
STABLE DISTRIBUTIONS

SVANTE JANSON

1. Introduction

We give many explicit formulas for stable distributions, mainly based on Feller
[3] and Zolotarev [14] and using several parametrizations; we give also some explicit
calculations for convergence to stable distributions, mainly based on less explicit
results in Feller [3]. The main purpose is to provide ourselves with easy reference to
explicit formulas and examples. (There are probably no new results.)

2. Infinitely divisible distributions

We begin with the more general concept of infinitely divisible distributions.

Definition 2.1. The distribution of a random variable X is infinitely divisible if for

each n > 1 there exists i.i.d. random variable Y
(n)

1 , . . . , Y
(n)
n such that

X
d
= Y

(n)
1 + . . . Y (n)

n . (2.1)

The characteristic function of an infinitely divisible distribution may be expressed
in a canonical form, sometimes called the Lévy–Khinchin representation. We give
several equivalent versions in the following theorem.

Theorem 2.2. Let h(x) be a fixed bounded measurable real-valued function on R
such that h(x) = x+O(x2) as x→ 0. Then the following are equivalent.

(i) ϕ(t) is the characteristic function of an infinitely divisible distribution.
(ii) There exist a measure M on R such that∫ ∞

−∞

(
1 ∧ |x|−2

)
dM(x) <∞ (2.2)

and a real constant b such that

ϕ(t) = exp
(

ibt+

∫ ∞
−∞

eitx − 1− ith(x)

x2
dM(x)

)
, (2.3)

where the integrand is interpreted as −t2/2 at x = 0.
(iii) There exist a measure Λ on R \ {0} such that∫ ∞

−∞

(
|x|2 ∧ 1

)
dΛ(x) <∞ (2.4)
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and real constants a > 0 and b such that

ϕ(t) = exp
(

ibt− 1
2at

2 +

∫ ∞
−∞

(
eitx − 1− ith(x)

)
dΛ(x)

)
. (2.5)

(iv) There exist a bounded measure K on R and a real constant b such that

ϕ(t) = exp
(

ibt+

∫ ∞
−∞

(
eitx − 1− itx

1 + x2

)1 + x2

x2
dK(x)

)
, (2.6)

where the integrand is interpreted as −t2/2 at x = 0.

The measures and constants are determined uniquely by ϕ.

Feller [3, Chapter XVII] uses h(x) = sinx. Kallenberg [8, Corollary 15.8] uses
h(x) = x1{|x| 6 1}.

Feller [3, Chapter XVII.2] calls the measure M in (ii) the canonical measure. The
measure Λ in (iii) is known as the Lévy measure. The parameters a, b and Λ are
together called the characteristics of the distribution. We denote the distribution
with characteristic function (2.5) (for a given h) by ID(a, b,Λ).

Remark 2.3. Different choices of h(x) yield the same measures M and Λ in (ii) and

(iii) but different constants b; changing h to h̃ corresponds to changing b to

b̃ := b+

∫ ∞
−∞

h̃(x)− h(x)

x2
dM(x) = b+

∫ ∞
−∞

(
h̃(x)− h(x)

)
dΛ(x). (2.7)

We see also that b is the same in (ii) and (iii) (with the same h), and that (see the
proof below) b in (iv) equals b in (ii) and (iii) when x = x/(1 + x2). �

Proof. (i) ⇐⇒ (ii): This is shown in Feller [3, Theorem XVII.2.1] for the choice
h(x) = sinx. As remarked above, (2.3) for some h is equivalent to (2.3) for any
other h, changing b by (2.7).

(ii)⇐⇒ (iii): Given M in (ii) we let a := M{0} and dΛ(x) := x−2 dM(x), x 6= 0.
Conversely, given a and Λ as in (iii) we define

dM(x) = aδ0 + x2 dΛ(x). (2.8)

The equivalence between (2.3) and (2.5) then is obvious. �

(ii)⇐⇒ (iv): Choose h(x) = x/(1 + x2) and define

dK(x) :=
1

1 + x2
dM(x); (2.9)

conversely, dM(x) = (1 + x2) dK(x). Then (2.3) is equivalent to (2.6).

Remark 2.4. At least (iii) extends directly to infinitely divisible random vectors
in Rd. Moreover, there is a one-to-one correspondence with Lévy processes, i.e.,
stochastic processes Xt on [0,∞) with stationary independent increments and X0 =
0, given by (in the one-dimensional case)

E eiuXt = ϕ(u)t = exp
(
t
(

ibu− 1
2au

2 +

∫ ∞
−∞

(
eiux − 1− iuh(x)

)
dΛ(x)

))
(2.10)

for t > 0 and u ∈ R. See Bertoin [2] and Kallenberg [8, Corollary 15.8]. �
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Example 2.5. The normal distribution N(µ, σ2) has Λ = 0 and a = σ2; thus
M = K = σ2δ0; further, b = µ for any h. Thus, N(µ, σ2) = ID(σ2, µ, 0). �

Example 2.6. The Poisson distribution Po(λ) has M = Λ = λδ1 and K = λ
2 δ1;

further b = λh(1). (Thus b = λ/2 in (iv).) �

Example 2.7. The Gamma distribution Gamma(α) with density function xα−1e−x/Γ(α),
x > 0, has the characteristic function ϕ(t) = (1− it)−α. It is infinitely divisible with

dM(x) = αxe−x, x > 0, (2.11)

dΛ(x) = αx−1e−x, x > 0, (2.12)

see Feller [3, Example XVII.3.d]. �

Remark 2.8. If X1 and X2 are independent infinitely divisible random variables
with parameters (a1, b1,Λ1) and (a2, b2,Λ2), then X1 +X2 is infinitely divisible with
parameters (a1 + a2, b1 + b2,Λ1 + Λ2). In particular, if X ∼ ID(a, b,Λ), then

X
d
= X1 + Y with X1 ∼ ID(0, 0,Λ), Y ∼ ID(a, b, 0) = N(b, a), (2.13)

and X1 and Y independent. Moreover, for any finite partition R =
⋃
Ai, we can

split X as a sum of independent infinitely divisible random variables Xi with the
Lévy measure of Xi having supports in Ai. �

Example 2.9 (integral of Poisson process). Let Ξ be a Poisson process on R \ {0}
with intensity Λ, where Λ is a measure with∫ ∞

−∞

(
|x| ∧ 1

)
dΛ(x) <∞. (2.14)

Let X :=
∫
x dΞ(x); if we regard Ξ as a (finite or countable) set (or possibly multiset)

of points {ξi}, this means that X :=
∑

i ξi. (The sum converges absolutely a.s., so X
is well-defined a.s.; in fact, the sum

∑
|ξi|>1 ξi is a.s. finite, and the sum

∑
|ξi|61 |ξi|

has finite expectation
∫ 1
−1 |x| dΛ(x).) Then X has characteristic function

ϕ(t) = exp
(∫ ∞
−∞

(
eitx − 1

)
dΛ(x)

)
. (2.15)

(See, for example, the corresponding formula for the Laplace transform in Kallenberg
[8, Lemma 12.2], from which (2.15) easily follows.) Hence, (2.5) holds with Lévy
measure Λ, a = 0 and b =

∫∞
−∞ h(x) dΛ(x). (When (2.5) holds, we can take h(x) = 0,

a choice not allowed in general. Note that (2.15) is the same as (2.5) with h = 0,
a = 0 and b = 0.)

By adding an independent normal variable N(b, a), we can obtain any infinitely
divisible distribution with a Lévy measure satisfying (2.5); see Example 2.5 and
Remark 2.8. �

Example 2.10 (compensated integral of Poisson process). Let Ξ be a Poisson pro-
cess on R \ {0} with intensity Λ, where Λ is a measure with∫ ∞

−∞

(
|x|2 ∧ |x|

)
dΛ(x) <∞. (2.16)
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Suppose first that
∫∞
−∞ |x|dΛ(x) < ∞. Let X be as in Example 2.9. Then X has

finite expectation EX =
∫∞
−∞ x dΛ. Define

X̃ := X − EX =

∫ ∞
−∞

x
(

dΞ(x)− dΛ(x)
)
. (2.17)

Then, by (2.15), X̃ has characteristic function

ϕ(t) = exp
(∫ ∞
−∞

(
eitx − 1− itx

)
dΛ(x)

)
. (2.18)

Now suppose that Λ is any measure satisfying (2.16). Then the integral in (2.18)
converges; moreover, by considering the truncated measures Λn := 1{|x| > n−1}Λ
and taking the limit as n→∞, it follows that there exists a random variable X̃ with
characteristic function (2.18). Hence, (2.5) holds with Lévy measure Λ, a = 0 and
b =

∫∞
−∞(h(x) − x) dΛ(x). (When (2.16) holds, we can take h(x) = x, a choice not

allowed in general. Note that (2.18) is the same as (2.5) with h(x) = x, a = 0 and
b = 0.)

By adding an independent normal variable N(b, a), we can obtain any infinitely
divisible distribution with a Lévy measure satisfying (2.16); see Example 2.5 and
Remark 2.8. �

Remark 2.11. Any infinitely divisible distribution can be obtained by taking a sum
X1 +X2 + Y of independent random variables with X1 as in Example 2.9, X2 as in
Example 2.10 and Y normal. For example, we can take the Lévy measures of X1

and X2 as the restrictions of the Lévy measure to {x : |x| > 1} and {x : |x| 6 1},
respectively. �

Theorem 2.12. If X is an infinitely divisible random variable with characteristic
function given by (2.5) and t ∈ R, then

E etX = exp
(
bt+ 1

2at
2 +

∫ ∞
−∞

(
etx − 1− th(x)

)
dΛ(x)

)
6∞. (2.19)

In particular,

E etX <∞ ⇐⇒
∫ ∞
−∞

(
etx − 1− th(x)

)
dΛ(x) <∞

⇐⇒

{∫∞
1 etx dΛ(x) <∞, t > 0,∫ −1
−∞ e

tx dΛ(x) <∞, t < 0.
(2.20)

Proof. The choice of h (satisfying the conditions of Theorem 2.2) does not matter,
because of (2.7); we may thus assume h(x) = x1{|x| 6 1}. We further assume t > 0.
(The case t < 0 is similar and the case t = 0 is trivial.)

Denote the right-hand side of (2.19) by FΛ(t). We study several different cases.
(i). If supp Λ is bounded, then the integral in (2.19) converges for all complex t

and defines an entire function. Thus FΛ(t) is entire and (2.5) shows that E eitX =

FΛ(it). It follows that E |etX| < ∞ and E etX = FΛ(t) for any complex t, see e.g.
Marcinkiewicz [9].
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(ii). If supp Λ ⊆ [1,∞), let Λn be the restriction Λ
∣∣
[1,n]

of the measure Λ to

[1, n]. By the construction in Example 2.9, we can construct random variables Xn ∼
ID(0, 0,Λn) such that Xn ↗ X ∼ ID(0, 0,Λ) as n→∞. Case (i) applies to each Λn,
and (2.19) follows for X, and t > 0, by monotone convergence.

(iii). If supp Λ ⊆ (−∞, 1], let Λn be the restriction Λ
∣∣
[−n,−1]

. Similarly to (ii)

we can construct random variables Xn ∼ ID(0, 0,Λn) with Xn 6 0 such that Xn ↘
X ∼ ID(0, 0,Λ) as n→∞. Case (i) applies to each Λn, and (2.19) follows for X;
this time by monotone convergence.

(iv). The general case follows by (i)–(iii) and a decomposition as in Remark 2.8.
�

3. Stable distributions

Definition 3.1. The distribution of a (non-degenerate) random variable X is stable
if there exist constants an > 0 and bn such that, for any n > 1, if X1, X2, . . . are
i.i.d. copies of X and Sn :=

∑n
i=1Xi, then

Sn
d
= anX + bn. (3.1)

The distribution is strictly stable if bn = 0.

(Many authors, e.g. Kallenberg [8], say weakly stable for our stable.)
We say that the random variable X is (strictly) stable if its distribution is.

The norming constants an in (3.1) are necessarily of the form an = n1/α for some
α ∈ (0, 2], see Feller [3, Theorem VI.1.1]; α is called the index [4], [8] or characteristic
exponent [3] of the distribution. We also say that a distribution (or random variable)
is α-stable if it is stable with index α.

The case α = 2 is simple: X is 2-stable if and only if it is normal. For α < 2,
there is a simple characterisation in terms of the Lévy–Khinchin representation of
infinitely divisible distributions.

Theorem 3.2. (i) A distribution is 2-stable if and only if it is normal N(µ, σ2).
(This is an infinitely divisible distribution with M = σ2δ0, see Example 2.5.)

(ii) Let 0 < α < 2. A distribution is α-stable if and only if it is infinitely divisible
with canonical measure

dM(x)

dx
=

{
c+x

1−α, x > 0,

c−|x|1−α, x < 0;
(3.2)

equivalently, the Lévy measure is given by

dΛ(x)

dx
=

{
c+x

−α−1, x > 0,

c−|x|−α−1, x < 0,
(3.3)

and a = 0. Here c−, c+ > 0 and we assume that not both are 0.

Proof. See Feller [3, Section XVII.5] or Kallenberg [8, Proposition 15.9]. �
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Note that (3.2) is equivalent to

M [x1, x2] = C+x
2−α
2 + C−|x1|2−α (3.4)

for any interval with x1 6 0 6 x2, with

C± =
c±

2− α
. (3.5)

Theorem 3.3. Let 0 < α 6 2.

(i) A distribution is α-stable if and only if it has a characteristic function

ϕ(t) =

exp
(
−γα|t|α

(
1− iβ tan πα

2 sgn(t)
)

+ iδt
)
, α 6= 1,

exp
(
−γ|t|

(
1 + iβ 2

π sgn(t) log |t|
)

+ iδt
)
, α = 1,

(3.6)

where −1 6 β 6 1, γ > 0 and −∞ < δ < ∞. Furthermore, an α-stable
distribution exists for any such α, β, γ, δ. (If α = 2, then β is irrelevant and
usually taken as 0.)

(ii) If X has the characteristic function (3.6), then, for any n > 1, (3.1) takes
the explicit form

Sn
d
=

{
n1/αX + (n− n1/α)δ, α 6= 1,

nX + 2
πβγn log n, α = 1.

(3.7)

In particular,

X is strictly stable ⇐⇒

{
δ = 0, α 6= 1,

β = 0, α = 1.
(3.8)

(iii) An α-stable distribution with canonical measure M satisfying (3.4) has

γα =

{
(C+ + C−)Γ(3−α)

α(1−α) cos πα2 , α 6= 1,

(C+ + C−)π2 , α = 1,
(3.9)

β =
C+ − C−
C+ + C−

. (3.10)

(iv) If 0 < α < 2, then an α-stable distribution with Lévy measure Λ satisfying
(3.3) has

γα =

{
(c+ + c−)

(
−Γ(−α) cos πα2

)
, α 6= 1,

(c+ + c−)π2 , α = 1,
(3.11)

β =
c+ − c−
c+ + c−

. (3.12)

We use the notation Sα(γ, β, δ) for the distribution with characteristic function
(3.6), and Xα(γ, β, δ) for a random variable with this distribution. We also write
Sα(β) and Xα(β) for the special case γ = 1, δ = 0.
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Proof. Feller [3, XVII.(3.18)–(3.19) and Theorem XVII.5.1(ii)] gives, in our notation,
for a stable distribution satisfying (3.4), the characteristic function

exp

(
−(C+ + C−)

Γ(3− α)

α(1− α)

(
cos

πα

2
− i sgn(t)

C+ − C−
C+ + C−

sin
πα

2

)
|t|α + ibt

)
(3.13)

if α 6= 1 and

exp

(
−(C+ + C−)

(π
2

+ i sgn(t)
C+ − C−
C+ + C−

log |t|
)
|t|+ ibt

)
(3.14)

if α = 1. This is (3.6) with (3.9)–(3.10) and δ = b. This proves (i) and (iii), and (iv)
follows from (iii) by (3.5).

Finally, (ii) follows directly from (3.6). �

Remark 3.4. If 1 < α 6 2, then δ in (3.6) equals the mean EXα(γ, β, δ). In
particular, (3.8) shows that for α > 1, a stable distribution is strictly stable if and
only if its expectation vanishes. �

Remark 3.5. If Xα(β) ∼ Sα(β) = Sα(1, β, 0), then, for γ > 0 and δ ∈ R,

γXα(β) + δ ∼

{
Sα(γ, β, δ), α 6= 1,

Sα(γ, β, δ − 2
πβγ log γ), α = 1.

(3.15)

Thus, γ is a scale parameter and δ a location parameter; β is a skewness parameter,
and α and β together determine the shape of the distribution. �

Remark 3.6. More generally, if X ∼ Sα(γ, β, δ), then, for a > 0 and d ∈ R,

aX + d ∼

{
Sα(aγ, β, aδ + d), α 6= 1,

Sα(aγ, β, aδ + d− 2
πβγa log a), α = 1.

(3.16)

�

Remark 3.7. If X ∼ Sα(γ, β, δ), then −X ∼ Sα(γ,−β,−δ). In other words,

−Xα(γ, β, δ)
d
= Xα(γ,−β,−δ). (3.17)

In particular, X has a symmetric stable distribution if and only if X ∼ Sα(γ, 0, 0)
for some α ∈ (0, 2] and γ > 0. �

We may simplify expressions like (3.6) by considering only t > 0 (or t > 0); this
is sufficient because of the general formula

ϕ(−t) = ϕ(t) (3.18)

for any characteristic function. We use this in our next statement, which is an
immediate consequence of Theorem 3.3.

Corollary 3.8. Let 0 < α 6 2. A distribution is strictly stable if and only if it has
a characteristic function

ϕ(t) = exp
(
−(κ− iτ)tα

)
, t > 0, (3.19)
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where κ > 0 and |τ | 6 κ| tan πα
2 |; furthermore, a strictly stable distribution exists for

any such κ and τ . (For α = 1, tan πα
2 = ∞, so any real τ is possible. For α = 2,

tan πα
2 = 0, so necessarily τ = 0.)

The distribution Sα(γ, β, 0) (α 6= 1) or S1(γ, 0, δ) (α = 1) satisfies (3.19) with

κ = γα and τ =

{
βκ tan πα

2 , α 6= 1,

δ, α = 1.
(3.20)

Conversely, if (3.19) holds, then the distribution is{
Sα(γ, β, 0) with γ = κ1/α, β = τ

κ cot πα2 , α 6= 1

S1(κ, 0, τ), α = 1.
(3.21)

�

Remark 3.9. For a strictly stable random variable, another way to write the char-
acteristic function (3.6) or (3.19) is

ϕ(t) = exp
(
−λei sgn(t)πγ̃/2|t|α

)
, (3.22)

with λ > 0 and γ̃ real (with |γ̃| 6 1; see further below). A comparison with (3.6)
and (3.20) shows that

λ cos
πγ̃

2
= κ = γα, (3.23)

tan
πγ̃

2
= −τ

κ
=

{
−β tan πα

2 , α 6= 1,

− δ
γα , α = 1.

(3.24)

If 0 < α < 1, we have 0 < tan πα
2 < ∞ and |γ̃| 6 α, while if 1 < α < 2, then

tan πα
2 < 0 and tan πγ̃

2 = β tan π(2−α)
2 with 0 < π(2−α)/2 < π/2; hence |γ̃| 6 2−α.

Finally, for α = 1, we have |γ̃| < 1, and for α = 2 we have γ̃ = 0. These ranges for γ̃
are both necessary and sufficient, except that for α = 1, γ̃ = ±1 is possible in (3.22),
but yields a degenerate distribution X = −γ̃λ. Summarising, we have the ranges,
excluding the degenerate case just mentioned,

|γ̃| 6 α, 0 < α < 1,

|γ̃| < 1, α = 1,

|γ̃| 6 2− α, 1 < α 6 2.

(3.25)

For α 6= 1, 2, note the special cases

β = 0 ⇐⇒ γ̃ = 0, (3.26)

β = 1 ⇐⇒ γ̃ =

{
−α, 0 < α < 1,

2− α, 1 < α < 2.
(3.27)

β = −1 ⇐⇒ γ̃ =

{
α, 0 < α < 1,

α− 2, 1 < α < 2.
(3.28)

�
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Remark 3.10. For α = 1, the general 1-stable characteristic function (3.6) may be
written, similarly to (3.19),

ϕ(t) = exp
(
−(κ− iτ)t− ibt log t

)
, t > 0, (3.29)

where κ = γ, τ = δ and b = 2
πβγ. (Thus, |b| 6 2κ/π.) �

3.1. Positive and spectrally positive stable distributions.

Definition 3.11. A stable distribution (or random variable) is spectrally positive if
its Lévy measure is concentrated on (0,∞), i.e.,

dΛ(x) = cx−α−1 dx, x > 0, (3.30)

for some c > 0 and α ∈ (0, 2). By (3.3) and (3.12), this is equivalent to c− = 0 and
to β = 1, see also (3.27).

Similarly, a stable distribution (or random variable) is spectrally negative if its
Lévy measure is concentrated on (−∞, 0).

Thus, X is spectrally negative if and only if −X is spectrally positive. (For this
reason, we mainly consider the spectrally positive case.)

Theorem 3.12. A strictly stable distribution is spectrally positive if and only if it
is of the form Sα(γ, 1, 0) with α 6= 1.

Equivalently, a strictly stable distribution with characteristic function (3.19) is
spectrally positive if and only if α 6= 1 and τ = κ tan πα

2 .

Proof. This follows from Corollary 3.8, taking β = 1 in (3.20); note that by (3.21),
there is no spectrally positive strictly 1-stable distribution. �

Theorem 3.13. Let 0 < α < 2. An α-stable random variable X ∼ Sα(γ, β, δ) has
finite Laplace transform E e−tX for t > 0 if and only if it is spectrally positive, i.e.,
if β = 1, and then

E e−tX =

exp
(
− γα

cos πα
2
tα − δt

)
, α 6= 1,

exp
(

2
πγt log t− δt

)
, α = 1,

(3.31)

Moreover, then (3.31) holds for every complex t with Re t > 0.

Proof. The condition for finiteness follows by Theorem 2.12 and (3.3), together with
Definition 3.11. When this holds, the right-hand side of (3.31) is a continuous
function of t in the closed right half-plane Re t > 0, which is analytic in the open
half-plane Re t > 0. The same is true for the left-hand side by Theorem 2.12, and
the two functions are equal on the imaginary axis t = is, s ∈ R by (3.6) and a simple
calculation. By uniqueness of analytic continuation, (3.31) holds for every complex
t with Re t > 0. �

Theorem 3.14. An stable random variable X ∼ Sα(γ, β, δ) is positive, i.e. X > 0
a.s., if and only if 0 < α < 1, β = 1 and δ > 0. Consequently, the positive strictly
stable random variables are Xα(γ, 1, 0) with 0 < α < 1.
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Proof. X > 0 a.s. if and only if the Laplace transform E e−tX is finite for all t > 0
and E e−tX → 0 as t→∞. Suppose that this holds. We cannot have α = 2, since
then X would be normal and therefore not positive; thus Theorem 3.13 applies and
shows that β = 1. Moreover, (3.31) holds. If 1 < α < 2 or α = 1, then the right-hand
side of (3.31) tends to infinity as t→∞, which is a contradiction; hence 0 < α < 1,
and then (3.31) again shows that δ > 0.

The converse is immediate from (3.31). �

Corollary 3.15. Let X be a stable random variable. Then, X > 0 a.s. if and
only if X = Y + δ where δ > 0 and Y is spectrally positive strictly α-stable with
0 < α < 1. �

The following examples are the two most important cases of Theorem 3.13.

Example 3.16. If 0 < α < 1 and λ > 0, then X ∼ Sα(γ, 1, 0) with γ :=(
λ cos πα2

)1/α
is a positive strictly stable random variable with the Laplace trans-

form (extended by analyticity)

E e−tX = exp
(
−λtα

)
, Re t > 0. (3.32)

Note that we have γ̃ = −α by (3.27). �

Example 3.17. If 1 < α < 2 and λ > 0, then X ∼ Sα(γ, 1, 0) with γ :=(
λ| cos πα2 |

)1/α
is a spectrally positive strictly stable random variable with the Laplace

transform (extended by analyticity)

E e−tX = exp
(
λtα
)
, Re t > 0. (3.33)

Note that in this case cos πα2 < 0. Note also that E e−tX → ∞ as t→∞, which
shows that P(X < 0) > 0. �

3.2. Other parametrisations. Our notation Sα(γ, β, δ) is in accordance with e.g.
Samorodnitsky and Taqqu [13, Definition 1.1.6 and page 9]. (Although they use
the letters Sα(σ, β, µ).) Nolan [11] uses the notation S(α, β, γ, δ; 1); he also defines
S(α, β, γ, δ0; 0) := S(α, β, γ, δ1; 1) where

δ1 :=

{
δ0 − βγ tan πα

2 , α 6= 1,

δ0 − 2
πβγ log γ, α = 1.

(3.34)

(Note that our δ = δ1.) This parametrisation has the advantage that the dis-
tribution S(α, β, γ, δ0; 0) is a continuous function of all four parameters. Note
also that S(α, 0, γ, δ; 0) = S(α, 0, γ, δ; 1), and that when α = 1, (3.15) becomes
γX1(β) + δ ∼ S(1, γ, β, δ; 0). Cf. the related parametrisation in [13, Remark 1.1.4],
which uses

µ1 =

{
δ1 + βγα tan πα

2 = δ0 + β(γα − γ) tan πα
2 , α 6= 1,

δ1 = δ0 − 2
πβγ log γ, α = 1;

(3.35)

again the distribution is a continuous function of (α, β, γ, µ1).
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Zolotarev [14] uses three different parametrisations, with parameters denoted
(α, β•, γ•, λ•), where • ∈ {A,B,M}; these are defined by writing the characteris-
tic function (3.6) as

ϕ(t) = exp
(
λA
(
itγA − |t|α + itωA(t, α, βA)

))
(3.36)

= exp
(
λM
(
itγM − |t|α + itωM (t, α, βM )

))
(3.37)

= exp
(
λB
(
itγB − |t|αωB(t, α, βB)

))
, (3.38)

where

ωA(t, α, β) :=

{
|t|α−1β tan πα

2 , α 6= 1,

−β 2
π log |t|, α = 1;

(3.39)

ωM (t, α, β) :=

{
(|t|α−1 − 1)β tan πα

2 , α 6= 1,

−β 2
π log |t|, α = 1;

(3.40)

ωB(t, α, β) :=

{
exp
(
−iπ2βK(α) sgn t

)
, α 6= 1,

π
2 + iβ log |t| sgn t, α = 1,

(3.41)

with K(α) := α− 1 + sgn(1− α), i.e.,

K(α) :=

{
α, 0 < α < 1,

α− 2, 1 < α 6 2.
(3.42)

The ranges of the parameters are, in all three cases • ∈ {A,B,M},
0 < α 6 2, − 1 6 β• 6 1, −∞ < γ• <∞, 0 < λ• <∞. (3.43)

If α = 2, we take β• = 0.
Here α ∈ (0, 2] is the same in all parametrisations and, with β, γ, δ is as in (3.6),

βA = βM = β, (3.44)

γA = δ/γα, (3.45)

γM = µ1/γ
α =

{
γA + β tan πα

2 , α 6= 1,

γA, α = 1,
(3.46)

λA = λM = γα, (3.47)

and, for α 6= 1,

tan
(
βB

πK(α)

2

)
= βA tan

πα

2
= β tan

πα

2
, (3.48)

γB = γA cos
(
βB

πK(α)

2

)
, (3.49)

λB = λA
/

cos
(
βB

πK(α)

2

)
, (3.50)

while for α = 1,

βB = βA = β, (3.51)
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γB =
π

2
γA =

πδ

2γ
, (3.52)

λB =
2

π
λA =

2γ

π
. (3.53)

Note that, for any α, and every • ∈ {A,B,M},
β• = 0 ⇐⇒ β = 0 and β• = ±1 ⇐⇒ β = ±1, (3.54)

and that for each fixed α, the mapping β = βA 7→ βB is an increasing homeomor-
phism of [−1, 1] onto itself.

In the strictly stable case, Zolotarev [14] also uses

ϕ(t) = exp
(
−λCe−i sgn(t)παθ/2|t|α

)
, (3.55)

which is the same as (3.22) with

λC = λ (3.56)

θ = −γ̃/α; (3.57)

thus the ranges of the parameters are (excluding the case α = 1 and θ = ±1, which
is possible in (3.55), but degenerate)

|θ| 6 1, α < 1,

|θ| < 1, α = 1,

|θ| 6 2/α− 1, α > 1,

(3.58)

0 < λC <∞. (3.59)

We have

θ =

{
βB

K(α)
α , α 6= 1,

2
π arctan

(2γB
π

)
, α = 1.

(3.60)

λC =

{
λB, α 6= 1,

λB
(
π2/4 + γ2

B

)1/2
, α = 1.

(3.61)

Zolotarev [14] uses in the strictly stable case also the parameters α, ρ, λC where

ρ :=
1 + θ

2
. (3.62)

Thus the range of ρ is 
0 6 ρ 6 1, α < 1,

0 < ρ < 1, α = 1,

1− 1/α 6 ρ 6 1/α, α > 1.

(3.63)

Zolotarev [14] uses Y (α, β•, γ•, λ•) = Y•(α, β•, γ•, λ•), where again • ∈ {A,B,M},
as a notation for a random variable with the characteristic function (3.36)–(3.38); the
parameters γ• and λ• may be omitted when γ• = 0 and λ• = 1. The distribution is a
continuous function of the parameters (α, βM , γM , λM ). (The representations A and
B are discontinuous at α = 1.) Similarly, a random variable with the characteristic
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function (3.55) is denoted Y (α, θ, λC) = YC(α, θ, λC), where λC may be omitted
when λC = 1. We use Y•(. . . ) for the distribution of Y•(. . . ).

The parameter ρ has a natural interpretation. (See Theorem 5.1 for a generaliza-
tion.)

Theorem 3.18. For a strictly stable random variable YC(α, θ, λ),

P
[
YC(α, θ, λ) > 0

]
= ρ =

1 + θ

2
. (3.64)

Proof. See, e.g., [14, Theorem 2.6.3] (in the special case s = 0). �

Corollary 3.19. The strictly stable random variable YC(α, θ, λ) is positive ⇐⇒
α < 1 and ρ = 1 ⇐⇒ α < 1 and θ = 1.

Similarly, YC(α, θ, λ) is negative ⇐⇒ α < 1 and ρ = 0 ⇐⇒ α < 1 and θ = −1.

Proof. By (3.64) and (3.63). �

Using Theorem 3.18, (3.60) and (3.48), the probability that a strictly stable ran-
dom variable is positive can be expressed in α and βB or β when α 6= 1, and in γB
or (using also (3.49)) γ and δ when α = 1. In particular, this yields

P
[
Xα(γ, β, 0) > 0

]
=

1

2
+

1

απ
arctan

(
β tan

πα

2

)
, α 6= 1, (3.65)

P
[
X1(γ, 0, δ) > 0

]
=

1

2
+

1

π
arctan

( δ
γ

)
. (3.66)

Example 3.20. By Corollary 3.19, the positive strictly stable random variable
Xα(γ, 1, 0) in Theorem 3.14 can also be described as YC(α, 1, λ); here necessarily
0 < α < 1. This random variable has, using (3.56)–(3.57), (3.62), (3.27) and (3.23),
the parameters

β = 1, θ = 1, ρ = 1, γ̃ = −α, γα = λ cos
πα

2
, (3.67)

and, by Theorem 3.13, the Laplace transform

E e−tYC(α,1,λ) = e−λt
α
, t > 0. (3.68)

For 0 < α < 1, YC(α, 1, λ) is thus the random variable in Example 3.16. �

We have a similar result for the extreme values in (3.58) and (3.63) also for the
case α > 1. (The Gaussian case α = 2 is trivial; then necessarily θ = 0 and ρ = 1/2
by (3.58) and (3.63).)

Theorem 3.21. Let 1 < α 6 2. The strictly stable random variable YC(α, θ, λ) is
spectrally positive ⇐⇒ ρ = 1− 1/α ⇐⇒ θ = 1− 2/α.

Similarly, YC(α, θ, λ) is spectrally negative ⇐⇒ ρ = 1/α ⇐⇒ θ = 2/α− 1.

Note that when 1 < α < 2, thus θ < 0 in the spectrally positive case, and θ > 0
in the spectrally negative case.

Proof. By Theorem 3.12, (3.54), (3.60), (3.42) and (3.62). �
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Example 3.22. Let 1 < α < 2. By Theorem 3.21, the spectrally positive strictly sta-
ble random variable Xα(γ, 1, 0) in Theorem 3.12 can also be described as YC(α, θ, λ)
with θ = 1− 2/α. This random variable has, using (3.27) and (3.23),

β = 1, θ = 1− 2

α
, ρ = 1− 1

α
, γ̃ = 2− α, γα = λ

∣∣cos
πα

2

∣∣, (3.69)

and, by Theorem 3.13, the Laplace transform

E e−tYC(α,1,λ) = eλt
α
, t > 0. (3.70)

For 1 < α < 2, YC(α, 1− 2/α, λ) is thus the random variable in Example 3.17.
By (3.64), we have

P
[
YC(α, 1− 2/α, λ) > 0

]
= ρ = 1− 1

α
. (3.71)

�

4. Stable densities

A stable distribution has by (3.6) a characteristic function that decreases rapidly
as t→ ±∞, and thus the distribution has a density that is infinitely differentiable.

In the case α < 1 and β = 1, Sα(γ, β, δ) has support [δ,∞) and in the case α < 1
and β = −1, Sα(γ, β, δ) has support (−∞, δ]; in all other cases the support is the
entire real line. Moreover, the density function is strictly positive in the interior of
the support, se Zolotarev [14, Remark 2.2.4].

Feller [3, Section XVII.6] lets, for α 6= 1, p(x;α, γ̃) denote the density of the
stable distribution with characteristic function (3.22) with λ = 1. A stable ran-
dom variable with the characteristic function (3.22) thus has the density function

λ−1/αp(λ−1/αx;α, γ̃). The density of a random variable Xα(γ, β, δ) with α 6= 1 is
thus given by

λ−1/αp
(
λ−1/α(x− δ);α, γ̃

)
, (4.1)

with λ and γ̃ given by (3.23)–(3.24). (Cf. Remark 3.6.) By Remark 3.7, we have
also

p(−x;α, γ̃) = p(x;α,−γ̃). (4.2)

Zolotarev [14] uses g•(x;α, β•, γ•, λ•) for the density of the random variable Y•(α, β•, γ•, λ•)
with characteristic function (3.36)–(3.38), and g•(x;α, β•) for the special case γ• = 0,
λ• = 1; the index • ∈ {A,M,B} is often omitted (and often, but not always, taken
as B); furthermore, g(x;α, θ) = gC(x;α, θ) is used for the density of the random
variable YC(α, θ) with characteristic function (3.55) with λC = 1. Thus, for α 6= 1,
see (3.56)–(3.57),

gC(x;α, θ) = p(x;α,−αθ). (4.3)

By (3.55), we have also, in analogy with (4.2) (but now for all 0 < α 6 2),

gC(−x;α, θ) = gC(x;α,−θ). (4.4)

Feller [3, Lemma XVII.6.1] and Zolotarev [14, (2.4.8) and (2.4.6)] give the following
series expansions for p(x;α, γ̃) and gC(x; , α, θ), repsectively; the latter using ρ :=
(1 + θ)/2 as in (3.62). These expansions are equivalent by (4.3).
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Theorem 4.1. (i) If 0 < α < 1 and x > 0, then

p(x;α, γ̃) =
1

πx

∞∑
k=1

Γ(kα+ 1)

k!
(−x−α)k sin

kπ

2
(γ̃ − α), (4.5)

gC(x;α, θ) =
1

π

∞∑
k=1

(−1)k−1 Γ(kα+ 1)

k!
sin(πkρα)x−kα−1. (4.6)

For x < 0, use (4.5)–(4.6) together with (4.2) and (4.4).
(ii) If 1 < α 6 2 and x ∈ (−∞,∞), then

p(x;α, γ̃) =
1

πx

∞∑
k=1

Γ(k/α+ 1)

k!
(−x)k sin

kπ

2α
(γ̃ − α), (4.7)

gC(x;α, θ) =
1

π

∞∑
k=1

(−1)k−1 Γ(k/α+ 1)

k!
sin(πkρ)xk−1. (4.8)

�

Remark 4.2. The symmetry relations (4.2) and (4.4) are valid for all α, but not
needed in Theorem 4.1 for α > 1, since then (4.7)–(4.8) hold for all real x (with
the obvious interpretation of (4.7) for x = 0). It can easily by verified directly that
(4.7)–(4.8) satisfy (4.2) and (4.4). �

Example 4.3. The case α = 2 is simple; then γ̃ = 0, θ = 0 and ρ = 1/2 by
(3.25), (3.58) and (3.63), and the characteristic function (3.55) shows that YC(2, 0) ∼
N(0, 2). Hence,

p(x; 2, 0) = gC(x; 2, 0) =
1

2
√
π
e−x

2/4, (4.9)

which indeed has the series expansions (4.7)–(4.8). �

In particular, if 1 < α 6 2, then (4.7) yields

p(0;α, γ̃) =
1

π
Γ(1 + 1/α) sin

π(α− γ̃)

2α
. (4.10)

In the special case 1 < α < 2 and β = 1 we have γ̃ = 2− α by (3.27) and

p(0;α, 2− α) =
1

π
Γ(1 + 1/α) sin

π(α− 1)

α
=

1

π
Γ(1 + 1/α) sin

π

α

=
Γ(1 + 1/α)

Γ(1/α)Γ(1− 1/α)
=

1

αΓ(1− 1/α)
=

1

|Γ(−1/α)|
. (4.11)

For 1 < α < 2, the distribution Sα(γ, 1, 0) thus has, by (4.1) and (3.23), the
density at x = 0

λ−1/αp(0;α, 2− α) =
λ−1/α

|Γ(−1/α)|
= γ−1

∣∣cos
πα

2

∣∣1/α|Γ(−1/α)|−1. (4.12)
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4.1. The case α = 1. The case α = 1 was omitted in Theorem 4.1, since there is no
similar simple formula, except when β = 0. However, we have the following power
series expansion for α = 1 and β 6= 0, given by Zolotarev [14].

Theorem 4.4. Let α = 1.

(i) If β = 0, then S1(γ, 0, δ) has the density function

γ/π

(x− δ)2 + γ2
, −∞ < x <∞. (4.13)

(ii) If β > 0, then YB(1, β, 0, 1) = X1

(
π
2 , β, 0

)
has the density function

gB(x; 1, β) =
1

π

∞∑
n=0

(−1)ncnx
n, (4.14)

with

cn :=
1

n!

∫ ∞
0

e−βu log u sin
[
(1 + β)

π

2
u
]
un du (4.15)

(iii) If β < 0, then YB(1, β, 0, 1) = X1

(
π
2 , β, 0

)
has the density function

gB(x; 1, β) = gB(−x; 1,−β), (4.16)

which is given by (4.14).

Proof. (i): This well-known formula follows directly by Fourier inversion of the char-

acteristic function ϕ(t) = e−γ|t|+iδt.
(ii): Note first that if α = 1, then (3.51)–(3.53) show that βB = β, γB = 0 ⇐⇒

δ = 0, and λB = 1 ⇐⇒ γ = π/2. Hence, YB(1, β, 0, 1) = X1

(
π
2 , β, 0

)
as asserted.

The expansion (4.14)–(4.15) is [14, (2.4.7)] (with our cn equal to (n+1)bn+1 there).
(iii): This follows by (3.17). �

4.2. Analyticity. The density of any stable distribution Sα(γ, β, δ) is, as said above,
infinitely differentiable. Moreover, it is easy to see from Theorems 4.1 and 4.4 that
this density is real analytic for x 6= δ. At x = δ, the situation differs for α < 1 and
α > 1, as shown by the following result.

Theorem 4.5. Consider the density p(x) of X ∼ Sα(γ, β, δ).

(i) If α > 1, then p(x) is real analytic on (−∞,∞).
(ii) If α < 1, then p(x) is real analytic on R \ {δ}, but not at δ (although it is

infinitely differentiable there too).

Proof. (i): For α 6= 1, by (4.1), it suffices to consider p(x;α, γ̃), and the analyticity
follows from (4.7).

For α = 1, analyticity follows from (4.13), (4.14) or (4.16) (depending on β),
together with a liear change of variable.

(ii): Again, by (4.1) it suffices to consider p(x;α, γ̃), and thus δ = 0. The analyt-
icity for x > 0 follows from (4.5), and then for x < 0 from (4.2). These also show
that p(x) = p(x;α, γ̃) extends to an analytic function p(z) in each of the half planes
Re z < 0 and Re z > 0, with

|p(z)| = O
(
|z|−1−α), |z| > 1. (4.17)
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Suppose that p is real analytic also at x = 0. Then p would extend to an analytic
function in a neighbourhood of 0, and thus the extensions would combine to an
analytic extension in a strip | Im z| < 2ε for some ε > 0. The characteristic function
ϕ(t) then would be given by, by a shift of the line of integration using Cauchy’s
integral formula and the bound (4.17),

ϕ(t) =

∫ ∞
−∞

eitxp(x) dx =

∫ ∞
−∞

eit(x+iε)p(x+ iε) dx, t ∈ R, (4.18)

and thus, by (4.17) again,∣∣ϕ(t)
∣∣ 6 e−εt ∫ ∞

−∞

∣∣p(x+ iε)
∣∣dx = Ce−εt, t ∈ R, (4.19)

which for α < 1 contradicts the explicit expression (3.6). This contradiction shows
that p(x) is not analytic at x = 0 = δ. �

Remark 4.6. The proof yields also the following. For α > 1, and for α = 1 and
β 6= 0, the density p(x) of Sα(γ, β, δ) extends to an entire analytic function on C.
In the (strictly stable) case α = 1 and β = 0, the explicit formula (4.13) shows that
that p(x) extends to a meromorphic, but not entire, function on C. For α < 1,
the restrictions of p(x) to (−∞, δ) and (δ,∞) extend to analytic functions p+(z)
and p−(z) in the slit planes C \ [δ,∞) and C \ [−∞, δ), respectively, but these two
extensions are not equal.

To verify the claim that p+ 6= p− when α < 1, it again suffices to consider the
case λ = 1 and δ = 0, when the density is p(x;α, γ̃). Note that p+(x) is obtained by
extending (4.5) to complex x /∈ (−∞, 0]. In particular, it has a jump across the cut
that satisfies

lim
x→−∞

|x|1+α
[
p+(x+ 0i;α, γ̃)− p+(x− 0i;αγ̃)

]
=

Γ(α+ 1)

π

(
e−iαπ − eiαπ

)
sin
(π

2
(γ̃ − α)

)
= 2i

Γ(α+ 1)

π
sin(απ) sin

(π
2

(α− γ̃)
)
. (4.20)

If γ̃ ∈ [−α, α), then this limit is non-zero, and thus p+ has a jump across the cut at
least for large |x|. On the other hand, p− is analytic across the negative real axis. If
γ̃ = α, we have p+(x) = 0, and again we see that p+ and p− are different. �

Example 4.7. Consider a positive strictly stable variable; thus α < 1, δ = 0 and
γ̃ = −α by Theorem 3.14 and Example 3.16. We then have p(x;α,−α) = 0 for x 6 0
but p(x;α,−α) > 0 for x > 0; hence, it is in this case obvious that the density p
is not analytic at 0, as claimed in Theorem 4.5. (See Example 6.3 for a concrete
example.) �

4.3. Duality. There is a duality due to Zolotarev between the densities of the dis-
tributions of strictly stable random variables with parameters α and 1/α, valid at
least for part of the ranges.
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Theorem 4.8 (Zolotarev [14], Feller [3]). Let 1 6 α 6 2 and |θ| 6 2/α − 1, cf.
(3.58). Define θ′ by

θ′ = α(1 + θ)− 1 ∈ [2α− 3, 1]. (4.21)

Then,

gC(x;α, θ) = x−α−1gC
(
x−α;α−1, θ′

)
, x > 0. (4.22)

Equivalently, if 0 6 A 6 B 6∞, then

P
[
A < YC(α, θ) < B

]
=

1

α
P
[
B−α < YC(α−1, θ′) < A−α

]
. (4.23)

Hence, (
YC(α, θ)−α | YC(α, θ) > 0

) d
=
(
YC
(
α−1, θ′

)
| YC

(
α−1, θ′

)
> 0
)
. (4.24)

If 1 < α < 2, we have, equivalently,

p(x;α, γ̃) = x−α−1p
(
x−α;α−1, γ∗

)
(4.25)

with

γ∗ := α−1(γ̃ + 1)− 1. (4.26)

Note that the spectrally negative case θ = 2/α − 1 corresponds to the positive
case θ′ = 1. (See Theorem 3.21 and Corollary 3.19.)

Proof. The relation (4.22) is [14, (2.3.3)], and it is equivalent to (4.23) by integration
(or, conversely, by differentiating (4.23) with respect to B). The conditional version
(4.24) follows from (4.23) (and is equivalent to it if we also use Theorem 3.18).

Furthermore, for 1 < α < 2, (4.25) is [3, Lemma XVII.6.2] (with a change of
variable), and it is equivalent to (4.22) by (4.3).

Note also that the cases α = 1 and α = 2 in (4.23) follow by continuity from the
case 1 < α < 2, since the distribution of YC(α, θ) is a continuous function of (α, θ)
by (3.55) (with λ = 1). �

The relation (4.21) can also be written, using (3.62) and (3.63),

ρ′ = αρ ∈ [α− 1, 1]. (4.27)

(The case A = 0, B =∞ in (4.23) thus is in accordance with Theorem 3.18.)
Note that for 1 < α 6 2, (4.21) does not cover the whole range of θ′ allowed for

YC(α−1, θ′, 1), and similarly for (4.26).
For x < 0, we may as usual change signs by (4.2) and (4.4), but note that this

will change the relations (4.21) and (4.26). Theorem 4.8 implies, still for 1 6 α 6 2
and |θ| 6 2/α− 1,

gC(x, α, θ) = gC(|x|;α,−θ) = |x|−1−αgC
(
|x|−α;α−1,−θ′′

)
= |x|−1−αgC

(
−|x|−α;α−1, θ′′

)
, x < 0, (4.28)

with

θ′′ = 1− α(1− θ) = 1− α+ αθ ∈ [−1, 3− 2α]. (4.29)
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4.4. Density at 0 and ∞. As said above, the density gC(x;α, θ) of a strictly stable
distribution YC(α, θ) = YC(α, θ, 1) is always continuous at x = 0 (although not
always analytic there). Its value is given by a simple formula.

Theorem 4.9. For every α ∈ (0, 2] and θ satisfying (3.58),

gC(0;α, θ) =
1

π
Γ
(

1 +
1

α

)
cos
(π

2
θ
)

=
1

π
Γ
(

1 +
1

α

)
sin
(
πρ
)
. (4.30)

Proof. The case α 6= 1 is [14, (2.2.11)], together with (3.60) and (3.62).
If α = 1, then YC(1, θ) = S1(cos πθ2 , 0, sin

πθ
2 ) by (3.55) and (3.6) (or by (3.56)–

(3.57) and (3.23)–(3.24)), and (4.30) follows by (4.13). �

As x→∞, we have a corresponding simple asymptotic formula.

Theorem 4.10. For every α ∈ (0, 2] and θ satisfying (3.58),

gC(x;α, θ) =
1

π
Γ(1 + α) sin

(
παρ

)
x−1−α +O

(
x−1−2α

)
, x→ +∞. (4.31)

Proof. If α < 1, then (4.31) is immediate from (4.6).
If α = 1, then (4.31) follows from (4.13), noting again that Y(1, θ) = S1(cos πθ2 , 0, sin

πθ
2 )

and that cos
(
πθ/2

)
= sin(πρ).

If α > 1, then (4.31) follows from (4.22), (4.27), and (4.30) (applied to α−1 and
ρ′ := αρ). �

5. One-sided moments

It is well-known, that for an α-stable random variable X with α 6= 2, and s > 0,
we have

E |X|s <∞ ⇐⇒ 0 < s < α. (5.1)

For strictly stable random variables, these absolute moments can be calculated
explicitly. Moreover, in this case, we can find the moments of the positive and
negative parts of X. We use the general notation E

[
X; E

]
:= E

[
X ·1{E}

]
=
∫
E X dP

for a random variable X and an event E . We then have the following formulas.
Recall that λC = λ by (3.56).

Theorem 5.1. If Y = YC(α, θ, λ) and ρ = (1 + θ)/2, then, for complex s with
−1 < Re s < α,

E
[
Y s;Y > 0

]
= λs/α

sinπρs

sinπs

Γ(1− s/α)

Γ(1− s)
(5.2)

=
1

π
λs/αsin(πρs)Γ(s)Γ(1− s/α), (5.3)

= λs/α
Γ(s)Γ(1− s/α)

Γ(ρs)Γ(1− ρs)
, (5.4)

and

E
[
|Y |s;Y < 0

]
= λs/α

sinπ(1− ρ)s

sinπs

Γ(1− s/α)

Γ(1− s)
(5.5)
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=
1

π
λs/αsin(π(1− ρ)s)Γ(s)Γ(1− s/α) (5.6)

= λs/α
Γ(s)Γ(1− s/α)

Γ((1− ρ)s)Γ(1− (1− ρ)s)
, (5.7)

Proof. Zolotarev [14, Theorem 2.6.3] and homogeneity give (5.2), and then (5.3)–
(5.4) follow from the reflection formula Γ(z)Γ(1− z) = π/ sin(πz).

Since −Y d
= YC(α,−θ, λ), and (1− θ)/2 = 1− ρ, then (5.5)–(5.7) follow. �

The absolute moment E |Y |s is obtained by summing (5.2) and (5.5).
Note that the special case s = 0 (when the formulas are interpreted in the obvious

ways, taking limits) yields P[Y > 0] = ρ and P[Y < 0] = 1 − ρ, as stated in
Theorem 3.18. Consequently, we obtain the conditional moments E

[
Y s | Y > 0

]
and

E
[
|Y |s | Y < 0

]
by dividing (5.2)–(5.4) and (5.5)–(5.7) by ρ and 1− ρ, respectively.

When Re s > 0, we can also interpret (5.2)–(5.7) as the moments of Y+ :=
max{Y, 0} and Y− := max{−Y, 0}.

Remark 5.2. If Y has density p(x), then E
[
Y s;Y > 0

]
=
∫∞

0 xsp(x) dx and

E
[
|Y |s;Y < 0

]
=
∫∞

0 xsp(−x) dx. Hence, (5.2)–(5.7) can be regarded as formu-
las for the Mellin transforms of p restricted to the positive and negative half-axes.
�

Remark 5.3. The range −1 < Re s < α in Theorem 5.1 is in most cases optimal. In
fact, it follows from (5.3) that E

[
Y s;Y > 0

]
has a pole as s = −1 unless sin(−πρ) = 0,

i.e., ρ = 0 or ρ = 1; in both cases α < 1 by (3.63). Similarly, (5.3) shows that s = α
is a pole unless sin(πρα) = 0, i.e., ρ = 0 (and then α < 1), or ρ = 1/α (and then
α > 1). These exceptional cases are treated in the examples below. In all other
cases, we thus have poles at −1 and α, and, consequently, E

[
Y s;Y > 0

]
= ∞ for

s 6 −1 or s > α. �

Example 5.4. If α < 1 and ρ = 0, then Y < 0 a.s. by Theorem 3.18, and thus,
trivially, E

[
Y s;Y > 0

]
= 0 for all s, which agrees with (5.2). �

Example 5.5. If α < 1 and ρ = 1, then Y > 0 a.s. by Theorem 3.18, i.e., Y is
a positive strictly stable random variable as in Example 3.16. Hence its infinitely
differentiable density p(x) vanishes on (−∞, 0), and thus has all derivates = 0 at 0,
whence p(x) = O(xN ) as x→ 0 for any N > 0. It follows that E

[
Y s
]

is finite for all
s < 0, and thus analytic in Re s < α. By Remark 5.3, there is a pole at α. By (5.2)
and analytic continuation,

E
[
Y s
]

= λs/α
Γ(1− s/α)

Γ(1− s)
, Re s < α. (5.8)

�

Example 5.6. If 1 < α < 2 and ρ = 1/α, then Y is spectrally negative by Theo-
rem 3.21. Hence, by Theorem 3.13 and a change of signs, the moment generating
function E etY < ∞ for every t > 0, and it follows that E

[
Y s;Y > 0

]
< ∞ for all
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s > 0. Hence, (5.4) and analytic continuation yield

E
[
Y s;Y > 0

]
= λs/α

Γ(s)

Γ(s/α)
, Re s > −1. (5.9)

This holds for α = 2 too, when Theorem 3.13 as stated does not apply, because then
Y is normal and the moment generating function is finite everywhere. �

Example 5.7. If 1 < α < 2 and ρ = 1 − 1/α, then Y is spectrally positive by
Theorem 3.21, and −Y is as in Example 5.6. Hence, E

[
|Y |s;Y < 0

]
is finite for

Re s > −1, while E
[
Y s;Y > 0

]
has a pole at α. �

6. Some examples

Example 6.1 (α = 2). The case α = 2 is simple, and also exceptional in several
ways. By (3.6), the distribution S2(γ, β, δ) has characteristic function

ϕ(t) = eiδt−γ2t2 , (6.1)

and thus a 2-stable distribution is nornal: S2(γ, β, δ) = N(δ, 2γ2). As said in Theo-
rem 3.3, this distribution does not depend on β, and we take β = 0.

Conversely, we see that a normal distribution N(µ, σ2) is 2-stable, with, by (6.1)
and (3.36)–(3.38),

γ =
1√
2
σ, δ = µ, λA = λB = λM =

1

2
σ2, γA = γB = γM =

2µ

σ2
. (6.2)

The distribution is strictly stable if and only if its mean µ = 0 (see Remark 3.4),
and then we further have, by (3.19), (3.22), (3.55), and (3.62),

κ = λ = λC =
1

2
σ2, τ = γ̃ = θ = 0, ρ =

1

2
. (6.3)

(Cf. (3.25), (3.58), (3.63).)
In particular, S2(1, 0, 0) = YC(1

2 , 0) has the density

p(x; 2, 0) = gC(x; 2, 0) =
1

2
√
π
e−x

2/4. (6.4)

The normal distribution has Lévy measure Λ = 0, and the canonical measure M
is a point mass at {0}, with M{0} = σ2; see (2.5) and (2.3). �

Example 6.2 (α = 1). The Cauchy distribution has density

f(x) =
1

π(1 + x2)
, −∞ < x <∞, (6.5)

and characteristic function

ϕ(t) = e−|t|, −∞ < t <∞. (6.6)

The Cauchy distribution is thus strictly 1-stable. More precisely, by (3.6), it is
S1(1, 0, 0) = S1(0); see also Theorem 4.4(i). We thus have, using also (3.19) or
(3.20), (3.22)–(3.24), (3.44)–(3.47), (3.51)–(3.53), (3.56)–(3.57), and (3.62),

γ = 1, β = δ = 0, κ = 1, τ = 0, λ = 1, γ̃ = 0,



22 SVANTE JANSON

βA = βB = βM = 0, γA = γB = γM = 0, λA = λM = λC = 1, λB = 2/π,

θ = 0, ρ =
1

2
. (6.7)

By Theorem 3.3, the strictly 1-stable distributions are S1(γ, 0, δ), and by (3.15),

X1(γ, 0, δ)
d
= γX1(0) + δ. (6.8)

In other words, the strictly 1-stable distributions are precisely the linear transfor-
mations of the Cauchy distribution.

If we normalize to γ = 1, we have, generalizing (6.7), that the strictly stable
distribution S1(1, 0, δ) has, by Remark 3.10, (3.19), (3.22), (3.24), (3.44)–(3.47),
(3.51)–(3.54), (3.56)–(3.57), and (3.62),

κ = γ = 1, τ = δ, λ = λC =
√

1 + δ2, γ̃ = − 2

π
arctan δ,

β = βA = βB = βM = 0, γA = γM = δ, γB =
πδ

2
, λA = λM = 1,

λB =
2

π
, θ =

2

π
arctan δ, ρ =

1

2
+

1

π
arctan δ. (6.9)

�

Example 6.3 (α = 1/2). The positive 1
2 -stable distribution is closely connected to

the normal distribution and Brownian motion.
One way to see this is to consider a standard Brownian motion Bt, 0 6 t <∞, and

for a > 0 let Ta be the hitting time Ta := inf{t > 0 : Bt > a}. Then, by Brownian

scaling, Ta
d
= a2T1, and by the strong Markov property, Ta+b− Ta

d
= Tb, for a, b > 0.

Hence, if X = T1, then

Sn :=
n∑
i=1

Xi
d
= Tn

d
= n2X, (6.10)

which shows that X = T1 is strictly 1
2 -stable. Obviously, T1 > 0. More generally,

(Ta)a>0 is an increasing stable process (i.e., a Lévy process with stable increments,
see Remark 2.4 and e.g. [2]).

A simple calculation using the martingale e
√

2tBx−tx, x > 0, see e.g. [12, Proposi-
tion II.3.7], gives the Laplace transform

E e−tT1 = e−
√

2t, t > 0. (6.11)

Hence, by Example 3.16 (with λ =
√

2), T1 ∼ S1/2(1, 1, 0). Using also Theorem 3.14,
(3.20), (3.27), (3.44)–(3.50), (3.56)–(3.57), and (3.62),

γ = 1, β = 1, δ = 0, κ = 1, τ = 1, λ = λC =
√

2, γ̃ = −1

2
,

βA = βB = βM = 1, γA = γB = 0, γM = 1, λA = λM = 1, λB =
√

2,

θ = ρ = 1. (6.12)

More generally, for any a > 0, Ta ∼ S1/2(a2, 1, 0) = YC(1/2, 1, a
√

2).
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Moreover, using the reflection principle [12, Proposition III.3.7], for any x > 0,

P(T1 6 x) = P
(

sup
06t6x

Bt > 1
)

= 2P
(
Bx > 1

)
= P

(
|Bx| > 1

)
= P

(
x1/2|B1| > 1

)
= P

(
|B1|2 > 1/x

)
= P

(
|B1|−2 6 x

)
. (6.13)

Hence,

T1
d
= B−2

1 , where B1 ∼ N(0, 1). (6.14)

In other words, if Z ∼ N(0, 1), then Z−2 ∼ S1/2(1, 1, 0) = YC(1/2, 1,
√

2).
From (6.14), T1 has the density

fT1(x) =
1√

2πx3
e−1/(2x), x > 0. (6.15)

This follows also from (4.22). Hence, if X ∼ S1/2(γ, 1, 0) = YC(1/2, 1,
√

2γ), then

X
d
= γT1 has density

fX(x) =
γ1/2

√
2πx3

e−γ/(2x), x > 0. (6.16)

Taking γ = 1/2, we find

gC(x; 1/2, 1) =
1

2
√
πx3

e−1/(4x), x > 0, (6.17)

which agrees with (4.22) and (6.4). �

Example 6.4 (α = 3/2). Banderier, Flajolet, Schaeffer and Soria [1] define a 3
2 -

stable distribution, by them called the Airy distribution of map type; it has a density
A(x) given by [1, (B.2)]

A(x) =
1

2πi

∫ ∞i

−∞i
e−xt+t

3/2/3 dt =
1

2π

∫ ∞
−∞

e−ixt+(it)3/2/3 dt, (6.18)

which can be recognized as the inversion formula for a distribution with characteristic
function

ϕ(t) = e(it)3/2/3 = exp
(
−1

3
e−iπ sgn(t)/4|t|3/2

)
= exp

(
− 1

3
√

2
(1− i sgn(t))|t|3/2

)
.

(6.19)

This is thus (as noted in [1]) a 3
2 -stable distribution; more precisely, by comparing

with (3.19) and (3.55), we see that this is the strictly stable distribution with, using
also (3.62),

α = 3/2, κ = τ =
1

3
√

2
=

1√
18
, λC =

1

3
, θ =

1

3
, ρ =

2

3
. (6.20)

We find also, using (3.21), (3.22) or (3.28), (3.44)–(3.50), (3.56), (3.61),

γ = 2−1/33−2/3 = 18−1/3, β = −1, δ = 0, λ =
1

3
, γ̃ = −1

2
,

βA = βB = βM = −1, γA = γB = 0, γM = 1, λA = λM =
1

3
√

2
,
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λB = λC =
1

3
. (6.21)

The distribution is thus spectrally negative. If X has this distribution, then by (3.33)
applied to −X,

E etX = exp
(

1
3 t

3/2
)
, Re t > 0. (6.22)

It is shown in [1] that the density (6.18) also can be expressed as

A(x) := 2e−2x3/3
(
xAi(x2)−Ai′(x2)

)
, −∞ < x <∞, (6.23)

where Ai(x) is the Airy function [10, Chapter 9].
This distribution is of the type in Example 5.6, and (5.9) yields∫ ∞

0
xsA(x) dx = 3−2s/3 Γ(s)

Γ(2s/3)
, Re s > −1. (6.24)

For the negative side, we have by (5.6) and the reflection formula for the Gamma
function,∫ 0

−∞
|x|sA(x) dx =

1

π
3−2s/3 sin

πs

3
Γ(s)Γ(1− 2s/3)

= 3−2s/3 sin πs
3

sin 2πs
3

Γ(s)

Γ(2s/3)

= 2−13−2s/3 1

cos πs3

Γ(s)

Γ(2s/3)
, −1 < Re s < 3/2. (6.25)

The formulas (6.24) and (6.25) are equivalent to [1, (B.5)–(B.6)].
By (6.21) and (4.1), the density

A(x) = gC
(
x; 3/2, 1/3, 1/3

)
= 32/3p

(
32/3x; 3/2,−1/2

)
(6.26)

and thus, by (4.3) and (6.23),

gC
(
x; 3/2, 1/3

)
= p
(
x; 3/2,−1/2

)
= 3−2/3A

(
3−2/3x

)
= 2 · 3−2/3e−2x3/27

(
3−2/3xAi

(
3−4/3x2

)
−Ai′

(
3−4/3x2

))
. (6.27)

An alternative formula using the Whittaker function Wκ,µ [10, §13.14] is [14,
(2.8.34) with a typo]:

gC
(
x; 3/2, 1/3

)
=

√
3√
π
x−1e−2x3/27W1/2,1/6

(4x3

27

)
, x > 0. (6.28)

For the negative side we have, by (4.4) and [14, (2.8.35)],

gC
(
x; 3/2, 1/3

)
= gC

(
|x|; 3/2,−1/3

)
=

1

2
√

3π
|x|−1e2|x|3/27W−1/2,1/6

(4|x|3

27

)
, x < 0. (6.29)

Of course, the corresponding spectrally positive distribution YC(3/2,−1/3) has den-
sity gC(−x; 3/2, 1/3) obtained by switching (6.28) and (6.29). �
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Example 6.5 (α = 2/3). The positive strictly 2
3 -stable distribution with Laplace

transform

E e−tX = exp
(
−t2/3

)
, Re t > 0, (6.30)

is S2/3(2−3/2, 1, 0) = YC(2/3, 1) = YC(2/3, 1, 1) by Examples 3.16 and 3.20. By (4.3)
and (4.22) (with α = 3/2 and θ = 1/3), its density function is

gC(x; 2/3, 1) = p
(
x; 2/3,−2/3

)
= x−5/3gC

(
x−2/3; 3/2, 1/3

)
, x > 0. (6.31)

By (6.27), this yields the density, for x > 0,

gC(x; 2/3, 1) = 6e−
2

27x2

(
(3x)−7/3Ai

(
(3x)−4/3

)
− (3x)−5/3Ai′

(
(3x)−4/3

))
. (6.32)

Similarly, (6.31) and (6.28) yield [14, (2.8.33) with typo]

gC
(
x; 2/3, 1

)
=

√
3√
π
x−1e−

2
27x2W1/2,1/6

( 4

27x2

)
, x > 0. (6.33)

�

Example 6.6 (α = 2/3). The symmetric 2
3 -stable distribution with characteristic

function

E eitX = exp
(
−|t|2/3

)
, −∞ < t <∞, (6.34)

is S2/3(1, 0, 0) = YC(2/3, 0) = YC(2/3, 0, 1) by (3.6) and (3.55).
By symmetry, (4.3) and (4.22) (with α = 3/2 and θ = −1/3), the density function

is

gC(x; 2/3, 0) = p
(
x; 2/3, 0

)
= |x|−5/3gC

(
|x|−2/3; 3/2,−1/3

)
, (6.35)

which by (6.29) yields [14, (2.8.32)]

gC(x; 2/3, 0) =
1

2
√

3π
|x|−1e

2
27x2W−1/2,1/6

( 4

27x2

)
, x 6= 0. (6.36)

�

Example 6.7 (α = 1/3). The positive strictly 1
3 -stable distribution with Laplace

transform

E e−tX = exp
(
−t1/3

)
, Re t > 0, (6.37)

is S1/3((3/4)3/2, 1, 0) = YC(1/3, 1) = YC(1/3, 1, 1) by Examples 3.16 and 3.20.
The density function is, by [14, (2.8.31)] and [10, (9.6.1)],

gC
(
x; 1/3, 1

)
= p
(
x; 1/3,−1/3

)
= 3−1/3x−4/3Ai

(
(3x)−1/3

)
, x > 0, (6.38)

where Ai(x) again is the Airy function. Equivalently, 3Ai(x), x > 0, is the density

of the random variable (3YC(1/3, 1))−1/3. (The distribution of this variable, apart

from the factor 3−1/3, is known as a Mittag–Leffler distribution).
The moment formula (5.8) with α = 1/3 is by (6.38) and a change of variables

equivalent to the integral formula [10, (9.10.17)]∫ ∞
0

xa−1Ai(x) dx = 3−(α+2)/3 Γ(a)

Γ((α+ 2)/3)
, Re a > 0. (6.39)
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�

7. Domains of attraction

Definition 7.1. A random variable X belongs to the domain of attraction of a
stable distribution L if there exist constants an > 0 and bn such that

Sn − bn
an

d−→ L (7.1)

as n→∞, where Sn :=
∑n

i=1Xi is a sum of n i.i.d. copies of X.

We will in the sequel always use the notation Sn in the sense above (as we already
have done in Section 3). All unspecified limits are as n→∞.

Theorem 7.2. Let 0 < α 6 2. A (non-degenerate) random variable X belongs to
the domain of attraction of an α-stable distribution if and only if the following two
conditions hold:

(i) the truncated moment function

µ(x) := E
(
X21{|X| 6 x}

)
(7.2)

varies regularly with exponent 2− α as x→∞, i.e.,

µ(x) ∼ x2−αL1(x), (7.3)

where L1(x) varies slowly;
(ii) either α = 2, or the tails of X are balanced:

P(X > x)

P(|X| > x)
→ p+, x→∞, (7.4)

for some p+ ∈ [0, 1].

Proof. Feller [3, Theorem XVII.5.2]. �

For the case α < 2, the following version is often more convenient.

Theorem 7.3. Let 0 < α < 2. A random variable X belongs to the domain of
attraction of an α-stable distribution if and only if the following two conditions hold:

(i) the tail probability P(|X| > x) varies regularly with exponent −α as x→∞,
i.e.,

P(|X| > x) ∼ x−αL2(x), (7.5)

where L2(x) varies slowly;
(ii) the tails of X are balanced:

P(X > x)

P(|X| > x)
→ p+, x→∞, (7.6)

for some p+ ∈ [0, 1].

Proof. Feller [3, Corollary XVII.5.2]. �

We turn to identifying the stable limit distributions in Theorems 7.2–7.3 explicitly.
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7.1. The case α < 2. If the conditions of Theorem 7.2 or 7.3 hold for some α < 2,
then the conditions of the other hold too, and we have, by [3, (5.16)],

L2(x) ∼ 2− α
α

L1(x), x→∞. (7.7)

Furthermore, by [3, (5.6)], with an, bn as in (7.1) and M and Λ the canonical measure
and Lévy measure of the limit distribution L,

nP(X > anx)→ Λ(x,∞) =

∫ ∞
x

y−2 dM(y), x > 0, (7.8)

and, by symmetry,

nP(X < −anx)→ Λ(−∞,−x) =

∫ x

−∞
y−2 dM(y), x > 0. (7.9)

In particular,
nP(|X| > an)→ Λ{y : |y| > 1} ∈ (0,∞); (7.10)

conversely, we may in (7.1) choose any sequence (an) such that nP(|X| > an) con-
verges to a positive, finite limit. (Any two such sequences (an) and (a′n) must satisfy
an/a

′
n → c for some c ∈ (0,∞), as a consequence of (7.5).)

If
nP(|X| > an)→ C > 0 (7.11)

and (7.5)–(7.6) hold, then (7.8)–(7.9) hold with Λ(x,∞) = p+Cx
−α and Λ(−∞,−x) =

p−Cx
−α, where p− := 1− p+. Hence, (3.2)–(3.3) hold with

c+ = p+Cα, c− = p−Cα. (7.12)

Consequently, the limit distribution is given by (3.6) where, by (3.11)–(3.12),

γ =
(
Cα
(
−Γ(−α) cos πα2

))1/α
=
(
CΓ(1− α) cos πα2

)1/α
, (7.13)

β = p+ − p−. (7.14)

For α = 1 we interpret (7.13) by continuity as

γ = C π
2 . (7.15)

Theorem 7.4. Let 0 < α < 2. Suppose that (7.5)–(7.6) hold and that an are chosen
such that (7.11) holds, for some C. Let γ and β be defined by (7.13)–(7.14).

(i) If 0 < α < 1, then
Sn
an

d−→ Sα(γ, β, 0). (7.16)

(ii) If 1 < α < 2, then

Sn − nEX
an

d−→ Sα(γ, β, 0). (7.17)

(iii) If α = 1, then
Sn − nbn

an

d−→ S1(γ, β, 0), (7.18)

where γ is given by (7.15) and

bn := an E sin(X/an). (7.19)
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Proof. Feller [3, Theorem XVII.5.3] together with the calculations above. �

Example 7.5. Suppose that 0 < α < 2 and that X is a random variable such that,
as x→∞,

P(X > x) ∼ Cx−α, (7.20)

with C > 0, and P(X < −x) = o(x−α). Then (7.5)–(7.6) hold with L2(x) := C and

p+ = 1, and thus p− := 1− p+ = 0. We take an := n1/α; then (7.11) holds, and thus
(3.2)–(3.3) hold with

c+ = Cα, c− = 0; (7.21)

hence, (7.13)–(7.14) yield

γ =
(
CΓ(1− α) cos πα2

)1/α
, (7.22)

and β = 1. Consequently, Theorem 7.4 yields the following.

(i) If 0 < α < 1, then
Sn

n1/α

d−→ Sα(γ, 1, 0). (7.23)

The limit variable Y is positive and has by Theorem 3.13 and (7.22) the Laplace
transform

E e−tY = exp
(
−CΓ(1− α)tα

)
, Re t > 0. (7.24)

(ii) If 1 < α < 2, then
Sn − nEX

n1/α

d−→ Sα(γ, 1, 0). (7.25)

The limit variable Y has by Theorem 3.13 and (7.22) the finite Laplace trans-
form

E e−tY = exp
(
C|Γ(1− α)|tα

)
, Re t > 0. (7.26)

By (4.12) and (7.22), the density function fY of the limit variable satisfies

f(0) = C−1/α|Γ(1− α)|−1/α|Γ(−1/α)|−1. (7.27)

(iii) If α = 1, then

Sn − nbn
n

=
Sn
n
− bn

d−→ S1(γ, 1, 0), (7.28)

where, by (7.15), γ = Cπ/2 and

bn := nE sin(X/n). (7.29)

We return to the evaluation of bn in Section 7.2.

�

Example 7.6. Suppose that 0 < α < 2 and that X > 0 is an integer-valued random
variable such that, as n→∞,

P(X = n) ∼ cn−α−1. (7.30)

Then (7.20) holds with

C = c/α (7.31)
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and the results of Example 7.5 hold, with this C. In particular, (7.22) yields

γα = −cΓ(−α) cos πα2 , (7.32)

and both (7.24) and (7.26) can be written

E e−tY = exp
(
cΓ(−α)tα

)
, Re t > 0; (7.33)

note that Γ(−α) < 0 for 0 < α < 1 but Γ(−α) > 0 for 1 < α < 2.
Taking t imaginary in (7.33), we find the characteristic function

E eitY = exp
(
cΓ(−α)(−it)α

)
= exp

(
cΓ(−α)e−i sgn(t)πα/2|t|α

)
, t ∈ R. (7.34)

�

7.2. The special case α = 1. Suppose that, as x→∞,

P(X > x) ∼ Cx−1 (7.35)

and P(X < −x) = o(x−1), with C > 0. Then Example 7.5 applies, and (7.28)–(7.29)
hold. We calculate the normalising quantity bn in (7.28) for some examples.

Example 7.7. Let X := 1/U , where U ∼ U(0, 1) has a uniform distribution. Then
P(X > x) = x−1 for x > 1 so (7.35) holds with C = 1 and (7.15) yields γ = π/2.
Furthermore, X has a Pareto distribution with the density

f(x) =

{
x−2, x > 1,

0, x 6 1.
(7.36)

Consequently, by (7.29),

bn = n sin(X/n) = n

∫ ∞
1

sin(x/n)x−2 dx =

∫ ∞
1/n

sin(y)y−2 dy

= log n+

∫ 1

1/n

sin y − y
y2

dy +

∫ ∞
1

sin y

y2
dy

= log n+

∫ ∞
0

sin y − y1{y < 1}
y2

dy + o(1) = log n+ 1− γ̄ + o(1),

where γ̄ is Euler’s gamma. (For the standard evaluation of the last integral, see e.g.
[7].) Hence, (7.28) yields

Sn
n
−
(
log n+ 1− γ̄

) d−→ S1(π/2, 1, 0). (7.37)

or
Sn
n
− log n

d−→ S1(π/2, 1, 1− γ̄). (7.38)

�

Example 7.8. Let X := 1/Y , where Y ∼ Exp(1) has an exponential distribution.
Then P(X > x) = 1 − exp(−1/x) ∼ x−1 as x→∞ so C = 1 and (7.15) yields
γ = π/2. In this case we do not calculate bn directly from (7.29). Instead we define
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U := 1− e−Y and X ′ := 1/U and note that U has a uniform distribution on [0, 1] as
in Example 7.7; furthermore

X ′ −X =
1

1− e−Y
− 1

Y
=
e−Y − 1 + Y

(1− e−Y )Y
. (7.39)

This is a positive random variable with finite expectation

E(X ′ −X) =

∫ ∞
0

e−y − 1 + y

(1− e−y)y
e−y dy =

∫ ∞
0

( e−y

1− e−y
− e−y

y

)
dy = γ̄, (7.40)

see e.g. [10, (5.9.18)] or [7].

Taking i.i.d. pairs (Xi, X
′
i)

d
= (X,X ′) we thus have, with S′n :=

∑n
i=1X

′
i, by the

law of large numbers,
S′n − Sn

n

p−→ E(X ′ −X) = γ̄. (7.41)

Since Example 7.7 shows that S′n/n− log n
d−→ S1(π/2, 1, 1− γ̄), it follows that

Sn/n− log n
d−→ S1(π/2, 1, 1− 2γ̄). (7.42)

We thus have (7.28) with

bn = log n+ 1− 2γ̄ + o(1). (7.43)

�

7.3. The case α = 2. If α = 2, then an in (7.1) have to be chosen such that

nµ(an)

a2
n

→ C (7.44)

for some C > 0, see [3, (5.23)]; conversely any such sequence (an) will do.

Theorem 7.9. If µ(x) is slowly varying with µ(x)→∞ as x→∞ and (7.44) holds,
then

Sn − ESn
an

d−→ N(0, C). (7.45)

Proof. Feller [3, Theorem XVII.5.3]. �

Example 7.10. Suppose that α = 2 and that X is a random variable such that, as
x→∞,

P(X > x) ∼ Cx−2, (7.46)

with C > 0, and P(X < −x) = o(x−2). Then (7.4) holds with p+ = 1, and thus
p− := 1− p+ = 0. Furthermore, as x→∞,

µ(x) = E
(∫ |X|

0
2tdt1{|X| 6 x}

)
= E

∫ x

0
1{t 6 |X| 6 x}2tdt

=

∫ x

0
2tP(t 6 |X| 6 x) dt =

∫ x

0
2tP(|X| > t) dt− x2 P(|X| > x)

=
(
1 + o(1)

) ∫ x

1
2tCt−2 dt+O(1) ∼ 2C log x. (7.47)
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Thus (7.3) holds with L1(x) = 2C log x.
We take an :=

√
n log n. Then µ(an) ∼ 2C 1

2 log n = C log n, so (7.44) holds and
Theorem 7.9 yields

Sn − ESn√
n log n

d−→ N(0, C). (7.48)

�

8. Attraction and characteristic functions

We study the relation between the attraction property (7.1) and the characteristic
function ϕX(t) of X. For simplicity, we consider only the common case when an =

n1/α. Moreover, for simplicity we state results for ϕX(t), t > 0 only, recalling (3.18)
and ϕX(0) = 1.

Theorem 8.1. Let 0 < α 6 2. The following are equivalent.

(i)
Sn

n1/α

d−→ Z for some non-degenerate random variable Z.

(ii) The characteristic function ϕX of X satisfies

ϕX(t) = 1− (κ− iτ)tα + o(tα) as t↘ 0, (8.1)

for some real κ > 0 and τ . In this case, Z is strictly α-stable and has the
characteristic function (3.19). (Hence, |τ | 6 κ tan πα

2 .)

Proof. If (i) holds, then for every integer m,

Smn

(mn)1/α
=

1

m1/α

m∑
k=1

1

n1/α

n∑
j=1

X(k−1)n+j
d−→ 1

m1/α

m∑
k=1

Zk, as n→∞,

with Zk
d
= Z i.i.d. Since also (mn)−1/αSmn

d−→ Z, we have m−1/α
∑m

k=1 Zk
d
= Z,

and thus Z is strictly α-stable.
We use Corollary 3.8 and suppose that Z has characteristic function (3.19). Then

the continuity theorem yields

ϕX(t/n1/α)n → ϕZ(t) = exp
(
−(κ− iτ)tα

)
, t > 0; (8.2)

moreover, this holds uniformly for, e.g., 0 6 t 6 1.
In some neighbourhood (−t0, t0) of 0, ϕX 6= 0 and thus ϕX(t) = eψ(t) for some

continuous function ψ : (−t0, t0) → C with ψ(0) = 0. Hence, (8.2) yields (for
n > 1/t0)

exp
(
nψ
( t

n1/α

)
+ (κ− iτ)tα

)
= 1 + o(1), as n→∞,

uniformly for 0 6 t 6 1, which implies

nψ
( t

n1/α

)
+ (κ− iτ)tα = o(1), as n→∞,

since the left-hand side is continuous and 0 for t = 0, and thus

ψ

(
t

n1/α

)
+ (κ− iτ)

tα

n
= o(1/n), as n→∞, (8.3)
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uniformly for 0 6 t 6 1.
For s > 0, define n := bs−αc and t := sn1/α ∈ (0, 1]. As s ↘ 0, we have n → ∞

and (8.3) yields

ψ(s) = −(κ− iτ)sα + o(1/n) = −(κ− iτ)sα + o(sα). (8.4)

Consequently, as s↘ 0,

ϕX(s) = eψ(s) = 1− (κ− iτ)sα + o(sα), (8.5)

so (8.1) holds.
Conversely, if (8.1) holds, then, for t > 0,

E eitSn/n1/α
= ϕX

(
t/n1/α

)n
=
(

1− (κ− iτ + o(1))
tα

n

)n
→ exp

(
−(κ− iτ)tα

)
,

as n→∞, and thus by the continuity theorem Sn/n
1/α d−→ Z, where Z has the

characteristic function (3.19). �

For α = 1, it is not always possible to reduce to the case when bn = 0 in (7.1)
and the limit is strictly stable. The most common case is covered by the following
theorem.

Theorem 8.2. The following are equivalent, for any real b.

(i)
Sn
n
− b log n

d−→ Z for some non-degenerate random variable Z.

(ii) The characteristic function ϕX of X satisfies

ϕX(t) = 1− (κ− iτ)t− ibt log t+ o(t) as t↘ 0, (8.6)

for some real κ > 0 and τ . In this case, Z is 1-stable and has the characteristic
function (3.29). (Hence, |b| 6 2κ/π.)

Proof. (ii) =⇒ (i). If (8.6) holds, for any κ ∈ R, then, as t↘ 0,

logϕX(t) = −(κ− iτ + o(1))t− ibt log t (8.7)

and thus, as n→∞, for every fixed t > 0,

E eit(Sn/n−b logn) = ϕX
(
t/n
)n
e−ibt logn

= exp
(
n
(
−(κ− iτ + o(1))

t

n
− ib

t

n
log

t

n

)
− ibt log n

)
→ exp

(
−(κ− iτ)t− ibt log t

)
which shows (i), where Z has the characteristic function (3.29).

Furthermore, for use below, note that (3.29) implies |ϕZ(t)| = e−κt for t > 0.
Since |ϕZ(t)| 6 1, this shows that κ > 0. Moreover, if κ = 0, then |ϕZ(t)| = 1 for
t > 0, and thus for all t, which implies that Z = c a.s. for some c ∈ R, so Z is
degenerate and b = 0. Hence, (8.6) implies κ > 0, and κ = 0 is possible only when

b = 0 and Sn/n
p−→ τ .
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(i) =⇒ (ii). Let γ1 := |b|π/2 and β1 := − sgn b. Let Y and Yi be i.i.d., and
independent of (Xj)

∞
1 and Z, with distribution S1(γ1, β1, 0). (If b = 0 we simply

take Yi := 0.) Then Yi has, by (3.6), the characteristic function

ϕY (t) = exp
(
−γ1t+ ibt log t

)
, t > 0. (8.8)

By Theorem 3.3(ii),
n∑
i=1

Yi
d
= nY − bn log n. (8.9)

Define X̃i := Xi + Yi. Then,

1

n

n∑
i=1

X̃i =
1

n

n∑
i=1

Xi +
1

n

n∑
i=1

Yi
d
=
Sn
n

+ Y − b log n
d−→ Z + Y. (8.10)

Thus, by Theorem 8.1, for some κ2 > 0 and τ2,

ϕX(t)ϕY (t) = E eitX̃i = 1− (κ2 − iτ2)t+ o(t) as t↘ 0, (8.11)

and hence, using (8.8),

ϕX(t) = E eitX̃i/ϕY (t) = 1− (κ2 − iτ2 − γ1)t− ibt log t+ o(t), (8.12)

which shows (8.6), with κ = κ2 − γ1 ∈ R.
Finally, we have shown in the first part of the proof that (8.6) implies κ > 0,

because Z is non-degenerate. �

We can use these theorems to show the following.

Theorem 8.3. Let 0 < α 6 2. Suppose that X is such that

n−1/α
n∑
i=1

Xi
d−→ Z, (8.13)

where Z is an α-stable random variable with characteristic function (3.19) and that
Y > 0 is a random variable with EY α < ∞. Let (Yi)

∞
1 be independent copies of Y

that are independent of (Xi)
∞
1 . Then

n−1/α
n∑
i=1

XiYi
d−→ Z ′ :=

(
EY α

)1/α
Z, (8.14)

where the limit Z ′ has the characteristic function

ϕZ′(t) = exp
(
−(EY ακ− iEY ατ)tα

)
, t > 0. (8.15)

If Z ∼ Sα(γ, β, 0) (where β = 0 if α = 1), then Z ′ ∼ Sα((EY α)1/αγ, β, 0).

Proof. By Theorem 8.1, for t > 0,

ϕX(t) = 1− (κ− iτ)tα + tαr(t), (8.16)

where r(t) → 0 as t ↘ 0. Furthermore, (8.16) implies that r(t) = O(1) as t → ∞,
and thus r(t) = O(1) for t > 0.
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Consequently, for t > 0, assuming as we may that Y is independent of X,

ϕXY (t) = E eitXY = EϕX(tY ) = E
(
1− (κ− iτ)tαY α + tαY αr(tY )

)
= 1− (κ− iτ)tα EY α + tα E

(
Y αr(tY )

)
, (8.17)

where E
(
Y αr(tY )

)
→ 0 as t↘ 0 by dominated convergence; hence

ϕXY (t) = 1− (κ− iτ)tα EY α + o(tα) as t↘ 0. (8.18)

Theorem 8.1 applies and shows that n−1/α
∑n

i=1XiYi
d−→ Z ′, where Z ′ has the

characteristic function (8.15). Moreover, by (3.19), (EY α)1/α has this characteristic

function, so we may take Z ′ := (EY α)1/α.
The final claim follows by Remark 3.6. �

Theorem 8.4. Suppose that X is such that, for some real b,

n−1
n∑
i=1

Xi − b log n
d−→ Z, (8.19)

where Z is a 1-stable random variable, and that Y > 0 is a random variable with
EY log Y <∞. Let (Yi)

∞
1 be independent copies of Y that are independent of (Xi)

∞
1 .

Then, with µ := EY ,

n−1
n∑
i=1

XiYi − bµ log n
d−→ Z ′ := µZ − b

(
E(Y log Y )− µ logµ

)
. (8.20)

Z has the characteristic function (3.29) for some κ and τ , and then the limit Z ′

has the characteristic function, with ν := E(Y log Y ),

ϕZ′(t) = exp
(
−
(
µκ+ i(bν − µτ)t

)
− ibµtlog t

)
, t > 0. (8.21)

If Z ∼ S1(γ, β, δ), then Z ′ ∼ S1(µγ, β, µδ − bν).

Proof. By Theorem 8.2, for t > 0,

ϕX(t) = 1− (κ− iτ)t− ibt log t+ tr(t), (8.22)

where r(t)→ 0 as t↘ 0; moreover Z has the characteristic function (3.29). Further-
more, (8.22) implies that r(t) = O(log t) as t → ∞, and thus r(t) = O(1 + log+ t)
for t > 0.

Consequently, for t > 0, assuming as we may that Y is independent of X,

ϕXY (t) = EϕX(tY )

= 1− (κ− iτ)tEY − ibtE
(
Y log(tY )

)
+ tE

(
Y r(tY )

)
,

= 1−
(
µκ− iµτ + ibE(Y log Y )

)
t− ibµtlog t+ tE

(
Y r(tY )

)
,

where E
(
Y r(tY )

)
→ 0 as t↘ 0 by dominated convergence; hence

ϕXY (t) = 1−
(
µκ− iµτ + ibν

)
t− ibµtlog t+ o(t) as t↘ 0. (8.23)

Theorem 8.2 applies and shows that n−1
∑n

i=1XiYi − bµ log n
d−→ Z ′, where Z ′

has the characteristic function (8.21). Moreover, it follows easily from (3.29) that
µZ−b

(
E(Y log Y )−µ logµ

)
has this characteristic function, and thus (8.20) follows.
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Finally, if Z ∼ S1(γ, β, δ), then b = 2
πβγ by Remark 3.10 and it follows easily from

Remark 3.6 that Z ′ ∼ S1(µγ, β, µδ− bν); alternatively, it follows directly from (8.20)
and (3.6) that Z ′ has the characteristic function

ϕZ′(t) = ϕZ(µt) exp
(
−ibt(ν − µ logµ)

)
= exp

(
−γµ|t|

(
1 + iβ

2

π
sgn(t) log |t|

)
+ iδµt− ibtν

)
. (8.24)

�

Example 8.5. Let X := U/U ′, where U,U ′ ∼ U(0, 1) are independent. By Ex-
ample 7.7 and Theorem 8.4, with Z ∼ S1(π/2, 1, 1 − γ̄), b = 1, µ := EU = 1/2
and

ν := EU logU =

∫ 1

0
x log x dx = −1

4
, (8.25)

we obtain
Sn
n
− 1

2
log n

d−→ 1

2
Z − ν +

1

2
log

1

2
=

1

2
Z +

1

4
− 1

2
log 2 ∼ S1

(π
4
, 1,

3

4
− γ̄

2

)
. (8.26)

�

Example 8.6. Let X := Y/Y ′ where Y, Y ′ ∼ Exp(1) are independent. (Thus X has
the F -distribution F2,2.) By Example 7.8 and Theorem 8.4, with Z ∼ S1(π/2, 1, 1−
2γ̄), b = 1, µ := EY = 1 and

ν := EY log Y =

∫ ∞
0

x log x e−x dx = Γ′(2) = 1− γ̄, (8.27)

we obtain
Sn
n
− log n

d−→ Z − ν = Z − 1 + γ̄ ∼ S1(π/2, 1,−γ̄). (8.28)

This is in accordance with Example 7.7, since, as is well-known, U := Y ′/(Y +Y ′) ∼
U(0, 1), and thus we can write X = (Y + Y ′)/Y ′ − 1 = 1/U − 1. �

Example 8.7. Let X := V 2/W where V ∼ U(−1
2 ,

1
2) and W ∼ Exp(1) are inde-

pendent. By Example 7.8 and Theorem 8.4, with Z ∼ S1(π/2, 1, 1 − 2γ̄), b = 1,
µ := EV 2 = 1/12 and

ν := 2EV 2 log |V | = 4

∫ 1/2

0
x2 log x dx = 4

[
x3

3
log x− x3

9

]1/2

0

= −3 log 2 + 1

18
, (8.29)

we obtain
Sn
n
− 1

12
log n

d−→ 1

12
Z − ν +

1

12
log

1

12
∼ S1

( π
24
, 1,

5− 6γ̄ + 6 log 2

36

)
. (8.30)

Equivalently, using Remark 3.6,

24Sn
πn
− 2

π
log n

d−→ 2

π
Z − 24ν

π
− 2

π
log 12 ∼ S1

(
1, 1,

2

π

(5

3
− 2γ̄ + log

π

6

))
. (8.31)

This is shown directly in Heinrich, Pukelsheim and Schwingenschlögl [5, Theorem
5.2 and its proof]. �



36 SVANTE JANSON

Example 8.8. More generally, let X := V 2/W where V ∼ U(q − 1, 1) and W ∼
Exp(1) are independent, for some fixed real q. By Example 7.8 and Theorem 8.4,
with Z ∼ S1(π/2, 1, 1− 2γ̄), b = 1,

µ = EV 2 =
(
EV

)2
+ VarV =

(
q − 1

2

)2
+

1

12
=

3q2 − 3q + 1

3
(8.32)

and

ν := 2EV 2 log |V | = 2

∫ q

q−1
x2 log |x|dx = 2

[
x3

3
log |x| − x3

9

]q
q−1

= 2
q3 log |q|+ (1− q)3 log |1− q|

3
− 2

3q2 − 3q + 1

9
, (8.33)

we obtain
Sn
n
− µ log n

d−→ µZ − ν + µ logµ ∼ S1

(
µ
π

2
, 1, (1− 2γ̄)µ− ν

)
. (8.34)

Equivalently, using Remark 3.6,

Sn − n(EV )2

µn
− log n

d−→ Z − ν

µ
+ logµ− (EV )2

µ
∼ S1

(π
2
, 1, bq

)
, (8.35)

with

bq :=
2

3
− 2γ̄ − 2

q3 log |q|+ (1− q)3 log |1− q|
3q2 − 3q + 1

+ log
3q2 − 3q + 1

3
+

1

12µ
. (8.36)

This is shown (in the case 0 6 q 6 1) directly in Heinrich, Pukelsheim and
Schwingenschlögl [6, Theorem 4.2 and its proof]. �
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