STABLE DISTRIBUTIONS

SVANTE JANSON

1. INTRODUCTION

We give many explicit formulas for stable distributions, mainly based on Feller
[3] and Zolotarev [14] and using several parametrizations; we give also some explicit
calculations for convergence to stable distributions, mainly based on less explicit
results in Feller [3]. The main purpose is to provide ourselves with easy reference to
explicit formulas and examples. (There are probably no new results.)

2. INFINITELY DIVISIBLE DISTRIBUTIONS
We begin with the more general concept of infinitely divisible distributions.

Definition 2.1. The distribution of a random variable X is infinitely divisible if for
each n > 1 there exists i.i.d. random variable Yl(n), . ,Yn(n) such that

xLymy  ym, (2.1)

The characteristic function of an infinitely divisible distribution may be expressed
in a canonical form, sometimes called the Lévy—Khinchin representation. We give
several equivalent versions in the following theorem.

Theorem 2.2. Let h(z) be a fixred bounded measurable real-valued function on R
such that h(xz) = x + O(z?) as  — 0. Then the following are equivalent.

(i) @(t) is the characteristic function of an infinitely divisible distribution.
(ii) There exist a measure M on R such that

/OO (1A 2] %) dM () < 00 (2.2)

— 00

and a real constant b such that

©(t) = exp (ibt + /

—00

© eltr 1 —ith(x)
2

dM(:z:)), (2.3)

X

where the integrand is interpreted as —t?/2 at x = 0.
(iii) There exist a measure A on R\ {0} such that

/OO (\33|2 A1) dA(z) < oo (2.4)
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2 SVANTE JANSON

and real constants a > 0 and b such that

o(t) = exp(ibt — lat® 4 / (6 — 1 — ith(z)) dA(x)). (2.5)
(iv) There exist a bounded measure K on R and a real constant b such that
B . o0 ite 1 itx 1422
o(t) = exp (1bt + /oo (e 1 152 x2>7x2 dK(af)), (2.6)

where the integrand is interpreted as —t2/2 at x = 0.
The measures and constants are determined uniquely by p.

Feller [3, Chapter XVII] uses h(z) = sinz. Kallenberg [8, Corollary 15.8] uses
h(z) = x1{]z| < 1}.

Feller [3, Chapter XVII.2] calls the measure M in (ii) the canonical measure. The
measure A in (iii) is known as the Lévy measure. The parameters a, b and A are
together called the characteristics of the distribution. We denote the distribution
with characteristic function (2.5) (for a given h) by ID(a, b, A).

Remark 2.3. Different choices of i () yield the same measures M and A in (ii) and
(iii) but different constants b; changing h to h corresponds to changing b to

bi=b+ /Oo MdM(w) =b+ /Oo (iL(SE) — h(z)) dA(z). (2.7)

oo x oo
We see also that b is the same in (ii) and (iii) (with the same h), and that (see the
proof below) b in (iv) equals b in (ii) and (iii) when z = /(1 + 22). O

Proof. (i) <= (ii): This is shown in Feller [3, Theorem XVII.2.1] for the choice
h(z) = sinx. As remarked above, (2.3) for some h is equivalent to (2.3) for any
other h, changing b by (2.7).

(ii) <= (iii): Given M in (ii) we let a := M {0} and dA(z) := 2= 2dM(z), = # 0.
Conversely, given a and A as in (111) we define

M (z) = adp + x* dA(z). (2.8)

The equivalence between (2. 3) and (2.5) then is obvious. O

(ii) <= (iv): Choose h(z) = z/(1 + 2?) and define

dK(x) := dM (x); (2.9)

1+ 22
conversely, dM (z) = (1 + 22)dK (x). Then (2.3) is equivalent to (2.6).

Remark 2.4. At least (iii) extends directly to infinitely divisible random vectors
in R%. Moreover, there is a one-to-one correspondence with Lévy processes, i.e.,

stochastic processes X; on [0, 00) with stationary independent increments and Xy =
0, given by (in the one-dimensional case)

Ee“Xt = op(u)! = exp( <1bu sau +/

—0o0

o0

(™ — 1 —iuh(z)) dA(a:))) (2.10)
for t > 0 and u € R. See Bertoin [2] and Kallenberg [8, Corollary 15.8]. O
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Example 2.5. The normal distribution N(p,02) has A = 0 and a = o¢2; thus

M = K = 026¢; further, b = u for any h. Thus, N(u,c?) = ID(0?, 1,0). O
Example 2.6. The Poisson distribution Po(A) has M = A = A\§; and K = %51;
further b = Ah(1). (Thus b= A/2 in (iv).) O

Example 2.7. The Gamma distribution Gamma(a) with density function z®~te=%/T(a),
x > 0, has the characteristic function ¢(t) = (1 —it)™“. It is infinitely divisible with

dM(x) = aze™™, x>0, (2.11)
dA(z) = az™te™®, x>0, (2.12)
see Feller [3, Example XVIIL.3.d]. O

Remark 2.8. If X; and X> are independent infinitely divisible random variables
with parameters (a1, b1, A1) and (ag, bz, A2), then X; + X5 is infinitely divisible with
parameters (aj + ag, by + by, A1 + Ag). In particular, if X ~ ID(a,b, A), then

XLX,+Y with  X; ~ID(0,0,A), Y ~ID(a,b,0) = N(b,a), (2.13)

and X; and Y independent. Moreover, for any finite partition R = (J A;, we can
split X as a sum of independent infinitely divisible random variables X; with the
Lévy measure of X; having supports in A;. O

Example 2.9 (integral of Poisson process). Let = be a Poisson process on R\ {0}
with intensity A, where A is a measure with
[e.e]
/ (|| A1) dA(z) < oo. (2.14)
—0o0
Let X := [ 2 dE(z); if we regard = as a (finite or countable) set (or possibly multiset)
of points {&;}, this means that X := ). &. (The sum converges absolutely a.s., so X
is well-defined a.s.; in fact, the sum E\£i|>l &; is a.s. finite, and the sum ngl |€i]

has finite expectation fil |z| dA(x).) Then X has characteristic function

©(t) = exp </<>o (e —1) dA(x)). (2.15)

—0o0

(See, for example, the corresponding formula for the Laplace transform in Kallenberg
[8, Lemma 12.2], from which (2.15) easily follows.) Hence, (2.5) holds with Lévy
measure A, a =0 and b = [*_h(z) dA(z). (When (2.5) holds, we can take h(z) =0,
a choice not allowed in general. Note that (2.15) is the same as (2.5) with h = 0,
a=0and b=0.)

By adding an independent normal variable N (b,a), we can obtain any infinitely
divisible distribution with a Lévy measure satisfying (2.5); see Example 2.5 and
Remark 2.8. O

Example 2.10 (compensated integral of Poisson process). Let = be a Poisson pro-
cess on R\ {0} with intensity A, where A is a measure with

[ (e el dao) < o (2.16)

o0
—0o0
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Suppose first that [ |z|dA(z) < co. Let X be as in Example 2.9. Then X has
finite expectation EX = [*_xdA. Define

X=X-EX= / z(dE(z) — dA(z)). (2.17)
Then, by (2.15), X has characteristic function

o0
©(t) = exp </ (e — 1 — itx) dA(x)). (2.18)
—0o0

Now suppose that A is any measure satisfying (2.16). Then the integral in (2.18)
converges; moreover, by considering the truncated measures A, := 1{|z| > n~1}A
and taking the limit as n — oo, it follows that there exists a random variable X with
characteristic function (2.18). Hence, (2.5) holds with Lévy measure A, a = 0 and
b= [ (h(z) — ) dA(x). (When (2.16) holds, we can take h(z) = x, a choice not
allowed in general. Note that (2.18) is the same as (2.5) with h(z) = z, a = 0 and
b=0.)

By adding an independent normal variable N (b,a), we can obtain any infinitely
divisible distribution with a Lévy measure satisfying (2.16); see Example 2.5 and
Remark 2.8. U

Remark 2.11. Any infinitely divisible distribution can be obtained by taking a sum
X1+ X9+ Y of independent random variables with X; as in Example 2.9, X5 as in
Example 2.10 and Y normal. For example, we can take the Lévy measures of X3
and X9 as the restrictions of the Lévy measure to {z : |z| > 1} and {z : |z| < 1},
respectively. ([

Theorem 2.12. If X is an infinitely divisible random variable with characteristic
function given by (2.5) and t € R, then

EetX = exp(bt + tat® + /

—00

o0

(e — 1 — th(z)) dA(x)) <oo.  (2.19)
In particular,

EeX <00 «— /00 (e — 1 —th(z))dA(z) < co

(2.20)

f°° e dA(x <oo, t>0,
[l et dA(z) < o0, t<0.

Proof. The choice of h (satisfying the conditions of Theorem 2.2) does not matter,
because of (2.7); we may thus assume h(x) = z1{|z| < 1}. We further assume ¢ > 0.
(The case t < 0 is similar and the case ¢ = 0 is trivial.)

Denote the right-hand side of (2.19) by F(t). We study several different cases.

(i). If supp A is bounded, then the integral in (2.19) converges for all complex ¢
and defines an entire function. Thus Fi(¢) is entire and (2.5) shows that Eel'X =
F(it). Tt follows that E|e!X] < oo and EetX = Fy(t) for any complex t, see e.g.
Marcinkiewicz [9].
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(ii). If suppA C [1,00), let A,, be the restriction A’[l nl of the measure A to

[1,n]. By the construction in Example 2.9, we can construct random variables X, ~
ID(0,0, A,,) such that X,, X ~ID(0,0,A) as n — oo. Case (i) applies to each A,
and (2.19) follows for X, and ¢ > 0, by monotone convergence.

(iii). If suppA C (—o0,1], let A, be the restriction A‘[fn,fl]' Similarly to (ii)
we can construct random variables X,, ~ ID(0,0,A,,) with X,, < 0 such that X,, \,
X ~ ID(0,0,A) as n — oo. Case (i) applies to each A,, and (2.19) follows for X;
this time by monotone convergence.

(iv). The general case follows by (i)—(iii) and a decomposition as in Remark 2.8.
U

3. STABLE DISTRIBUTIONS

Definition 3.1. The distribution of a (non-degenerate) random variable X is stable
if there exist constants a,, > 0 and b,, such that, for any n > 1, if X1, Xs,... are
i.i.d. copies of X and S, := Y ;" | X;, then

Sp L a, X + by (3.1)
The distribution is strictly stable if b, = 0.

(Many authors, e.g. Kallenberg [8], say weakly stable for our stable.)

We say that the random variable X is (strictly) stable if its distribution is.

The norming constants a,, in (3.1) are necessarily of the form a, = n'/® for some
a € (0, 2], see Feller [3, Theorem VI.1.1]; « is called the index [4], [8] or characteristic
exponent [3] of the distribution. We also say that a distribution (or random variable)
is a-stable if it is stable with index o.

The case o = 2 is simple: X is 2-stable if and only if it is normal. For o < 2,
there is a simple characterisation in terms of the Lévy—Khinchin representation of
infinitely divisible distributions.

Theorem 3.2. (i) A distribution is 2-stable if and only if it is normal N(p,0?).
(This is an infinitely divisible distribution with M = 028y, see Example 2.5.)
(i) Let 0 < a < 2. A distribution is a-stable if and only if it is infinitely divisible
with canonical measure

dM(z)  Jepa'™™, x>0, (3.2)
dz )e_|z|', z<0; '
equivalently, the Lévy measure is given by
dA(z)  Jepz@t x>0, (3.3)
dr e |z, z<0, '

and a = 0. Here c_,cy 2 0 and we assume that not both are 0.

Proof. See Feller [3, Section XVIL5] or Kallenberg [8, Proposition 15.9]. O
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Note that (3.2) is equivalent to

Mlx1,29) = Cyad™ + C_|z1 >~ (3.4)
for any interval with 1 < 0 < x9, with
Ci= 5o (3.5)

Theorem 3.3. Let 0 < o < 2.

(i) A distribution is a-stable if and only if it has a characteristic function

exp ([t} (1 — 1B tan % sgn(t) ) +i0t), o # 1,

3.6
exp —’y]t!(l +i82 sgn(t) log \t\) + iét), a=1, (36)

p(t) =

where =1 < B <1, v > 0 and —o0 < § < oo. Furthermore, an «-stable
distribution exists for any such o, B,7,6. (If « =2, then ( is irrelevant and
usually taken as 0.)

(ii) If X has the characteristic function (3.6), then, for any n > 1, (3.1) takes
the explicit form

d neX + (n —nt/"6, a#1, 3.7)
" nX+%B’ynlogn, a=1. '
In particular,
0= 1
X is strictly stable <= 0. arlL (3.8)
6=0, a=1.

(iii) An a-stable distribution with canonical measure M satisfying (3.4) has

-« jixe!
o _ {(C+ + C'_)ag_ag cos ¥, a#1, (3.9)
(C++C—)%7 a=1,
Cy—C_
= — 3.10
v < «a < 2, then an a-stable distribution with Lévy measure N satisfyin
(iv) If 0 2, th ble distributi ith Lé A isfying
(3.3) has

o [lerte)(-T-a)eos ), a#l, @.11)

(4 +co)5, a=1, ’

Cy —C—

= . 3.12
B o o (3.12)

We use the notation S, (7, 3,0) for the distribution with characteristic function
(3.6), and X,(v,,6) for a random variable with this distribution. We also write
Sa(B) and X, (p) for the special case v =1, § = 0.
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Proof. Feller [3, XVII.(3.18)—(3.19) and Theorem XVII.5.1(ii)] gives, in our notation,
for a stable distribution satisfying (3.4), the characteristic function

'3 —a) T, Ci—C_ | may o . .
exXp <_(C+ + Cf)m (COS 7 — lsgn(t)m Sin 7) |t| + lbt> (313)
if a # 1 and
T . C_|_ — C_ .
exp <—(C+ +Co) (5 + 1sgn(t)m log ]t!) | + 1bt> (3.14)

if = 1. This is (3.6) with (3.9)-(3.10) and § = b. This proves (i) and (iii), and (iv)
follows from (iii) by (3.5).
Finally, (ii) follows directly from (3.6). O

Remark 3.4. If 1 < a < 2, then ¢ in (3.6) equals the mean E X,(v,3,9). In
particular, (3.8) shows that for a > 1, a stable distribution is strictly stable if and
only if its expectation vanishes. ([

Remark 3.5. If X,(8) ~ Sa(8) = Sa(1,5,0), then, for v > 0 and § € R,
Sa(’}/,ﬁ,d), (6 7é 1,
SO&(’-Y7B7 - %B’YlOg’Y), a=1.

Thus, v is a scale parameter and § a location parameter; (5 is a skewness parameter,
and a and [ together determine the shape of the distribution. O

YXa(B) + 0 ~ { (3.15)

Remark 3.6. More generally, if X ~ S, (v, 3,0), then, for a > 0 and d € R,

« bl ) ) 17
aX +d~ §Seleradtd), a7 (3.16)
Sa(ay, B,a0 +d — =pyaloga), a=1.
[l
Remark 3.7. If X ~ S, (v, 3,9), then —X ~ S, (v, —3,—4). In other words,
d
—Xa(7:8,0) = Xa(y, =B, —9). (3.17)
In particular, X has a symmetric stable distribution if and only if X ~ S,(v,0,0)
for some a € (0,2] and v > 0. O

We may simplify expressions like (3.6) by considering only ¢ > 0 (or ¢ > 0); this

is sufficient because of the general formula
p(—t) = ¢(t) (3.18)
for any characteristic function. We use this in our next statement, which is an

immediate consequence of Theorem 3.3.

Corollary 3.8. Let 0 < a < 2. A distribution is strictly stable if and only if it has
a characteristic function

o(t) = exp(—(k — iT)t%), t >0, (3.19)
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where k > 0 and |7| < k| tan 75*|; furthermore, a strictly stable distribution exists for
any such k and 7. (For a =1, tan 5* = oo, so any real T is possible. For a = 2,
tan ¥ = 0, so necessarily T =0.)

The distribution S, (7, 5,0) (o # 1) or S1(7,0,6) (o = 1) satisfies (3.19) with

1
k=" and T = {?K tany’, az 1’ (3.20)
: a=1.

Conversely, if (3.19) holds, then the distribution is

Sl(H,O7T), o = 1

O

Remark 3.9. For a strictly stable random variable, another way to write the char-
acteristic function (3.6) or (3.19) is

o(t) = exp(—Aeisgn@)ﬂ/?uw), (3.22)

with A > 0 and 7 real (with |y| < 1; see further below). A comparison with (3.6)
and (3.20) shows that

A cos 7;—7 =k =77, (3.23)
~ —ptan 72 1

mﬂW:—T:{/1w2’a¢’ (3.24)
2 K —5a a=1.

Ifo<acx<l, Wehave0<tan”2a < oo and |y < a, while if 1 < a < 2, then

tan %* < 0 and tan 5} = ftan 7T(2 ®) with 0 < 7(2— a)/2 < 7/2; hence [§] < 2 — .
Fmally, for a = 1, we have || < 1 and for @ = 2 we have ¥ = 0. These ranges for ¥
are both necessary and sufficient, except that for a = 1, ¥ = £1 is possible in (3.22),
but yields a degenerate distribution X = —yA. Summarising, we have the ranges,
excluding the degenerate case just mentioned,

7l < a, 0<a<l,
7] <1, a=1, (3.25)
7 <2—a, 1<a<2

For a # 1,2, note the special cases

=0+ 7=0, (3.26)
~ —aq, O<a<l,

=1 <= = 3.27

b 7 {2—04, 1 <a<?2. ( )
~ «, O<a<l,

b 7 {a—2, 1l <a<?2. ( )

O
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Remark 3.10. For o = 1, the general 1-stable characteristic function (3.6) may be
written, similarly to (3.19),

o(t) = exp(—(k — i)t — ibtlogt), t >0, (3.29)
where k =, 7 =6 and b = 23v. (Thus, |b| < 2x/7.) O
3.1. Positive and spectrally positive stable distributions.

Definition 3.11. A stable distribution (or random variable) is spectrally positive if
its Lévy measure is concentrated on (0, 00), i.e.,

dA(z) = cz™* 1 dz, x>0, (3.30)

for some ¢ > 0 and « € (0,2). By (3.3) and (3.12), this is equivalent to ¢ = 0 and
to 8 =1, see also (3.27).

Similarly, a stable distribution (or random variable) is spectrally negative if its
Lévy measure is concentrated on (—oo,0).

Thus, X is spectrally negative if and only if —X is spectrally positive. (For this
reason, we mainly consider the spectrally positive case.)

Theorem 3.12. A strictly stable distribution is spectrally positive if and only if it
is of the form Sy (v, 1,0) with o # 1.
Equivalently, a strictly stable distribution with characteristic function (3.19) is

ixe?

spectrally positive if and only if o # 1 and T = ktan 75

Proof. This follows from Corollary 3.8, taking 8 = 1 in (3.20); note that by (3.21),
there is no spectrally positive strictly 1-stable distribution. ([

Theorem 3.13. Let 0 < a < 2. An a-stable random variable X ~ S, (v, 3,0) has

finite Laplace transform Ee X for t > 0 if and only if it is spectrally positive, i.e.,

if 6 =1, and then

exp — Tt — (515), a#1,
2

Ccos

Ee ¥ = (3.31)

exp %’yt logt — 5t>, a=1,
Moreover, then (3.31) holds for every complex t with Ret > 0.

Proof. The condition for finiteness follows by Theorem 2.12 and (3.3), together with
Definition 3.11. When this holds, the right-hand side of (3.31) is a continuous
function of ¢ in the closed right half-plane Ret > 0, which is analytic in the open
half-plane Ret > 0. The same is true for the left-hand side by Theorem 2.12, and
the two functions are equal on the imaginary axis t = is, s € R by (3.6) and a simple
calculation. By uniqueness of analytic continuation, (3.31) holds for every complex
t with Ret > 0. O

Theorem 3.14. An stable random variable X ~ S, (v, 8,0) is positive, i.e. X > 0
a.s., if and only if 0 < a <1, B =1 and § = 0. Consequently, the positive strictly
stable random variables are X4 (7y,1,0) with 0 < o < 1.
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Proof. X > 0 a.s. if and only if the Laplace transform Ee~¥ is finite for all t > 0
and Ee "X — 0 as t — co. Suppose that this holds. We cannot have o = 2, since
then X would be normal and therefore not positive; thus Theorem 3.13 applies and
shows that 5 = 1. Moreover, (3.31) holds. If 1 < o < 2 or @ = 1, then the right-hand
side of (3.31) tends to infinity as ¢ — oo, which is a contradiction; hence 0 < o < 1,
and then (3.31) again shows that § > 0.

The converse is immediate from (3.31). O

Corollary 3.15. Let X be a stable random wvariable. Then, X > 0 a.s. if and
only if X =Y + 6§ where 6 > 0 and Y is spectrally positive strictly a-stable with
0<a<l. O

The following examples are the two most important cases of Theorem 3.13.

Example 3.16. If 0 < a < 1 and A > 0, then X ~ S,(v,1,0) with v :=

()\ cos %)1/ “ is a positive strictly stable random variable with the Laplace trans-
form (extended by analyticity)

Ee ' = exp(—At?), Ret > 0. (3.32)
Note that we have ¥ = —a by (3.27). O
Example 3.17. If 1 < a < 2 and A > 0, then X ~ S,(v,1,0) with v :=

()\\ cos 5 |) L/a is a spectrally positive strictly stable random variable with the Laplace
transform (extended by analyticity)

Ee '™ = exp(At?), Ret > 0. (3.33)

Note that in this case cos %3+ < 0. Note also that Ee 'Y — oo as t — 0o, which
shows that P(X < 0) > 0. O

3.2. Other parametrisations. Our notation S, (v, 3,9) is in accordance with e.g.
Samorodnitsky and Taqqu [13, Definition 1.1.6 and page 9]. (Although they use
the letters S, (o, 8, 1).) Nolan [11] uses the notation S(«, 3,7,0;1); he also defines
S(a, B,7,00;0) :== S(a, B,7,01; 1) where

5, = {50 — Bytan T, a #1, (3.34)

5o — 2Bylogy, a=1.
(Note that our § = d;.) This parametrisation has the advantage that the dis-
tribution S(«, f,7,00;0) is a continuous function of all four parameters. Note
also that S(a,0,v,0;0) = S(«,0,7,d;1), and that when o = 1, (3.15) becomes
v X1(B) + 6 ~ S(1,7,5,6;0). Cf. the related parametrisation in [13, Remark 1.1.4],
which uses

5 tan T2 = § @ — ) tan %2 1
m:{ﬁm an 5t = 0o + F(7* — ) tan i, a £ 1, (3.35)

&1 = 0o — 2f7log, a=1;

again the distribution is a continuous function of («, 3,7, 11).
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Zolotarev [14] uses three different parametrisations, with parameters denoted
(@, Be, Yo, Ae), where @ € {A B, M}; these are defined by writing the characteris-

tic function (3.6) as
o(t) = exp()\A(it’yA — |t|* + itwa(t, a,ﬁA)))
= exp(Ans (ityar — |8 + itwar(t, o, Bar)))
= exp()\B (ityB — |t|*wp(t, a, BB))),
where
tle18tan T, o #£1
Al ) ’621§glt| | aii

[t —1)Btan T2, a #1,

wnr(t, e ) :{ B2 log|t|, a=1;

xp 158K ( )sgnt), a#1,

t,a,p) =
wp(t e, B) : 5 +iBlog|t|sgnt, a=1,

with K(a) :=a—1+sgn(l — a),

K(a) «, 0<a<l,
Q) =
a—2, 1<a<?2.

The ranges of the parameters are, in all three cases @ € {A, B, M},

0<a<2, —1< 8. <1, — 00 < Yo < 00, 0 < Ao < 00.

If a =2, we take 5, = 0.

(3.36)
(3.37)
(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Here a € (0, 2] is the same in all parametrisations and, with 3,7, 4 is as in (3.6),

Ba = Bm =B,
YA = 5/’70[7
o {7A+ﬁtan y o 7& 1a
v = /Y =
YA a=1,
Aa = A =177,
and, for a # 1,
TK(a)y T e
tan<ﬁ372 ) = ﬁAtan7 = ﬁtan?’
mK(«a
VB =74 008(532())7
TK(«
AB = A4 / COS(BB 2( )),

while for a =1,

Bp = pa =5,

(3.44)
(3.45)

(3.46)

(3.47)

(3.48)
(3.49)

(3.50)

(3.51)
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™ w
= Tya= 2 52
VB =974 o0 (3.52)

2 2
Ap = A= L. (3.53)

T T

Note that, for any «, and every o € {A, B, M },

Bo=0 <= B=0 and fBo==41 < 8=+l (3.54)

and that for each fixed «, the mapping § = 4 — Bp is an increasing homeomor-
phism of [—1, 1] onto itself.
In the strictly stable case, Zolotarev [14] also uses

(1) = exp((—Age O 2ger), (3.55)

which is the same as (3.22) with
Ao = A (3.56)
0=—5/a; (3.57)

thus the ranges of the parameters are (excluding the case @« = 1 and § = +1, which
is possible in (3.55), but degenerate)

0] < 1, a <1,
0] <1, a=1, (3.58)
0] <2/a—1, a>1,
0< Ao < 0. (3.59)
We have
K(o) 1
- fB o a7l (3.60)
2 arctan(22), a=1.
AB, a#1,
Ao = 3.61
¢ {AB(W2/4+%29)1/2, a=1. (3:61)
Zolotarev [14] uses in the strictly stable case also the parameters a, p, \c where
146
pr=— (3.62)
Thus the range of p is
0<p<l, a<l,
0<p<l, a=1, (3.63)

1-1/a<p<1l/a, a>1.

Zolotarev [14] uses Y (, Be, Ve, Ao) = Yo(¥, Bo, Ve, Ao ), Where again @ € {A, B, M },
as a notation for a random variable with the characteristic function (3.36)—(3.38); the
parameters v, and A\e may be omitted when v, = 0 and A = 1. The distribution is a
continuous function of the parameters («, Sar, Yar, Aar). (The representations A and
B are discontinuous at o = 1.) Similarly, a random variable with the characteristic
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function (3.55) is denoted Y («, 0, \¢) = Yo(a, 0, A\c), where Ac may be omitted
when Ao = 1. We use Y(...) for the distribution of Y,(...).

The parameter p has a natural interpretation. (See Theorem 5.1 for a generaliza-
tion.)

Theorem 3.18. For a strictly stable random variable Yo (o, 0, \),

1+0
P[Yo(a,0,0) > 0] =p = % (3.64)
Proof. See, e.g., [14, Theorem 2.6.3] (in the special case s = 0). O

Corollary 3.19. The strictly stable random variable Yo(a, 0, ) is positive <=
a<landp=1 < a<landf=1.
Similarly, Yo(a, 0, \) is negative <= a<landp=0 < a<1andf = —1.

Proof. By (3.64) and (3.63). O

Using Theorem 3.18, (3.60) and (3.48), the probability that a strictly stable ran-
dom variable is positive can be expressed in « and Sg or 8 when « # 1, and in g
or (using also (3.49)) v and § when o = 1. In particular, this yields

]P’[XQ(V,B,O) > O] = % + Oél—ﬂ arctan(ﬂ tan %), a#1, (3.65)
1 1 )
PX1(7,0,6) > 0] = 5+ — arctan(g) (3.66)

Example 3.20. By Corollary 3.19, the positive strictly stable random variable
Xa(7,1,0) in Theorem 3.14 can also be described as Yo (a, 1, A); here necessarily
0 < a < 1. This random variable has, using (3.56)—(3.57), (3.62), (3.27) and (3.23),
the parameters

B=1, 6=1, p=1, 7=—a, 'ya:)\cos%, (3.67)

and, by Theorem 3.13, the Laplace transform
Eete(nlA) — o= ¢ >, (3.68)
For 0 < @ < 1, Yo (v, 1, A) is thus the random variable in Example 3.16. ([

We have a similar result for the extreme values in (3.58) and (3.63) also for the
case @ > 1. (The Gaussian case a = 2 is trivial; then necessarily # = 0 and p = 1/2
by (3.58) and (3.63).)

Theorem 3.21. Let 1 < a < 2. The strictly stable random variable Yo (o, 6, \) is
spectrally positive <= p=1—1/a < 0=1-2/a.
Similarly, Yo(a, 0, ) is spectrally negative <— p=1/a < 0=2/a—1.

Note that when 1 < o < 2, thus € < 0 in the spectrally positive case, and 6 > 0
in the spectrally negative case.

Proof. By Theorem 3.12, (3.54), (3.60), (3.42) and (3.62). O
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Example 3.22. Let 1 < a < 2. By Theorem 3.21, the spectrally positive strictly sta-
ble random variable X,(7, 1,0) in Theorem 3.12 can also be described as Yo (o, 6, \)
with § =1 — 2/«a. This random variable has, using (3.27) and (3.23),

o |

5 (3.69)

2 1 ~
g=1 6=1——, p=1——, 7F=2-aq, *ya:/\‘cos
e o
and, by Theorem 3.13, the Laplace transform
EetYolalA) — X% ¢ > (3.70)

For 1 < a <2, Yo(a,1—2/a, \) is thus the random variable in Example 3.17.
By (3.64), we have

1
P[Yo(a,1 —2/a,A) >0l =p=1——. (3.71)
«
O
4. STABLE DENSITIES

A stable distribution has by (3.6) a characteristic function that decreases rapidly
as t — £oo, and thus the distribution has a density that is infinitely differentiable.

In the case a« < 1 and 8 =1, S, (7, 5,0) has support [d,c0) and in the case o < 1
and 8 = —1, Sa(v,5,9) has support (—o0,d]; in all other cases the support is the
entire real line. Moreover, the density function is strictly positive in the interior of
the support, se Zolotarev [14, Remark 2.2.4].

Feller [3, Section XVIL.6] lets, for @ # 1, p(x;,7) denote the density of the
stable distribution with characteristic function (3.22) with A = 1. A stable ran-
dom variable with the characteristic function (3.22) thus has the density function
A~ Vep(A—1/2z: o, 7). The density of a random variable X (7, 3,0) with a # 1 is
thus given by

AVep(ATH (@ - 8); 0, 9), (4.1)
with A and 7 given by (3.23)—(3.24). (Cf. Remark 3.6.) By Remark 3.7, we have
also

p(—z;a,7) = p(a; a, —7). (4.2)

Zolotarev [14] uses ge(x; v, Po, Yo, Ae) for the density of the random variable Yy (cv, Be, Ve, o)
with characteristic function (3.36)—(3.38), and ge(z; @, s) for the special case 7o = 0,
Ae = 1; the index e € {A, M, B} is often omitted (and often, but not always, taken
as B); furthermore, g(z;,0) = go(x;a,0) is used for the density of the random

variable Yo (a, 0) with characteristic function (3.55) with Ac = 1. Thus, for a # 1,
see (3.56)—(3.57),

go(z; a,0) = p(z; o, —al). (4.3)
By (3.55), we have also, in analogy with (4.2) (but now for all 0 < a < 2),
go(—z;a,0) = go(z; o, —0). (4.4)

Feller [3, Lemma XVII.6.1] and Zolotarev [14, (2.4.8) and (2.4.6)] give the following
series expansions for p(z;a,7) and go(z;, a, 0), repsectively; the latter using p :=
(14+6)/2 as in (3.62). These expansions are equivalent by (4.3).
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Theorem 4.1. (i) If 0 <a <1 and x> 0, then

1l S Tka+1), . kT
p(z;a,7) = — ; T(—x )" sin 7(7 - a), (4.5)
1 FMka+1) . —ka—
9 - k 17 k ka 1‘ 4.
gc(z; szl sin(mkpa)z (4.6)

For z <0, use (4.5)—(4.6) together with (4.2) and (4.4).
(ii) If 1 <a <2 andx € (—00,00), then

p(z;0,7) = ;Zr‘(k/;:!—i_l)(—x)ksin ];—Z(ﬁ—oz), (4.7)
k=1
go(z;a,0) = % (1)k_lr(k/:'+1) sin(mkp)zt L. (4.8)
k=1 '

Remark 4.2. The symmetry relations (4.2) and (4.4) are valid for all «, but not
needed in Theorem 4.1 for o > 1, since then (4.7)—(4.8) hold for all real z (with
the obvious interpretation of (4.7) for x = 0). It can easily by verified directly that
(4.7)—(4.8) satisfy (4.2) and (4.4). O

Example 4.3. The case a = 2 is simple; then ¥ = 0, § = 0 and p = 1/2 by
(3.25), (3.58) and (3.63), and the characteristic function (3.55) shows that Y (2,0) ~
N(0,2). Hence,

1
p(;2,0) = go(x;2,0) = 2\/7?67322/4, (4.9)

which indeed has the series expansions (4.7)—(4.8). O

In particular, if 1 < a < 2, then (4.7) yields
~ 1 . m(a—7)
0; =-T(1+1 _ . 4.10
p(0:0,%) = TT(1 4 1/0)sin O (4.10)

In the special case 1 < a < 2 and =1 we have ¥ = 2 — a by (3.27) and

1 mla—1) 1 s
0;0,2—a)=-T(1+1 in———==-T'(1+1 in —
p(0;0,2 —a) = —T(1+1/a)sin — —T(1+1/a)sin —

rl+1/a) 1 _ 1
I(1/a)T(1-1/a) aol'(1-1/a) |[I(=1/a)|

For 1 < a < 2, the distribution S,(v,1,0) thus has, by (4.1) and (3.23), the
density at x =0

(4.11)

AVep(0; 0,2 — ) = :fy_l‘cos%}l/aﬁ‘(—l/a)rl. (4.12)
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4.1. The case o = 1. The case o = 1 was omitted in Theorem 4.1, since there is no
similar simple formula, except when 5 = 0. However, we have the following power
series expansion for « = 1 and 3 # 0, given by Zolotarev [14].
Theorem 4.4. Let a = 1.

(i) If B8 =0, then S1(7y,0,0) has the density function

v/
—_— — . 4.13
@02 42 00 < T <00 (4.13)
(ii) If B > 0, then Yp(1,3,0,1) = X1(g,ﬂ,0) has the density function
1 (o]
1.8) = 237 (1), 4.14
gB(xa 7/8) ﬂ_nz:o( ) Cn ( )
with
1 * —Bulogu _: ™ n
Cn == e gUsin[(14 8)su]u” du (4.15)
n. Jo 2
(iii) If B <0, then Yp(1,[3,0,1) = Xl(g,ﬂ,O) has the density function

which is given by (4.14).

Proof. (i): This well-known formula follows directly by Fourier inversion of the char-
acteristic function ¢(t) = et
(ii): Note first that if & = 1, then (3.51)—(3.53) show that Sp = 3, 75 = 0 <
d=0,and \p =1 <= v =m7/2. Hence, Yp(1,5,0,1) = Xl(g,ﬁ,O) as asserted.
The expansion (4.14)—(4.15) is [14, (2.4.7)] (with our ¢,, equal to (n+1)by,+1 there).
(iii): This follows by (3.17). O

4.2. Analyticity. The density of any stable distribution S, (7, 3, J) is, as said above,
infinitely differentiable. Moreover, it is easy to see from Theorems 4.1 and 4.4 that
this density is real analytic for x # §. At & = §, the situation differs for a < 1 and
« > 1, as shown by the following result.

Theorem 4.5. Consider the density p(x) of X ~ S.(v, 3,0).
(i) If a« > 1, then p(x) is real analytic on (—oo, 00).
(ii) If a < 1, then p(x) is real analytic on R\ {6}, but not at 6 (although it is
infinitely differentiable there too).

Proof. (i): For a # 1, by (4.1), it suffices to consider p(z; a,7), and the analyticity
follows from (4.7).

For a = 1, analyticity follows from (4.13), (4.14) or (4.16) (depending on f3),
together with a liear change of variable.

(ii): Again, by (4.1) it suffices to consider p(z;a,7), and thus § = 0. The analyt-
icity for > 0 follows from (4.5), and then for z < 0 from (4.2). These also show
that p(z) = p(x; o, 7) extends to an analytic function p(z) in each of the half planes
Rez < 0 and Rez > 0, with

Ip(2)] = O(|z|_1_°‘), |z| > 1. (4.17)
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Suppose that p is real analytic also at £ = 0. Then p would extend to an analytic
function in a neighbourhood of 0, and thus the extensions would combine to an
analytic extension in a strip | Im z| < 2¢ for some € > 0. The characteristic function
©(t) then would be given by, by a shift of the line of integration using Cauchy’s
integral formula and the bound (4.17),

o(t) = / ep(z) dz = / @) (2 + ie) da, teR, (4.18)
and thus, by (4.17) again,
()] < e_at/ Ip(z +ie)| dz = Ce™, teR, (4.19)

which for a@ < 1 contradicts the explicit expression (3.6). This contradiction shows
that p(z) is not analytic at x = 0 = 4. O

Remark 4.6. The proof yields also the following. For o > 1, and for a = 1 and
B # 0, the density p(x) of Su(v,5,0) extends to an entire analytic function on C.
In the (strictly stable) case o =1 and 8 = 0, the explicit formula (4.13) shows that
that p(z) extends to a meromorphic, but not entire, function on C. For a < 1,
the restrictions of p(z) to (—o0,d) and (0,00) extend to analytic functions p;(2)
and p_(z) in the slit planes C\ [§, 00) and C \ [—00,d), respectively, but these two
extensions are not equal.

To verify the claim that p. # p— when a < 1, it again suffices to consider the
case A = 1 and § = 0, when the density is p(z; a, 7). Note that p;(x) is obtained by
extending (4.5) to complex = ¢ (—o0,0]. In particular, it has a jump across the cut
that satisfies

Jm |z [py (2 + 05 @, 7) — py (& — 0; )]
_ P(aﬂ-_{— 1) (efiom' _ eiaﬂ') sm(%(ﬁ _ a))
= Zir(a?:_I) sin(am) sin(g(a -7)). (4.20)

If ¥ € [~a, @), then this limit is non-zero, and thus p; has a jump across the cut at
least for large |z|. On the other hand, p_ is analytic across the negative real axis. If
¥ = «, we have py(z) = 0, and again we see that p; and p_ are different. O

Example 4.7. Consider a positive strictly stable variable; thus @ < 1, § = 0 and
4 = —a by Theorem 3.14 and Example 3.16. We then have p(z;a, —a) = 0 for z < 0
but p(z;a,—a) > 0 for > 0; hence, it is in this case obvious that the density p
is not analytic at 0, as claimed in Theorem 4.5. (See Example 6.3 for a concrete
example.) O

4.3. Duality. There is a duality due to Zolotarev between the densities of the dis-
tributions of strictly stable random variables with parameters o and 1/a, valid at
least for part of the ranges.



18 SVANTE JANSON

Theorem 4.8 (Zolotarev [14], Feller [3]). Let 1 < a < 2 and |0] < 2/a — 1, cf.
(3.58). Define 8’ by

0 =a(l+0)—1¢€[2a—3,1]. (4.21)
Then,
go(z;a,0) = 27 1go (J:_O‘; a 9'), x> 0. (4.22)
Equivalently, if 0 < A < B < 00, then
P[A < Yo(o,0) < B] = éIP’[B““ <Yo(ah,0) < A7%]. (4.23)
Hence,
(Yo(a,0)~ | Yo(a,0) > 0) £ (Yo (o', 6') | Yo (o™, ¢) > 0). (4.24)
If 1 < a < 2, we have, equivalently,
plz;o,y) =27 Tp(a™ a7, v) (4.25)
with
Fi=a'(F41) -1 (4.26)

Note that the spectrally negative case § = 2/« — 1 corresponds to the positive
case @' = 1. (See Theorem 3.21 and Corollary 3.19.)

Proof. The relation (4.22) is [14, (2.3.3)], and it is equivalent to (4.23) by integration
(or, conversely, by differentiating (4.23) with respect to B). The conditional version
(4.24) follows from (4.23) (and is equivalent to it if we also use Theorem 3.18).

Furthermore, for 1 < a < 2, (4.25) is [3, Lemma XVIL.6.2] (with a change of
variable), and it is equivalent to (4.22) by (4.3).

Note also that the cases & = 1 and a = 2 in (4.23) follow by continuity from the
case 1 < o < 2, since the distribution of Yo (a, 6) is a continuous function of («, 6)
by (3.55) (with A = 1). O

The relation (4.21) can also be written, using (3.62) and (3.63),
P =ap€la—11]. (4.27)

(The case A =0, B = oo in (4.23) thus is in accordance with Theorem 3.18.)

Note that for 1 < o < 2, (4.21) does not cover the whole range of 8" allowed for
Yo(a™t,6',1), and similarly for (4.26).

For x < 0, we may as usual change signs by (4.2) and (4.4), but note that this
will change the relations (4.21) and (4.26). Theorem 4.8 implies, still for 1 < a < 2
and 0] < 2/a —1,

gC(xv Q, 0) = gC(’xL «, _0) = "T‘iliagC(‘mwia; aila _9”)
= |z| " %9 (—|z| "% a7, 0"), x <0, (4.28)
with
0"=1-a(l—-0)=1-a+ab € [-1,3 — 2q]. (4.29)
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4.4. Density at 0 and oo. As said above, the density go(x; «, 0) of a strictly stable
distribution Y¢(a,0) = Ye(a,6,1) is always continuous at z = 0 (although not
always analytic there). Its value is given by a simple formula.
Theorem 4.9. For every a € (0,2] and 0 satisfying (3.58),
1 1 1 1
9c(0;a,0) = —F(l + —> COS(EQ) = —F(l + —) sin(mp). (4.30)
s o 2 s o

Proof. The case a # 1 is [14, (2.2.11)], together with (3.60) and (3.62).
If « =1, then Y (1,0) = Sq(cos 7T7‘9,0,sin %0) by (3.55) and (3.6) (or by (3.56)—
(3.57) and (3.23)~(3.24)), and (4.30) follows by (4.13). O

As x — 00, we have a corresponding simple asymptotic formula.

Theorem 4.10. For every o € (0,2] and 6 satisfying (3.58),
1
go(z;a,0) = —T'(1+ ) sin(wap)x_l_a + O(a:_l_2a), x — +00. (4.31)
T

Proof. If ae < 1, then (4.31) is immediate from (4.6).

If o = 1, then (4.31) follows from (4.13), noting again that Y(1,6) = Si(cos %9, 0, sin %9)
and that cos(76/2) = sin(mp).

If o > 1, then (4.31) follows from (4.22), (4.27), and (4.30) (applied to a~! and
p = ap). O

5. ONE-SIDED MOMENTS

It is well-known, that for an a-stable random variable X with « # 2, and s > 0,
we have

EIXPP<oo <= 0<s<a. (5.1)

For strictly stable random variables, these absolute moments can be calculated
explicitly. Moreover, in this case, we can find the moments of the positive and
negative parts of X. We use the general notation E[X;&] :=E[X -1{&}] = [ X dP
for a random variable X and an event £. We then have the following formulas.
Recall that Ao = X by (3.56).

Theorem 5.1. If Y = Yo(«,0,)) and p = (1 + 60)/2, then, for complex s with
—1 < Res < a,

sinmps ['(1 — s/a)

IE[YS; > 0] = A sints TI'(1—s) (5:2)
= %)\S/O‘sin(wps)lj(s)r(l —s/a), (5.3)
s/aL(8)I(1 = s/a)
F(ps)T(1 — ps)’ o4
and
E[[Y]5;Y < 0] = as/aSnTll = p)s I = s/a) (5.5)

sinms I'(1—s)
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_ %As/asm(m — p)S)T(s)T(1 — s/a) (5.6)
L(s)I'(1 —s/a)
(=T~ (1 —p)s)’

Proof. Zolotarev [14, Theorem 2.6.3] and homogeneity give (5.2), and then (5.3)—
(5.4) follow from the reflection formula I'(2)['(1 — 2z) = 7/ sin(7z).

Since —Y £ Yo(a,—0,)), and (1 —6)/2 =1 — p, then (5.5)—(5.7) follow. O

s/a

(5.7)

The absolute moment E |Y'|* is obtained by summing (5.2) and (5.5).

Note that the special case s = 0 (when the formulas are interpreted in the obvious
ways, taking limits) yields P[Y > 0] = p and P[Y < 0] = 1 — p, as stated in
Theorem 3.18. Consequently, we obtain the conditional moments E[YS Y > O] and
E[[Y]* | Y < 0] by dividing (5.2)~(5.4) and (5.5)(5.7) by p and 1 — p, respectively.

When Res > 0, we can also interpret (5.2)—(5.7) as the moments of Y, :=
max{Y,0} and Y_ := max{-Y, 0}.

Remark 5.2. If Y has density p(z), then E[Y%Y > 0] = [ 2*p(z)ds and
E[[Y[%Y < 0] = [;¥2°p(—2)dz. Hence, (5.2)—(5.7) can be regarded as formu-

las for the Mellin transforms of p restricted to the positive and negative half-axes.
O

Remark 5.3. The range —1 < Re s < a in Theorem 5.1 is in most cases optimal. In
fact, it follows from (5.3) that E[Y®;Y > 0] has a pole as s = —1 unless sin(—7p) = 0,
i.e,, p=0or p=1;in both cases @ < 1 by (3.63). Similarly, (5.3) shows that s = «
is a pole unless sin(rpa) = 0, i.e., p = 0 (and then o < 1), or p = 1/a (and then
a > 1). These exceptional cases are treated in the examples below. In all other
cases, we thus have poles at —1 and «, and, consequently, E[YS;Y > O] = oo for
s<—lorsZa.

Example 5.4. If « < 1 and p = 0, then Y < 0 a.s. by Theorem 3.18, and thus,
trivially, E[YS; Y > O] = 0 for all s, which agrees with (5.2). O

Example 5.5. If o« < 1 and p = 1, then Y > 0 a.s. by Theorem 3.18, i.e., Y is
a positive strictly stable random variable as in Example 3.16. Hence its infinitely
differentiable density p(z) vanishes on (—o0,0), and thus has all derivates = 0 at 0,
whence p(z) = O(z") as ¢ — 0 for any N > 0. It follows that E[Y*] is finite for all
s < 0, and thus analytic in Re s < a. By Remark 5.3, there is a pole at a. By (5.2)
and analytic continuation,

E[Y?] = As/am, Res < a. (5.8)
O

Example 5.6. If 1 < a < 2 and p = 1/a, then Y is spectrally negative by Theo-
rem 3.21. Hence, by Theorem 3.13 and a change of signs, the moment generating
function E e’ < oo for every t > 0, and it follows that IE[YS Y > 0} < oo for all
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s > 0. Hence, (5.4) and analytic continuation yield

r
E[Y%Y > 0] = A/ (5) , Res> -1 (5.9)
I'(s/c)
This holds for & = 2 too, when Theorem 3.13 as stated does not apply, because then
Y is normal and the moment generating function is finite everywhere. O

Example 5.7. If 1 < @ < 2 and p = 1 — 1/a, then Y is spectrally positive by
Theorem 3.21, and —Y is as in Example 5.6. Hence, EUY\S;Y < 0} is finite for
Res > —1, while E[YS;Y > O] has a pole at «. O

6. SOME EXAMPLES

Example 6.1 (o = 2). The case a = 2 is simple, and also exceptional in several
ways. By (3.6), the distribution Sa(v, 8, d) has characteristic function
p(t) = 7, (6.1)

and thus a 2-stable distribution is nornal: Sa(v, 3,68) = N(8,2v?). As said in Theo-
rem 3.3, this distribution does not depend on 5, and we take 8 = 0.

Conversely, we see that a normal distribution N(u,o?) is 2-stable, with, by (6.1)
and (3.36)(3.38),

2

The distribution is strictly stable if and only if its mean p = 0 (see Remark 3.4),
and then we further have, by (3.19), (3.22), (3.55), and (3.62),

1 1 2
Y \/50—7 K, A B M 0, YA=TB=TM o2 ( )

1 - 1
n:)\:/\cziaz, T=7=0=0, p=73 (6.3)
(Cf. (3.25), (3.58), (3.63).)
In particular, S9(1,0,0) = Y(;(%, 0) has the density
1 2
:2,0) = go(2;2,0) = —T/, 6.4
p(x;2,0) = go(x;2,0) NG (6.4)
The normal distribution has Lévy measure A = 0, and the canonical measure M
is a point mass at {0}, with M{0} = o?; see (2.5) and (2.3). O
Example 6.2 (a = 1). The Cauchy distribution has density
1
= — — 6.5
f(z) L 00 <z < 00, (6.5)
and characteristic function
o(t) =e M, —00 < t < 00. (6.6)

The Cauchy distribution is thus strictly 1-stable. More precisely, by (3.6), it is
S1(1,0,0) = S1(0); see also Theorem 4.4(i). We thus have, using also (3.19) or
(3.20), (3.22)~(3.24), (3.44)~(3.47), (3.51)~(3.53), (3.56)—(3.57), and (3.62),

v=1, p=6=0, k=1, 7=0, A=1, 75=0,
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Ba=PB=08mu=0, ya=v9=7m=0, A=Ay =X=1, Ap=2/m,
1

0=0, p=3. (6.7)
2

By Theorem 3.3, the strictly 1-stable distributions are Sq(+y,0,0), and by (3.15),

X1(7,0,8) £ X1 (0) + 6. (6.8)

In other words, the strictly 1-stable distributions are precisely the linear transfor-
mations of the Cauchy distribution.

If we normalize to v = 1, we have, generalizing (6.7), that the strictly stable
distribution S;(1,0,d) has, by Remark 3.10, (3.19), (3.22), (3.24), (3.44)-(3.47),
(3.51)—(3.54), (3.56)—(3.57), and (3.62),

- 2
k=v=1, 7-:(57 A=A = 1—}—(52, fy:—;arctané,

)
f=PBa=Bp=Pu=0 ya=yu=9 =75, M=Iu=1
2 2 1 1
Ap=—, 0= —arctand, p= -+ —arctand. (6.9)
s T 2 7

O

Example 6.3 (a = 1/2). The positive 3-stable distribution is closely connected to
the normal distribution and Brownian motion.
One way to see this is to consider a standard Brownian motion By, 0 < t < oo, and

for a > 0 let T, be the hitting time T, := inf{t > 0 : B; > a}. Then, by Brownian

scaling, T, 4 a®T1, and by the strong Markov property, T, — T 4 Ty, for a,b > 0.
Hence, if X =17, then

n
Sni=Y X; ST, £ n2X, (6.10)
=1

which shows that X = T is strictly %—stable. Obviously, T1 > 0. More generally,
(T,)a>0 is an increasing stable process (i.e., a Lévy process with stable increments,
see Remark 2.4 and e.g. [2]).

—tx

A simple calculation using the martingale eV2tBs , ¢ = 0, see e.g. [12, Proposi-

tion I1.3.7], gives the Laplace transform
Ee M = V2 ¢>0. (6.11)

Hence, by Example 3.16 (with A\ = /2), T} ~ S1/2(1,1,0). Using also Theorem 3.14,
(3.20), (3.27), (3.44)—(3.50), (3.56)—(3.57), and (3.62),

1
=1, =1, §=0, k=1, 71=1, /\:)\C:\/i §:_§’
IBA:’BB:ﬁM:]" VA:’YB:07 ’YM:17 >\A:)\M:1; )\B:\/iu
O=p=1 (6.12)

More generally, for any a > 0, T, ~ Sl/Q(aQ, 1,0) = Ye(1/2,1,av/2).
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Moreover, using the reflection principle [12, Proposition I11.3.7], for any = > 0,
P(Ty <z)=P(sup B; >1) =2P(B, > 1) =P(|B,| > 1)

o<tz
=P(z"?|By| > 1) = P(|Bi1|* > 1/2) = P(|B1| 2 < ). (6.13)
Hence,
Ty £ B{%,  where By ~ N(0,1). (6.14)

In other words, if Z ~ N(0,1), then Z7% ~ Sy 5(1,1,0) = Y (1/2,1,V2).
From (6.14), T} has the density

1
T) = ——
le( ) W
This follows also from (4.22). Hence, if X ~ Sy/5(7,1,0) = Yo(1/2,1,/27), then
x4 ~T1 has density

ERVAC () (6.15)

fx(z) = ];%67/(2@, x> 0. (6.16)

Taking v = 1/2, we find
go(x;1/2,1) = 2\/;?6_1/(4@, x>0, (6.17)
which agrees with (4.22) and (6.4). O

Example 6.4 (o = 3/2). Banderier, Flajolet, Schaeffer and Soria [1] define a 3-
stable distribution, by them called the Airy distribution of map type; it has a density
A(z) given by [1, (B.2)]

1o —wt+t3/2/3 L[5 iwtrGy/2/3
—o1 —0o0

which can be recognized as the inversion formula for a distribution with characteristic

function

_ ()%%/3 _ _} —imsgn(t)/4(413/2) _ . 1 . 3/2
p(t) =e exp( 3¢ |t] ) exp( 3\@(1 isgn(t))|t| )
(6.19)

This is thus (as noted in [1]) a %—stable distribution; more precisely, by comparing
with (3.19) and (3.55), we see that this is the strictly stable distribution with, using
also (3.62),

3/2 L L 2t g2t 2 (6.20)
o = s /{/:Tzizi’ :77 :7’ = —. .
3v2  vis ¢T3 3 P73
We find also, using (3.21), (3.22) or (3.28), (3.44)—(3.50), (3.56), (3.61),
7= 2_1/33_2/3 - 18_1/37 p=-1, 6=0, A= é? ;)7 - _%7
1

s e :—1’ e :07 :17 )\ :A == 9
Ba =B =PBu YA =B M A==
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1
Ap=Ac = 3. (6.21)

The distribution is thus spectrally negative. If X has this distribution, then by (3.33)
applied to —X,
EetX = exp(%t?’/Q), Ret > 0. (6.22)
It is shown in [1] that the density (6.18) also can be expressed as
A(z) = 2727 (2Ai(2?) — Al'(2?)),  —oo <z < o0, (6.23)
where Ai(z) is the Airy function [10, Chapter 9].
This distribution is of the type in Example 5.6, and (5.9) yields
I'(s)
I'(2s/3)

For the negative side, we have by (5.6) and the reflection formula for the Gamma
function,

/ 2° Az) do = 3725/3 Res > —1. (6.24)
0

0 1 s
/ 2[5 A(z) dw = ;3*28/3 sin —- ['(s)['(1 — 2s/3)

—0oQ
— 3-2s/3 s.in;%; I'(s)
sin 222 I'(2s/3)
1 I'(s)
cos B I'(2s/3)’

The formulas (6.24) and (6.25) are equivalent to [1, (B.5)—(B.6)].
By (6.21) and (4.1), the density

A(z) = go(;3/2,1/3,1/3) = 3*3p(32/32;3/2,—-1/2) (6.26)
and thus, by (4.3) and (6.23),
go(2;3/2,1/3) = p(x;3/2,-1/2) = 3723 A(37%/32)
=2.372/3720%/21 (3_2/393Ai(3_4/3x2) - Ai’(3_4/3:c2)). (6.27)

An alternative formula using the Whittaker function W, , [10, §13.14] is [14,
(2.8.34) with a typol:

— 2—13—28/3

—1<Res < 3/2. (6.25)

NER 423
go(233/2,1/3) = NG L2 3/27W1/2’1/6<2—7), x> 0. (6.28)

For the negative side we have, by (4.4) and [14, (2.8.35)],
go(w:3/2,1/3) = ge(|z];3/2, —1/3)

1 _ 3 4|z 3
= ﬁ|$| 162‘x| /27W—1/2,1/6 (’27‘>, z < 0. (629)

Of course, the corresponding spectrally positive distribution Y (3/2,—1/3) has den-
sity go(—=;3/2,1/3) obtained by switching (6.28) and (6.29). O
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Example 6.5 (o = 2/3). The positive strictly 2-stable distribution with Laplace
transform

Ee X = exp(—t2/3), Ret > 0, (6.30)
is So/3(27%/2,1,0) = Y¢(2/3,1) = Y¢(2/3,1,1) by Examples 3.16 and 3.20. By (4.3)
and (4.22) (with o = 3/2 and 6 = 1/3), its density function is
go(2:2/3,1) = p(2;2/3,—2/3) = 2 3gc(x7%3,3/2,1/3),  2>0. (6.31)
By (6.27), this yields the density, for x > 0,
go(x:2/3,1) = 6 5.2 ((33:)_7/3Ai((33:)_4/3) - (33:)_5/3Ai’((3;v)_4/3)>. (6.32)

Similarly, (6.31) and (6.28) yield [14, (2.8.33) with typo]

3 __2_ 4

gc($;2/3, 1) = lw_le 772 Wisa1/6\ 553 ) x> 0. (6.33)
NS 27x

O

Example 6.6 (o = 2/3). The symmetric 2-stable distribution with characteristic

function
EetX = exp(—]t]2/3), —00 < t < 00, (6.34)

is S9/3(1,0,0) = Y(2/3,0) = Y (2/3,0,1) by (3.6) and (3.55).
By symmetry, (4.3) and (4.22) (with o = 3/2 and # = —1/3), the density function
is

go(2;2/3,0) = p(;2/3,0) = ||~ Pge (|2|7*/%;3/2,-1/3), (6.35)
which by (6.29) yields [14, (2.8.32)]
. b 2 4
90(2:2/3,0) = S—lal e Wopis(gs)  @#0 (6.36)
O

Example 6.7 (o = 1/3). The positive strictly 3-stable distribution with Laplace
transform

Ee ™™ =exp(—t/%),  Ret >0, (6.37)

is S1/3((3/4)%2,1,0) = Ye(1/3,1) = Y (1/3,1,1) by Examples 3.16 and 3.20.
The density function is, by [14, (2.8.31)] and [10, (9.6.1)],

go(251/3,1) = p(x;1/3,-1/3) = 37327 34Ai((32)" /%),  z>0, (6.38)

where Ai(z) again is the Airy function. Equivalently, 3Ai(x), x > 0, is the density
of the random variable (3Y(1/3,1))~/3. (The distribution of this variable, apart
from the factor 371/3, is known as a Mittag-Leffler distribution).

The moment formula (5.8) with « = 1/3 is by (6.38) and a change of variables
equivalent to the integral formula [10, (9.10.17)]

0 T

Tat2)/3) Rea > 0. (6.39)
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7. DOMAINS OF ATTRACTION

Definition 7.1. A random variable X belongs to the domain of attraction of a
stable distribution £ if there exist constants a,, > 0 and b,, such that

Sn —bn 4, , (7.1)

Qan
as n — 0o, where S, := > ;| X; is a sum of n i.i.d. copies of X.

We will in the sequel always use the notation S, in the sense above (as we already
have done in Section 3). All unspecified limits are as n — oo.

Theorem 7.2. Let 0 < a < 2. A (non-degenerate) random variable X belongs to
the domain of attraction of an a-stable distribution if and only if the following two
conditions hold:

(i) the truncated moment function

ulx) = E(X*1{|X| < 2}) (7.2)
varies reqularly with exponent 2 — a as r — o0, i.e.,
() ~ 2Ly (z), (7.3)

where Li(x) varies slowly;
(ii) either o =2, or the tails of X are balanced:

P(X > z)
_— 7.4
P(|X| >JZ’) _>p+7 HZ'—>OO, ( )

for some py € ]0,1].
Proof. Feller [3, Theorem XVIL.5.2]. O
For the case a < 2, the following version is often more convenient.
Theorem 7.3. Let 0 < a < 2. A random variable X belongs to the domain of

attraction of an a-stable distribution if and only if the following two conditions hold:
(i) the tail probability P(|X| > x) varies regularly with exponent —a as x — oo,
i.e.,
P(|X| > z) ~ 2" “La(x), (7.5)
where Lo(x) varies slowly;
(ii) the tails of X are balanced:

P(X > x)
— o, — 00, 7.6
for some py € [0,1].
Proof. Feller [3, Corollary XVIL.5.2]. O

We turn to identifying the stable limit distributions in Theorems 7.2-7.3 explicitly.
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7.1. The case a < 2. If the conditions of Theorem 7.2 or 7.3 hold for some o < 2,
then the conditions of the other hold too, and we have, by [3, (5.16)],

2 —«

Lo(x) ~ Lyi(x), x — 00. (7.7)

Furthermore, by [3, (5.6)], with a,, b, as in (7.1) and M and A the canonical measure
and Lévy measure of the limit distribution L,

nP(X > apx) = A(z,00) = / y2dM(y), x>0, (7.8)
and, by symmetry,
nP(X < —apx) = A(—00, —z) = / y~2dM(y), x> 0. (7.9)

In particular,

nP(|X]| > an) = My : ly| > 1} € (0,00); (7.10)
conversely, we may in (7.1) choose any sequence (a,) such that nP(|X| > a,) con-
verges to a positive, finite limit. (Any two such sequences (a,,) and (a,) must satisfy
an/al, — ¢ for some ¢ € (0,00), as a consequence of (7.5).)

If
nP(|X| > a,) - C >0 (7.11)

and (7.5)—(7.6) hold, then (7.8)—(7.9) hold with A(z, 00) = p;Cax~* and A(—o0, —x) =
p—Cx~% where p_ :=1— p;. Hence, (3.2)—(3.3) hold with

cy =p+Ca, c_ =p_Ca. (7.12)
Consequently, the limit distribution is given by (3.6) where, by (3.11)—(3.12),
v = (Ca(-T'(—a)cos %))Ua = (CT(1 — ) cos %)1/04’ (7.13)
B=p+—p-. (7.14)
For w = 1 we interpret (7.13) by continuity as
v=C3. (7.15)

Theorem 7.4. Let 0 < o < 2. Suppose that (7.5)—(7.6) hold and that a,, are chosen
such that (7.11) holds, for some C. Let v and 3 be defined by (7.13)—(7.14).

(i) If0 < a <1, then

f: 45 S0 (v, 8,0). (7.16)
(ii) If1 < a <2, then
SnonBX _GZEX 480 (7, 5.0). (7.17)
(iii) If « =1, then
S";n”b" 98,07, 8,0), (7.18)

where v is given by (7.15) and
by = a, Esin(X/a,). (7.19)
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Proof. Feller [3, Theorem XVIIL.5.3] together with the calculations above. O

Example 7.5. Suppose that 0 < @ < 2 and that X is a random variable such that,
as x — 00,

P(X >z)~Cx™, (7.20)
with C' > 0, and P(X < —z) = o(x™®). Then (7.5)—(7.6) hold with Ls(x) := C and
p4 =1, and thus p_ := 1 —p, = 0. We take a,, := n'/; then (7.11) holds, and thus
(3.2)—(3.3) hold with

cr =Ca, c_ =0; (7.21)
hence, (7.13)—(7.14) yield
v = (CT(1 — @) cos T2/, (7.22)
and 8 = 1. Consequently, Theorem 7.4 yields the following.
(i) If 0 < aw < 1, then

S
2 480y, 1,0). (7.23)
nl/a
The limit variable Y is positive and has by Theorem 3.13 and (7.22) the Laplace
transform
Ee Y = exp(—CT(1 — a)t®), Ret > 0. (7.24)
(i) If 1 < a < 2, then
Sp—nEX
InTNEA 48 (7,1,0). (7.25)
nl/a
The limit variable Y has by Theorem 3.13 and (7.22) the finite Laplace trans-
form
Ee ™™ =exp(C|T(1 - a)t*), Ret > 0. (7.26)
By (4.12) and (7.22), the density function fy of the limit variable satisfies
F0) = C7VT(1 = )| 7T (=1/a)| 7 (7.27)
(iii) If @ = 1, then
Sp —nb,  Sp
7771 = = bn i> 81(77 170)7 (728)
n n
where, by (7.15), v = Cn/2 and
by, == nEsin(X/n). (7.29)

We return to the evaluation of b,, in Section 7.2.
O

Example 7.6. Suppose that 0 < o < 2 and that X > 0 is an integer-valued random
variable such that, as n — oo,
P(X =n) ~cn oL, (7.30)
Then (7.20) holds with
C=cla (7.31)
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and the results of Example 7.5 hold, with this C'. In particular, (7.22) yields

7" = —cI'(—a)cos &7, (7.32)
and both (7.24) and (7.26) can be written
Ee Y = exp(cF(—oc)to‘), Ret > 0; (7.33)

note that I'(—a) <0 for 0 < a <1 but I'(—a) >0 for 1 < o < 2.
Taking ¢ imaginary in (7.33), we find the characteristic function

Ee" = exp(cT(—a)(-it)*) = eXp(cF(—a)e*isgn(t)m/ﬂt\“), teR. (7.34)
O

7.2. The special case a = 1. Suppose that, as x — oo,
P(X > )~ Cz™ ! (7.35)

and P(X < —2) = o(z™!), with C > 0. Then Example 7.5 applies, and (7.28)—(7.29)
hold. We calculate the normalising quantity b, in (7.28) for some examples.

Example 7.7. Let X :=1/U, where U ~ U(0,1) has a uniform distribution. Then
P(X > x) = 2! for > 1 so (7.35) holds with C' = 1 and (7.15) yields v = 7/2.
Furthermore, X has a Pareto distribution with the density

72 r>1
= ’ ’ 7.36
(@) {0’ o (7.36)
Consequently, by (7.29),
by, = nsin(X/n) = n/ sin(z/n)z 2 dz = / sin(y)y 2 dy
1 1/n
1 . . 0o
=logn + / kAt y2 Y dy + / s1r12y dy
1/n Y 1 Yy

Csiny —yl{y <1
zlogn+/ Y ZZQ{ZJ }dy+0(1):10gn+1—f_y+o(1),
0

where 7 is Euler’s gamma. (For the standard evaluation of the last integral, see e.g.
[7].) Hence, (7.28) yields

% — (logn +1-73) %5 84(x/2,1,0). (7.37)
or
Sn d _
— —logn — Sy(7/2,1,1 — 7). (7.38)
n
O

Example 7.8. Let X :=1/Y, where Y ~ Exp(1) has an exponential distribution.
Then P(X > z) = 1 —exp(—1/z) ~ 27! as 2 — 00 so C = 1 and (7.15) yields
v = /2. In this case we do not calculate b,, directly from (7.29). Instead we define
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U:=1-¢Y and X’ := 1/U and note that U has a uniform distribution on [0, 1] as
in Example 7.7; furthermore

1 1 eV -1+Y
This is a positive random variable with finite expectation
o ,— 00 — —
E(X' — X) = /0 e(ly__el;;yye—y dy = /0 (1 i eyfy - eyy) dy =7, (7.40)
see e.g. [10, (5.9.18)] or [7].
Taking i.i.d. pairs (X;, X!) £ (X, X’) we thus have, with 5/, := 37 | X/, by the
law of large numbers,

S' — 8,

n

Since Example 7.7 shows that S],/n — logn 4 S1(m/2,1,1 — %), it follows that

2L EX - X) =7. (7.41)

Sn/n—logni>81(7r/2,1,1—27y). (7.42)
We thus have (7.28) with
by, =logn +1— 25+ o(1). (7.43)
([
7.3. The case a = 2. If @ = 2, then a, in (7.1) have to be chosen such that
nan) o (7.44)
aj,

for some C' > 0, see [3, (5.23)]; conversely any such sequence (a,) will do.

Theorem 7.9. If u(x) is slowly varying with p(x) — oo as x — 0o and (7.44) holds,

then
S, —ES,

Gn

Proof. Feller [3, Theorem XVIL5.3]. O

4 N (0, 0). (7.45)

Example 7.10. Suppose that a = 2 and that X is a random variable such that, as
T — 00,

P(X > )~ Cz 2 (7.46)
with C' > 0, and P(X < —z) = o(z~2). Then (7.4) holds with py = 1, and thus
p— :=1—py = 0. Furthermore, as z — oo,

X .
u@;):E(/ 2t 1{|X| < o)) :E/ 1t < |X| < )2t dt
0 0
_/ 2Pt < |X| < 2) dt—/ 2 P(X| > t)dt — 22 P(|X]| > @)
0 0

= (1+o0(1)) /Jf 2tCt~2dt 4+ O(1) ~ 2Clog . (7.47)
1
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Thus (7.3) holds with L (z) = 2C'log .
We take a,, := y/nlogn. Then p(a,) ~ 2C3logn = Clogn, so (7.44) holds and

Theorem 7.9 yields
S, —ES,

S —4, N(0,C). (7.48)

O

8. ATTRACTION AND CHARACTERISTIC FUNCTIONS

We study the relation between the attraction property (7.1) and the characteristic
function ¢x (t) of X. For simplicity, we consider only the common case when a, =
nl/®. Moreover, for simplicity we state results for ¢x (t), t > 0 only, recalling (3.18)
and ¢x(0) = 1.

Theorem 8.1. Let 0 < a < 2. The following are equivalent.

S
(i) 17& Ny for some non-degenerate random variable Z.
n
(ii) The characteristic function ¢x of X satisfies
ox(t) =1— (kK —1im)t* 4+ o(t%) ast ™\ 0, (8.1)

for some real k > 0 and 7. In this case, Z is strictly a-stable and has the
characteristic function (3.19). (Hence, |7| < ktan 5*.)

Proof. If (i) holds, then for every integer m,

m

Smn 1 1 n d 1 m
(mn)V/ea — mli/a ; nl/a ;X(k_l)m_j - ml/a ;Z’f’ as n — 00,

with Z, < Z ii.d. Since also (mn)~1/S,,, & Z, we have m~1/o Y7 7, & 7,
and thus Z is strictly a-stable.

We use Corollary 3.8 and suppose that Z has characteristic function (3.19). Then
the continuity theorem yields

px (t/n)" = pz(t) = exp(—(k —in)t%), > 0; (8.2)
moreover, this holds uniformly for, e.g., 0 <¢ < 1.

In some neighbourhood (—tg,to) of 0, wx # 0 and thus ¢x(t) = e¥® for some
continuous function ¢ : (—tg,t9) — C with ¢(0) = 0. Hence, (8.2) yields (for
n > 1/t0)

t
exp(nd)(m) + (k — iT)to‘) =1+o0(1), as n — 0o,
uniformly for 0 < ¢ < 1, which implies

mj;( f

nl/a
since the left-hand side is continuous and 0 for ¢t = 0, and thus

" (nf/a> +(r— w)% —o(i/n),  asn— oo, (8.3)

) + (k —1i7)t* = o(1), as n — 0o,
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uniformly for 0 <t < 1.
For 5 > 0, define n := |5~ and ¢ := sn'/* € (0,1]. As s\, 0, we have n — oo
and (8.3) yields

P(s) = —(k —iT)s* + o(1/n) = —(k — iT)s™ + o(s%). (8.4)
Consequently, as s \ 0,
ox(s) = e?®) =1 — (k—ir)s® + o(s%), (8.5)

so (8.1) holds.
Conversely, if (8.1) holds, then, for t > 0,

(AN

R eitSn/n'/* — (t/nt/*)" = <1 —(k—iT + 0(1))E) — exp(—(r —ir)t7),

as n — 0o, and thus by the continuity theorem Sn/nl/a 4, 7, where Z has the
characteristic function (3.19). O

For a = 1, it is not always possible to reduce to the case when b, = 0 in (7.1)
and the limit is strictly stable. The most common case is covered by the following
theorem.

Theorem 8.2. The following are equivalent, for any real b.

(i) == —blogn 4z for some non-degenerate random variable Z.
n
(ii) The characteristic function ¢x of X satisfies
ex(t) =1—(k—ir)t —ibtlogt + o(t) as t ™\ 0, (8.6)

for some real k > 0 and 7. In this case, Z is 1-stable and has the characteristic
function (3.29). (Hence, |b| < 2k/7.)

Proof. (ii) = (i). If (8.6) holds, for any s € R, then, as ¢t \, 0,
logpx(t) = —(k — it + o(1))t — ibtlogt (8.7)
and thus, as n — oo, for every fixed t > 0,
| it(Sn/n—blogn) _ ., (t/n)"e 18"
= exp(n (—(/i —ir+ 0(1))% — ib% log %) — ibtlog n)
— exp(—(k — it)t — ibtlog t)

which shows (i), where Z has the characteristic function (3.29).

Furthermore, for use below, note that (3.29) implies |pz(t)| = e~ for ¢t > 0.
Since |@z(t)| < 1, this shows that x > 0. Moreover, if kK = 0, then |¢z(t)| = 1 for
t > 0, and thus for all ¢, which implies that Z = ¢ a.s. for some ¢ € R, so Z is
degenerate and b = 0. Hence, (8.6) implies k > 0, and x = 0 is possible only when

b=0and S,/n —> 7.
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(i) = (ii). Let v := |b|7/2 and B; := —sgnb. Let Y and Y; be i.i.d., and
independent of (X;){° and Z, with distribution Si(y1,81,0). (If b = 0 we simply
take Y; := 0.) Then Y] has, by (3.6), the characteristic function

oy (t) = exp(—yit + ibtlogt), t > 0. (8.8)
By Theorem 3.3(ii),
n
Z Y; L0y —bn log n. (8.9)
i=1

Define )Z', = X; +Y;. Then,
I 1 I~ d Sn d
—ZXi:EZXZ-—i—ﬁZYg:?—i—Y—blognHZ—i—Y. (8.10)
=1 =1 i=1
Thus, by Theorem 8.1, for some ko > 0 and 79,
oxO)oy () =Ee™™i =1 — (kg —im)t +o(t)  ast\0, (8.11)
and hence, using (8.8),

ox(t) = Eeit}zi/gpy(t) =1— (kg —ima — )t — ibtlogt + o(t), (8.12)

which shows (8.6), with k = ko — 71 € R.
Finally, we have shown in the first part of the proof that (8.6) implies k > 0,
because Z is non-degenerate. O

We can use these theorems to show the following.

Theorem 8.3. Let 0 < a < 2. Suppose that X is such that

n
n N x5 7, (8.13)
i=1
where Z is an a-stable random variable with characteristic function (3.19) and that
Y > 0 is a random variable with EY® < co. Let (Y;)3° be independent copies of Y
that are independent of (X;)7°. Then

n_l/aiXiYi 47 = ®Y*)7, (8.14)
i=1
where the limit Z' has the characteristic function
¢z (t) =exp(—(EY*k —iEY*T)t), t>0. (8.15)
If Z ~Sa(v,8,0) (where B =0 if a =1), then Z' ~ So((EY )/, 3,0).
Proof. By Theorem 8.1, for ¢t > 0,
ox(t)=1—(k—1m)t* +t%r(t), (8.16)

where 7(t) — 0 as t \, 0. Furthermore, (8.16) implies that r(t) = O(1) as t — o0,
and thus r(t) = O(1) for ¢t > 0.
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Consequently, for ¢ > 0, assuming as we may that Y is independent of X,
oxy(t) =E™Y =Eopx(tY) =E(1 — (k — in)t*Y* + t*Yr(tY))

=1—(k—in)t"EY* +t*E(Y*r(tY)), (8.17)
where E(Yar(tY)) — 0 as t \, 0 by dominated convergence; hence
exy(t) =1—(k —iT)t*EY* + o(t%) as t \ 0. (8.18)

Theorem 8.1 applies and shows that n='/*Y"" | X;Y; 4, Z', where Z' has the
characteristic function (8.15). Moreover, by (3.19), (EY )Y/ has this characteristic

function, so we may take Z’ := (EY®)V/,
The final claim follows by Remark 3.6. U
Theorem 8.4. Suppose that X is such that, for some real b,
n
nt ZXi —blogn N Z, (8.19)
i=1

where Z is a 1-stable random wvariable, and that Y > 0 is a random wvariable with
EYlogY < oo. Let (Y;)$° be independent copies of Y that are independent of (X;)3°.
Then, with u:=EY,

n
n 13T XiY; — bulogn % Z' = pZ — b(E(Y logY') — plog ). (8.20)
i=1
Z has the characteristic function (3.29) for some k and 7, and then the limit Z'
has the characteristic function, with v := E(Y logY’),

¢z (t) = exp(—(pk +i(bv — p7)t) — ibutlog t), t>0. (8.21)
If Z ~ Si(~, 8,0), then Z' ~ Sq(wy, B, pd — bv).
Proof. By Theorem 8.2, for ¢t > 0,
ex(t)=1—(k—ir)t —ibtlogt + tr(t), (8.22)

where r(t) — 0 as ¢ N\, 0; moreover Z has the characteristic function (3.29). Further-
more, (8.22) implies that r(t) = O(logt) as t — oo, and thus 7(t) = O(1 + log, t)
for t > 0.

Consequently, for t > 0, assuming as we may that Y is independent of X,

pxy(t) = Epx(tY)
=1—(k—ir)tEY —ibt E(Y log(tY)) + tE(Yr(tY)),
=1— (pr —ipT +E(Y logY))t — ibutlogt + t E(Yr(tY)),
where ]E(Yr(tY)) — 0 as t \( 0 by dominated convergence; hence
oxy(t) =1— (ur —ipr + ibv)t — ibutlogt + o(t) as t 0. (8.23)

Theorem 8.2 applies and shows that n=! > " | X;V; — bulogn 4, Z', where Z'
has the characteristic function (8.21). Moreover, it follows easily from (3.29) that
pZ —b(E(Y logY) — pulog 1) has this characteristic function, and thus (8.20) follows.
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Finally, if Z ~ S1(v, 3,9), then b = %ny by Remark 3.10 and it follows easily from
Remark 3.6 that Z’ ~ Sy (uy, 8, ud — br); alternatively, it follows directly from (8.20)
and (3.6) that Z’ has the characteristic function

w2 (t) = pz(ut) exp(—ibt(v — plog )
2 N
- exp(—wm (1 +iB= sgn(t) log |t|) +iout — mw). (8.24)
0

Example 8.5. Let X := U/U’, where U,U’ ~ U(0,1) are independent. By Ex-
ample 7.7 and Theorem 8.4, with Z ~ Si(7/2,1,1 —%), b =1, p:=EU = 1/2
and

1
1
u::EUlogU:/ xlogwdx:—z, (8.25)
0
we obtain
S, 1 qa 1 1 1 1 1 1 ™. 3 7
O

Example 8.6. Let X :=Y/Y’ where Y, Y’ ~ Exp(1) are independent. (Thus X has
the F-distribution F5.) By Example 7.8 and Theorem 8.4, with Z ~ Sy(7/2,1,1 —
2y),b=1,p:=EY =1 and

o
V::IEYlogY:/ zlogre *de=T"(2) =1-7, (8.27)
0
we obtain g
f—lognLZ—VZZ—HﬁNSl(w/Q,L—a). (8.28)

This is in accordance with Example 7.7, since, as is well-known, U :=Y'/(Y +Y") ~
U(0,1), and thus we can write X = (Y +Y’)/Y' - 1=1/U — 1. O

Example 8.7. Let X := V2/W where V ~ U(—3,3) and W ~ Exp(1) are inde-
pendent. By Example 7.8 and Theorem 8.4, with Z ~ Si(7w/2,1,1 — 27%), b = 1,
p:=EV?=1/12 and

1/2 23 237112
V::2EV2log|V|:4/ xQIngdxzél[logx—]
0 3 91,
3log2+1
= 8.29
2+l (5.29)
we obtain
Sn, 1 a 1 1 1 ™ . 5—6y+6log2
S Lt Ly i Lig L g(Z 1 )
n 12108 T pf v gle gy iy 36 (8:30)
Equivalently, using Remark 3.6,
245 2 2 24 2 2 /5
L PN S S D B 81(1,1,—<7 —27+logf)). (8.31)
™ T s s T m\3 6

This is shown directly in Heinrich, Pukelsheim and Schwingenschlogl [5, Theorem
5.2 and its proof]. O
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Example 8.8. More generally, let X := V2/W where V ~ U(g — 1,1) and W ~
Exp(1) are independent, for some fixed real q. By Example 7.8 and Theorem 8.4,
with Z ~ S1(7/2,1,1 - 27), b= 1,

2 N2 1 2 1
p=EV?=(EV) +VarV = (¢ 3) PRERE Sk (8.32)
2 12 3
and
q 3 73 q
V::2EV210g]V|:2/ 2 log|z|dz =2 | = log |z| — =
q—1 3 9 qg—1
31 1—q)*log|l — 3¢ -3¢+ 1
_ o0 loglal+ (1 —g)"log[l —q] )3¢"—3¢+1 (8.33)
3 9
we obtain
Sh d T _
P wlogn — puZ — v+ plogp ~ Sy (/LE, L, (1—=2%)pu— 1/). (8.34)
Equivalently, using Remark 3.6,
) — E 2 E 2
S = EBV)" yen bz 1ogu— BV Nsl(f,qu), (8.35)
un I 2
with
2 d’loglgl+(1—q)’log|l —q| 3¢ —3¢+1 1
by :=—-—27y—-2 log—— + —.  (8.36
=37 32— 3¢ + 1 +log 3 o (836)
This is shown (in the case 0 < ¢ < 1) directly in Heinrich, Pukelsheim and
Schwingenschlogl [6, Theorem 4.2 and its proof]. O
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