SOME INTEGRALS RELATED TO THE GAMMA
INTEGRAL

SVANTE JANSON

ABSTRACT. We collect, for easy reference, some formulas related to the
Gamma integral.

We collect some formulas related to the Gamma integral. (None of the
formulas is new.) See also e.g. [1, Chapter 6] and [2, Section 5.9], where
further results are given. (Several of the formulas below appear in [2], but
we do not give individual references.)

All integrals are absolutely convergent unless we explicitly say otherwise.

We begin with the standard definition (Euler’s integral)

(1) INa) = / e % dz, Rea > 0.
0

I. Extensions to Rea < 0. For Rea < 0, the integral in (1) does not
converge, but if Re« ¢ Z we have the modifications

(2) / (e7 — l)xo‘_l dz =T'(a), —1<Rea <0,
0
(3) / (e_x—l—i—ac)a:a_l dz =T'(a), —2 < Rea < -1,
0

and, in general, for any integer m > 0,

(4) /000 (e_m - i (_x)k>xa_1 dz =T'(«), —m—1<Rea < —m.

k!
k=0

Proof. Denote the integral in (4) by I . Then an integration by parts
gives

()Y
() alam = [(e_x B Z k! )xa}o T latim—1 =0+ Tot1,m-1-

For m = 0 we have —1 < Rea < 0 and then
o
Int1,-1 = / e frz%dr =T(a+1) = al'(a);
0

thus (4) for m = 0 follows from (5). (This is (2).) The general case now
follows by (5) and induction. O
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Next we note the following extension of (2).

(6) / (e7t — 1)1‘0‘_1 de =t7T(«), —1<Rea <0, Ret > 0.
0

Proof. For t > 0, this follows from (2) by a change of variables. The integral
in (6) converges for Ret > 0 and is a continuous function of ¢ in this half-
plane, analytic in the open half-plane Ret > 0. Hence the result follows by
analytic continuation. O

II. sin and cos.

> a—1 . . Ta
(7) x 51nxdx281n7f(a), —1<Rea <0,
0
> a—1 xes
(8) 71 —cosz)dr = —COS7F(04), —2<Rea <0,
0

Proof. For —1 < Rea < 0, these follow from (6) by taking ¢ = +i and using
Euler’s formulas. (Alternatively, for real «, by taking ¢t = —i and taking
real and imaginary parts.) Then (8) extends to Rea > —2 by analytic
continuation. O

In particular, taking o = —1 in (8) yields the wellknown
*1—cosx T
9 Locoswy, 7
(9) /0 2 Ty
In fact, (7) extends to 0 < Rea < 1, although the integral no longer is

absolutely convergent:

(10)

0o A o
/ z* lsinzdr == lim r* tsingdr = sin —I'(a), —1<Rea< 1.

Proof. Integration by parts yields, using (8) and letting A — oo,

A A A
/ 2 sinzdr = [z (1 — cos )], — (a— 1)/ 2972(1 — cosx) dx
0 0

—1
-0+ (o — 1)COSMF(O&— 1) :sin%F(a).
[l
In particular, taking o = 0 in (10) yields the conditionally convergent
00 i A o
(11) / ST g = lim Y g =T
0 X A—o0 0 X 2

There is also a corresponding conditionally convergent cosine integral,
related to (8):
(12)

00 A pp.
/ 2 tcosxdr == lim z* teoszdr = cos —I'(a), 0<Rea< 1.
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Proof. Integration by parts yields, using (7) and letting A — oo,

A A A
/ z* teoszdr = [xo‘_l sin l‘]o — (a— 1)/ z* 2sinz dz
0 0

—>0—(Oz—1)sin7r(a2_1)l“(a—1):cosﬂ;F(a).

O

Another formula is:
o
(13) / (e7* —1+asin x)z"‘_l dz
0
— . T
:<a O‘+a51n7)F(a), —2 < Rea <0,Rea>0.

Proof. If —1 < Rea < 0, this follows by (6) and (7). The general case
follows by analytic continuation. ([

In particular, taking o = —1 in (13) yields
oo
(14) / (e —1+asinz)z *dz = aloga, Rea > 0.
0

Proof. If f(a) := a™*+asin &, then f(—1) = 0 and f'(—1) = —aloga, and
if g(a) := 1/T(a) = a(a + 1)/T(a + 2), then g(—1) = 0 and ¢'(-1) = —1.
The result follows by I’Hopital’s rule. ([l

III. Subtracting on [0,1] only.

1 [e9)
(15) / (e — 1)z da +/ e T2 da
0 1
= / (e —1{z < 1})2* 'dz =T(a) —a™ !, —1 < Reoa.
0

Proof. For Rea > 0, this follows from (1). The general case Reaw > —1
follows by analytic continuation. U

In particular, taking o = 0,

1 -z _ 1 o0 ,—T 0 ,—x _q 1
(16) /e dx+/ edm:/ c A
0 1 0

T xT T

Proof. As oo — 0,
r 1)—-1
D(a) —a ! = Llet) -1, I'(1) = —. O

«

We have also similar results with sinz and cosz in the integral.

(17)

i o' 1
! (sinz —z1{z < 1}) dz = sin — I'(«) —3<Rea<l.
0

2 S a+ 1
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Here the integral is absolutely convergent if —3 < Rea < 0, and otherwise
conditionally convergent.

Proof. This follows from (7) when —1 < Rea < 0, and extends to —3 <
Rea < 0 by analytic continuation (with absolutely convergent integrals).
The case —1 < Rea < 1 follows similarly from (10). O

In particular, taking o = 0, —1 and —2, cf. (11),

18) /oo sinx —z1{z < 1} dx:z—l,
0 i 2
X sinr — x1 1
(19) / sin x 1:2{x< }dle—fy,
0 X
P sinr — x1 1
(20) / sin x :z:3{:1:< }dle_z
0 T 4
Proof. As e — 0,
mE 1 m
T (e — 1
sin () 173 ,
_ in T (e — 1) Ir(e+1) -1
smW(5 1)F(€—1>—1:8m z (-1 T+l
2 € €
Csin ™ (1 o) Ir(e + 1) — 1
B £
d 1-—
— d—e(sin 7r(25)(1 —e) (e + 1)) -
:—%cosg—i-l—i—l“’(l):l—'y,
and
(e — 2) 1 —sin I (e + 1) 1
— T T(e—2)— = -——+1
T (e-2) e—1 (5—2)(<€—1)5+1—5—> +

Similarly for cosz, with the integral absolutely convergent for —2 <
Re a < 0 and conditionally convergent for 0 < Rea < 1:
(21)

1 T 1
2% (cosz — 1{z < 1}) dxzcosTF(a)——, —2<Rea<1.
0 «

Proof. This follows from (8) when —2 < Rea < 0. The case 0 < Rear < 1
follows directly from (12). The general case follows by integration by parts
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and (17), which yield
/ 2 eosz — H{z < 1}) dz
0
= —/ (a — 1)z 2(sinz —21{z < 1} — 1{z > 1})dz
0

= —(a— 1)<Sin7r(a2_1)r(a —1) - l) + /loo(a — 1)z 2 da

«
. m(l—a) a—1
sin —— (o) + -
T 1
= cos "2 T(a) — = O
cos = (@) o

In particular, taking o = 0 and —1, with the first integral conditionally
convergent and the second absolutely convergent,

o0 -1 1
(22) / cosz — 1{x < }dx:—fy,

0 T

®cosz — 1{zx < 1} T
2 dr=1-—.
(23) / Sl =1-2

Proof. As e — 0,

1 cosZEl(e+1)-1
cos%glj(e)—f: 2 I )

€ €
d e
s (e 1)
> el SrE )|
=T'(1) =—y
and
(e —1) 1 sin (e +1) 1 T
T(e—-1)— = ——+1.
cos =5 —Tle-1--= -1 1=z 27"

IV. Differences for different exponents.
(24)

/ (efax—efbx)xafl dr = (cfa—bfa)lj(a), Rea > —1, Rea > 0, Reb > 0.
0

Proof. If Reaw > 0 and a > 0, b > 0, this follows immediately from (1) by
separating the integral into two and changing variables. The case Rea > 0

now follows by analytic continuation in @ and b, and this extends to Rea >
—1 by analytic continuation in «. (Cf. also (6).) O

In particular, taking o = 0 we find:

00 p—ax _ e—ba: b
(25) ————dx =logb—loga =log —, Rea,Reb > 0.
0 a

x
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V. Another formula for 7.

(26) /00"(1 —1e—m - %)e_x dr = /000(1 i_:—w - e:) dz =7.

Proof. We have, using (25),
/ ( 1 _ 1)6—1? dr = / ﬂe—x dz
o \l—e® 1z 0 xz(l—e®)

® o—T _q e
/ uze-mdx

n=1
0 —(n+1)z _ e n®
:Z/ —|—e_"x)d3:
o 1 N o
— N (logn —1 1 ):1‘ ( = _log(N 1):.
Z(ogn og(n+1)+—) = lim (} ——log(N+1)) =1

O

VI. Other powers in the exponent. The change of variables z = y!/#
yields immediately

& 1 _/a
27 / 22 le=® dp = —F(—), Rea > 0.
@7) 0 B \B
and, in particular,
(28) / e dr =T(1+1/8), B>0.
0
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