =
3

n
a30e3 = − 3

n
a20â3, (4.24)

a40χ4 = − 4

n
a40e4 +

2n− 12

n2
(
a20e2

)2
= − 4

n
a30â4 +

2n− 12

n2
(
a0â2

)2
. (4.25)

4.1. The case a0 = 0. We have implicitly assumed a0 6= 0 above. If a0 = 0,
then f has degree at most n − 1, and thus at most n − 1 roots. We then
adopt the projective view and regard∞ as a root of multiplicity n−deg(f),
so that f still has n roots (counted with multiplicity); these correspond
(just as in the case a0 6= 0) to the zeros of the corresponding binary form∑n

i=0 aix
n−iyi of degree n.

We can apply a limit argument to find the expression for a seminvariants
in the roots of f in this case too.

Theorem 4.7. Let Φ be a seminvariant of polynomials of degree n, and that
Φ(f) = aν0ϕ(ξ1, . . . , ξn) for some polynomial ϕ in the roots ξ1, . . . , ξn of f .
Then the restriction to polynomials of degree n− 1 is given by Φ|〈n−1〉(f) =
aν0 〈n−1〉ϕ|〈n−1〉(ξ1, . . . , ξn−1), where ϕ|〈n−1〉 is obtained from ϕ by first replac-

ing each monomial ξj11 · · · ξ
jn
n by ξj11 · · · ξ

jn−1

n−1 if jn = ν and by 0 otherwise,
and then multiplying by (−1)ν .

Note that jn ≤ ν for every term by Theorem 4.1(iv) (and symmetry).
In other words, we delete all terms in ϕ not containing a factor ξνn, and

replace each factor ξνn by (−1)ν .

Proof. Fix ξ1, . . . , ξn−1 and let ξn = b/a0 for some b; now let a0 → 0. (This
limit can be done in a purely formal way, for any field, and does not really
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assume any kind of continuity. All quantities below are polynomials in a0,
and we just substitute a0 = 0 in them.) Then, for 1 ≤ i ≤ n,

a0ei(ξ1, . . . , ξn) = a0ei(ξ1, . . . , ξn−1) + a0ξnei−1(ξ1, . . . , ξn−1)

→ bei−1(ξ1, . . . , ξn−1).

Hence, comparing with (4.1), we see that the coefficients of the polynomial
f with roots ξ1, . . . , ξn and leading coefficient a0 tend to the coefficients of
the polynomial f1 of degree n− 1 with roots ξ1, . . . , ξn−1 and leading term
−bxn−1, i.e., leading coefficient a0 〈n−1〉(f1) = −b. Consequently, Φ(f) →
Φ(f1). The result follows by noting that, as a0 → 0, aν0ξ

jn
n → 0 if jn < ν,

while aν0ξ
ν
n = bν = (−a0 〈n−1〉(f1))ν . �

Example 4.8. Applying Theorem 4.7 to the discriminant in (4.3) we find
for a polynomial f of degree n− 1

∆〈n〉(f) = a2n−20

∏
1≤i<j≤n−1

(ξi − ξj)2 = a20 ∆〈n−1〉(f). (4.26)

If we repeat, we find that for any f of degree n−2 (or smaller), ∆〈n〉(f) = 0,
in accordance with our view that then f has a double root ∞.

4.2. Joint invariants. Theorem 4.1 extends to the case of several polyno-

mials f1, . . . , f`. Let the polynomial fj have degree nj and roots ξ
(j)
1 , . . . , ξ

(j)
n

(possibly in some extension of the ground field). Then, by (4.1),

ai(fj) = (−1)ia0(fj)ei(ξ
(j)
1 , . . . , ξ(j)n ), (4.27)

and if Φ(f1, . . . , f`) is a joint seminvariant, we can write it as a polynomial

Φ∗(ξ
(j)
1 , . . . , ξ

(j)
n ; a0(f1), . . . , a0(f`)) in all roots and leading coefficients.

Theorem 4.9. A polynomial Φ∗(ξ
(1)
1 , . . . , ξ

(`)
n ; a0(f1), . . . , a0(f`)) is a joint

seminvariant of f1, . . . , f` with degrees ν1, . . . , ν` and weight w if and only

if Φ∗(ξ
(1)
1 , . . . , ξ

(`)
n ; a0) =

∏`
j=1 a0(fj)

νj · ϕ(ξ
(1)
1 , . . . , ξ

(`)
n ), where

(i) ϕ is symmetric in each set of roots ξ
(j)
1 , . . . , ξ

(j)
n , j = 1, . . . , `;

(ii) ϕ is homogeneous of degree w in ξ
(1)
1 , . . . , ξ

(`)
n ;

(iii) ϕ is translation invariant, i.e., ϕ(ξ
(1)
1 −x0, . . . , ξ

(`)
n −x0) = ϕ(ξ

(1)
1 , . . . , ξ

(`)
n ).

(iv) νj ≥ deg
ξ
(j)
1

(
ϕ(ξ

(1)
1 , . . . , ξ

(`)
n )
)
, the degree of ξ

(j)
1 in ϕ(ξ

(1)
1 , . . . , ξ

(`)
n ).

Furthermore, Φ∗ is an invariant if and only the above holds and n1ν1 +
· · ·+ n`ν` = 2w; in this case

∏̀
j=1

(ξ
(j)
1 · · · ξ

(j)
n )νj ·ϕ

(
(ξ

(1)
1 )−1, . . . , (ξ(`)n )−1

)
= (−1)wϕ(ξ

(1)
1 , . . . , ξ(`)n ). (4.28)

Proof. As for Theorem 4.1, with obvious modifications. �
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Example 4.10. The resultant of two polynomials f =
∑n

i=0 an−ix
i and

g =
∑m

j=0 bm−jx
j of degrees n andm and with roots ξ1, . . . , ξn and η1, . . . , ηm

is

R(f, g) := am0 b
n
0

n∏
i=1

m∏
j=1

(ξi − ηj). (4.29)

This is symmetric in ξ
(j)
1 , . . . , ξ

(j)
n and in η1, . . . , ηm and has degree w = nm

in ξ1, . . . , ξn, η1, . . . , ηm. Theorem 4.9 applies, with n1 = n, n2 = m, ν1 = m,
ν2 = n, and thus n1ν1 + n2ν2 = 2mn = 2w; hence the resultant R is a joint
invariant of degrees (m,n) and weight nm.

Note that R(g, f) = (−1)mnR(f, g) and the formulas, see e.g. [11],

R(f, g) = am0

n∏
i=1

g(ξi) = (−1)mnbn0

m∏
j=1

f(ηj). (4.30)

Example 4.11. Consider the resultant of f and H(f), where f is a poly-
nomial of degree n. By (3.4), H(f)(ξi) = −(n− 1)2(f ′(ξi))

2, and thus

R
(
f,H(f)

)
= a2n−40 (−1)n(n− 1)2n

n∏
i=1

f ′(ξi)
2 = a−20 (−1)n(n− 1)2nR(f, f ′)2

= (−1)n(n− 1)2n∆2, (4.31)

since ∆ = (−1)n(n−1)/2a−10 R(f, f ′), see [11].

Example 4.12. Consider again two polynomials f =
∑n

i=0 an−ix
i and g =∑m

j=0 bm−jx
j of degrees n and m and with roots ξ1, . . . , ξn and η1, . . . , ηm.

The difference m
∑n

i=1 ξi − n
∑m

j=1 ηj satisfies (i)–(iii) in Theorem 4.9, and

has degree 1 in ξ1 and η1, so a0b0
(
m
∑n

i=1 ξi − n
∑m

j=1 ηj
)

is a joint sem-

invariant. We have, using (4.1),

a0b0

(
m

n∑
i=1

ξi − n
m∑
j=1

ηj

)
= a0b0

(
m
−a1
a0
− n−b1

b0

)
= −ma1b0 + na0b1,

so this equals the Jacobian seminvariant in Examples 2.28 and 3.3.

4.3. Covariants. Similarly, a covariant can be written as a polynomial in
x and the roots ξ1, . . . , ξn of f . The following theorem yields an explicit
formula.

Theorem 4.13. Let Ψ be a covariant of polynomials of degree n, and let Φ
be its source. Suppose that Φ(f) = aν0ϕ(ξ1, . . . , ξn) as in Theorem 4.1. Then

Ψ(f ;x) = aν0

n∏
i=1

(x− ξi)ν · ϕ
( 1

x− ξ1
, . . . ,

1

x− ξn

)
.

Proof. Let f̃ be the binary form corresponding to f , and let Ψ̃(f̃) be the

covariant corresponding to Ψ(f); thus Ψ(f ;x) = Ψ̃(f̃ ;x, 1); further, let Φ̃

be the source of Ψ̃.
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The reflection ρ(x, y) := (y, x) has matrix ( 0 1
1 0 ) and determinant |ρ| = −1;

thus (2.14) yields

Ψ(f ; 0) = Ψ̃(f̃ ; 0, 1) = (−1)wΨ̃(ρf̃ ; 1, 0) = (−1)wΦ̃(ρf̃) = (−1)wΦ(f †),
(4.32)

where f † is the polynomial corresponding to ρf̃(x, y) = f̃(y, x) =
∑n

i=0 aiy
n−ixi.

We have

f †(x) =

n∑
i=0

aix
i = xnf(1/x) = a0x

n
n∏
i=1

(
x−1 − ξi

)
= a0

n∏
i=1

(1− xξi)

= a0

n∏
i=1

(−ξi)
n∏
i=1

(x− ξ−1i ),

(4.33)

with roots ξ−11 , . . . , ξ−1n . Consequently,

Φ(f †) =

(
a0

n∏
i=1

(−ξi)

)ν
ϕ(ξ−11 , . . . , ξ−1n ) (4.34)

and thus by (4.32), since ϕ is homogeneous of degree w,

Ψ(f ; 0) = (−1)wΦ(f †) = aν0

n∏
i=1

(−ξi)νϕ
( 1

−ξ1
, . . . ,

1

−ξn

)
. (4.35)

We have Ψ(f ;x) = Ψ∗(ξ1, . . . , ξn;x) for some polynomial Ψ∗, and

Ψ∗(ξ1, . . . , ξn;x) = Ψ∗(ξ1 − x, . . . , ξn − x; 0) (4.36)

by translation invariance. The result follows by (4.36) and (4.35). �

Example 4.14. As a trivial example, the covariant f has source a0, and
Theorem 4.13 yields, with ϕ = 1, f = a0

∏n
i=1(x− ξi).

Example 4.15. The source of the Hessian covariant is, by (4.4),

H0(f) = −(n− 1)a20
∑

1≤i<j≤n
(ξi − ξj)2. (4.37)

Hence Theorem 4.13 shows that the Hessian covariant is given by

H(f ;x) = −(n− 1)a20

n∏
k=1

(x− ξk)2
∑

1≤i<j≤n

( 1

x− ξi
− 1

x− ξj

)2
= −(n− 1)a20

∑
1≤i<j≤n

(ξi − ξj)2
∏
k 6=i,j

(x− ξk)2. (4.38)

Note that by extracting the leading coefficients (the coefficients of x2n−4),
we recover (4.4).

The extension to joint covariants is straightforward; we leave the formu-
lation to the reader and give only a simple example.
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Example 4.16. The source of the Jacobian covariant J(f, g) is by Exam-
ple 4.12

a0b0

(
m

n∑
i=1

ξi − n
m∑
j=1

ηj

)
(4.39)

and thus

J(f, g) = a0b0

n∏
i=1

(x− ξi)
m∏
j=1

(x− ηj)

m n∑
i=1

(x− ξi)−1 − n
m∑
j=1

(x− ηj)−1
 .

(4.40)

5. Some characterizations of vanishing invariants

In some cases, there are simple characterizations of vanishing invariants
or covariants. For example, the following basic result is an immediate con-
sequence of (4.3). For simplicity, we assume in this section that a0 6= 0,
i.e., that the actual degree is n; the results immediately extend to the case
a0 = 0 by projective invariance (considering roots at infinity), see for ex-
ample Example 4.8. (The results all have invariant formulations for binary
forms.)

Theorem 5.1. The discriminant ∆(f) = 0 if and only if f has a double
root (in some extension field).

Equivalently, a binary form f(x, y) has discriminant 0 if and only if it has
a square factor (ax+ by)2.

Theorem 5.2. The Hessian covariant H(f) = 0 if and only if f has a
single root, i.e., ξ1 = · · · = ξn; equivalently, f(x) = a0(x − ξ)n for some a0
and ξ.

Equivalently, a binary form f(x, y) has Hessian covariant H(f) = 0 if and
only if it equals c(ax+ by)n for some a, b, c.

Theorem 5.3. The Jacobian joint covariant J(f, g) = 0 if and only if f
and g have the same roots, and their multiplicities always are in the same
proportion n1/n2; equivalently, f(x) = a0h(x)d1 and g(x) = b0h(x)d2 for
some polynomial h and some integers d1, d2 ≥ 1. In particular, if f and g
have the same degree, then J(f, g) = 0 if and only if f and g are proportional.

Proof. Suppose that ξ is a root of f or g, and let the multiplicities of the root
be k1 ≥ 0 and k2 ≥ 0 (with k1 + k2 > 0). By a projective transformation
we may assume that ξ = 0. Then f(x) = axk1 + . . . and g(x) = bxk2 + . . .
(showing the lowest degree terms only), with a, b 6= 0, and Example 3.3
shows that

J(f, g) = (n2k1 − n1k2)abxk1+k2−1 + . . . (5.1)

Hence J(f, g) = 0 implies n2k1−n1k2 = 0, and thus both k1 and k2 are non-
zero and k1/k2 = n1/n2. This shows that fn2 and gn1 have the same roots,
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with the same multiplicities, and thus fn2 = cgn1 for some c. The result
follows by the unique factorization of polynomials into irreducible ones.

Conversely, if f = a0h
d1 and g = b0h

d2 , then

J(f, g) = a0b0d1h
d1−1d2h

d2−1J(h, h) = 0. �

Proof of Theorem 5.2. If H(f) = 0, then (3.7) yields J(f ′, f) = 0, and thus
Theorem 5.3 yields f ′ = ahd1 , f = bhd2 for some polynomial h and constants
a, b, d1 and d2. Then n−1 = d1 deg(h) and n = d2 deg(h), and consequently
1 = (d2 − d1) deg(h), which implies deg(h) = 1 and d2 = n.

The converse follows directly from (3.7) and Theorem 5.3. �

Theorem 5.4 ([18, Satz 2.11]). All non-constant invariants of a polynomial
of degree n vanish if and only if the polynomial has a root of multiplicity
> n/2. (This includes the case when the actual degree is < n; there is a root
at ∞ of multiplicity more than n/2 when the degree is < n/2.)

Note that seminvariants still may be non-zero.

Example 5.5. The seminvariant a0(f) = 0 if and only if deg(f) ≤ n − 1.
If, for example, f(x) = xn, then a0 6= 0 while all invariants vanish by
Theorem 5.4.

Example 5.6. If f(x) = xn−1(x − b), with a 6= 0, then f has a root
ξ1 = · · · = ξn−1 = 0 of multiplicity (n − 1) and a simple root ξn = b. If
n ≥ 3, then all invariants of f vanish by Theorem 5.4. However, the Hessian
seminvariant is −b2 6= 0 by (4.4) (or by (2.39) and a1 = −b, a2 = 0).

Similarly, again by (4.4), the Hessian seminvariant is non-zero for any
polynomial with all n roots real, unless all roots coincide.

Theorem 5.2 characterizes the polynomials that can be written as an
nth power c(x − ξ)n. There is a generalization (due to Gundelfinger [9],
see also Kung [13]) to sums

∑m
i=1 ci(x − ξi)n of a given number m of such

powers; however, we also have to include limit cases corresponding to several
coinciding ξi, and the precise statement is as follows.

Theorem 5.7. The following are equivalent, for any polynomial f of degree
n and 1 ≤ m ≤ n.

(i) Gm(f) = 0.
(ii) f belongs to the closure Pn,m of the set of polynomials Pn,m :=
{
∑m

i=1 ci(x− ξi)n : ci, ξi ∈ F}.
(iii) f =

∑l
i=1

∑mi−1
j=0 cij(x − ξi)

n−j for some l ≤ m, mi ≥ 1 with∑l
i=1mi = m, cij ∈ F and ξi ∈ F ∗, for i = 1, . . . , l and j =

0, . . . ,mi − 1.
(iv) There exists a polynomial g of degree (at most) m such that the

apolar invariant {f, g}m = 0.

Remark 5.8. In (iii), we allow the possibility ξi = ∞; in this case we use
the interpretation (x − ∞)n−j := xj (which is natural from a projective
perspective).
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By “closure” in (ii), we mean in the ordinary topological sense (identifying
a polynomial with its vector a of coefficients) if, for example, we consider
the field of rational, real or complex numbers. In general, the closure can
be interpreted algebraically, as the set of all f = f0 for some family fε of
polynomials, with coefficients that are polynomials in a parameter ε ∈ F
(or ε ∈ Q), such that fε ∈ Pn,m for all ε 6= 0.

In particular, if m > n/2, then Pn,m = Pn, i.e., every polynomial is in

Pn,m, since then Gm vanishes identically on Pn, see Example 2.17. If n is
even, then Gn/2 is a multiple of the catalecticant Han(f), see Example 2.17,
and thus we have the corollary:

Corollary 5.9. If n is even then Han(f) = 0 if and only if f ∈ Pn,n/2, i.e.,
if and only if f is as in Theorem 5.7(iii) with m = n/2.

The relation between (iii) and (iv) in Theorem 5.7 can be made more
precise as follows, see [14].

Theorem 5.10. The following are equivalent, for a polynomial f of degree

n and given ξi ∈ F ∗ and mi ≥ 1, i = 1, . . . , l, with m :=
∑l

i=1mi ≤ n,

(i) f =
∑l

i=1

∑mi−1
j=0 cij(x − ξi)n−j for some cij ∈ F , i = 1, . . . , l and

j = 0, . . . ,mi − 1.

(ii) If g =
∏l
i=1(x− ξi)mi, then the apolar invariant {f, g}m = 0. (Note

that g is a poynomial of degree m.)

If ξi =∞, we interpret (x−∞)n−j as xj in (i), as above, and (x−∞)mj

as 1 in (ii).

6. Invariants of polynomials of degree 1

All seminvariants of a linear polynomial a0x+ a1 are of the form c aw0 . In
other words, {a0} is a basis for the seminvariants.

There are no invariants (except constants). (The discriminant is triv-
ially 1.)

7. Invariants of polynomials of degree 2

We consider invariants etc. of a polynomial f(x) = a0x
2 + a1x + a2 of

degree 2 (a quadratic polynomial).

7.1. Invariants. The discriminant is, as is well-known and easily verified,

∆(f) = a21 − 4a0a2. (7.1)

The discriminant is an invariant of degree ν = 2 and weight w = 2.
The reduced form of f is

f̂(x) := f(x− a1/2a0) = a0x
2 − a21 − 4a0a2

4a0
= a0x

2 − ∆

4a0
; (7.2)
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hence the only non-trivial coefficient of the reduced form is â2 := −∆/4a0,
so a0â2 is the invariant −∆/4 of degree ν = 2 and weight w = 2, cf. Theo-
rem 3.16.

The apolar invariant of f , see Example 2.8, is

A(f, f) = 4a0a2 − a21 = −∆. (7.3)

This is another invariant of degree and weight ν = w = 2.
The Hankel determinant (catalecticant) of f , see Example 2.9, is

Han(f) =

∣∣∣∣ǎ0 ǎ1
ǎ1 ǎ2

∣∣∣∣ =

∣∣∣∣ a0 1
2a1

1
2a1 a2

∣∣∣∣ = a0a2 −
1

4
a21 = −1

4
∆. (7.4)

Again, this is an invariant of degree ν = 2 and weight w = 2.
The Hessian covariant is by Example 2.13 a covariant of order 2(n−2) = 0

for n = 2, i.e., an invariant. Thus, H0 = H. We have, using Example 3.2,

H(f) = H(f ;x) = 4a0(a0x
2 + a1x+ a2)− (2a0x+ a1)

2 = 4a0a2− a21 = −∆.
(7.5)

Once again, this is an invariant of degree ν = 2 and weight w = 2.
Of course, these invariants are multiples of each other. In fact, as said in

Example 2.8 for any n, there is no other invariants of degree 2. Moreover,
∆ is a basis for the invariants, i.e., every invariant is c∆` for some c and `
[18, Sätze 1.9 and 2.8].

7.2. Seminvariants and covariants. The leading coefficient a0 is a sem-
invariant of degree 1 and weight 0. It is the source of the covariant f(x) of
degree 1, order 2 and weight 0, see Examples 2.12 and 2.26.

Theorem 7.1 ([18, Satz 2.16]). The covariants f and ∆ form a basis of the
covariants; thus {a0,∆} is a basis of the seminvariants [18, Satz 2.16].

Hence, the only seminvariant of degree ν and weight w (up to constant

factors) is aν−w0 ∆w/2 provided w is even and ν ≥ w; there are no seminvari-
ants for other ν and w.

As a further example, the only non-trivial Gundelfinger covariant, see
Example 2.17, is the invariant G1(f) = H(f) = −∆; by (2.26) we also have
G1(f) = 4 Han(f) in accordance with (7.4).

7.3. Seminvariants of f ′. Since the only seminvariant of a linear function
is the leading coefficient a0, the only seminvariant of f ′(x) = 2a0x + a1 is
2a0.

7.4. The case a0 = 0. When a0 = 0, i.e., considering the restriction to
polynomials of degree 1, the essentially only non-trivial formula is ∆(a1x+
a2) = a21, or, equivalently,

∆〈2〉(a0 〈1〉x+ a1 〈1〉) = a20 〈1〉, (7.6)

cf. Example 4.8. In particular, for f ∈ P2,
∆〈2〉(f

′) = 4a20. (7.7)
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7.5. Seminvariants and roots. By Example 4.2,

∆ = a20(ξ1 − ξ2)2. (7.8)

This agrees with (4.4), since H0 = H = −∆ by (7.5).
The general seminvariant of degree ν and weight w is thus

aν−w0 ∆w/2 = aν0(ξ1 − ξ2)w, (7.9)

for ν ≥ w and w even (otherwise there is no such invariant).

7.6. Further examples. As examples of invariants of higher degree, we
compute the basic invariants (covariants, seminvariants) for n = 4 (see Sec-
tion 9 below) of f2; these are clearly invariants (etc.) of f by Theorem 2.32:

A(f2, f2) = 4∆2, (7.10)

I(f2) = ∆2, (7.11)

J(f2) = −2∆3, (7.12)

∆(f2) = 0, (7.13)

H0(f
2) = −12 a20 ∆. (7.14)

P (f2) = −4 a20 ∆. (7.15)

Q(f2) = 0, (7.16)

H(f2) = −12 ∆ f2, (7.17)

G6(f
2) = 0. (7.18)

8. Invariants of polynomials of degree 3

We consider invariants etc. of a polynomial f(x) = a0x
3 +a1x

2 +a2x+a3
of degree 3 (a cubic polynomial).

We give a table of covariants of low degree in Theorem 1, and the cor-
responding seminvariants in Theorem 2, using notation introduced below.
(The tables give bases; further examples may be constructed by taking lin-
ear combinations of the covariants (seminvariants) in each entry.) It is easily
checked that the dimensions agree with Theorem 2.37 (using for example [2,
Table 14.3]). The invariants have w = 3ν/2; these are all powers of ∆, and
the only example in the tables is ∆.

8.1. Invariants. The discriminant is, see e.g. [11],

∆(f) = a21a
2
2 − 4a31a3 − 4a0a

3
2 + 18a0a1a2a3 − 27a20a

2
3. (8.1)

This is an invariant of degree 4 and weight 6.
Different normalizations are sometimes used. We have ∆ = D[18] =

−27d[18] = 27
2 R[8].

As for n = 2, ∆ is a basis for the invariants, i.e., every invariant is c∆`

for some c and ` [18, Satz 2.8].
The apolar invariant A(f, f) vanishes since n = 3 is odd.
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0 1 2 3 4 5 6 7 8 9
1 a0
2 a20 P

3 a30 a0P Q

4 a40 a20P a0Q P 2 ∆

5 a50 a30P a20Q a0P
2 PQ a0∆

6 a60 a40P a30Q a20P
2 a0PQ a20∆, P

3;Q2 ∆P

7 a70 a50P a40Q a30P
2 a20PQ a30∆, a0P

3; a0Q
2 P 2Q a0∆P ∆Q

Table 1. Invariants and seminvariants of low degree of cu-
bic polynomials. Each entry gives either a basis for the lin-
ear space of seminvariants of given degree (row) and weight
(column), or a basis separated by a semicolon from further
examples of such seminvariants.

0 1 2 3 4 5 6 7 8 9
1 f

2 f2 H

3 f3 fH G

4 f4 f2H fG H2 ∆

5 f5 f3H f2G fH2 HG f∆

6 f6 f4H f3G f2H2 fHG f2∆, H3;G2 ∆H

7 f7 f5H f4G f3H2 f2HG f3∆, fH3; fG2 H2G f∆H ∆G

Table 2. Invariants and covariants of low degree of cubic
polynomials. Each entry gives either a basis for the linear
space of covariants of given degree (row) and weight (col-
umn), or a basis separated by a semicolon from further ex-
amples of such covariants.

8.2. Reduced form. The reduced form of f is

f̂(x) = a0x
3 + px+ q := f

(
x− a1

3a0

)
, (8.2)

which yields

p :=
3a0a2 − a21

3a0
, (8.3)

q :=
2a31 + 27a20a3 − 9a0a1a2

27a20
. (8.4)

In terms of the coefficients of the reduced polynomial f̂(x) = a0x
3+px+q,

the discriminant is given by

∆(f) = ∆(f̂) = −4a0p
3 − 27a20q

2 (8.5)
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8.3. Seminvariants. The coefficients p and q in (8.2) are rational sem-
invariants by Theorem 3.16. We conventionally denote the numerators in
(8.3) and (8.4) by P and Q and have thus the seminvariants

P := 3a0a2 − a21, (8.6)

Q := 2a31 + 27a20a3 − 9a0a1a2. (8.7)

P has degree 2 and weight 2; Q has degree 3 and weight 3. Conversely, we
have

p =
P

3 a0
, (8.8)

q =
Q

27 a20
. (8.9)

(Other notations: P = −P[3], with opposite sign; Q = U[3].)
By (8.5) and (8.8)–(8.9), the discriminant is given by

∆ = − 4P 3

27 a20
− Q2

27 a20
. (8.10)

Hence, the relation (syzygy)

27 a20 ∆ = −4P 3 −Q2. (8.11)

8.4. Covariants. The form f itself is a covariant of degree 1, weight 0 and
order 3, see Example 2.12.

The Hessian covariant is the polynomial of degree 2(n− 2) = 2 given by
(3.4), which yields

H(f ;x) =
(
12 a0 a2 − 4 a21

)
x2+(36 a0 a3 − 4 a1 a2)x+12 a1 a3−4 a22. (8.12)

This is a covariant of degree 2, weight 2 and order 2.
The Hessian source H0 (Example 2.27) is thus the seminvariant of degree

2 and weight 2

H0 = 12 a0 a2 − 4 a21 = 12a0 p = 4P. (8.13)

Conversely, P is the source of the covariant

H̃(x) = H̃(f ;x) :=
1

4
H(f ;x)

=
(
3 a0 a2 − a21

)
x2 + (9 a0 a3 − a1 a2)x+ 3 a1 a3 − a22. (8.14)

(Other notations: H(X)[3] = −H̃(X), so H(X)[3] has source −P = P[3].

Further, H = 18∆[8] = 36h[18]; H̃ = 6∆[8] = 9h[18].)
The only non-trivial Gundelfinger covariant, see Example 2.17, is G1(f) =

H(f).



INVARIANTS OF POLYNOMIALS AND BINARY FORMS 33

The Jacobian (see Example 2.14) of f(x) and H(f ;x) is

J(f,H(f)) =
(
108 a20 a3 − 36 a0 a1 a2 + 8 a31

)
x3

+
(
108 a0 a1 a3 − 72 a0 a

2
2 + 12 a21 a2

)
x2

+
(
−108 a0 a2 a3 + 72 a21 a3 − 12 a1 a

2
2

)
x

+ 36 a1 a2 a3 − 8 a32 − 108 a0 a
2
3. (8.15)

This is, by Theorem 2.32, a covariant, which has degree 3, order 3 and weight
3. Its source is

108 a20 a3 − 36 a0 a1 a2 + 8 a31 = 4Q. (8.16)

Conversely, the covariant corresponding to the seminvariant Q is

G(x) :=
1

4
J(f,H(f)) =

(
27 a20 a3 − 9 a0 a1 a2 + 2 a31

)
x3

+
(
27 a0 a1 a3 − 18 a0 a

2
2 + 3 a21 a2

)
x2

+
(
−27 a0 a2 a3 + 18 a21 a3 − 3 a1 a

2
2

)
x

+ 9 a1 a2 a3 − 2 a32 − 27 a0 a
2
3 (8.17)

(Other notations: G(x) = G(x)[3] = 27Q[8] = 27 j[18]; T[14] = J(H(f), f) =
−4G.)

The relation (8.11) corresponds to the similar relation (syzygy) between
the corresponding covariants

27f(x)2∆ = −4(H(f ;x)/4)3 −G(x)2 (8.18)

or

432 ∆ f(x)2+H(f ;x)3+16G(x)2 = 432 ∆ f(x)2+H(f ;x)3+J(f,H(f))2 = 0
(8.19)

Theorem 8.1 ([18, Satz 2.24]). The covariants {f,H,G,∆} form a basis
of all covariants for cubic polynomials. Equivalently, {a0, P,Q,∆} is a basis
of all seminvariants.

The basis is not algebraically independent since we have the syzygy (8.19),
i.e. 432∆f2 +H3 + 16G2 = 0, or, equivalently, (8.11).

8.5. Seminvariants of f ′. The discriminant of the quadratic polynomial
f ′ is a seminvariant by Theorem 3.7; it is given by

∆〈2〉(f
′) = ∆〈2〉(3a0x

2 + 2a1x+ a2) = 4 a21 − 12 a0 a2 = −4P. (8.20)

This has, cf. Remark 3.8, degree 2 and weight 2 as the discriminant for
n = 2, see Section 7; its order is 2.

Alternatively, by Example 3.9 and (8.13), we have

H0(f
′) = H0(f) = 4P. (8.21)

Since ∆ = −H = −H0 for a quadratic polynomial, see (7.5), we obtain
(8.20).
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8.6. The case a0 = 0. When a0 = 0, i.e., considering the restriction to
polynomials of degree 2, we have, cf. Example 4.8,

∆〈3〉(a0 〈2〉x
2 + a1 〈2〉x+ a2 〈2〉) = a20 〈2〉∆〈2〉, (8.22)

P〈3〉(a0 〈2〉x
2 + a1 〈2〉x+ a2 〈2〉) = −a20 〈2〉, (8.23)

Q〈3〉(a0 〈2〉x
2 + a1 〈2〉x+ a2 〈2〉) = 2 a30 〈2〉. (8.24)

In particular, for f ∈ P3, using (8.20),

∆〈3〉(f
′) = 9 a20 ∆〈2〉(f

′) = −36 a20 P, (8.25)

P〈3〉(f
′) = −9 a20, (8.26)

Q〈3〉(f
′) = 54 a30. (8.27)

8.7. Seminvariants and roots. By Example 4.2,

∆ = a40(ξ1 − ξ2)2(ξ1 − ξ3)2(ξ2 − ξ3)2. (8.28)

By (4.4),

H0 = −2 a20
(
(ξ1 − ξ2)2 + (ξ1 − ξ3)2 + (ξ2 − ξ3)2

)
= −4 a20

(
ξ21 + ξ22 + ξ23 − ξ1 ξ2 − ξ1 ξ3 − ξ2 ξ3

)
, (8.29)

and thus, by (8.13),

P = −a
2
0

2

(
(ξ1 − ξ2)2 + (ξ1 − ξ3)2 + (ξ2 − ξ3)2

)
= −a20

(
ξ21 + ξ22 + ξ23 − ξ1 ξ2 − ξ1 ξ3 − ξ2 ξ3

)
. (8.30)

Further, by a calculation or from (8.9) and (8.2), noting that f̂ has roots
ξi − (ξ1 + ξ2 + ξ3)/3,

Q = −a30 (2 ξ1 − ξ2 − ξ3) (2 ξ2 − ξ1 − ξ3) (2 ξ3 − ξ1 − ξ2)
= −a30

(
2 ξ31 + 2 ξ32 + 2 ξ33 − 3 ξ1ξ

2
2 − 3 ξ1ξ

2
3 − 3 ξ21ξ2 − 3 ξ21ξ3

− 3 ξ2ξ
2
3 − 3 ξ22ξ3 + 12ξ1ξ2ξ3

)
. (8.31)

8.8. Covariants and roots. For the corresponding covariants we have first
by Example 4.15, cf., (8.29),

H(f ;x) = −2a20
(
(ξ1−ξ2)2(x−ξ3)2+(ξ1−ξ3)2(x−ξ2)2+(ξ2−ξ3)2(x−ξ1)2

)
.

(8.32)
For G we use (8.31) and Theorem 4.13. We have

ξ1ξ2ξ3(2ξ
−1
1 − ξ

−1
2 − ξ

−1
3 ) = 2ξ2ξ3 − ξ1ξ3 − ξ1ξ2 = ξ2(ξ3 − ξ1) + ξ3(ξ2 − ξ1)

which after the substitution ξi 7→ x−ξi and permutation of the indices leads
to

G(f ;x) = −a30
(

(x− ξ2)(ξ1 − ξ3) + (x− ξ3)(ξ1 − ξ2)
)

·
(

(x− ξ1)(ξ2− ξ3) + (x− ξ3)(ξ2− ξ1)
)(

(x− ξ1)(ξ3− ξ2) + (x− ξ2)(ξ3− ξ1)
)
.

(8.33)
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8.9. Further examples. The apolar invariant of the Hessian covariant is
an invariant given by, see (8.12) and (7.3),

A(H(f), H(f)) = 4
(
12 a0 a2 − 4 a21

) (
12 a1 a3 − 4 a22

)
− (36 a0 a3 − 4 a1 a2)

2

= −1296 a20 a
2
3 + 864 a0 a1 a2 a3 − 192 a0 a

3
2 − 192 a31 a3 + 48 a21 a

2
2

= 48 ∆. (8.34)

This has degree 4 and weight 6.
The apolar invariant of the 6th degree polynomial f2 is

A(f2, f2) = 1296 a20 a
2
3 − 864 a0 a1 a2 a3 + 192 a0 a

3
2 + 192 a31 a3 − 48 a21 a

2
2

= −48 ∆. (8.35)

Similarly, the apolar invariant of the 12th degree polynomial f4 is

A(f4, f4) = 1244160 ∆2 = 210 · 35 · 5 ·∆2. (8.36)

Recall that every invariant is a constant times a power of ∆, so these
formulas are no surprises.

The discriminant of the quadratic covariant H(x) is

∆〈2〉(H(x)) = 1296 a20 a
2
3 − 864 a0 a1 a2 a3 + 192 a0 a

3
2 + 192 a31 a3 − 48 a21 a

2
2

= −48∆, (8.37)

cf. (7.3) and (8.34). Thus the covariant H̃(x) in (8.14) corresponding to P
has discriminant −3∆.

The discriminant and covariants H and G of the cubic covariant G(x) are

∆(G(x)) = 729 ∆3, (8.38)

H(G(x)) = 27 ∆H(x), (8.39)

G(G(x)) = −729 ∆2 f(x). (8.40)

We calculate also the resultants of f , H(f) and G(f):

R(f,H) = −64∆2, (8.41)

R(f,G) = 8∆3, (8.42)

R(H,G) = −1728∆3, (8.43)

where the first also follows by Example 4.11.
For the seminvariants in Examples 4.5–4.6, we have, recalling â2 = p =

P/3a0, â3 = q = Q/27a20 and â4 = 0, see (8.2) and (8.8)–(8.9),

a20S2 = −2

3
P, (8.44)

a30S3 = −1

9
Q, (8.45)

a40S4 =
2

9
P 2, (8.46)
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and

a20χ2 = −2

9
P, (8.47)

a30χ3 = − 1

27
Q, (8.48)

a40χ4 = − 2

27
P 2. (8.49)

8.10. Vanishing invariants and covariants.

Theorem 8.2. Let f be a polynomial of degree 3.

(i) ∆(f) = 0 if and only if f has a double (or triple) root; i.e., if and
only if it has a square factor.

(ii) H(f) = 0 if and only if f has a triple root, i.e., if and only if
f(x) = c(x− x0)3.

(iii) G(f) = 0 if and only if f has a triple root, i.e., if and only if f(x) =
c(x− x0)3.

Proof. Parts (i) and (ii) are Theorems 5.1 and 5.2. For (iii), suppose that
G = 0. By (8.38), then ∆ = 0, so f has a double root ξ. By projective
invariance, we may assume that ξ = 0, so f(x) = a0x

3 + a1x
2. Then, by

(8.17), G(x) = 2a31 x
3, and thus a1 = 0 too, and ξ = 0 is a triple root.

(Alternatively, G = 0 and ∆ = 0 imply H = 0 by (8.19), and we may use
(ii).)

The converse follows similarly from (8.17) and projective invariance, or
from (8.19) and (i)+(ii). �

8.11. Geometry of real cubics. Let f be a real cubic, with a0 6= 0. Then
f has an inflection point (x0, y0) given by 0 = f ′′(x0) = 6a0x0 + 2a1, so
x0 = −a1/3a0 and, using (8.2),

y0 = f(x0) = f̂(0) = q. (8.50)

Thus, by (8.9),

(x0, y0) =
(
− a1

3a0
, q
)

=
(
− a1

3a0
,

Q

27 a20

)
. (8.51)

Note that f is symmetric about (x0, y0), cf. (8.2).
The extreme points x± are given by, using (8.2) again,

0 = f ′(x) = f̂ ′(x− x0) = 3a0(x− x0)2 + p; (8.52)

hence, using also (8.8),

x± = x0 ±
√
−p
3a0

= x0 ±
√
−P

3a0
=
−a1 ±

√
−P

3a0
. (8.53)

Consequently, f has real (local) maximum and minimum points if P < 0,
but not if P ≥ 0; in the latter case, f is monotonously increasing (if a0 > 0)
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or decreasing (if a0 < 0) on (−∞,∞) . (This includes the case P = 0, when
f ′(x0) = f ′′(x0) = 0.)

Moreover, the extreme values y± = f(x±) are given by, using (8.2), (8.53)
and (8.8)–(8.9),

y± := f(x±) = f̂(x± − x0) = a0(x± − x0)3 + p(x± − x0) + q

= a0

(
±
√
−P

3a0

)3

+ p
±
√
−P

3a0
+ q =

±2P
√
−P

27a20
+

Q

27a20

=
Q± 2P

√
−P

27a20
. (8.54)

In particular, we see that f has three distinct real roots
⇐⇒ x± are real and y− < 0 < y+ or y+ < 0 < y−
⇐⇒ P < 0 and |2P

√
−P | > |Q|

⇐⇒ −4P 3 > Q2

⇐⇒ ∆ = −(4P 3 +Q2)/27a20 > 0.
Similarly, there is a real double root if P < 0 and ∆ = 0, and a triple

root if P = 0 = Q. We thus have found the following classical result, which
also follows directly from (4.3), see [11, 12]:

Theorem 8.3. Let f be a real cubic.

(i) If ∆ > 0, then f has 3 distinct real roots.
(ii) If ∆ = 0, then f has either one double and one simple root, both real

(P < 0), or a real triple root (P = Q = 0).
(iii) If ∆ < 0, then f has one real root and a pair of two (non-real)

conjugate complex roots.

Remark 8.4. More generally, it follows from (4.3) that if f is a real poly-
nomial of degree n with only simple roots, having n− 2m real roots and m
pairs of conjugate complex (non-real) roots, then sign(∆(f)) = (−1)m.

We also have, by (8.54) and (8.11), the quantitative relation

y+y− =
Q2 + 4P 3

729 a40
= − ∆

27 a20
. (8.55)

In fact, since ∆ = −a−10 R(f, f ′), where R is the resultant, this follows
immediately from a standard property of the resultant; more generally, for
a polynomial of arbitrary degree n, with stationary points (roots of f ′)
η1, . . . , ηn−1,

∆(f) = (−1)n(n−1)/2nnan−10

n−1∏
j=1

f(ηj), (8.56)

see [11].
Note also the corresponding formula, by (8.53) and (8.6) or directly from

f ′(x) = 3a0x
2 + 2a1x+ a2,

x+x− =
a2
3a0

. (8.57)
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We can further study the location of the roots. We have for example the
following criteria for positive roots.

Theorem 8.5. Let f be a real cubic with a0 > 0.

(i) f has three distinct positive roots in (0,∞)
⇐⇒ ∆ > 0 (which implies P < 0), a3 < 0 and −a1 >

√
−P

⇐⇒ ∆ > 0, a1 < 0, a2 > 0, a3 < 0.
(ii) f has three roots (not necessarily distinct) in [0,∞)
⇐⇒ ∆ ≥ 0 (which implies P ≤ 0), a3 ≤ 0 and −a1 ≥

√
−P

⇐⇒ ∆ ≥ 0, a1 ≤ 0, a2 ≥ 0, a3 ≤ 0.

Proof. Consider for example (i). We may suppose that f has three real
roots, so ∆ > 0, and then P < 0 by (8.11). A geometric consideration
shows that the roots are all positive ⇐⇒ x± > 0 and a3 = f(0) < 0, and
the result follows by (8.53) and (8.6). Case (ii) is similar, considering also
cases with a double or triple root. �

Note that (4.1) immediately implies that if ξ1, ξ2, ξ3 ≥ 0, and a0 > 0, then
a1 ≤ 0, a2 ≥ 0, a3 ≤ 0, but the converse is less obvious.

9. Invariants of polynomials of degree 4

We consider invariants etc. of a polynomial f(x) = a0x
4 + a1x

3 + a2x
2 +

a3x+ a4 of degree 4 (a quartic polynomial).
We give a table of covariants of low degree in Theorem 3, and correspond-

ing seminvariants in Theorem 4, using notation introduced below. Again, it
is easily checked that the dimensions agree with Theorem 2.37 (using for ex-
ample [2, Table 14.3]). (The examples given in the table is a rather arbitrary
selection when the dimension is > 1. For example, note that when ν = w,
there is by Theorem 3.19 always a basis for the seminvariants consisting of
monomials in P,Q,R; for example, for ν = w = 5, {P 3, Q2, PR}.) The
invariants have w = 2ν; for each such ν and w, there is a basis consisting of
monomials in I and J (but for ν = 6, w = 12, {∆, I3} is another example).

9.1. Invariants. The discriminant is, see [11],

∆(f) = 256 a30 a
3
4 − 192 a20 a1 a3 a

2
4 − 128 a20 a

2
2 a

2
4

+ 144 a20 a2 a
2
3 a4 − 27 a20 a

4
3 + 144 a0 a

2
1 a2 a

2
4

− 6 a0 a
2
1 a

2
3 a4 − 80 a0 a1 a

2
2 a3 a4 + 18 a0 a1 a2 a

3
3

+ 16 a0 a
4
2 a4 − 4 a0 a

3
2 a

2
3 − 27 a41 a

2
4

+ 18 a31 a2 a3 a4 − 4 a31 a
3
3 − 4 a21 a

3
2 a4 + a21 a

2
2 a

2
3. (9.1)

(See also (9.18) below.) This is an invariant of degree 6 and weight 12.
(Other notations: ∆[3] = ∆[4] = 27∆; ∆0[3] = ∆; D[18] = ∆.)

There are simpler invariants, however. The apolar invariant, see Exam-
ple 2.8, is

A(f, f) = 48 a0 a4 − 12 a1 a3 + 4 a22 = 4I, (9.2)
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0 1 2 3 4 5 6 7 8
1 f

2 f2 H I

3 f3 fH G6 fI J

4 f4 f2H fG6 f2I,H2 fJ, IH I2

5 f5 f3H f2G6 f3I, fH2 HG6 f2J, fIH IG6 fI2, JH

6 f6 f4H f3G6 f4I, f2H2 fHG6 f3J, f2IH,H3;G2
6 fIG6 f2I2, fJH, IH2

9 10 11 12
5 IJ

6 JG6 fIJ, I2H I3, J2; ∆

Table 3. Invariants and covariants of low degree of quartic
polynomials. Each entry gives either a basis for the linear
space of covariants of given degree (row) and weight (col-
umn), or a basis separated by a semicolon from further ex-
amples of such covariants.

0 1 2 3 4 5 6 7 8
1 a0
2 a20 P I

3 a30 a0P Q a0I J

4 a40 a20P a0Q a20I, P
2;R a0J, IP I2

5 a50 a30P a20Q a30I, a0P
2 PQ a20J, a0IP IQ a0I

2, JP

6 a60 a40P a30Q a40I, a
2
0P

2 a0PQ a30J, a
2
0IP, P

3;Q2 a0IQ a20I
2, a0JP, IP

2

9 10 11 12
5 IJ

6 JQ a0IJ, I
2P I3, J2; ∆

Table 4. Invariants and seminvariants of low degree of quar-
tic polynomials. Each entry gives either a basis for the lin-
ear space of seminvariants of given degree (row) and weight
(column), or a basis separated by a semicolon from further
examples of such seminvariants.

where I is the conveniently normalized invariant

I = 12 a0 a4 − 3 a1 a3 + a22. (9.3)

The apolar invariant and I are invariants of degree 2 and weight 4. (Other
notations: A = 4!A[18] = 24A[18]; I = 6 i[8] = 12P[18].)
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The Hankel determinant (catalecticant), see Example 2.9, is an invariant
of degree 3 and weight 6. It is, by a calculation, in our normalization,

Han(f) =

∣∣∣∣∣∣
ǎ0 ǎ1 ǎ2
ǎ1 ǎ2 ǎ3
ǎ2 ǎ3 ǎ4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a0

1
4a1

1
6a2

1
4a1

1
6a2

1
4a3

1
6a2

1
4a3 a4

∣∣∣∣∣∣
=

72 a0 a2 a4 − 27 a0 a
2
3 − 27 a21 a4 + 9 a1 a2 a3 − 2 a32

432

=
J

432
, (9.4)

where we thus define

J := 72 a0 a2 a4 − 27 a0 a
2
3 − 27 a21 a4 + 9 a1 a2 a3 − 2 a32. (9.5)

J is thus an invariant of degree 3 and weight 6. (Other notation: Q[18] =
Han(f) = J[7] = J/432; J[8] = J/72.)

By (2.26), the second Gundelfinger covariant in Example 2.17 is the in-
variant

G2(f) = 243 Han(f) = 32 J. (9.6)

Another way to construct J is by taking the joint apolar invariantA(H(f), f);
this invariant of degree 3 and weight 6 equals 24J , see (9.81).

Theorem 9.1 ([18, Satz 2.9]). I and J form a basis for the invariants of
quartic polynomials. Furthermore, I and J are algebraically independent.

Thus, informally speaking, I and J are the only invariants. More precisely,
every invariant is an isobaric polynomial in I and J . For example, the
discriminant is such a polynomial; a calculation reveals that

∆ =
4

27
I3 − 1

27
J2. (9.7)

See Subsection 9.10 for further examples.

Example 9.2. Since I3 and J2 both are invariants of degree 6 and weight
12, the quotient I3/J2 is an absolute invariant. Similarly, J2/I3, I3/∆,
J2/∆, etc. are absolute invariants; these are all simple rational functions of
each other. In fact, since I and J form a basis for the invariants, it is easy
to see that every absolute invariant is a rational function of I3/J2, or of any
other of the absolute invariants just given.

9.2. Covariants. The form f itself is a covariant of degree 1, weight 0 and
order 4, see Example 2.12.

The Hessian covariant is the polynomial of degree 2(n− 2) = 4 given by
(3.4), which yields

H(f ;x) =
(
24 a0 a2 − 9 a21

)
x4 + (72 a0 a3 − 12 a1 a2)x

3

+
(
144 a0 a4 + 18 a1 a3 − 12 a22

)
x2 + (72 a1 a4 − 12 a2 a3)x

+ (24 a2 a4 − 9 a23). (9.8)
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This is a covariant of degree 2, weight 2 and order 4. We also define

H̃(f ;x) :=
1

3
H(f ;x) =

(
8 a0 a2 − 3 a21

)
x4 + (24 a0 a3 − 4 a1 a2)x

3

+
(
48 a0 a4 + 6 a1 a3 − 4 a22

)
x2 + (24 a1 a4 − 4 a2 a3)x+ 8 a2 a4 − 3 a23.

(9.9)

H̃ too has degree 2, weight 2 and order 4. (Other notations: g4[3] = g4[4] =

−H̃; h[18] = H̃/48 = H/144; H[18] = H.)
The Jacobian determinant, see Example 2.14, of f and H(f) is a covariant

of order 4 + 4− 2 = 6 given by

G6(f) =
(
288 a20 a3 − 144 a0 a1 a2 + 36 a31

)
x6

+
(
1152 a20 a4 + 144 a0 a1 a3 − 288 a0 a

2
2 + 72 a21 a2

)
x5

+
(
1440 a0 a1 a4 − 720 a0 a2 a3 + 180 a21 a3

)
x4

+
(
−720 a0 a

2
3 + 720 a21 a4

)
x3

+
(
−1440 a0 a3 a4 + 720 a1 a2 a4 − 180 a1 a

2
3

)
x2

+
(
−1152 a0 a

2
4 − 144 a1 a3 a4 + 288 a22 a4 − 72 a2 a

2
3

)
x

+ 144 a2 a3 a4 − 36 a33 − 288 a1 a
2
4. (9.10)

We normalize this to G̃6(f ;x) := G6(f ;x)/36, where thus

G̃6(f) =
(
8 a20 a3 − 4 a0 a1 a2 + a31

)
x6

+
(
32 a20 a4 + 4 a0 a1 a3 − 8 a0 a

2
2 + 2 a21 a2

)
x5

+
(
40 a0 a1 a4 − 20 a0 a2 a3 + 5 a21 a3

)
x4

+
(
−20 a0 a

2
3 + 20 a21 a4

)
x3

+
(
−40 a0 a3 a4 + 20 a1 a2 a4 − 5 a1 a

2
3

)
x2

+
(
−32 a0 a

2
4 − 4 a1 a3 a4 + 8 a22 a4 − 2 a2 a

2
3

)
x

+ 4 a2 a3 a4 − a33 − 8 a1 a
2
4 (9.11)

(Other notations: g6[3] = g6[4] = G̃6; j[18] = G̃6/32 = G6/1152.) G6 and G̃6

have degree 3, weight 3 and order 6.

Theorem 9.3 ([18, Satz 2.25]). The invariants I and J and the covariants
f , H and G6 form a basis for the covariants of quartic polynomials.

The basic covariants satisfy the relation (syzygy)

H̃3 − 48 If2H̃ + 64 Jf3 + 27 G̃6
2

= 0. (9.12)

or

24H3 − 2833If2H + 21033Jf3 + 32G2
6 = 0. (9.13)

The only non-trivial Gundelfinger covariants are G1(f) = H(f ;x) and
G2(f) = 243 Han(f) = 32J , see (9.6).
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9.3. Reduced form. The reduced form of f is

f̂(x) = a0x
4 + px2 + qx+ r := f

(
x− a1

4a0

)
; (9.14)

thus p := â2, q := â3, r := â4. These rational seminvariants are given by

p =
8 a0 a2 − 3 a21

8 a0
(9.15)

q =
8 a20 a3 − 4 a0 a1 a2 + a31

8 a20
(9.16)

r =
256 a30 a4 − 64 a20 a1 a3 + 16 a0 a

2
1 a2 − 3 a41

256a30
(9.17)

In terms of the coefficients of the reduced polynomial f̂ , the discriminant
is given by

∆(f) = ∆(f̂) = −4 a0p
3q2 + 16 a0p

4r − 27 a20q
4

+ 144a20 pq
2r − 128 a20p

2r2 + 256 a30r
3. (9.18)

9.4. Seminvariants. We denote the numerators of (9.15)–(9.17) by P , Q,
R, respectively, and have thus

p =
P

8 a0
, (9.19)

q =
Q

8 a20
, (9.20)

r =
R

256a30
, (9.21)

with

P := 8 a0 a2 − 3 a21, (9.22)

Q := 8 a20 a3 − 4 a0 a1 a2 + a31, (9.23)

R := 256 a30 a4 − 64 a20 a1 a3 + 16 a0 a
2
1 a2 − 3 a41. (9.24)

(R should not be confused with the resultant in Section 4. Other notations:
P = H[3] = −p[4]; Q = R[3] = r[4].) These are seminvariants of degree and
weight (2, 2), (3, 3) and (4, 4). We have

R =
1

3

(
64 a20 I − P 2

)
. (9.25)

The Hessian source H0 is by (9.8) the seminvariant of degree 2 and
weight 4

H0 = 24 a0 a2 − 9 a21 = 3P. (9.26)

Thus the source of the covariant H̃ is P .
By (9.10)–(9.11) and (9.23), Q is the source of G̃6, while the source of G6

is 36Q.



INVARIANTS OF POLYNOMIALS AND BINARY FORMS 43

Theorem 9.3 and the syzygy (9.12) translate to the following.

Theorem 9.4. The invariants I and J and the seminvariants a0, P and Q
form a basis for the seminvariants of quartic polynomials. These satisfy the
syzygy

P 3 − 48 I a20 P + 64 J a30 + 27Q2 = 0. (9.27)

9.5. Cubic resolvent. Let p̃ := p/a0, q̃ := q/a0, r̃ := r/a0, the coefficients

of the reduced monic polynomial f̂/a0. The cubic resolvent of f is the cubic
polynomial

Res(f ;x) := x3 + 2p̃x2 + (p̃2 − 4r̃)x− q̃2

= x3 +
P

4 a20
x2 +

P 2 −R
64 a40

x− Q2

64 a60
, (9.28)

see e.g. [12]. The numerator P 2 −R is a seminvariant of degree and weight
4, and we have by (9.25)

P 2 −R
4

=
P 2 − 16 a20 I

3
= −64 a30 a4+16 a20 a1 a3+16 a20 a

2
2−16 a0 a

2
1 a2+3 a41.

(9.29)
This seminvariant is used in [3, 4] with the notations

Q[3] = q[4] :=
1

3

(
P 2 − 16 a20 I

)
=
P 2 −R

4
. (9.30)

The reduced form of the cubic resolvent is, after some calculations,

R̂es(f ;x) := Res
(
f ;x− P

12 a20

)
= x3 − I

3 a20
x+

J

27 a30
. (9.31)

Changing the variable to clear the denominators, we find

(3 a0)
3 R̂es(f ;x/3a0) = 27 a30 Res

(
f ;

4a0 x− P
12 a20

)
= x3 − 3I x+ J. (9.32)

Thus the cubic polynomial R̃es(f ;x) := x3 − 3I x + J is also a form of the
resolvent.

Remark 9.5. The roots of the cubic resolvent Res(f) are γ21 , γ22 , γ23 , where

γ1 := 1
2(ξ1 + ξ2 − ξ3 − ξ4), (9.33)

γ2 := 1
2(ξ1 − ξ2 + ξ3 − ξ4), (9.34)

γ3 := 1
2(ξ1 − ξ2 − ξ3 + ξ4), (9.35)

The quartic equation f(x) = 0 can thus be solved by finding the roots of
Res(f), taking the square roots to find γ1, γ2, γ3, with the signs satisfying
γ1γ2γ3 = −q̃, and finally inverting (9.33)–(9.35) together with ξ1 + ξ2 +

ξ3 + ξ4 = −p̃, see [12]. Alternatively, one can first find the roots of R̂es(f)
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or R̃es(f); for example, if the roots of R̃es(f) are z1, z2, z3, we take γi =

±1
2a
−1
0

√
(4a0zi − P )/3. Equivalently, the roots of R̃es(f) are

zi := 3a0γ
2
i +

P

4a0
= 3a0γ

2
i + 2p, i = 1, 2, 3, (9.36)

while the roots of R̂es(f) are

zi
3a0

= γ2i +
P

12 a20
= γ2i +

2p

3a0
, i = 1, 2, 3. (9.37)

Remark 9.6. Another common version of the cubic resolvent is (see [12])

Res∗(f ;x) := Res
(
f ;x− p̃− a21

8a20

)
= Res

(
f ;x− 4a0a2 − a21

4a20

)
= x3 − a2

a0
x2 +

a1a3 − 4a0a2
a20

x+
4a0a2a4 − a0a23 − a21a4

a30
.

(9.38)

This has the roots ξ1ξ2 + ξ3ξ4, ξ1ξ3 + ξ2ξ4 and ξ1ξ4 + ξ2ξ3. However, these
roots are not translation invariant, so the coefficients of Res∗ are not sem-
invariants.

We have, by (9.31) and (8.5), (9.7) and (4.3),

∆〈3〉(Res(f)) = ∆〈3〉(R̂es(f)) =
4I3

27a60
− J2

27a60
= a−60 ∆ = ∆0. (9.39)

Further, by (9.31) and (8.6) or (8.8),

P〈3〉(Res(f)) = P〈3〉(R̂es(f)) = −a−20 I, (9.40)

Q〈3〉(Res(f)) = Q〈3〉(R̂es(f)) = a−30 J. (9.41)

For the version R̃es(f) = x3 − 3I x + J we have, directly from (8.5)–(8.9),
the corresponding

∆〈3〉(R̃es(f)) = 4 · 27 I3 − 27 J2 = 36∆, (9.42)

P〈3〉(R̃es(f)) = −9 I, (9.43)

Q〈3〉(R̃es(f)) = 27J. (9.44)

9.6. Seminvariants of f ′. We calculate the basic seminvariants of the cu-
bic polynomial f ′:

∆〈3〉(f
′) = −432 a20 a

2
3 + 432 a0 a1 a2 a3 − 128 a0 a

3
2 − 108 a31 a3 + 36 a21 a

2
2

= 16 a0 J − 12 IP, (9.45)

P〈3〉(f
′) = 24 a0 a2 − 9 a21 = 3P, (9.46)

Q〈3〉(f
′) = 432 a20 a3 − 216 a0 a1 a2 + 54 a31 = 54Q. (9.47)
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9.7. The case a0 = 0. When a0 = 0, i.e., considering the restriction to
polynomials of degree 3, we have, cf. Example 4.8, for any polynomial f ∈
P3,

∆〈4〉 = a20 〈3〉∆〈3〉, (9.48)

I〈4〉 = −P〈3〉, (9.49)

J〈4〉 = −Q〈3〉, (9.50)

P〈4〉 = −3 a20 〈3〉, (9.51)

Q〈4〉 = a30 〈3〉, (9.52)

In particular, for f ∈ P4, using (9.45)–(9.47),

∆〈4〉(f
′) = 16 a20 ∆〈3〉(f

′) = 256 a30 J − 192 a20 I P, (9.53)

I〈4〉(f
′) = −3P, (9.54)

J〈4〉(f
′) = −54Q, (9.55)

P〈4〉(f
′) = −48 a20, (9.56)

Q〈4〉(f
′) = 64 a30. (9.57)

9.8. Seminvariants and roots. By Example 4.2,

∆ = a60(ξ1 − ξ2)2(ξ1 − ξ3)2(ξ1 − ξ4)2(ξ2 − ξ3)2(ξ2 − ξ4)2(ξ3 − ξ4)2. (9.58)

For I and J we obtain by calculations, using
∑∗ to denote a sum over

different indices, where moreover identical terms are counted only once (thus,
for example,

∑∗
i,j ξiξj =

∑
i<j ξiξj),

I = a20

(∑*

i,j

ξ2i ξ
2
j −

∑*

i,j,k

ξ2i ξjξk + 6ξ1ξ2ξ3ξ4

)
(9.59)

where the first sum has 6 terms and the second 12, and

J = a30

(
−2
∑*

i,j

ξ3i ξ
3
j + 3

∑*

i,j,k

ξ3i ξ
2
j ξk − 12

∑*

i,j,k,l

ξ3i ξjξkξl

− 12
∑*

i,j,k

ξ2i ξ
2
j ξ

2
k + 6

∑*

i,j,k,l

ξ2i ξ
2
j ξkξl

)
, (9.60)

where the sums have 6, 24, 4, 4 and 6 terms.
For the seminvariants we have first, by (4.4),

H0 = −3 a20
∑

1≤i<j≤4
(ξi − ξj)2 = −3 a20

(
3

4∑
i=1

ξ2i − 2
∑

1≤i<j≤4
ξiξj

)
(9.61)

and thus, by (9.26),

P = − a20
∑

1≤i<j≤4
(ξi − ξj)2 = −a20

(
3
∑
i

ξ2i − 2
∑*

i,j

ξiξj

)
(9.62)
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where the sums have 4 and 6 terms. Further, by calculation,

Q = −a30
(∑

i

ξ3i −
∑*

i,j

ξ2i ξj + 2
∑*

i,j,k

ξiξjξk

)
(9.63)

where the sums have 4, 12 and 4 terms.
The formulas (9.59) and (9.62) for I and P cannot be factorized further,

but for J and Q we have

J = −a30
(
(ξ1 − ξ3) (ξ2 − ξ4) + (ξ1 − ξ4) (ξ2 − ξ3)

)
·
(
(ξ1 − ξ2) (ξ3 − ξ4) + (ξ1 − ξ4) (ξ3 − ξ2)

)
·
(
(ξ1 − ξ2) (ξ4 − ξ3) + (ξ1 − ξ3) (ξ4 − ξ2)

)
(9.64)

and

Q = −a30 (ξ1 + ξ2 − ξ3 − ξ4) (ξ1 − ξ2 + ξ3 − ξ4) (ξ1 − ξ2 − ξ3 + ξ4) . (9.65)

Explicit formulas for the covariants H and G6 in terms of the roots can
be obtained from Example 4.15 and Theorem 4.13 together with (9.63) or
(9.65). We leave these to the reader.

9.9. Cross ratio. Let F be a field and F ∗ := F ∪ {∞}. The cross ratio
[x1, x2;x3, x4] is defined for x1, x2, x3, x4 ∈ F ∗ by

[x1, x2;x3, x4] :=
(x1 − x3) (x2 − x4)
(x1 − x4) (x2 − x3)

∈ F ∗. (9.66)

More precisely, the cross ratio is well-defined by (9.66) if x1, x2, x3, x4 ∈ F
are distinct, and more generally if x1, x2, x3, x4 ∈ F ∗ are distinct with the
natural interpretations

[∞, x2;x3, x4] =
x2 − x4
x2 − x3

, [x1,∞;x3, x4] =
x1 − x3
x1 − x4

,

[x1, x2;∞, x4] =
x2 − x4
x1 − x4

, [x1, x2;x3,∞] =
x1 − x3
x2 − x3

.
(9.67)

Furthermore, the cross ratio is also defined when two of x1, . . . , x4 ∈ F ∗

coincide, and even when two different pairs of them coincide. (In these
cases, the cross ratio is always 0, 1 or ∞; it is 0 if x1 = x3 or x2 = x4, 1 if
x1 = x2 or x3 = x4, and ∞ if x1 = x4 or x2 = x3.) In the remaining cases,
when three or four of x1, . . . , x4 coincide, the cross ratio is undefined.

If x2, x3, x4 ∈ F ∗ are distinct, then x 7→ [x, x2;x3, x4] is the unique pro-
jective (= fractional linear) map F ∗ → F ∗ that maps x2 7→ 1, x3 7→ 0,
x4 7→ ∞.

The cross ratio depends on the order of x1, . . . , x4, and the 24 different
permutations give, in general, 6 different values. These values determine
each other; if [x1, x2;x3, x4] = λ, then,

[x1, x2;x3, x4] = [x2, x1;x4, x3] = [x3, x4;x1, x2] = [x4, x3;x2, x1] = λ,

[x1, x2;x4, x3] = [x2, x1;x3, x4] = [x3, x4;x2, x1] = [x4, x3;x1, x2] =
1

λ
,
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[x1, x3;x2, x4] = [x2, x4;x1, x3] = [x3, x1;x4, x2] = [x4, x2;x3, x1] = 1− λ,

[x1, x3;x4, x2] = [x2, x4;x3, x1] = [x3, x1;x2, x4] = [x4, x2;x1, x3] =
1

1− λ
,

[x1, x4;x2, x3] = [x2, x3;x1, x4] = [x3, x2;x4, x1] = [x4, x1;x3, x2] =
λ− 1

λ
,

[x1, x4;x3, x2] = [x2, x3;x4, x1] = [x3, x2;x1, x4] = [x4, x1;x2, x3] =
λ

λ− 1
.

The symmetric group S4 thus acts on the space F ∗. The functions of λ
above are all projective maps, and thus we have a homomorphism of S4
into the group PGL(1, F ) of projective maps; the kernel is the four-group
and the image is a subgroup of PGL(1, F ) of order 6, isomorphic to S3 (for
example, by their permutations of {0, 1,∞}). The orbits have in general 6
elements, but orbits including a fixpoint of one of the non-trivial maps above
are smaller; there are two or three such exceptional orbits, viz. {0, 1,∞},
{−1, 12 , 2}, and, provided

√
−3 ∈ F , {12 ±

√
−3
2 }.

We have [x1, x2;x3, x4] ∈ {0, 1,∞} if and only if two of x1, . . . , x4 coincide.
Quadruples x1, . . . , x4 with [x1, x2;x3, x4] ∈ {−1, 12 , 2} are called har-

monic quadruples. (For example, one point at infinity and three points in
an aritmetic sequence, such as −1, 0, 1,∞. Another example is four points
equally spaced on a circle, such as 1, i,−1,−i.)

Quadruples x1, . . . , x4 with [x1, x2;x3, x4] ∈ {12 ±
√
−3
2 } are called self-

apolar or equianharmonic. (For example, three points evenly spaced on a

circle, together with either the centre or infinity, such as 0, 1, e2πi/3, e4πi/3.)
If f ∈ P4, let ξ1, . . . , ξ4 be its roots, and λ := [ξ1, ξ2; ξ3, ξ4]. Then λ

depends on the ordering of the roots, as explained above, but the polynomial

Λ(z) := (z − λ)
(
z − 1

λ

)(
z − (1− λ)

)(
z − 1

1− λ

)(
z − λ

λ− 1

)(
z − λ− 1

λ

)
(9.68)

does not depend on the order, so it depends on f only. The coefficients of
Λ(z) are symmetric rational functions of ξ1, . . . , ξ4, and are thus rational
functions of the coefficients a0, . . . , a4 of f . Moreover, Λ(z) is invariant
under projective transformations, and is thus an absolute invariant of f . A
calculation yields, using (9.7),

Λ(z) = z6 − 3 z5 − I3 + 2 J2

9 ∆
z4 +

26 I3 + 7 J2

27 ∆
z3 − I3 + 2 J2

9 ∆
z2 − 3 z + 1

= z6 − 3 z5 − 3 I3 + 6 J2

4 I3 − J2
z4 +

26 I3 + 7 J2

4 I3 − J2
z3 − 3 I3 + 6 J2

4 I3 − J2
z2 − 3 z + 1,

(9.69)

where we recognize (slightly disguised) the absolute invariant I3/J2, see
Example 9.2. We have Λ(λ) = 0, i.e.,(

4I 3 − J 2
)
λ6 +

(
−12I 3 + 3J 2

)
λ5 +

(
−3I 3 − 6J 2

)
λ4
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+
(
26I 3 + 7J 2

)
λ3 +

(
−3I 3 − 6J 2

)
λ2 +

(
−12I 3 + 3J 2

)
λ+ 4I 3 − J 2

=
(
4λ6 − 12λ5 − 3λ4 + 26λ3 − 3λ2 − 12λ+ 4

)
I3

−
(
λ6 − 3λ5 + 6λ4 − 7λ3 + 6λ2 − 3λ+ 1

)
J2

= 0, (9.70)

which after a rearrangement yields

J2

I3
=

4λ6 − 12λ5 − 3λ4 + 26λ3 − 3λ2 − 12λ+ 4

λ6 − 3λ5 + 6λ4 − 7λ3 + 6λ2 − 3λ+ 1

=
(λ− 2)2 (2λ− 1)2 (λ+ 1)2

(λ2 − λ+ 1)3
(9.71)

and equivalently, using (9.7) again,

I3

∆
=
λ6 − 3λ5 + 6λ4 − 7λ3 + 6λ2 − 3λ+ 1

λ4 − 2λ3 + λ2
=

(
λ2 − λ+ 1

)3
λ2 (λ− 1)2

(9.72)

and

J2

∆
=

4λ6 − 12λ5 − 3λ4 + 26λ3 − 3λ2 − 12λ+ 4

λ4 − 2λ3 + λ2
=

(λ− 2)2 (2λ− 1)2 (λ+ 1)2

λ2 (λ− 1)2
.

(9.73)

We have really proved these formulas for the case of four distinct roots in
F , but it is easy to see that they hold also in the case of one or two double
roots (in this case ∆ = 0 and λ ∈ {0, 1,∞}), and (by projective invariance)
also if there is a single or double root at ∞. Note that if two of I, J and
∆ vanish, then so do all three because of (9.7); this happens if and only
there is a triple (or quadruple) root (see Theorem 5.4), and then cross ratio
λ is undefined. In this case thus both sides of (9.71)–(9.73) are undefined.
Otherwise, if there is no triple root, at most one of I, J and ∆ vanishes,
and both sides of (9.71)–(9.73) are defined as elements of F ∗ (they may be
∞, viz. when the denominator vanishes or, for (9.72)–(9.73), when λ =∞),
and they are equal.

9.10. Further examples. A simple example of higher invariants isA(fν , fν)
for ν ≥ 1. This has degree 2ν and weight 4ν. We have A(f, f) = 4I by (9.2)
and, for example,

A〈8〉(f
2, f2) = 82944 a20 a

2
4 − 41472 a0 a1 a3 a4 + 13824 a0 a

2
2 a4

+ 5184 a21 a
2
3 − 3456 a1 a

2
2 a3 + 576 a42

= 576 I2, (9.74)

A〈12〉(f
3, f3) = 564480 I3 − 11520 J2. (9.75)
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The apolar invariant of the Hessian covariant is an invariant given by, see
(9.8) and (2.10),

A〈4〉(H(f), H(f)) = 82944 a20 a
2
4 − 41472 a0 a1 a3 a4 + 13824 a0 a

2
2 a4

+ 5184 a21 a
2
3 − 3456 a1 a

2
2 a3 + 576 a42

= 576 I2. (9.76)

Equivalently, A(H̃(f), H̃(f)) = 64 I2.
Similarly, omitting the details,

A(H̃(f)2, H̃(f)2) = 147456 I4, (9.77)

A(H̃(f)3, H̃(f)3) = 2123366400 I6 + 188743680 I3J2 − 47185920 J4

= 47185920(5 I3 + J2)(9 I3 − J2), (9.78)

with the coefficients 147456 = 21432 and 47185920 = 220325.
Equivalently,

A(H(f)2, H(f)2) = 11943936 I4, (9.79)

A(H(f)3, H(f)3) = 34398535680 (5 I3 + J2)(9 I3 − J2), (9.80)

where 11943936 = 21436 and 34398535680 = 220385.
The (joint) apolar invariant A(H(f), f) is an invariant given by, see (9.8)

and (2.10),

A(H(f), f) = 1728 a0 a2 a4 − 648 a0 a
2
3 − 648 a21 a4 + 216 a1 a2 a3 − 48 a32

= 24J, (9.81)

see (9.5). This has degree 3 and weight 6. Equivalently, A(H̃(f), f) = 8J .
We can also form, for example,

A〈8〉
(
fH̃(f), fH̃(f)

)
= 192 (20 I3 + 7J2). (9.82)

Further invariants (etc.) of the Hessian covariant are

I(H̃(f)) = 16 I2, (9.83)

J(H̃(f)) = 64J2 − 128 I3 = 64
(
J2 − 2 I3

)
, (9.84)

∆(H̃(f)) = 212J2 ∆, (9.85)

P (H̃(f)) = 64 a0 J − 16 I P, (9.86)

Q(H̃(f)) = −64 J Q, (9.87)

H̃(H̃(f)) = 64J f − 16 I H̃, (9.88)

G̃6(H̃(f)) = −64 J G̃6. (9.89)

The apolar invariant A(G̃6, G̃6) of the sextic polynomial G̃6(f) is an in-
variant of degree 6 and weight 12 given by

A〈6〉(G̃6(f), G̃6(f)) = 960 ∆. (9.90)
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The discriminant ∆(G̃6) is an invariant of degree 30 and weight 60 given by

∆〈6〉(G̃6(f)) = −218 ∆5. (9.91)

We calculate also the resultants of f , H̃(f) and G̃6(f):

R(f, H̃) = 81∆2, (9.92)

R(f, G̃6) = ∆3, (9.93)

R(H̃, G̃6) = 212∆3J2, (9.94)

where the first also follows by Example 4.11.
For the seminvariants in Examples 4.5–4.6, we have, recalling â2 = p =

P/8a0, â3 = q = Q/8a20 and â4 = r = R/256a30, see (9.14) and (9.19)–(9.21),
and using also (9.25),

a20S2 = −1

4
P, (9.95)

a30S3 = −3

8
Q, (9.96)

a40S4 = − 1

64
R+

1

32
P 2 = −1

3
a20I +

7

192
P 2, (9.97)

and

a20χ2 = − 1

16
P, (9.98)

a30χ3 = − 3

32
Q, (9.99)

a40χ4 = − 1

256
R− 1

256
P 2 = − 1

384

(
32a20I + P 2

)
. (9.100)

9.11. Vanishing invariants and covariants. Let f be a quartic polyno-
mial, with roots ξ1, . . . , ξ4. (The results extend to the case a0 = 0 when one
or several roots are ∞ with no or trivial modifications.)

Since I and J form a basis for the invariants (Theorem 9.1), Theorem 5.4
shows that I = J = 0 if and only if f has a triple root. Moreover, since
∆ = 4

27I
3 − 1

27J
2 by (9.7), we have the following:

Theorem 9.7. Let f be a quartic polynomial. If f has a triple (or quadru-
ple) root then ∆ = I = J = 0.

Conversely, if there is no triple root, then at most one of ∆, I and J
vanishes.

If there is no triple root, the cross ratio [ξ1, ξ2; ξ3, ξ4] of the roots is well-
defined by Subsection 9.9, and the vanishing of the basis invariants I and
J , as well as ∆, can be characterised by this cross ratio.

Theorem 9.8. Let f be a quartic polynomial with roots ξ1, ξ2, ξ3, ξ4, and
assume that there is no triple (or quadruple) root.
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(i) I = 0 if and only if the cross-ratio [ξ1, ξ2; ξ3, ξ4] = 1
2 ±

√
3
2 i, i.e., if

and only if the roots form a equianharmonic (self-apolar) quadruple.
(ii) J = 0 if and only if the cross-ratio [ξ1, ξ2; ξ3, ξ4] ∈ {−1, 12 , 2}, i.e., if

and only if the roots form a harmonic quadruple.
(iii) ∆ = 0 if and only if the cross-ratio [ξ1, ξ2; ξ3, ξ4] ∈ {0, 1,∞}, i.e., if

and only there is a double root.

Note that the three conditions use the three exceptional orbits of cross
ratios, see Subsection 9.9.

Proof. When there is no triple root, the cross ratio λ = [ξ1, ξ2; ξ3, ξ4] is
well-defined by Subsection 9.9 and at most one of I, J and ∆ vanishes by
Theorem 9.7; the results now follow from (9.71)–(9.73). (The result for ∆
is of course an immediate consequence of (5.1).) �

Theorem 9.8(ii) also follows from (9.64), which shows that J = 0 if and
only if one of the three factors in the brackets there vanishes, or equivalently
that one of the three cross-ratios

(ξ1 − ξ3) (ξ2 − ξ4)
(ξ1 − ξ4) (ξ2 − ξ3)

,
(ξ1 − ξ2) (ξ3 − ξ4)
(ξ1 − ξ4) (ξ3 − ξ2)

,
(ξ1 − ξ2) (ξ4 − ξ3)
(ξ1 − ξ3) (ξ4 − ξ2)

equals −1. (These are [ξ1, ξ2; ξ3, ξ4], [ξ1, ξ3; ξ2, ξ4] and [ξ1, ξ4; ξ2, ξ3].)
Corollary 5.9 gives another interpretation of J = 0, since J is a multiple

of G2 (the catalecticant when n = 4):

Theorem 9.9. The following are equivalent for a quartic polynomial f :

(i) J = 0.
(ii) f belongs to the closure P4,2 of the set P4,2 := {c1(x− x1)2 + c2(x−

x2)
4}.

(iii) f has one of the forms c1(x − x1)4 + c2(x − x2)4, c1(x − x1)4 + c2,
c1(x−x1)4 + c2(x−x1)3, c1 + c2x. (The last two comprise the cases
when f has a triple root, finite or infinite).

For the covariants H and G6 we have the following. The first is just an
instance of the general Theorem 5.2.

Theorem 9.10. The following are equivalent for a quartic polynomial f .

(i) H(f) = 0.
(ii) f has a single, quadruple root, i.e., ξ1 = ξ2 = ξ3 = ξ4.
(iii) f(x) = c(x− x0)4 for some c and x0.

Theorem 9.11. The following are equivalent for a quartic polynomial f .

(i) G6(f) = 0.
(ii) Every root is (at least) a double root.
(iii) The roots coincide in two pairs ξ1 = ξ2 and ξ3 = ξ4 (up to labelling);

this includes the case when all four roots coincide.
(iv) f = cg2 for some quadratic polynomial g.
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Proof. It is easy to see that (ii), (iii) and (iv) are equivalent.
Suppose now (i), i.e., G6(f) = 0. By (9.90), then ∆ = 0, so f has a

double root ξ. By projective invariance, we may assume that ξ = 0, so
f(x) = a0x

4 + a1x
3 + a2x

2. For f of this form, with a3 = a4 = 0, (9.10)
reduces to

G̃6(f) =
(
−4 a0 a1 a2 + a31

)
x6 +

(
−8 a0 a

2
2 + 2 a21 a2

)
x5

=
(
a21 − 4 a0 a2

)(
a1x

6 + 2 a2x
5
)
. (9.101)

Hence either a21−4a0a2 = 0 or a1 = a2 = 0; in both cases ∆〈2〉(a0x
2 +a1x+

a2) = a21 − 4a0a2 = 0. Hence, a0x
2 + a1x + a2 has a double root ξ, and f

has the roots 0, 0, ξ, ξ.
Conversely, if f has only double roots, we may again by projective invari-

ance assume that 0 is a root, and then f(x) = a0x
4 + a1x

3 + a2x
2, where

we now know that also a0x
2 + a1x + a2 has a double root, and thus its

discriminant a21 − 4a0a2 = 0. Hence, G6(f) = 0 by (9.101). �

9.12. Roots and resolvent of a real quartic. Consider a real quartic
f , with a0 6= 0. Then f has either 0, 2 or 4 real roots (counted with
multiplicities). The discriminant partly discriminates between these cases,
by the following simple and classic result, which is a simple consequence of
(4.3), see Remark 8.4. (In this subsection, “complex” means non-real.)

Theorem 9.12. Let f be a real quartic polynomial.

(i) ∆(f) > 0 ⇐⇒ f has either 4 distinct real roots, or 4 complex roots
in two conjugate pairs.

(ii) ∆(f) < 0 ⇐⇒ f has 2 real roots and 2 conjugate complex roots.
(iii) ∆(f) = 0 ⇐⇒ f has a double (or triple or quadruple) root. In

this case, f has 1 quadruple real root, or 2 real roots, one triple and
one single, or 2 double real roots, or 3 real roots, one double and
two single, or 1 double real root and 2 conjugate complex roots, or 2
conjugate complex double roots.

To completely distinguish between the different cases we employ further
seminvariants and covariants. (In the following theorem the roots are as-
sumed to be distinct except as explicitly stated.) Note that I ≥ 0 when

∆ ≥ 0 by (9.7), so
√
I ≥ 0 in this case.

Theorem 9.13. Let f be a real quartic polynomial.

(i) f has 4 real roots ⇐⇒ ∆ > 0, P ≤ 0 and P 2 − 16a20I ≥ 0 ⇐⇒
∆ > 0 and P ≤ −4a0

√
I.

(ii) f has 2 pairs of conjugate complex roots ⇐⇒ ∆ > 0 and either

P > 0 or P 2 − 16a20I < 0 ⇐⇒ ∆ > 0 and P > −4a0
√
I.

(iii) f has 2 real roots and 2 conjugate complex roots ⇐⇒ ∆ < 0.
(iv) f has 1 quadruple real root ⇐⇒ ∆ = I = J = P = 0 ⇐⇒

H(x) ≡ 0. In this case also Q = 0 and G6(x) ≡ 0.
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(v) f has 1 triple and 1 single real root ⇐⇒ ∆ = I = J = 0 but P 6= 0.
In this case P < 0, Q 6= 0, H(x) 6≡ 0, G6(x) 6≡ 0.

(vi) f has 2 double real roots ⇐⇒ ∆ = P 2 − 16a20I = 0 and P < 0
⇐⇒ G6(x) ≡ 0 and P < 0. In this case also Q = 0.

(vii) f has 2 conjugate complex double roots ⇐⇒ ∆ = P 2 − 16a20I =
Q = 0 and P > 0 ⇐⇒ G6(x) ≡ 0 and P > 0.

(viii) f has 3 real roots, one double and two single ⇐⇒ ∆ = 0, I > 0,
P < 0 and P 2 − 16a20I > 0.

(ix) f has 1 double real root and 2 conjugate complex roots ⇐⇒ ∆ = 0
and either P 2 − 16a20I < 0 or P > 0 but not P 2 − 16a20I = Q = 0.

Proof. (i),(ii): By Theorem 9.12, these cases are characterized by ∆ > 0.
To distinguish the two cases, we note that by Remark 9.5, f has 4 real roots
⇐⇒ γ1, γ2, γ3 ∈ R ⇐⇒ γ21 , γ

2
2 , γ

2
3 ∈ [0,∞). Since γ21 , γ

2
2 , γ

2
3 are the roots

of the cubic resolvent Res(f), it follows from Theorem 8.5 and (9.28) that
f has 4 real roots ⇐⇒ ∆(Res(f)) ≥ 0, P ≤ 0, P 2 −R ≥ 0, and −Q2 ≤ 0.
Since ∆(Res(f)) = a−60 ∆ by (9.39) and P 2 −R = 4

3(P 2 − 16a20I) by (9.29),
the results follow.

(iii): By Theorem 9.12.
In the remaining cases f has a multiple root and ∆ = 0. Note that then

4I3 = J2 by (9.7); in particular, I ≥ 0. We calculate the seminvariants and
covariants by (9.3), (9.5), (9.22), (9.23), (9.8), (9.10) in the different cases
to verify the direct parts of the assertions:

(iv): We may by invariance assume f = a0x
4, and then I = J = P =

Q = H(x) = G6(x) = 0.
(v): We may by invariance assume f = a0x

3(x − u) where u ∈ R with
u 6= 0, and then I = J = 0, P = −3a20u

2 < 0, Q = −a30u3 6= 0, H(x) =
−9a20u

2x2, G6(x) = −36a30u
3x6.

(vi): We may by invariance assume f = a0x
2(x − u)2 where u ∈ R with

u 6= 0, and then I = a0u
2, P = −4a20u

2 < 0, P 2 − 16a20I = 0. Further,
G6(x) = 0 and thus Q = 0 by Theorem 9.11.

(vii): We may by invariance assume f = a0(x−u−iv)2(x−u+iv)2 for some
real u and v 6= 0, and then I = 16a20v

4, P = 16a20v
2 > 0, P 2 − 16a20I = 0,

Further, G6(x) = 0 and thus Q = 0 by Theorem 9.11.
(viii): We may by invariance assume f = a0x

2(x − u)(x − v) for some
real u, v 6= 0, and then I = a20u

2v2 > 0, P = −a20(3u2 + 3v2 − 2uv) =
−a20(2u2+2v2+(u−v)2) < 0, P 2−16a20I = 3a40(u−v)2(3u2+3v2+2uv) > 0.

(ix): We may by invariance assume f = a0x
2(x − u − iv)2(x − u + iv)2

for some real u and v 6= 0, and then I = a20(u
2 + v2)2, P = 4a20(2v

2 − u2),
P = 8a30v

2u, P 2 − 16a20I = 48a40v
2(v2 − 2u2). If v2 ≥ u2, then P > 0, and

if v2 < u2, then P 2 − 16a20I < 0. Further, P 2 − 16a20I = 0 ⇐⇒ v2 = 2u2,
and Q = 0 ⇐⇒ u = 0, which cannot hold simultaneously.

The converse implications in (iv),(v) now follow by Theorem 9.7 and
Theorem 9.10.
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If G6(x) ≡ 0, then we have (iv), (vi) or (vii) by Theorem 9.11, and they
are by the calculations above distinguished by the sign of P , which shows
the converse implications assuming G6(x) ≡ 0.

It is easily verified that the other conclusions in (vi)–(ix) are mutually
exclusive, and also exclusive of (iv)–(v). Hence the converse implications
follow. �

The proof used some properties of the cubic resolvent. Let us study its
geometry further. The cubic resolvent Res(f) of the real quartic f has by
(9.28), (9.31) and (8.50)–(8.51) an inflection point at

(x0, y0) =
( −P

12a20
,

J

27a30

)
(9.102)

and, by (8.53)–(8.54) and (9.40)–(9.41), extreme points at

(x±, y±) =
(−P ± 4a0

√
I

12a20
,
J ∓ 2I3/2

27a30

)
. (9.103)

For the version R̃es(f) in (9.32) we have simpler formulas: an inflection
point at

(x̃0, ỹ0) =
(
0, J

)
(9.104)

and extreme points at

(x̃±, ỹ±) =
(
±
√
I, J ∓ 2I3/2

)
. (9.105)

By (9.103) or (9.105), the resolvent has two distinct real extreme points
if and only if I > 0, while the resolvent is strictly increasing if I ≤ 0, cf.
Subsection 8.11 and (9.40), (9.43). We further see again that the resolvent

has three distinct real roots if and only if I > 0 and J−2I3/2 < 0 < J+2I3/2,
or, equivalently, if and only if 4I3 > J2, i.e., if and only if ∆ = 1

27(4I3−J2) >
0, cf. Theorem 8.3 and (9.39), (9.42).

Further, using Remark 9.5 and (9.103), f has 4 distinct real roots
⇐⇒ Res(f) has 3 roots in [0,∞)
⇐⇒ x+ > x− ≥ 0 and y− > 0 > y+
⇐⇒ I > 0, −P ≥ 4a0

√
I and J < 2I3/2,

which by (9.7) yields another proof of Theorem 9.13(i).
Finally we note that, by (9.103) and (9.29),

x+x− =
P 2 − 16a20I

144a40
=
P 2 −R
192a40

(9.106)

and, using also (9.7) again,

y+y− =
J2 − 4I3

729a60
= − ∆

27a30
; (9.107)

hence, as observed by Nickalls [15], the seminvariants P 2 − 16a20I and J2 −
4I3 = −∆/27 (ignoring normalizations) play a symmetric role in the geom-
etry of the cubic resolvent. Recall from Theorem 9.13 that these (together
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with P ) are the most important seminvariants when determining the number
of real roots, at least when the roots are simple.
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