
EUCLIDEAN, SPHERICAL AND HYPERBOLIC

TRIGONOMETRY

SVANTE JANSON

Abstract. This is a collection of some standard formulae from Eu-
clidean, spherical and hyperbolic trigonometry, including some standard
models of the hyperbolic plane. Proofs are not given.

1. Introduction

We give here various formulae from Euclidean, spherical and hyperbolic
trigonometry, denoting the three cases by E, S and H, respectively. The
three cases are grouped together for easy comparison. Note that the hy-
perbolic formulae can be obtained from the corresponding spherical ones
by multiplying all lengths by the imaginary unit i. Occasionally we also
distinguish the cases by the sectional curvature K;

E : K = 0, (1.1)

S : K = 1, (1.2)

H : K = −1. (1.3)

The formulae are collected from various sources. For proofs and fur-
ther formulae see e.g. [1], [2], [5] (in particular Chapter VI), [6]; see also
[10, Spherical trigonometry, Triangle, Triangle properties] and the references
given there. See also [7] for some related differential geometry.

Euclidean geometry is geometry in the usual Euclidean plane R2. Spher-
ical geometry is geometry on the unit sphere S2 ⊂ R3. For hyperbolic
geometry, there are several equivalent standard models, see the appendices
for the most important ones. (We consider only plane geometry. See [5] for
3-dimensional hyperbolic geometry, and for striking uses of 3-dimensional
geometry to prove results in plane hyperbolic geometry, sometimes provid-
ing also unified proofs of the hyperbolic and sperical cases.)

Remark 1.1. We consider only the standard cases with curvature K = 0,±1
as in (1.1)–(1.3). More generally, formulae for K = ±1/ρ2, for any ρ > 0,
are obtained from the formulae for K = ±1 by dividing all lengths by ρ, but
we leave this to the reader. (The curvature can thus be any real number K,

taking ρ = 1/
√
|K| when K 6= 0. In the spherical case K > 0, this means

geometry on a sphere of radius ρ = 1/
√
K.) It can then be seen that the
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formulae for the Euclidean case K = 0 are the limits of the formulae for
spherical or hyperbolic trigonometry as K → 0.

1.1. Points at infinity. The sphere is bounded and compact, and the lines
(geodesics) are closed circles. In the Euclidean and hyperbolic cases, it is
often convenient to extend the planes by adding improper points at infinity.
(From a topological point of view, we compactify the space.) The details
are different, and we first recall the standard Euclidean case.

E: In the Euclidean case, we embed the Euclidean plane R2 in the pro-
jective plane P2, defined as the set of lines through the origin in R3, i.e.,
the set of equivalence classes [x1, x2, x3] with (x1, x2, x3) ∈ R3 \ {0} un-
der the equivalence relation [x1, x2, x3] = [tx1, tx2, tx3] for any t 6= 0. The
plane R2 is embedded by (x1, x2) 7→ [x1, x2, 1] and the remaining points
P2 \ R2 = {[x1, x2, 0]} is the line at infinity. Each (proper) line is adjoined
one point at infinity, which can be thought of as the limit point when going
to infinity along the line; note that going along the line in any of the two
directions yields the same point at infinity. Two lines have the same point
at infinity if and only if they are parallel. Hence we can define the points
at infinity intrinsically, as the set of equivalence classes of parallel lines. (If
we include the improper points and the improper line at infinite, we obtain
a model of projective geometry, where each pair of distinct points lie on a
unique line, and each pair of distinct lines intersect in a unique point.)

H: In the hyperbolic case, we define an end as an equivalence class of
parallel rays (i.e., half-lines)1; each line thus has two (distinct) ends. We ex-
tend the hyperbolic plane H by adding a boundary ∂H consisting of all ends,
which are called points at infinity (or infinite points or improper points); see
Appendices A–C for concrete models. Each (proper) line thus has two points
at infinity. Conversely, for each (unordered) pair of distinct points at infin-
ity, there is exactly one (proper) line with these ends. (In the hyperbolic
case, the set of points at infinity should not be regarded as a line, for exam-
ple because there already is a proper line connecting any pair of improper
points. The set of infinite points can be seen as an improper horocycle, see
Section 9, and may be called the horocycle at infinity.)

1.2. Pairs of lines. S: In spherical geometry, a pair of distinct lines always
intersect in exactly two (antipodal) points.

E: In Euclidean geometry, there are two possibilities for a pair of distinct
lines:

(i) The lines intersect in a unique point.
(ii) The lines are parallel ; they do not not intersect in any proper point,

but they intersect at infinity.

1We may for example define two rays to be parallel if a point moving to infinity on one
of them has a distance to the other that tends to 0. (For rays that are not parallel, this
distance tends to infinity.)
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H: In hyperbolic geometry, there are three possibilities for a pair of dis-
tinct lines:

(i) The lines intersect in a unique point.
(ii) The lines are parallel ; they do not not intersect in any proper point,

but they have a common end, so they intersect at infinity. The
distance between the lines (i.e., infx,y d(x, y) where x and y lie on
each of the two lines) is 0.

(iii) The lines are ultraparallel ; they do not intersect, not even at infin-
ity. The distance between the lines is positive. In this case (and
only in this case), the lines have a (unique) common normal. (The
intersections with this normal are the unique points on the two lines
of minimum distance to each other.)

We can assign a non-negative number |〈`, `′〉|, which we call gauge2, to
any pair of lines by the following rules:

(i) If ` and `′ intersect, at an angle α ∈ (0, π/2], let

|〈`, `′〉| := cosα ∈ [0, 1). (1.4)

(ii) If ` and `′ are equal or parallel (Euclidean and hyperbolic cases),
then

|〈`, `′〉| := 1. (1.5)

(iii) If ` and `′ are ultraparallel (hyperbolic case only), and have distance
d, then

|〈`, `′〉| := cosh d ∈ (1,∞). (1.6)

In particular, note that ` and `′ are orthogonal if and only if |〈`, `′〉| = 0.
We also define a signed version 〈`, `′〉 of the gauge for directed lines by

the following modifications above: In (i), let α ∈ (0, π) be the angle between
the positive directions of the lines; in (ii), let 〈`, `′〉 = 1 if the lines are
equal with the same orientation or parallel and have the same orientation at
their common point at infinity; in the opposite case (antiparallel lines), let
〈`, `′〉 = −1; in (iii), let 〈`, `′〉 = cosh d if ` and `′ are directed towards the
same side of their common normal; otherwise let 〈`, `′〉 = − cosh d. In all
cases, the gauge changes sign if the orientation of one of the lines is reversed.
(The absolute value |〈`, `′〉| is thus independent of the directions, and is well
defined for undirected lines; this is the unsigned gauge defined above.) Note
also the symmetry

〈`, `′〉 = 〈`′, `〉. (1.7)

2. Triangles

A triangle is defined by any three points (the vertices) not on a common
line. (For infinite triangles in hyperbolic geometry, see Section 4.) In par-
ticular, the vertices are distinct; on the sphere, furthermore no two vertices
are antipodal. Hence, there is a unique line through any pair of vertices; the

2This is not standard terminology, as far as I know.
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part of this line that lies between the two vertices is a side of the triangle.
The triangle itself can be defined as the convex hull of the three vertices;
this is a convex set bounded by the three sides.

Consider a triangle ABC with (interior) angles A,B,C and sides a, b, c
(with a opposite to A, etc.). (We follow the standard convention of using
the same letter denote a vertex and the corresponding angle; this should not
cause any confusion.) Further, let ∆ be the area and let

s :=
a+ b+ c

2
, (2.1)

σ :=
A+B + C

2
. (2.2)

Thus, s is the semiperimeter. Note that in the Euclidean case E, σ = π/2
(see (2.51)).

Note that A,B,C always are interior angles, and thus have values in
(0, π). (For infinite hyperbolic trianges, 0 is also allowed, see Section 4.)
In the spherical case, we further assume that each side is the shortest of
the two great circle arcs (on the same great circle) connecting its endpoints;
thus each side has length in (0, π). (It follows that the entire triangle lies
in some open half-sphere, see Section 10.) In the Euclidean and hyperbolic
cases, the sidelengths are in (0,∞).

We give below a number of trigonometric formulae and other relations
for these quantities. Note that (except the angle sum in the Euclidean case,
(2.51) and (2.9)), all formulae usings sides and angles involve at least four
of the three sides and three angles, since any three of these elements may
be chosen more or less arbitrarily, see Section 7. Relations between four
elements may be used to solve the triangle when three elements are given,
but also relations with five or six elements are sometimes useful, see again
Section 7.

We may obviously permute the vertices A,B,C in any order, i.e., make
any simultaneous permutation of the angles A,B,C and sides a, b, c. Some
formulae are symmetric, but not all, and in the latter case we often give
only one form, leaving permutations to the reader.

2.1. Fundamental formulae for sides and angles.

The law of sines.

E :
sinA

a
=

sinB

b
=

sinC

c
, (2.3)

S :
sinA

sin a
=

sinB

sin b
=

sinC

sin c
, (2.4)

H :
sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
. (2.5)
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The law of cosines.

E : a2 = b2 + c2 − 2bc cosA, (2.6)

S : cos a = cos b cos c+ sin b sin c cosA, (2.7)

H : cosh a = cosh b cosh c− sinh b sinh c cosA. (2.8)

The second law of cosines.

(E : cosA = − cosB cosC + sinB sinC = − cos(B + C), ) (2.9)

S : cosA = − cosB cosC + sinB sinC cos a, (2.10)

H : cosA = − cosB cosC + sinB sinC cosh a, (2.11)

2.2. Further formulae for sides and angles.

The law of tangents.

E :
tan A−B

2

tan A+B
2

=
sinA− sinB

sinA+ sinB
=
a− b
a+ b

, (2.12)

S :
tan A−B

2

tan A+B
2

=
sinA− sinB

sinA+ sinB
=

sin a− sin b

sin a+ sin b
=

tan a−b
2

tan a+b
2

, (2.13)

H :
tan A−B

2

tan A+B
2

=
sinA− sinB

sinA+ sinB
=

sinh a− sinh b

sinh a+ sinh b
=

tanh a−b
2

tanh a+b
2

. (2.14)

The formulae hold for all triangles, but in the spherical case, (2.13) may
be of the type ∞ = ∞ (when A + B = a + b = π, cf. (2.87)). The law
of tangents is equivalent to the law of sines, by simple manipulations and
standard identities for trigonometric functions.

Napier’s analogies. This is (in the spherical case) the traditional name for
the following set of equations (some of which may be of the type ∞ =∞):

E :
c

a+ b
=

cos A+B
2

cos A−B
2

, (2.15)

E :
c

a− b
=

sin A+B
2

sin A−B
2

, (2.16)

S :
tan c

2

tan a+b
2

=
cos A+B

2

cos A−B
2

, (2.17)

S :
tan c

2

tan a−b
2

=
sin A+B

2

sin A−B
2

, (2.18)

S :
cot C

2

tan A+B
2

=
cos a+b

2

cos a−b
2

, (2.19)

S :
cot C

2

tan A−B
2

=
sin a+b

2

sin a−b
2

, (2.20)



6 SVANTE JANSON

H :
tanh c

2

tanh a+b
2

=
cos A+B

2

cos A−B
2

, (2.21)

H :
tanh c

2

tanh a−b
2

=
sin A+B

2

sin A−B
2

, (2.22)

H :
cot C

2

tan A+B
2

=
cosh a+b

2

cosh a−b
2

, (2.23)

H :
cot C

2

tan A−B
2

=
sinh a+b

2

sinh a−b
2

. (2.24)

Note that Napier’s analogies come in pairs, with the formulae in each pair
equivalent by the law of tangents, (2.12)–(2.14). (The formulae can be
derived from the law of cosines (2.6)–(2.8), or second law of cosines (2.10)–
(2.11), by adding (or subtracting) the same equation with A and B inter-
changed, and then using the sine law (2.3)–(2.5) and standard identities for
trigonometric functions.)

Napier’s analogies are very useful for solving triangles in spherical and
hyperbolic geometry, see Section 7.

Mollweide’s formulae. In the Euclidean case, (2.15)–(2.16) are easily proved
directly from the law of sines and the angle sum (2.51); using the latter they
are further equivalent to the following formulae, involving all six sides and
angles.

E :
a+ b

c
=

cos A−B
2

sin C
2

, (2.25)

E :
a− b
c

=
sin A−B

2

cos C
2

. (2.26)

The formulae go Newton, at least, and are sometimes called Newton’s for-
mulae, see [8]. (In [10], (2.26) is called Mollweide’s and (2.25) is called
Newton’s.)

The haversine formula.

E : a2 = (b− c)2 + 4bc sin2 A

2
, (2.27)

S : sin2 a

2
= sin2 b− c

2
+ sin b sin c sin2 A

2
, (2.28)

H : sinh2 a

2
= sinh2 b− c

2
+ sinh b sinh c sin2 A

2
. (2.29)

This is a version of the law of cosines (by standard identities for trigono-
metric functions); it is (in the spherical case) called the haversine formula,
because the function sin2 x

2 is called haversine [10, Haversine]. (The haver-
sine formula is better than the law of cosines for numerical calculations of
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small distances in navigation.) There is (in the spherical and hyperbolic
cases) a similar version of the second law of cosines, which we omit.

Another version of the law of cosines (by standard identities for trigono-
metric functions) is

E : cos2 A

2
=

(b+ c)2 − a2

4bc
=
s(s− a)

bc
, (2.30)

S : cos2 A

2
=

cos a− cos(b+ c)

2 sin b sin c
=

sin s sin(s− a)

sin b sin c
, (2.31)

H : cos2 A

2
=

cosh(b+ c)− cosh a

2 sinh b sinh c
=

sinh s sinh(s− a)

sinh b sinh c
. (2.32)

Manipulation using trigonometric identities yields the equivalent

E : sin2 A

2
=
a2 − (b− c)2

4bc
=

(s− b)(s− c)
bc

, (2.33)

S : sin2 A

2
=

cos(b− c)− cos a

2 sin b sin c
=

sin(s− b) sin(s− c)
sin b sin c

, (2.34)

H : sin2 A

2
=

cosh a− cosh(b− c)
2 sinh b sinh c

=
sinh(s− b) sinh(s− c)

sinh b sinh c
, (2.35)

and

E : tan2 A

2
=
a2 − (b− c)2

(b+ c)2 − a2
=

(s− b)(s− c)
s(s− a)

, (2.36)

S : tan2 A

2
=

cos(b− c)− cos a

cos a− cos(b+ c)
=

sin(s− b) sin(s− c)
sin s sin(s− a)

, (2.37)

H : tan2 A

2
=

cosh a− cosh(b− c)
cosh(b+ c)− cosh a

=
sinh(s− b) sinh(s− c)

sinh s sinh(s− a)
. (2.38)

Similarly, the second law of cosines (2.9)–(2.11) yields

S : sin2 a

2
= −cosA+ cos(B + C)

2 sinB sinC
= −cosσ cos(σ −A)

sinB sinC
, (2.39)

H : sinh2 a

2
=

cosA+ cos(B + C)

2 sinB sinC
=

cosσ cos(σ −A)

sinB sinC
, (2.40)

and

S : cos2 a

2
=

cosA+ cos(B − C)

2 sinB sinC
=

cos(σ −B) cos(σ − C)

sinB sinC
, (2.41)

H : cosh2 a

2
=

cosA+ cos(B − C)

2 sinB sinC
=

cos(σ −B) cos(σ − C)

sinB sinC
, (2.42)

S : tan2 a

2
= −cosA+ cos(B + C)

cosA+ cos(B − C)
= − cosσ cos(σ −A)

cos(σ −B) cos(σ − C)
, (2.43)

H : tanh2 a

2
=

cosA+ cos(B + C)

cosA+ cos(B − C)
=

cosσ cos(σ −A)

cos(σ −B) cos(σ − C)
. (2.44)
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Remark 2.1. In the days of calculation by hand, formulae involving only
multiplications and divisions of trigonometric functions were much more
convenient than formulae with both multiplications and additions or sub-
tractions of such functions, since the former are converted into sums and
differences by taking logarithms, and tables of logarithms of trigonometric
functions were readily available.

A cotangent formula.

E : cotB =
c− b cosA

b sinA
, (2.45)

S : cotB =
cos b sin c− sin b cos c cosA

sin b sinA
, (2.46)

H : cotB =
cosh b sinh c− sinh b cosh c cosA

sinh b sinA
. (2.47)

By the law of sines (2.3)–(2.5), these are equivalent to

E : a cosB = c− b cosA, (2.48)

S : sin a cosB = cos b sin c− sin b cos c cosA, (2.49)

H : sinh a cosB = cosh b sinh c− sinh b cosh c cosA, (2.50)

which are easy consequences of the law of cosines (2.6)–(2.8).

2.3. Area.

Angle sum and area.

E : 2σ := A+B + C = π, (2.51)

S : 2σ := A+B + C = π + ∆, (2.52)

H : 2σ := A+B + C = π −∆. (2.53)

We can combine these formulae to

E,S,H : 2σ := A+B + C = π +K∆, (2.54)

where K is the sectional curvature; this is an example of the Gauss–Bonnet
theorem.

Area.

E : ∆ =
bc sinA

2
, (2.55)

S : sin
∆

2
=

sin b sin c sinA

4 cos a
2 cos b

2 cos c
2

, (2.56)

H : sin
∆

2
=

sinh b sinh c sinA

4 cosh a
2 cosh b

2 cosh c
2

. (2.57)

(See (2.110)–(2.112) and (2.107)–(2.109) for another way to write this.)
Combining the law of cosines (2.6)–(2.8) and (2.55)–(2.57) yields

E : cotA =
b2 + c2 − a2

4∆
, (2.58)
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S : cotA =
cos a− cos b cos c

4 sin ∆
2 cos a

2 cos b
2 cos c

2

, (2.59)

H : cotA =
cosh b cosh c− cosh a

4 sin ∆
2 cosh a

2 cosh b
2 cosh c

2

. (2.60)

In the Euclidean case we thus have

E : cotA+ cotB + cotC =
a2 + b2 + c2

4∆
. (2.61)

Heron’s formula. Recall that s := (a+ b+ c)/2.

E : ∆2 = s(s− a)(s− b)(s− c), (2.62)

S : 2 sin2 ∆

2
= 1− cos ∆ =

4 sin s sin(s− a) sin(s− b) sin(s− c)
(1 + cos a)(1 + cos b)(1 + cos c)

,

(2.63)

H : 2 sin2 ∆

2
= 1− cos ∆ =

4 sinh s sinh(s− a) sinh(s− b) sinh(s− c)
(1 + cosh a)(1 + cosh b)(1 + cosh c)

.

(2.64)

Equivalently,

E : ∆ =
√
s(s− a)(s− b)(s− c), (2.65)

S : 2 sin
∆

2
=

√
sin s sin(s− a) sin(s− b) sin(s− c)

cos a
2 cos b

2 cos c
2

, (2.66)

H : 2 sin
∆

2
=

√
sinh s sinh(s− a) sinh(s− b) sinh(s− c)

cosh a
2 cosh b

2 cosh c
2

. (2.67)

The Euclidean case can also be written

E : ∆ = 1
4

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4 (2.68)

= 1
4

√
(a2 + b2 + c2)2 − 2(a4 + b4 + c4). (2.69)

The spherical and hyperbolic cases can also be written, using trigonomet-
ric identities (including (2.93)–(2.94) and (2.96)–(2.97)),

S : cos
∆

2
=

1 + cos a+ cos b+ cos c

4 cos a
2 cos b

2 cos c
2

, (2.70)

H : cos
∆

2
=

1 + cosh a+ cosh b+ cosh c

4 cosh a
2 cosh b

2 cosh c
2

, (2.71)

S : tan
∆

2
=

2
√

sin s sin(s− a) sin(s− b) sin(s− c)
1 + cos a+ cos b+ cos c

, (2.72)

H : tan
∆

2
=

2
√

sinh s sinh(s− a) sinh(s− b) sinh(s− c)
1 + cosh a+ cosh b+ cosh c

(2.73)
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Remark 2.2 (S). In the spherical case, 0 < ∆ < 2π by (2.84); thus ∆/2 ∈
(0, π) and (2.70) and (2.72) determine ∆ uniquely, while (2.66) yields two
possibilities. We see from (2.70) that

S :
∆ < π
∆ = π
∆ > π

 ⇐⇒
1 + cos a+ cos b+ cos c > 0,

1 + cos a+ cos b+ cos c = 0,
1 + cos a+ cos b+ cos c < 0.

(2.74)

2.4. Some inequalitites. The triangle inequality says that in any triangle

E,S,H : a < b+ c, b < a+ c, c < a+ b. (2.75)

(Strict inequalities hold since we assume that the three vertices do not lie
on a line.)

Euclidean and hyperbolic triangles can have arbitrarily large perimeter,
but in the spherical case, the perimeter is always less than the length of a
line (great circle), i.e.

S : 2s = a+ b+ c < 2π. (2.76)

The angle sum A+B +C is equal to 2π in the Euclidean case by (2.51);
in the spherical and hyperbolic case we have by (2.52)–(2.53) inequalities:

S : 2σ = A+B + C > π, (2.77)

H : 2σ = A+B + C < π. (2.78)

There is no lower bound for the angle sum of a hyperbolic triangle; any value
in (0, π) may be attained. A trivial upper bound for the angle sum in the
spherical case is provided by the assumptions A,B,C < π, yielding

S : 2σ = A+B + C < 3π; (2.79)

this is best possible and any angle sum between π and 3π may be attained
by a spherical triangle (for example, by an equilateral triangle). (In the
spherical case, see also the duality (5.7).)

Moreover, in the spherical case, the triangle inequality (2.75) is by duality
(Section 5) equivalent to the inequalities

S : B + C < π +A, A+ C < π +B, A+B < π + C. (2.80)

By (2.52), this can also be written

S : ∆ < 2 max{A,B,C}, (2.81)

which is obvious geometrically, since 2A is the area of the lune (digon)
between the lines AB and AC extended to the antipode Ā of A, and the
triangle is a subset of this sector. (See also (6.3).)

In the spherical case we further have the inequalities

S : − 3
2 < cos a+ cos b+ cos c < 3 (2.82)

and dually, cf. (5.4)–(5.6),

S : − 3 < cosA+ cosB + cosC < 3
2 . (2.83)
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(These are easily shown by considering the centroid, cf. Appendix E.3 and
(E.26). The inequalities are best possible, as is shown by equilateral trian-
gles. Note that no corresponding nontrivial inequalities hold for two angles
or sides; (a, b) or (A,B) can be any pair in (0, π)2.)

The area of a spherical triangle is obviously bounded (the sphere has total
area 4π); note that (2.53) shows that the area of a triangle is bounded also
in the hyperbolic case: by (2.52)–(2.53) and (2.79),

S : ∆ < 2π, (2.84)

H : ∆ < π. (2.85)

Any values in these ranges may be attained. (Note that (2.84) also follows
from (2.81).)

In contrast, a Euclidean triangle can have arbitrarily large area.

The smallest side is opposite to the smallest angle, and the largest side
is opposite to the largest angle; this also holds if there are ties, since two
angles are equal if and only if the sides opposite them are equal (an isosceles
triangle). In other words,

E,S,H :
a < b
a = b
a > b

 ⇐⇒
A < B,
A = B,
A > B.

(2.86)

(In the hyperbolic case, this is an immediate consequence of the sine law
(2.5); the other cases are somewhat less obvious since sine is not monotone.)
In the spherical case, (2.86) applied to an adjacent triangle (Section 6) yields
the additional relations

S :
a+ b < π
a+ b = π
a+ b > π

 ⇐⇒
A+B < π,
A+B = π,
A+B > π.

(2.87)

2.5. Amplitudes. Two quantities that appear in some formulae are called
amplitudes. We denote them by ams and amv and define them as the square
roots of

E,S,H : am2
s :=

∣∣∣∣∣∣
1 − cosA − cosB

− cosA 1 − cosC
− cosB − cosC 1

∣∣∣∣∣∣ (2.88)

= 1− cos2A− cos2B − cos2C − 2 cosA cosB cosC
(2.89)

= −4 cosσ cos(σ −A) cos(σ −B) cos(σ − C) (2.90)

and

E : am2
v := 4s(s− a)(s− b)(s− c), (2.91)

S : am2
v :=

∣∣∣∣∣∣
1 cos a cos b

cos a 1 cos c
cos b cos c 1

∣∣∣∣∣∣ (2.92)
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= 1− cos2 a− cos2 b− cos2 c+ 2 cos a cos b cos c (2.93)

= 4 sin s sin(s− a) sin(s− b) sin(s− c), (2.94)

H : am2
v :=

∣∣∣∣∣∣
1 cosh a cosh b

cosh a 1 cosh c
cosh b cosh c 1

∣∣∣∣∣∣ (2.95)

= 1− cosh2 a− cosh2 b− cosh2 c+ 2 cosh a cosh b cosh c (2.96)

= 4 sinh s sinh(s− a) sinh(s− b) sinh(s− c). (2.97)

Note that by (2.90) and (2.51)–(2.53) (and (5.4)–(5.6) in the spherical case
which imply σ −A < π/2 etc. also in this case),

E : am2
s = 0 (2.98)

S : am2
s > 0 (2.99)

H : am2
s < 0. (2.100)

We thus have no use for ams in the Euclidean case, and in the hyperbolic
case ams is imaginary (so we use |ams| > 0); otherwise we define ams and
amv as the positive square roots.3 4

Remark 2.3. In the spherical case, amv is the volume of the parallelepiped
spanned by the vertices, regarded as unit vectors in R3. This holds also in
the Euclidean and hyperbolic cases if we use suitable embeddings in R3, see
Appendix E. This is one reason for considering (2.91)–(2.97) together, as
versions for the three cases of the same quantity.

Similarly, in the spherical case, ams is the volume of the parallelepiped
spanned by the vertices of the dual triangle, i.e., of the unit vectors orthog-
onal to the sides, see Section 5. This too can be extended to the hyperbolic
case by considering a suitable embedding in R3, see again Appendix E. (In
the Euclidean case, ams vanishes by (2.98), and no geometrical interpreta-
tion is needed.)

Remark 2.4. The notation ams and amv is taken from [5]; the subscripts
stand for sides and vertices, respectively. It may seem more natural to use
to opposite notations, since ams is defined in terms of the angles at the
vertices and amv in terms of the lengths of the sides. The solution is to
see ams as defined using the angles between the sides and amv using the
distances between the vertices. See further Appendix E.2, where amv is
connected to the vertices and ams to the sides in a more direct way.

The second law of cosines yields

am2
s = sin2B sin2C − (cosA+ cosB cosC)2

3[5] defines the signs differently, with ams < 0 and amv < 0 in the spherical case, and
−iams > 0 and amv > 0 in the hyperbolic case.

4We could have defined am2
s with an absolute value, changing the sign in the hyperbolic

case, in order to make the amplitudes real and non-negative in all cases.
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E : = 0, (2.101)

S : = sin2B sin2C sin2 a, (2.102)

H : = − sin2B sin2C sinh2 a (2.103)

and thus

E : ams = 0, (2.104)

S : ams = sinB sinC sin a, (2.105)

H : |ams| = sinB sinC sinh a. (2.106)

Similarly (dually), using the law of cosines,

E : amv = bc sinA, (2.107)

S : amv = sin b sin c sinA, (2.108)

H : amv = sinh b sinh c sinA. (2.109)

We can use amplitudes to write Heron’s formula as

E : ∆ =
amv

2
(2.110)

S : sin
∆

2
=

amv

4 cos a
2 cos b

2 cos c
2

(2.111)

H : sin
∆

2
=

amv

4 cosh a
2 cosh b

2 cosh c
2

(2.112)

The spherical and hyperbolic cases can also be written

S : cos
∆

2
=

1 + cos a+ cos b+ cos c

4 cos a
2 cos b

2 cos c
2

(2.113)

H : cos
∆

2
=

1 + cosh a+ cosh b+ cosh c

4 cosh a
2 cosh b

2 cosh c
2

(2.114)

S : tan
∆

2
=

amv

1 + cos a+ cos b+ cos c
(2.115)

H : tan
∆

2
=

amv

1 + cosh a+ cosh b+ cosh c
(2.116)

By (2.105)–(2.106), the sine laws (2.4)–(2.5) may be written

S :
sinA

sin a
=

sinB

sin b
=

sinC

sin c
=

sinA sinB sinC

ams
(2.117)

H :
sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
=

sinA sinB sinC

|ams|
. (2.118)

3. Special cases for a right triangle

Suppose that C = π/2. Then the following hold.
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Pythagorean theorem.

E : c2 = a2 + b2, (3.1)

S : cos c = cos a cos b, (3.2)

H : cosh c = cosh a cosh b. (3.3)

Sines.

E : sinA =
a

c
, (3.4)

S : sinA =
sin a

sin c
, (3.5)

H : sinA =
sinh a

sinh c
. (3.6)

Cosines.

E : cosA =
b

c
, (3.7)

S : cosA = cos a sinB =
cos a sin b

sin c
=

tan b

tan c
, (3.8)

H : cosA = cosh a sinB =
cosh a sinh b

sinh c
=

tanh b

tanh c
. (3.9)

Tangents.

E : tanA = a/b. (3.10)

S : tanA = tan a/ sin b, (3.11)

H : tanA = tanh a/ sinh b. (3.12)

Cotangents.

(E : 1 = cotA cotB, ) (3.13)

S : cos c = cotA cotB, (3.14)

H : cosh c = cotA cotB. (3.15)

Area.

E : ∆ =
ab

2
, (3.16)

S : sin ∆ =
sin a sin b

1 + cos c
, (3.17)

H : sin ∆ =
sinh a sinh b

1 + cosh c
. (3.18)

Remark 3.1. The main formulae for a right spherical triangle are described
by Napier’s pentagon. Write the angles Ā, b, a, B̄, c̄, where X̄ := π/2 − X,
in this order around a circle. Then the sine of each angle equals the product
of the cosines of the opposite two angles, and equals also the product of the
tangents of the two adjacent angles. (The latter relation follows easily from
the first.)
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The same holds for a hyperbolic triangle if we replace all trigonometric
functions acting on a, b or c by the corresponding hyperbolic functions.

4. Infinite triangles (hyperbolic)

In hyperbolic geometry one might thus also consider infinite or improper
or asymptotic triangles, where one, two or three vertices are infinite points;
this means that the corresponding sides are infinite rays or lines that are
parallel and do not intersect. Some sides thus have infinite length. The
angle at an infinite vertex is defined to be 0.

We have the following cases:

(1) A singly infinite triangle ABC where C is infinite. The side AB
is finite, while AC and BC are infinite rays. (Thus, c < ∞, while
a = b =∞. The angle C = 0, while A,B > 0.)

(2) A doubly infinite triangle ABC where B and C are infinite. The
sides AB and AC are infinite rays, while BC is an infinite line.
(Thus, a = b = c =∞. The angles B = C = 0, while A > 0.)

(3) A triply infinite triangle ABC where A,B,C all are infinite. The
three sides are infinite lines. (Thus, a = b = c = ∞. The angles
A = B = C = 0.) All such triangles are congruent, and have area π.

The law of sines holds trivially (all ratios are 0).
The formula (2.53) for angle sum and area holds for all infinite triangles.

In particuler, the area of a triangle is bounded; ∆ 6 π with equality if and
only if the triangle is triply infinite.

The second law of cosines (2.11) makes sense for a singly infinite triangle;
with vertices A and B finite (so the angles A,B > 0 and c <∞), it says

H : 1 = − cosA cosB + sinA sinB cosh c. (4.1)

(All other combinations include 0 · ∞ and are thus meaningless.)
Similarly, Napier’s analogy (2.21) holds for all infinite triangles; since

a+ b =∞ in all cases (at least two sides are infinite), it can then be written

H : tanh
c

2
=

cos A+B
2

cos A−B
2

, (4.2)

which is equivalent to (4.1) when A,B > 0, and is valid but trivial (1 = 1)
in all other cases. The relation (4.2) can also easily be transformed to

H : e−c = tan
A

2
tan

B

2
. (4.3)

(Napier’s analogy (2.22) is either trivial (∓1 = ∓1 when a or b is finite),
or meaningless (involving ∞−∞). The other two analogies (2.23)–(2.24)
are always meaningless (with ∞ − ∞ or ∞/∞) for infinite triangles, al-
though (4.3) (with vertices B and C interchanged) can be seen as the right
interpretation when B = 0 (take the limit as a→∞).)
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In particular, for an infinite right triangle with B = π/2 and C = 0, (4.1)
yields

H : sinA = 1/ cosh c. (4.4)

Equivalently,

H : cosA = tanh c, (4.5)

H : tanA = 1/ sinh c. (4.6)

Remark 4.1 (E). In the Euclidean case, one can define an infinite triangle
with one infinite vertex in the analoguous way; this “triangle” then has two
parallel infinite sides (infinite rays lying on two parallel lines, and going in
the same direction) and a third, finite, side connecting their finite endpoints
(which are two arbitrary points on the infinite lines); if the infinite vertex is
C, then a = b =∞ and A+B = π, so (2.51) still holds with C = 0. We will
not discuss such Euclidean infinite triangles, which in any case are simple
and easily handled.

4.1. Angle of parallelism. We can interpret (4.4)–(4.6) in the following
way (the angle of parallelism): Let A be a point and ` a line in the hyperbolic
plane, with A /∈ `. Then there are two lines through A parallel to `, and the
angle between them (which equals the angle under which ` is seen from A)
equals 2A, where A satisfies (4.4)–(4.6) with c = d(A, `), the distance from
A to `.

5. Duality (spherical)

In spherical geometry, every triangle ABC has a dual triangle A∗B∗C∗,
defined by regarding the points on the sphere as unit vectors in R3 and
letting A∗ be the unit vector orthogonal to the side BC and on the same
side of it as A, and similarly for B∗ and C∗, i.e.,

S : 〈A∗, B〉 = 〈A∗, C〉 = 0, 〈A∗, A〉 > 0, (5.1)

S : 〈B∗, A〉 = 〈B∗, C〉 = 0, 〈B∗, B〉 > 0, (5.2)

S : 〈C∗, A〉 = 〈C∗, B〉 = 0, 〈C∗, C〉 > 0. (5.3)

using the standard inner product in R3.
Since (5.1)–(5.3) are symmetric in ABC and A∗B∗C∗, duality is a sym-

metric relation, i.e., the second dual of a triangle ABC is ABC again (with
vertices in the same order).

We have

S : A∗ = π − a, a∗ = π −A, (5.4)

S : B∗ = π − b, b∗ = π −B, (5.5)

S : C∗ = π − c, c∗ = π − C. (5.6)
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and thus

S : s∗ =
3π

2
− σ, σ∗ =

3π

2
− s. (5.7)

The amplitudes are interchanged:

S : am∗s = amv am∗v = ams. (5.8)

Thus, for example, the law of sines (2.4) is self-dual, while the two laws of
cosines (2.7) and (2.10) are dual, in the sense that one formula for a triangle
is the same as the other for the dual triangle. Furthermore, (2.76) and (2.77)
are dual.

6. Adjacent triangles (spherical)

In spherical geometry, there is another useful symmetry besides duality
(Section 5). Each point A has an antipode Ā, and by replacing a subset
of the vertices A,B,C by their antipodes, we obtain 8 different triangles
(including the original ABC). These 8 triangles together cover the sphere,
without overlaps (except at the boundaries); they are the 8 subsets obtained
by cuttng the sphere along the three (Euclidean) planes through the sides
of the triangle.

We call the three triangles ĀBC, AB̄C and ABC̄ obtained by replacing
one vertex by an antipode the adjacent triangles of ABC.5 The 8 triangles
considered here are thus the original triangle, its 3 adjacent triangles, and
the antipodes of these 4.

The adjacent triangles share one side each with the original triangle. The
triangle ĀBC has sides

S : a′ = a, b′ = π − b, c′ = π − c (6.1)

and angles

S : A′ = A, B′ = π −B, C ′ = π − C. (6.2)

The area of the adjacent triangle ĀBC is thus, by (2.52),

S : ∆′ = 2A−∆. (6.3)

This is obvious geometrically, since the union of the triangles ABC and
ĀBC is the lune between the lines ABĀ and ACĀ, which has area 2A.

The amplitudes ams and amv are the same as for the original triangle.
(They are thus the same for all 8 triangles.)

It follows immediately from (5.1)–(5.3) that taking the dual triangle com-
mutes with replacing one or several vertices by their antipodes; thus the
duals of two adjacent triangle are adjacent to each other.

5This is not standard terminology, as far as I know.
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7. Solving triangles

A triangle is described by three angles and three sides. In many, but not
all, cases, three of these six elements determine uniquely the triangle up
to congruence; in particular they determine the remaining three elements.6

To calculate the remaining sides and angles when some of them are given
is called to solve the triangle. There are six different cases, which we dis-
cuss cases by case; we discuss both existence and uniqueness of the triangle
and the calculations of the remaining sides and angles, and in many cases
formulae for the area.

We assume tacitly that all given angles are in (0, π) and that all given
sides are positive and in the spherical case in (0, π). In the hyperbolic case,
we sometimes consider also infinite triangles, but only when we explicitly
say so; otherwise all triangles are assumed to be finite. Note that cos is one-
to-one on [0, π]; thus an angle is uniquely determined by its cosine; however,
sin is not one-to-one on [0, π], since sinA = sin(π − A); thus the sine of an
angle is in general not enough to determine the angle; there are typically
two possibilities, although often (2.86) can be used to exclude one of them.
In the spherical case, the same applies to sine and cosine of sides; in the
Euclidean and hyperbolic cases there are no problems with sides, in the
latter case because both cosh and sinh are one-to-one on [0,∞).

7.1. Three sides given (SSS). A triangle with sides a, b, c exists if and
only if the (strict) triangle inequalities (2.75) hold, and in the spherical case
furthermore (2.76) holds; i.e.,

E,S,H : a < b+ c, b < a+ c, c < a+ b, (7.1)

S : a+ b+ c < 2π. (7.2)

The triangle then is unique. (In the hyperbolic case, there are also triangles
with two or three sides infinite, e.g. a = b = ∞ and c ∈ (0,∞] arbitrary;
these are not uniquely determined by the sides, since we may choose the
angle A arbitrary, with A ∈ (0, π) if c <∞ and A ∈ [0, π) if a = b = c =∞,
see the case SAS.)

With the sides a, b, c given, the angles can be found by the law of cosines
(2.6)–(2.8).

The area is given by Heron’s formula (2.65)–(2.67).

7.2. Two sides and the included angle given (SAS). There exists
a unique triangle for any given sides b, c and included angle A. (In the
hyperbolic case, this includes the case of an infinite triangle with b or c or
both infinite.)

With the sides b, c and the angle A given, the remaining side a is given
by the law of cosines (2.6)–(2.8). The remaining two angles then can be
found, as in the case SSS, by by the law of cosines (2.6)–(2.8). (The law
of sines (2.3)–(2.5) can also be used to find the angles, but give typically

6This goes back to Euclid, and perhaps to Thales of Miletus [8, Thales of Miletus].
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two possibilities for each angle. In the Euclidean case, the third angle can
be found by the angle sum (2.51) once the second has been determined.
In the spherical and hyperbolic cases, another alternative is to use Napier’s
analogies (2.19)–(2.20) or (2.23)–(2.24), resp., to find B+C and B−C.) The
case of an infinite hyperbolic triangle is special; in this case the remaining
side a = ∞, and if, say, b = ∞ and c < ∞, then C = 0 (since vertex C is
infinite) and B can be found by (4.3).

An alternative is to obtain the two remaining angles B and C directly by
(2.45)–(2.47).

The area is, by (2.55)–(2.57) and the law of cosines, given by

E : ∆ =
bc sinA

2
, (7.3)

S : sin
∆

2
=

sin b
2 sin c

2 sinA

cos a
2

=

√
2 sin b

2 sin c
2 sinA

√
1 + cos b cos c+ sin b sin c cosA

, (7.4)

H : sin
∆

2
=

sinh b
2 sinh c

2 sinA

cosh a
2

=

√
2 sinh b

2 sinh c
2 sinA

√
1 + cosh b cosh c− sinh b sinh c cosA

.

(7.5)

7.3. Two sides and an opposite angle given (ASS = SSA). This
is the most complicated case. The conditions for existence are as follows,
with several different cases for each of the three geometries. (Note the
similarity between the Euclidean and hyperbolic cases, while the spherical
case is somewhat different.) We assume that the sides a and b and the angle
A opposite to a are given.

E : A < π/2 and a > b sinA or (7.6)

A > π/2 and a > b; (7.7)

S : A, a < π/2 and sin b sinA 6 sin a 6 sin b or (7.8)

A, a > π/2 and sin b sinA 6 sin a 6 sin b or (7.9)

sin a > sin b or (7.10)

A = a = b = π/2; (7.11)

H : A < π/2 and sinh a > sinh b sinA or (7.12)

A > π/2 and a > b. (7.13)

Moreover, among these cases, there are two different triangles (with supple-
mentary values for the angle B) in the cases

E : A < π/2 and b sinA < a < b, (7.14)

S : A, a < π/2 and sin b sinA < sin a < sin b or (7.15)

A, a > π/2 and sin b sinA < sin a < sin b, (7.16)

H : A < π/2 and sinh b sinA < sinh a < sinh b, (7.17)
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and infinitely many different triangles in the exceptional spherical case
(7.11):

S : A = a = b = π/2; (7.18)

in this case B = π/2 while c = C is arbitrary in (0, π).
In all cases, B is given by the law of sines. This gives two possibilities

(except when B = π/2); in many cases one solution can be excluded by
(2.86); otherwise both values are possible, and give two different solutions
(the cases (7.14)–(7.17)).

E: In the Euclidean case, the remaining angle C then can be found from
the angle sum (2.51), and the remaining side c from the law of sines (2.3).
This yields the formula

E : c = b cosA±
√
a2 − b2 sin2A, (7.19)

where of course only a sign that yields a positive result is acceptable. (It is
easily verified that there are 0, 1 or 2 choices in agreement with (7.6)–(7.7)
and (7.14).)

S,H: In the spherical and hyperbolic cases, the remaining angle and side
can be found by Napier’s analogies, for example by (2.17) and (2.19), or
(2.21) and (2.23), except in the spherical case when a + b = π and thus
A+B = π (cf. (2.87)) when we instead use (2.18) and (2.20), assuming we
are not in the indeterminate case (7.18). (Alternatively, (2.18) and (2.20),
or (2.22) and (2.24), can be used in all cases except the isosceles a = b and
thus A = B.) An infinite hyperbolic triangle with a =∞, b <∞ and A > 0
can be solved in the same way using (4.3); we have B = 0, c =∞ and (4.3)
(with vertices B and C interchanged) yields c.

The area is in the Euclidean case, by (7.19),

E : ∆ =
b2 sinA cosA± b sinA

√
a2 − b2 sin2A

2
, (7.20)

where as in (7.19), the sign has to be chosen such that the result is positive.

7.4. One side and two adjacent angles given (ASA). There exists a
triangle with the side a and the adjacent angles B and C if and only if the
following holds:

E : B + C < π, (7.21)

S : (no condition; a triangle always exists), (7.22)

H : B + C < π and cosh a <
1 + cosB cosC

sinB sinC
. (7.23)

The triangle then is unique. In the hyperbolic case, there is furthermore a
(unique) infinite triangle with side a and angles B,C if

H : B + C < π and cosh a =
1 + cosB cosC

sinB sinC
. (7.24)
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In the hyperbolic case, (7.23) and (7.24) can be transformed to the equiva-
lent, cf. (4.3),

H : tan
B

2
tan

C

2
< e−a (finite), (7.25)

H : tan
B

2
tan

C

2
= e−a (infinite). (7.26)

In all cases, the remaining angle A can be found by the second law of
cosines (2.9)–(2.11), which in the Euclidean case simply amounts to using
the angle sum (2.51). The remaining sides b and c can then be found by the
law of sines in the Euclidean and hyperbolic cases, and by the second law of
cosines in the spherical (and hyperbolic) cases. (The law of sines applies in
the spherical case too, but gives usually two possible results each for b and
c. Another alternative, in all three geometries, is to use Napier’s analogies
(2.15)–(2.16), (2.17)–(2.18) or (2.21)–(2.22), resp., to find b + c and b − c,
and thus b and c.)

The area is in the Euclidean case

E : ∆ =
a2 sinB sinC

2 sin(B + C)
=

a2

2(cotB + cotC)
. (7.27)

Remark 7.1. For any a > 0 and angles B,C ∈ (0, π), one can construct, on
an arbitrary line `, two points B and C with distance a and lines `B and
`C through B and C, respectively, making angles B and C with `; more
precisely, we let `B and `C be directed lines such that if wB and wC are the
positive endpoints of `B and `C , then wB and wC lie on the same side of `,
and the angle CBwB is B and the angle BCwC is C. (This construction
is obviously unique up to congruence.) Then (7.21)–(7.23) give conditions
for the lines `B and `C to intersect on the positive side of `, thus forming
a triangle ABC with interior angles B and C, but in any case, the gauge
〈`B, `C〉 is given by

E : 〈`B, `C〉 = − cosB cosC + sinB sinC = − cos(B + C), (7.28)

S : 〈`B, `C〉 = − cosB cosC + sinB sinC cos a, (7.29)

H : 〈`B, `C〉 = − cosB cosC + sinB sinC cosh a. (7.30)

Note that in the case of a triangle, when the gauge is cosA, this is just the
second law of cosines (2.9)–(2.11).

7.5. One side, one adjacent and the opposite angle given (AAS
= SAA). We assume that the side a and the two angles A and B are
given. The conditions for existence of a triangle are the following. (In the
spherical case, this follows by duality from the case ASS. The Euclidean and
hyperbolic cases are much simpler.)

E : A+B < π, (7.31)

S : A, a < π/2 and sinB sin a 6 sinA 6 sinB or (7.32)

A, a > π/2 and sinB sin a 6 sinA 6 sinB or (7.33)
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sinA > sinB or (7.34)

a = A = B = π/2; (7.35)

H : A+B < π. (7.36)

Moreover, there are two such triangles in the spherical cases

S : A, a < π/2 and sinB sin a < sinA < sinB or (7.37)

A, a > π/2 and sinB sin a < sinA < sinB, (7.38)

and infinitely many different triangles in the exceptional spherical case
(7.35):

S : a = A = B = π/2; (7.39)

in this case b = π/2 while c = C is arbitrary in (0, π). In all other cases,
including all Euclidean and hyperbolic cases, the triangle is unique.

In all cases, b is given by the law of sines. In the spherical case, this gives
two possibilities (except when b = π/2); in many cases one solution can be
excluded by (2.86); otherwise both values are possible, and give two different
solutions (the cases (7.37)–(7.38)). We then know a, b, A,B and are in the
same situation as in the case AAS, so we proceed as there:

E: In the Euclidean case, the remaining angle C then can be found as
π −A−B from the angle sum (2.51), and the remaining side can be found
from the law of sines (2.3) as

E : c =
a

sinA
sin(A+B) = a sinB(cotA+ cotB). (7.40)

S,H: In the spherical and hyperbolic cases, the remaining angle and side
can be found by Napier’s analogies, for example by (2.17) and (2.19), or
(2.21) and (2.23), except in the spherical case when a + b = π and thus
A+B = π (cf. (2.87)) when we instead use (2.18) and (2.20), assuming we
are not in the indeterminate case (7.18). (Alternatively, (2.18) and (2.20),
or (2.22) and (2.24), can be used in all cases except the isosceles a = b and
thus A = B.) An infinite hyperbolic triangle with a <∞, A = 0 and B > 0
can be solved similarly; we have b = c = ∞ and (4.3) (with vertices A and
C interchanged) yields C.

The area is in the Euclidean case, by (7.40),

E : ∆ =
a2 sinB sin(A+B)

2 sinA
=

1

2
a2 sin2B(cotA+ cotB). (7.41)

7.6. Three angles given (AAA). E: In the Euclidean case, the three
angles have to satisfy (2.51), i.e.

E : A+B + C = π. (7.42)

If this holds, there are infinitely many triangles with these angles, since
the angles determine a Euclidean triangle up to similarity, but not up to
congruence. We may choose one of the sides arbitrarily, and then find the
other two by the law of sines as in case ASA or AAS.
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S: In the spherical case, the angle sum has to be greater than π by (2.77);
furthermore, the angles have to satisfy the dual triangle inequality (2.80).
We thus have the conditions

S : A+B + C > π, (7.43)

B + C < π +A, A+ C < π +B, A+B < π + C. (7.44)

These conditions are both necessary and sufficient; for such A,B,C, there
is a unique triangle with these angles.

H: In the hyperbolic case, the angle sum has to be less than π by (2.78):

H : A+B + C < π. (7.45)

This is also sufficient; for any such A,B,C, there is a unique triangle with
these angles. (This includes the case of infinite triangles, when one or several
of the angles A,B,C is 0.)

S, H: In the spherical and hyperbolic cases, the sides are determined
by the second law of cosines (2.10)–(2.11). (In the hyperbolic case, for an
infinite triangle, this includes the case of the finite side in a singly infinite
triangle, see (4.1); any side adjacent to a vertex with angle 0 is infinite.)

The area is given by (2.52)–(2.53).

8. Circles

A circle is the set of points with a given distance r (the radius) to some
given point (the centre).

Remark 8.1 (S). In spherical geometry, a circle with centre O and radius R
coincides with the circle with the antipodal centre Ō and radius π −R; the
interior of one of these circles is the exterior of the other.

Note also that in spherical geometry, a circle with radius π/2 is a geodesic
(and conversely).

A circle with radius r has circumference

E : 2πr, (8.1)

S : 2π sin r, (8.2)

H : 2π sinh r (8.3)

and area

E : πr2, (8.4)

S : 4π sin2(r/2) = 2π(1− cos r), (8.5)

H : 4π sinh2(r/2) = 2π(cosh r − 1). (8.6)

The geodesic curvature is (see e.g. [7])

E : 1/r, (8.7)

S : cot r, (8.8)
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H : coth r, (8.9)

directed towards the centre of the circle (in spherical geometry, for r >
π/2 when cot r < 0, the circle thus curves outwards, in accordance with
Remark 8.1.)

In all cases, if a circle has circumference `, area A and geodesic curvature
κ, then

E,S,H : 2π − `κ = AK =


0, E

A, S

−A, H

(8.10)

where K = 0, 1,−1 is the sectional curvature; this is an example of the
Gauss–Bonnet theorem.

9. Curves of constant curvature

E,S: The curves of constant (geodesic) curvature in the Euclidean plane
or on the sphere are lines (geodesics) and circles.

H: In the hyperbolic plane, where all circles have curvature κ > 1 by
(8.9), there are two further types of such curves: horocycles and hypercy-
cles. A horocycle has curvature κ = 1 and a hypercycle curvature κ ∈ (0, 1).
Geometrically, a horocycle is orthogonal to a pencil of parallel lines; a hy-
percycle is the set of all points with a given distance d > 0 to some line `,
and lying on the same side of `. (The line is uniquely determined by the
hypercycle, and so is the distance d. We call the line the axis of the hypercy-
cle.) See also Appendices A and B for descriptions in two standard models.
(If we include points at infinity, a horocycle contains one infinite point, and
is orthogonal to all lines having this point as one end; a hypercycle contains
two infinite points which are the ends of its axis.)

The curvature of a hypercycle with distance d to its axis is

H : κ = tanh d. (9.1)

The curvature of a curve with constant curvature is thus 0 for a line and
otherwise, for a circle of radius r or (in the hyperbolic case H) a horocycle
or a hypercycle of distance d from its axis, extending (8.7)–(8.9),

E : κ = 1/r, (9.2)

S : κ = cot r, (9.3)

H : κ =


coth r, (circle)

1, (horocycle)

tanh d. (hypercycle)

(9.4)

In all three cases (E, S, H), all curves of a given constant curvature κ ∈
[0,∞) are congruent.
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Remark 9.1 (E,H). In the Euclidean and hyperbolic cases, the set of points
at infinity may be regarded as the limit of a circle with radius r as r → ∞
(and the centre is any fixed point); by (9.2) and (9.4), the curvature of this
cycle tends to 0 (E) or 1 (H) as r →∞, which justifies regarding the set of
points at infinity as being a line in the Euclidean case but a horocycle in
the hyperbolic case, as claimed in Subsection 1.1. (In the hyperbolic case,
the horocycle at infinity can furthermore be seen as the limit of a family of
parallel horocycles; for example in the halfplane model in Appendix A the
horocycles {z : Im z = y} with y → 0.)

10. Circumcircle

Three distinct points lie on a unique curve of constant curvature (a line, a
circle or, in the hyperbolic case, a horocycle or hypercycle, see Section 9). (In
the hyperbolic case, this is easily seen using one of the models in Appendices
A and B.)

Remark 10.1 (H). In the hyperbolic case (but not the Euclidean case), this
includes the case when one, two or three of the points are infinite; more
precisely we have the following possibilities for the curve and its curvature
κ:

1 infinite point: 0 6 κ 6 1, a line, hypercycle or horocycle;
2 infinite points: 0 6 κ < 1, a line or hypercycle;
3 infinite points: κ = 1, the horocycle at infinity, see Remark 9.1.

However, in the sequel we assume that the points are proper unless otherwise
said.

Ignoring the case of three collinear points, this means that a (proper)
triangle ABC has

E,S: a unique circumscribed circle;
H: a unique circumscribed circle, horocycle or hypercycle.

This can also be viewed in another way: The perpendicular bisector of
a side, say AB, is the locus of all points with the same distance to the
vertices A and B. The three perpendicular bisectors therefore intersect
in the points that have the same distance to all three vertices, if any. If
there is such a point O, there is a circle with centre O and some radius
R > 0 that passes through all vertices; this is the circumcircle, and R is the
circumradius. In the Euclidean and spherical cases, this is always the case;
in the hyperbolic case, there are two further possibilities, a circumhorocycle
or a circumhypercycle. More precisely, the following holds:

E: In the Euclidean case, the perpendicular bisectors intersect in a unique
point, and there is a unique circumcircle.

S: In the spherical case, the perpendicular bisectors intersect in two an-
tipodal points O and Ō, that thus both can be taken as the centres of
the circumcircle. They define the same circumcircle, with the radius R or
R′ = π − R (see Remark 8.1). For definiteness, we define the circumcentre
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to be the point O such the circumradius R < π/2. (R = π is excluded, since
a circle with radius π is the same as a line (a great circle), and thus all three
vertices lie on a line.)

H: In the hyperbolic case, there are three (mutually exclusive) possibilities
(cf. Subsection 1.2 and Appendix C):

(i) All three perpendicular bisectors intersect in a common point, and
there is a (unique) circumcircle.

(ii) The three perpendicular bisectors are parallel. There is a (unique)
circumscribed horocycle (i.e., a horocycle going through the three
vertices); this horocycle is orthogonal to the three perpendicular
bisectors, and has the same point at infinity as they.

(iii) The three perpendicular bisectors are pairwise ultraparallel. There is
a (unique) circumscribed hypercycle (i.e., a hypercycle going through
the three vertices); the axis of this hypercycle is orthogonal to the
three perpendicular bisectors (so it is the common normal of all three
of them).

Remark 10.2. The disc bounded by a circle (with radius 6 π in the spherical
case) is convex. Hence, if a triangle has a circumcircle, then the sides and
interior of the triangle lie inside the circumcircle (except for the vertices
which by definition lie on the circle).

If the triangle ABC has a circumcircle, we let R be its radius. (In other
words, A,B,C lie on a circle with radius R.) In the hyperbolic case, if there
instead is a circumhypercycle, we let D be its distance from its axis; we can
unify the formulae for the three hyperbolic case by using the curvature κ,
see (9.4). We have, expressing R or D in the sides or the angles,

E : R2 = κ−2 =
a2b2c2

4am2
v

=
a2b2c2

16s(s− a)(s− b)(s− c)
, (10.1)

S : tan2R = κ−2 =
2(1− cos a)(1− cos b)(1− cos c)

am2
v

(10.2)

=
− cosσ

cos(σ −A) cos(σ −B) cos(σ − C)
=

4 cos2 σ

am2
s

(10.3)

H :
tanh2R

1
coth2D

 = κ−2 =
2(cosh a− 1)(cosh b− 1)(cosh c− 1)

am2
v

(10.4)

=
cosσ

cos(σ −A) cos(σ −B) cos(σ − C)
=

4 cos2 σ

−am2
s

(10.5)

and thus

E : R = κ−1 =
abc

2amv
=
abc

4∆
, (10.6)
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S : tanR = κ−1 =
4 sin a

2 sin b
2 sin c

2

amv
=

tan a
2 tan b

2 tan c
2

sin ∆
2

(10.7)

=
2| cosσ|

ams
, (10.8)

H :
tanhR

1
cothD

 = κ−1 =
4 sinh a

2 sinh b
2 sinh c

2

amv
=

tanh a
2 tanh b

2 tanh c
2

sin ∆
2

(10.9)

=
2 cosσ

|ams|
. (10.10)

In the hyperbolic case, (10.5) and (10.10) apply also to infinite triangles,
see Remark 10.1. Of course, in this case, there is a circumhorocycle or
circumhypercycle; this is proper for singly or doubly infinite triangles while
a triply infinite triangle is circumscribed by the (improper) horocycle at
infinity, see Remark 9.1.

Returning to proper triangles, we have also the formulae

E : R = κ−1 =
a/2

sinA
=

b/2

sinB
=

c/2

sinC
, (10.11)

S : tanR = κ−1 =
tan(a/2)

cos(σ −A)
=

tan(b/2)

cos(σ −B)
=

tan(c/2)

cos(σ − C)
, (10.12)

H :
tanhR

1
cothD

 = κ−1 =
tanh(a/2)

cos(σ −A)
=

tanh(b/2)

cos(σ −B)
=

tanh(c/2)

cos(σ − C)
. (10.13)

In terms of two sides and the included angle, we have the formulas

E : R2 = κ−2 =
b2 + c2 − 2bc cosA

4 sin2A
, (10.14)

S : tan2R = κ−2 (10.15)

=
tan2(b/2) + tan2(c/2)− 2 cosA tan(b/2) tan(c/2)

sin2A
,

(10.16)

H :
tanh2R

1
coth2D

 = κ−2 (10.17)

=
tanh2(b/2) + tanh2(c/2)− 2 cosA tanh(b/2) tanh(c/2)

sin2A
(10.18)

= 1 +

(
cos(β + γ)− cosA

)(
cos(β − γ)− cosA

)
sin2A

, (10.19)
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where in (10.19) (in the hyperbolic case) we define

β = arcsin
( 1

cosh(b/2)

)
= arccos

(
tanh(b/2)

)
, (10.20)

γ = arcsin
( 1

cosh(c/2)

)
= arccos

(
tanh(c/2)

)
. (10.21)

In the hyperbolic case, it can be shown, using (10.9), that a triangle has
a circumscribed circle, horocycle or hypercycle according as the largest of
sinh a

2 , sinh b
2 , sinh c

2 is less than, equal to, or greater than the sum of the
two others, i.e., if we assume that the triangle is labelled with a > b > c,

H :


κ > 1 (circle) ⇐⇒ sinh a

2 < sinh b
2 + sinh c

2

κ = 1 (horocycle) ⇐⇒ sinh a
2 = sinh b

2 + sinh c
2

κ < 1 (hypercycle) ⇐⇒ sinh a
2 > sinh b

2 + sinh c
2 .

(10.22)

In other words, the triangle has a circumcircle if and only if the three num-
bers sinh a

2 , sinh b
2 , sinh c

2 satisfy the triangle inequality (strictly).
Similarly, still in the hyperbolic case, it follows from (10.19) that the

triangle has a circumscribed circle if and only if A, β and γ (defined by
(10.20)–(10.21)) satisfy the triangle inequalities

A < β + γ, β < A+ γ, γ < A+ β; (10.23)

there is a circumscribed horocycle if there is equality in one of these inequal-
ities, and a circumscribed hypercycle if one of these inequalities holds in the
opposite direction.

If there is a circumcircle, then the circumcentre O and two vertices, say
A and B, form an isosceles triangle, which has two equal angles at A and
B. By considering the three isosceles triangles formed in this way, it follows
that the angle

E,S,H : OAB = OBA = σ − C, (10.24)

where a negative value means that O and C lie on opposite sides of AB. It
follows that if there is a circumcircle, then the circumcentre lies inside the
triangle if and only if

E,S,H : A,B,C < σ (10.25)

or equivalently,

E,S,H : A < B + C, B < C +A, C < A+B; (10.26)

if there is equality in one relation then the circumcentre lies on the corre-
sponding side.

Moreover, if there is a circumcircle, then the circumcentre O, a vertex, say
A, and the midpoint Mc of the side AB form a triangle with a right angle
at Mc and side lengths |OA| = R and |AMc| = c/2, and angle |σ − C| at A
by (10.24). The results of Section 3 then applies; in particular, (3.7)–(3.9)
yield (10.11)–(10.13) (assuming there is a circumcircle).
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11. Incircle

The bisector of an angle consists of points that have the same distance
to the two sides. The three angle bisectors thus intersect in one point, the
incentre I, which has the same distance r to all three sides; r is the radius
of the incircle (inscribed circle), which has centre I and is tangent to each
of the three sides; r is called the inradius. We can express r in the sides or
the angles by

E : r2 =
am2

v

4s2
=

(s− a)(s− b)(s− c)
s

(11.1)

S : tan2 r =
am2

v

4 sin2 s
=

sin(s− a) sin(s− b) sin(s− c)
sin s

(11.2)

=
am2

s

2(1 + cosA)(1 + cosB)(1 + cosC)
(11.3)

H : tanh2 r =
am2

v

4 sinh2 s
=

sinh(s− a) sinh(s− b) sinh(s− c)
sinh s

(11.4)

=
−am2

s

2(1 + cosA)(1 + cosB)(1 + cosC)
(11.5)

and thus

E : r =
amv

2s
=

∆

s
=

√
(s− a)(s− b)(s− c)

s
(11.6)

S : tan r =
amv

2 sin s
=

2 cos a
2 cos b

2 cos c
2

sin s
sin

∆

2
(11.7)

=
ams

4 cos A
2 cos B

2 cos C
2

(11.8)

H : tanh r =
amv

2 sinh s
=

2 cosh a
2 cosh b

2 cosh c
2

sinh s
sin

∆

2
(11.9)

=
|ams|

4 cos A
2 cos B

2 cos C
2

. (11.10)

In the hyperbolic case, (11.5) and (11.10) apply also to infinite triangles.
The incircle is tangent to the three sides at points Ta ∈ BC, Tb ∈ CA,

Tc ∈ AB; the distances from the tangent points to the vertices are

E,S,H : |ATb| = |ATc| = s− a (11.11)

and so on.
The incentre I, a vertex A and an adjacent tangent point Tc ∈ AB form

a triangle with a right angle at Tc and the angle A/2 at A; furthermore,
the sides |ITc| = r and |ATc| = s − a. The results of Section 3 applies; in
particular, (3.10)–(3.12) yield

E : r = (s− a) tan
A

2
= (s− b) tan

B

2
= (s− c) tan

C

2
(11.12)
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S : tan r = sin(s− a) tan
A

2
= sin(s− b) tan

B

2
= sin(s− c) tan

C

2
(11.13)

H : tanh r = sinh(s− a) tan
A

2
= sinh(s− b) tan

B

2
= sinh(s− c) tan

C

2
.

(11.14)

These can also be written as (and similarly for B, C; these formulae are
sometimes called the law of cotangents)

E : cot
A

2
=
s− a
r

, (11.15)

S : cot
A

2
=

sin(s− a)

tan r
, (11.16)

H : cot
A

2
=

sinh(s− a)

tanh r
. (11.17)

Remark 11.1 (H). In the hyperbolic case, the inradius r is bounded, since
the area of the triangle is bounded by (2.85). More precisely, it can be shown
from the formulae above that tanh r 6 1

2 , i.e.,

H : r 6 1
2 log 3, (11.18)

with equality only for a triply infinite triangle. (The area of the incircle is
thus at most π(

√
3− 1)2/

√
3 by (8.6).)

We have also relations between circumradius and inradius:

E : r = 4R sin
A

2
sin

B

2
sin

C

2
, (11.19)

S : tan r =
cos(σ −A) cos(σ −B) cos(σ − C)

2 cos A
2 cos B

2 cos C
2

tanR, (11.20)

H : tanh r =
cos(σ −A) cos(σ −B) cos(σ − C)

2 cos A
2 cos B

2 cos C
2

·

 tanhR
1

cothD,
(11.21)

which in the Euclidean case (11.19) follows from (10.11), (11.12), (2.51)
and trigonometric formulae (in particular sinB + sinC − sin(B + C) =
4 sin B

2 sin C
2 sin B+C

2 ) and in the spherical and hyperbolic cases (11.20)–
(11.21) follows from (11.8), (11.10), (10.8), (10.10) and (2.90).

Remark 11.2 (S). In spherical geometry, the circumcentre O of ABC is the
incentre I∗ of the dual triangle A∗B∗C∗ and conversely, and

S : r∗ =
π

2
−R, R∗ =

π

2
− r. (11.22)

12. Excircles

The full locus of points that have the same distance to the two lines
extending two sides, say AB and AC, is the union of the internal bisector of
the angle at the vertex A where the sides intersect, and the exterior bisector,
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which passes through the same vertex and is perpendicular to the internal
bisector.

In the Euclidean and spherical cases, and sometimes in the hyperbolic
case, there are apart from the incentre three further points that have the
same distance to all three lines extending the sides; these are the excentres,
each of which is the centre of an excircle (or escribed circle) that is tangent
to one side and the extensions of the two others. The radii of the excircles
are called exradii. The excentre and the exradius of the excircle tangent to
side a = BC are denoted Ja and ra, etc.

H: In the hyperbolic case, there are not always excircles. More precisely,
considering for example the side a = BC, there are three (mutually exclu-
sive) possibilities for the internal bisector at the vertex A and the external
bisectors at the two other vertices B and C:

(i) The three bisectors intersect in a common point Ja, and there is a
(unique) excircle as discussed above.

(ii) The three bisectors are parallel. There is a (unique) exhorocycle
(escribed horocycle), i.e., a horocycle tangent to the side BC and
the extensions of the two other sides; this horocycle is orthogonal to
the three bisectors, and has the same point at infinity as they.

(iii) The three bisectors are pairwise ultraparallel. There is a (unique)
exhypercycle (escribed hypercycle), i.e., a hypercycle tangent to the
side BC and the extensions of the two other sides; the axis of this
hypercycle is orthogonal to the three bisectors (so it is the common
normal of all three of them). We denote the distance from this
hypercycle to its axis by da.

As in Section 10, we may unify the formulae for the three hyperbolic cases
by using the curvature κa of the excircle, exhorocycle or exhypercycle.

Remark 12.1 (S). In the spherical case, the excircle at a side BC is the
incircle of the adjacent triangle ĀBC, where Ā and A are antipodal, see
Section 6; thus all formulae for incircles apply if we replace B,C, b, c by
their supplements π−B, π−C, π− b, π− c (note that this does not change
the amplitudes ams and amv).

In total, we can obtain 8 triangles from ABC by replacing some subset
of vertices by their antipodes; the corresponding 8 incircles are the incircle
and the 3 excircles of ABC together with their antipodes (images under
reflection in the centre).

We can express ra or da in the sides or the angles by

E : r2
a = κ−2

a =
am2

v

4(s− a)2
=
s(s− b)(s− c)

s− a
(12.1)

S : tan2 ra = κ−2
a =

am2
v

4 sin2(s− a)
=

sin(s) sin(s− b) sin(s− c)
sin(s− a)

(12.2)
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=
am2

s

2(1 + cosA)(1− cosB)(1− cosC)
(12.3)

H :
tanh2 ra

1
coth2 da

 = κ−2
a =

am2
v

4 sinh2(s− a)
=

sinh(s) sinh(s− b) sinh(s− c)
sinh(s− a)

(12.4)

=
−am2

s

2(1 + cosA)(1− cosB)(1− cosC)
(12.5)

and thus

E : ra = κ−1
a =

s

s− a
r =

∆

s− a
=

√
s(s− b)(s− c)

s− a
(12.6)

S : tan ra = κ−1
a =

amv

2 sin(s− a)
=

sin s

sin(s− a)
tan r (12.7)

=
ams

4 cos A
2 sin B

2 sin C
2

(12.8)

H :
tanh ra

1
coth da

 = κ−1
a =

amv

2 sinh(s− a)
=

sinh s

sinh(s− a)
tanh r (12.9)

=
|ams|

4 cos A
2 sin B

2 sin C
2

(12.10)

In the hyperbolic case, (12.5) and (12.10) apply also to infinite triangles.
We have further the formulae

E : ra = s tan
A

2
(12.11)

S : tan ra = sin s tan
A

2
(12.12)

H :
tanh ra

1
coth da

 = sinh s tan
A

2
, (12.13)

which can be obtained from(12.6)–(12.9) and (11.12)–(11.14).
In the hyperbolic case, it can be shown, using (12.10), that a triangle has

an excircle, exhorocycle or exhypercycle at the side a = BC according as:

H :


κa > 1 (circle) ⇐⇒ cos A

2 < sin B
2 + sin C

2 ,

κa = 1 (horocycle) ⇐⇒ cos A
2 = sin B

2 + sin C
2 ,

κa < 1 (hypercycle) ⇐⇒ cos A
2 > sin B

2 + sin C
2 .

(12.14)

The excircle (exhorocycle, exhypercycle) at the side a = BC is tangent
to a = BC and the extensions of b = CA and c = AB at the at points
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T a
a ∈ BC, T a

b ∈ CA, T a
c ∈ AB; the distances from the tangent points to the

vertices are

E,S,H : |AT a
b | = |AT a

c | = s, (12.15)

|BT a
a | = |BT a

c | = s− c, (12.16)

|CT a
a | = |CT a

b | = s− b. (12.17)

If there exists an excircle at a = BC (in particular, always in the Eu-
clidean and spherical cases), then the excentre Ja, the vertex A and the
tangent point T a

c ∈ AB form a triangle with a right angle at T a
c and the

angle A/2 at A; furthermore, the sides |IT a
c | = r and |AT a

c | = s − a. The
results of Section 3 applies; in particular, (3.10)–(3.12) yield (12.11)–(12.13)
(in this case).

Combining (11.6)–(11.9) and (12.6)–(12.9), we find

E : rrarbrc =
am2

v

4
= s(s− a)(s− b)(s− c) = ∆2,

(12.18)

S : tan r tan ra tan rb tan rc =
am2

v

4
= sin s sin(s− a) sin(s− b) sin(s− c),

(12.19)

H : κ−1κ−1
a κ−1

b κ−1
c =

am2
v

4
= sinh s sinh(s− a) sinh(s− b) sinh(s− c).

(12.20)

In the Euclidean case, we have further simple relations:

E :
1

ra
+

1

rb
+

1

rc
=

1

r
, (12.21)

E : ra + rb + rc − r = 4R. (12.22)

13. Medians

A median of a triangle is the line joining a vertex and the midpoint of
the opposite side. There are thus three medians, and they are concurrent,
i.e., they all meet at a common point G, which is called the centroid of the
triangle.

Remark 13.1. In the Euclidean case, the centroid is easily seen to be the
centre of mass of the triangle; regarding the points as vectors in R2, it is
simply the average of the vertices:

E : G =
1

3
(A+B + C). (13.1)

Similarly, in the spherical case, if we regard the sphere as a subset of R3,
and in the hyperbolic case, if we use the hyperboloid model in Appendix D
to regard the hyperbolic plane as a subset of R3,

S,H : G = k(A+B + C). (13.2)
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where k > 0 is a normalizing constant, chosen such that 〈G,G〉 = 1. See
Appendix E.

We denote the midpoints of the sides by A′, B′, C ′ (with A′ on the side
BC etc.); thus the medians are AA′, BB′, CC ′. The lengths of the medians
are given by the following formulae (which are easy consequences of the law
of cosines, or of (E.21)–(E.24) and (E.1)–(E.2)):

E : |AA′|2 =
2b2 + 2c2 − a2

4
=

1

2
b2 +

1

2
c2 − 1

4
a2, (13.3)

S : cos |AA′| = cos b+ cos c

2 cos a
2

, (13.4)

H : cosh |AA′| = cosh b+ cosh c

2 cosh a
2

. (13.5)

Furthermore, the distances from the vertices to the centroid are given by

E : |AG|2 =
2b2 + 2c2 − a2

9
=
(2

3
|AA′|

)2
(13.6)

S : cos |AG| = 1 + cos b+ cos c√
3 + 2 cos a+ 2 cos b+ 2 cos c

, (13.7)

H : cosh |AG| = 1 + cosh b+ cosh c√
3 + 2 cosh a+ 2 cosh b+ 2 cosh c

. (13.8)

Similarly, the length of the remaining part of the median is

E : |A′G|2 =
2b2 + 2c2 − a2

36
=
(1

3
|AA′|

)2
(13.9)

S : cos |A′G| = 2 + 2 cos a+ cos b+ cos c

2 cos a
2

√
3 + 2 cos a+ 2 cos b+ 2 cos c

, (13.10)

H : cosh |A′G| = 2 + 2 cosh a+ cosh b+ cosh c

2 cosh a
2

√
3 + 2 cosh a+ 2 cosh b+ 2 cosh c

. (13.11)

The centroid divides the medians such that

E :
|AG|
|A′G|

= 2, (13.12)

S :
sin |AG|
sin |A′G|

= 2 cos
a

2
, (13.13)

H :
sinh |AG|
sinh |A′G|

= 2 cosh
a

2
. (13.14)

14. Altitudes

The altitude from a vertex, say A, in a triangle is the line through the
vertex perpendicular to the opposite side BC, or more precisely, to the line
through the opposite side. In other words, the altitude is the line from the
vertex to the closest point HA on the line through the opposite side.
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Note that the point HA may or may not lie on the side BC, i.e., between
B and C. More precisely, it lies on the side BC if the angles B and C
both are acute; it equals B [C] if B [C] is a right angle, and it lie outside
the segment BC if B or C is obtuse; in the latter case, in Euclidean or
hyperbolic geometry, HA lies outside the obtuse vertex.

We have defined the altitude as an entire line; the name is also used for the
segment AHA, for example when talking about the length of the altitude;
the precise meaning should hopefully be clear from the context.

In the Euclidean and hyperbolic cases, altitudes always exist uniquely.
In the spherical case, the altitude intersects the line through the opposite
side in two antipodal points; thus even if the altitude is unique as a line,
there are two conceivable choices for HA (antipodes of each other) and for
the altitude segment AHA (with complementary lenghts); to be precise we
defined HA to be the point closest to A and thus the altitude segment AHA

is be the shorter of the two line segments from the vertex A. Furthermore,
in the spherical case, there is an exceptional case, viz. b = c = π/2, when
the altitude is not unique; in this case, all points on the line through BC
have the same distance (π/2) to A. In the sequel, we sometimes exclude this
case.

We denote the length of the altitude from A to the side through BC by
hA := |AHA|. (Note that this is well-defined even in the exceptional case in
spherical trigonometry; in that case hA = π/2.)

Remark 14.1 (S). In the spherical case, the altitude through A is the line
through A and the dual vertex A∗, see (5.1); the exceptional case above
equals the case A = A∗. The altitudes, regarded as lines, are thus the same
for a triangle and its dual, but they differ as segments.

The length of the altitude is, using (3.4)–(3.6), given by

E : hA = c sinB = b sinC, (14.1)

S : sinhA = sin c sinB = sin b sinC, (14.2)

H : sinhhA = sinh c sinB = sinh b sinC. (14.3)

Using amplitudes, we have by (2.107)–(2.109) and (2.105)–(2.106),

E : hA =
amv

a
, (14.4)

S : sinhA =
amv

sin a
=

ams

sinA
, (14.5)

H : sinhhA =
amv

sinh a
=
|ams|
sinA

. (14.6)

In the Euclidean case, we have also, by (2.110) and (10.11),

E : hA =
2∆

a
(14.7)

=
bc

2R
. (14.8)
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The three altitudes of a triangle intersect in the Euclidean and spherical
cases, but not always in the hyperbolic case. If they intersect, their inter-
section point is called the orthocentre, and denoted by H. [10, Orthocenter].
More precisely, we have the following possibilities:

E: In the Euclidean case, the altitudes intersect in a unique point, the
orthocentre.

S: In the spherical case, the altitudes intersect in two antipodal points H
and H̄, and both can be taken as the orthocentre. (We do not know whether
it is possible to define a canonical choice of one of them as H.) In the
exceptional case of a triangle with two or three right angles, the orthocentre
is undefined. (Otherwise at least two altitudes are uniquely defined and
distinct, and thus the pair of their intersection points are uniquely defined.
If there are exactly two right angles, say A and B, then the altitudes from A
and B coincice, both equal the line AB, and the third altitude is undefined.)

H: In the hyperbolic case, there are three (mutually exclusive) possibilities
(cf. Subsection 1.2):

(i) All three altitudes intersect in a common point, the orthocentre.
(ii) The three altitudes are parallel.
(iii) The three altitudes are pairwise ultraparallel. There is a (unique)

line orthogonal to the three altitudes (i.e., a common normal).

In hyperbolic geometry, the three possibilities can be distinguished by

H : sin2A sin2B sin2C + (2 cosA cosB cosC + 1)|ams|2


> 0,

= 0,

< 0,

⇐⇒


the altitudes intersect,

the altitudes are parallel,

the altitudes are ultraparallel.

(14.9)

The distance |HHA| from the orthocentre H (provided it exists) to the
side BC is given by

E : |HHA| =
a | cosB cosC|

sinA
, (14.10)

S : sin2 |HHA| =
am2

s cos2B cos2C

sin2A sin2B sin2C − (2 cosA cosB cosC + 1)am2
s

(14.11)

H : sinh2 |HHA| =
|ams|2 cos2B cos2C

sin2A sin2B sin2C + (2 cosA cosB cosC + 1)|ams|2
(14.12)

In the Euclidean case, (14.10) holds without absolute values if we measure
the distance |HHA| as negative when H and A or on opposite sides of HA

(i.e., on opposite sides of BC),
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In the hyperbolic case, note that the denominator in (14.12) equals the
left-hand side of (14.9). If this is negative, the right-hand side of (14.12)
equals cosh2 |HAN |, where |HAN | is the distance from HA to the common
normal N of the three altitudes.

Remark 14.2. The orthocentre (exists and) coincides with a vertex A if and
only if A is a right angle. (Excluding the exceptional case of a spherical
triangle with three right angles; note that a triangle cannot have exactly
two right angles.)

Remark 14.3. If the orthocentre H exist and is distinct from the vertices
(i.e., the triangle is not right, see Remark 14.2, then the four distinct points
A,B,C,H have the property that the line through any pair of points is or-
thogonal to the line through the opposite pair. This is evidently a symmetric
condition, so the triangle formed by any three of the points has the fourth
as its orthocentre. (In spherical geometry, we might here consider pairs of
antipodal points instead of points in order to have the orthocentre unique,
i.e., to consider projective geometry instead of spherical.)

Such a set of four points is called an orthocentric system, see [10].

15. Example: equilateral triangles

For equilateral triangles we have a = b = c and, equivalently, A = B = C.
The law of cosines (2.6)–(2.8) yields

E : cosA =
1

2
, (15.1)

S : cosA =
cos a

1 + cos a
, (15.2)

H : cosA =
cosh a

cosh a+ 1
; (15.3)

in the spherical and hyperbolic cases, the second law of cosines (2.9)–(2.11)
yields the equivalent

S : cos a =
cosA

1− cosA
, (15.4)

H : cosh a =
cosA

1− cosA
. (15.5)

Other equivalent versions are

E : sinA =

√
3

2
, (15.6)

S : sinA =

√
1 + 2 cos a

1 + cos a
, (15.7)

H : sinA =

√
1 + 2 cosh a

1 + cosh a
; (15.8)

E : tan
A

2
=

1√
3
, (15.9)
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S : tan
A

2
=

1√
1 + 2 cos a

, (15.10)

H : tan
A

2
=

1√
1 + 2 cosh a

. (15.11)

Note that for an equilateral triangle, by (2.51)–(2.53), see also (2.77)–(2.78),

E : A =
π

3
, (15.12)

S : A >
π

3
, (15.13)

H : A <
π

3
; (15.14)

moreover, in the spherical and hyperbolic cases, the area is given by

S : ∆ = 3A− π, (15.15)

H : ∆ = π − 3A. (15.16)

In the hyperbolic case, the formulae above include the infinite case, with
a =∞, A = 0, ∆ = π,

Heron’s formula (2.65)–(2.73) yields, since s = 3
2a,

E : ∆ =

√
3

4
a2, (15.17)

S : sin
∆

2
=

√
sin 3a

2 sin3 a
2

2 cos3 a
2

=
sin2 a

2

√
1 + 2 cos a

2 cos3 a
2

, (15.18)

H : sin
∆

2
=

√
sinh 3a

2 sinh3 a
2

2 cosh3 a
2

=
sinh2 a

2

√
1 + 2 cosh a

2 cosh3 a
2

, (15.19)

S : tan
∆

2
=

2
√

sin 3a
2 sin3 a

2

1 + 3 cos a
=

(1− cos a)
√

1 + 2 cos a

1 + 3 cos a
, (15.20)

H : tan
∆

2
=

2
√

sinh 3a
2 sinh3 a

2

1 + 3 cosh a
=

(cosh a− 1)
√

1 + 2 cosh a

1 + 3 cosh a
. (15.21)

The amplitudes are, by (2.104)–(2.109) and (15.6)–(15.8), cf. (2.110)–
(2.112) and (15.17)–(15.19),

E : ams = 0, (15.22)

S : ams =
sin a(1 + 2 cos a)

(1 + cos a)2
, (15.23)

H : |ams| =
sinh a(1 + 2 cosh a)

(1 + cosh a)2
(15.24)

and

E : amv =

√
3

2
a2, (15.25)
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S : amv = (1− cos a)
√

1 + 2 cos a = 2

√
sin

3a

2
sin3 a

2
, (15.26)

H : amv = (cosh a− 1)
√

1 + 2 cosh a = 2

√
sinh

3a

2
sinh3 a

2
. (15.27)

The circumradius is by (10.6)–(10.9) and (15.25)–(15.27)

E : R =
a√
3
, (15.28)

S : tanR = 2

√
sin3 a

2

sin 3a
2

=
2 sin a

2√
1 + 2 cos a

, (15.29)

H : tanhR = 2

√
sinh3 a

2

sinh 3a
2

=
2 sinh a

2√
1 + 2 cosh a

, (15.30)

Note that a circumcircle always exists, also in the hyperbolic case. (By
symmetry, or because the right-hand side of (15.30) is less than 1, as is
easily seen.)

The inradius is by (11.1)–(11.4), or by (11.19)–(11.21),

E : r =
a

2
√

3
=

1

2
R, (15.31)

S : tan r =

√
sin3 a

2

sin 3a
2

=
sin a

2√
1 + 2 cos a

=
1

2
tanR, (15.32)

H : tanh r =

√
sinh3 a

2

sinh 3a
2

=
sinh a

2√
1 + 2 cosh a

=
1

2
tanhR. (15.33)

Similarly, the exradius is by (12.1)–(12.4) and (12.6)–(12.9)

E : ra =

√
3

2
a = 3r, (15.34)

S : tan ra =

√
sin

a

2
sin

3a

2
= sin

a

2

√
1 + 2 cos a =

sin 3a
2

sin a
2

tan r

(15.35)

H :
tanh ra

1
coth da

 =

√
sinh

a

2
sinh

3a

2
= sinh

a

2

√
1 + 2 cosh a =

sinh 3a
2

sinh a
2

tanh r.

(15.36)

It follows by some algebra that in the hyperbolic case, there exist excircles
if and only if

H : cosh a <
3

2
⇐⇒ sinh

a

2
<

1

2
⇐⇒ sinA <

4

5
⇐⇒ a < 2 ln

√
5 + 1

2
;

(15.37)
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if there is equality in the relations in (15.37) there exist exhorocycles on all
sides, and if the inequalities are reversed there are exhypercycles.

16. Morley’s triangle (Euclidean)

Morley’s theorem says that, in Euclidean geometry, the (internal) trisec-
tors of the angles A,B,C in a triangle intersect pairwise in three points
A′, B′, C ′ (where A′ is the intersection of the trisectors of B and C closest
to the side BC, etc.), which form an equilateral triangle. (Many different
proofs are known. For some very different proofs, see [3; 4; 9].)

The side of Morley’s triangle is [9]

E : 8R sin
A

3
sin

B

3
sin

C

3
. (16.1)

(Cf. the similar expression in (11.19).) The distance from A′ to the side BC
is

E : 8R sin
A

3
sin

B

3
sin

C

3
sin

A+ π

3
. (16.2)

17. Quadrilaterals

Consider a quadrilateral (quadrangle) ABCD with angles A,B,C,D and
sides a = |AB|, b = |BC|, c = |CD|, d = |DA|, and area ∆. Let s be the
semiperimeter

s :=
a+ b+ c+ d

2
. (17.1)

We give only a few results.

17.1. Angle sum and area. We have analogues of the triangle formulas
(2.51)–(2.53):

E : A+B + C +D = 2π, (17.2)

S : A+B + C +D = 2π + ∆, (17.3)

H : A+B + C +D = 2π −∆. (17.4)

As in the triangle case, these can be combined to

E,S,H : A+B + C +D = 2π +K∆, (17.5)

where K is the sectional curvature, another example of the Gauss–Bonnet
theorem.

17.2. Area (Euclidean). In the Euclidean case, there are several formulas
for the area, which generalize Heron’s formula (2.65) for triangles. (Regard-
ing a triangle as the special case d = 0.) We do not know any analogue of
any of these formulas in spherical or hyperbolic geometry.
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Bretschneider’s formula.

E : ∆ =

√
(s− a)(s− b)(s− c)(s− d)− abcd cos2

(A+ C

2

)
. (17.6)

Note that A+C
2 = π − B+D

2 by (17.2), so cos2 A+C
2 = cos2 B+D

2 .
This is due to Bretschneider (1842) and Strehlke (1842). Some related

formulas are, denoting the lengths of the diagonals by p and q,

E : ∆ =
√

(s− a)(s− b)(s− c)(s− d)− 1
4(ac+ bd+ pq)(ac+ bd− pq)

(17.7)

=
√

(s− a)(s− b)(s− c)(s− d) + 1
4p

2q2 − 1
4(ac+ bd)2 (17.8)

= 1
4

√
4p2q2 − (b2 + d2 − a2 − c2)2. (17.9)

See e.g. [10, Bretschneider’s formula].

Brahmagupta’s formula. A cyclic quadrilateral is a quadrilateral that can be
inscribed in a circle, the circumcircle. In the Euclidean case considered here,
a quadrilateral is cyclic if and only if A+C = π (or, equivalently, B+D = π.
In this case Bretschneider’s formula simplifies to Brahmagupta’s formula.

E : ∆ =
√

(s− a)(s− b)(s− c)(s− d) . (17.10)

Note that a triangle is a (degenerate) special case of a cyclic quadrilateral.
See further e.g. [10, Brahmagupta’s formula, Cyclic quadrilateral].

17.3. Right-angled quadrilaterals. For a quadrilateral ABCD with A =
B = C = π/2, also called Lambert quadrangle,

E : |AB| = |BC|, (17.11)

S : cos |AB| = cos |CD| sinD, (17.12)

H : cosh |AB| = cosh |CD| sinD. (17.13)

and

E : cosD = 0 and ∆ = |AB| |BC|, (17.14)

S : cosD = − sin ∆ = − sin |AB| sin |BC|. (17.15)

H : cosD = sin ∆ = sinh |AB| sinh |BC|. (17.16)

In the hyperbolic case, further results for quadrilaterals with 2 or 3 right
angles, pentagons with 4 or 5 right angles and hexagons with 6 right angles
are given in Fenchel [5].
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Appendix A. Poincaré halfplane (hyperbolic)

The Poincaré halfplane is a model of the hyperbolic plane, consisting of
the upper halfplane H := {x + iy : y > 0} in the complex plane, with the
Riemannian metric

ds =
|dz|
y
. (A.1)

The metric is conformal, so angles equal the Euclidean angles. The (sec-
tional) curvature is constant −1. See further [7], where more details are
given.

The set of infinite points is R∗ := R ∪ {∞}.
The lines are the Euclidean lines orthogonal to the x-axis and the circles

with centres on the real axis. (I.e., the circles in the extended complex plane
C∗ := C ∪∞ that are orthogonal to ∂H = R∗.)

The circles are the Euclidean circles that lie completely in H. The horo-
cycles are the Euclidean circles that lie in H and are tangent to ∂H = R∗,
and the horizontal Eucidean lines (which should be thought of as being tan-
gent to ∂H at ∞). The hypercycles are the Euclidean circles and lines that
intersect ∂H at an angle θ ∈ (0, π/2). (In this case, the curvature is cos θ.)
Thus the set of curves of constant curvature, which is the collection of all
lines, circles, horocycles and hypercycles, is the set of all Euclidean circles
and lines that intersect H. (Of course, we only consider the part inside H.)

The distance d between two points is given by

sinh2

(
d(z, w)

2

)
=

cosh(d(z, w))− 1

2
=
|z − w|2

4 Im z Imw
; (A.2)

equivalently,

cosh
(
d(x+ iy, u+ iv)

)
=

(x− u)2 + y2 + v2

2yv
. (A.3)

The proper isometries of H are the Möbius transformations preserving
the upper halfplane H, i.e.,

PSL(2,R) :=

{
az + b

cz + d
: a, b, c, d ∈ R, ad− bc = 1

} /
{±1}. (A.4)

These form a subgroup of index 2 in the group of all isometries, which thus
equals

PSL(2,R) ∪
{
σ(−z̄) : σ ∈ PSL(2,R)

}
. (A.5)

The signed version of the gauge (1.4)–(1.6) of two (directed) lines ` = xy
and `′ = x′y′ with endpoints x, y, x′, y′ ∈ ∂H = R∗ is given by

〈`, `′〉 =
1 + [x, y, x′, y′]

1− [x, y, x′, y′]
= 2[x, x′, y′, y]− 1, (A.6)

where [x, y, x′, y′] is the cross ratio defined by

[x, y, z, w] :=
(x− z)(y − w)

(x− w)(y − z)
(A.7)
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(suitably interpreted if some point is ∞).

Appendix B. Poincaré disc (hyperbolic)

The Poincaré disc is a model of the hyperbolic plane, consisting of the
unit disc D := {z : |z| < 1} in the complex plane, with the Riemannian
metric

ds =
2|dz|

1− |z|2
. (B.1)

The metric is conformal, so angles equal the Euclidean angles. The (sec-
tional) curvature is constant −1. See further [7], where more details are
given.

The set of infinite points is the unit circle ∂D.
The lines are the Euclidean lines through the origin and the circles or-

thogonal to the unit circle. (I.e., the circles in the extended complex plane
C∗ := C ∪∞ that are orthogonal to the unit circle.)

The circles are the Euclidean circles that lie completely in D. The horo-
cycles are the Euclidean circles that lie in D and are tangent to ∂D. The
hypercycles are the Euclidean circles or lines that intersect ∂D at an angle
θ ∈ (0, π/2). (In this case, the curvature is cos θ.) Thus the set of curves
of constant curvature, which is the collection of all lines, circles, horocycles
and hypercycles, is the set of all Euclidean circles and lines that intersect
D. (Equivalently, the set of all circles in C∗ that intersect D. Of course, we
only consider the part inside D.)

The distance d between two points is given by

sinh2

(
d(z, w)

2

)
=

cosh(d(z, w))− 1

2
=

|z − w|2

(1− |z|2)(1− |w|2)
; (B.2)

equivalently,

cosh d(z, w) =
(1 + |z|2)(1 + |w|2)− 4 Re(zw̄)

(1− |z|2)(1− |w|2)
. (B.3)

In particular,

cosh d(z, 0) =
1 + |z|2

1− |z|2
, (B.4)

sinh d(z, 0) =
2|z|

1− |z|2
, (B.5)

tanh d(z, 0) =
2|z|

1 + |z|2
, (B.6)

d(z, 0) = log
1 + |z|
1− |z|

= log(1 + |z|)− log(1− |z|), (B.7)

|z| = tanh
d(z, 0)

2
. (B.8)
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The proper isometries of D are the Möbius transformations preserving
the unit disc, i.e.,

Möb(D) :=

{
az + b

b̄z + ā
: |a|2 − |b|2 = 1

} /
{±1} ∼= PSL(2,R). (B.9)

These form a subgroup of index 2 in the group of all isometries, which thus
equals

Möb(D) ∪
{
σ(z̄) : σ ∈ Möb(D)

}
. (B.10)

Similarly, D is isometric to the Poincareé halfplane H in Appendix A by
any Möbius transformation mapping D onto H, for example the map

z 7→ −i
z + 1

z − 1
. (B.11)

As for the Poincaré halfplane in Appendix A, the signed version of the
gauge (1.4)–(1.6) of two (directed) lines ` = xy and `′ = x′y′ with endpoints
x, y, x′, y′ ∈ ∂D is given by

〈`, `′〉 =
1 + [x, y, x′, y′]

1− [x, y, x′, y′]
= 2[x, x′, y′, y]− 1, (B.12)

where [x, y, x′, y′] is the cross ratio defined by (A.7).

Appendix C. Klein disc (hyperbolic)

The Klein disc K is another model of the hyperbolic plane, as the Poincaré
disc in Appendix B consisting of the unit disc {z : |z| < 1} in the complex
plane, but now equipped with the Riemannian metric

|ds|2 =
|dx|2

1− |x|2
+
|〈dx, x〉|2

(1− |x|2)2
=
|dx|2 − |x ∧ dx|2

(1− |x|2)2
, (C.1)

(This metric is not conformal.) The (sectional) curvature is constant −1.
See further [7], where more details are given.

The set of infinite points is the unit circle ∂K.
The lines are the Euclidean lines that intersect the disc. This is a great

advantage of this model, which makes it useful for some purposes, although
very often the Poincaré models are more convenient for other reasons.

The circles are in general not Euclidean circles.
The distance between two points x, y ∈ K is given by, with 〈x, y〉 the

Euclidean inner product,

cosh d(x, y) =
1− 〈x, y〉√

(1− |x|2)(1− |y|2)
. (C.2)

In particular,

cosh d(x, 0) =
1√

1− |x|2
, (C.3)

sinh d(x, 0) =
|x|√

1− |x|2
, (C.4)
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tanh d(x, 0) = |x|. (C.5)

If the line (= Euclidean line) through x and y has endpoints u and v on ∂D,
then

d(x, y) =
1

2

∣∣log
|x− u| |y − v|
|x− v| |y − u|

∣∣ =
1

2
|log[x, y, u, v]| . (C.6)

The Klein disc K is isometric to the Poincaré models H and D in Ap-
pendices A–B. An isometry D → K is given by

x 7→ 2x

1 + |x|2
(C.7)

with inverse K → D
x 7→ x

1 +
√

1− |x|2
; (C.8)

these extend to the boundary ∂K = ∂D (which is fixed by these maps).
As a consequence, just as for the Poincaré halfplane and disc in Appen-

dices A and B, the signed version of the gauge (1.4)–(1.6) of two (directed)
lines ` = xy and `′ = x′y′ with endpoints x, y, x′, y′ ∈ ∂K = ∂D is given by

〈`, `′〉 =
1 + [x, y, x′, y′]

1− [x, y, x′, y′]
= 2[x, x′, y′, y]− 1, (C.9)

where [x, y, x′, y′] is the cross ratio defined by (A.7).
If ` is a line in the Klein disc K, let ¯̀ denote its extension to a line

in the Euclidean plane R2, or better (adjoining a point at infinity) in the
projective plane P2. If `1 and `2 are two distinct (hyperbolic) lines in K,
then the extensions ¯̀

1 and ¯̀
2 intersect in a point Q ∈ P2; the lines `1 and

`2 intersect if and only if Q ∈ K (|Q| < 1), they are parallel if and only
if Q ∈ ∂K (|Q| = 1), and they are ultraparallel if and only if Q ∈ P2 \ K
(|Q| > 1).

Remark C.1. Given a point Q ∈ P2, the set of all hyperbolic lines ` such
that Q ∈ ¯̀ is called a pencil of lines. There are thus three cases:

(i) Q ∈ K: a pencil of intersecting lines, consisting of all lines through
the (hyperbolic) point Q;

(ii) Q ∈ ∂K: a pencil of parallel lines, consisting of all lines with a
common point at infinity Q ∈ ∂K;

(iii) Q ∈ P2 \K: a pencil of ultraparallel lines; this consists of all lines
perpendicular to some line ` (the axis of the pencil); furthermore,
¯̀ is the Euclidean polar {x ∈ R2 : 〈x,Q〉 = 1} of the point Q (if
Q ∈ P2 \ R2, so Q is a point at infinity, this is interpreted as a line
through the origin, perpendicular to the direction Q).

Note that each pair of hyperbolic lines defines a unique pencil containing
both lines.

Given a triangle ABC in the Klein disc K, let `a, `b, `c be the three
perpendicular bisectors of the sides. Then the Euclidean (or projective)
extensions ¯̀

a, ¯̀
b, ¯̀

c intersect in a common point Q ∈ P2; in other words,
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`a, `b, `c belong to a common pencil of lines. It follows that the three cases
in Section 10 can be characterized by Q:

(i) If Q ∈ K (|Q| < 1), then ABC has a (unique) circumcircle.
(ii) If Q ∈ ∂K (|Q| = 1), then ABC has a (unique) circumscribed

horocycle; this has Q as the point at infinity.
(iii) If Q ∈ P2 \ K (|Q| > 1), then ABC has a (unique) circumscribed

hypercycle (i.e., a hypercycle going through the three vertices); the
axis of this hypercycle is the Euclidean polar of Q.

Appendix D. Hyperboloid (hyperbolic)

Equip R3 with the Lorentzian indefinite inner product

〈(x1, x2, x3), (y1, y2, y3)〉 := −x1y1 − x2y2 + x3y3. (D.1)

We write the elements of R3 as (x, ξ) with x ∈ R2 and ξ ∈ R, and thus

〈(x, ξ), (y, η)〉 = −〈x, y〉+ ξη, (D.2)

where 〈x, y〉 is the ordinary Euclidean inner product in R2.
The hyperboloid (or pseudosphere)

H̃ :=
{

(x, ξ) : 〈(x, ξ), (x, ξ)〉 = 1
}

=
{

(x1, x2, x3) : x2
3 = x2

1 + x2
2 + 1

}
(D.3)

has two connected components, with ξ = x3 > 0 and < 0, respectively. Let
H+ be one of these, for definiteness

H+ :=
{

(x, ξ) : 〈(x, ξ), (x, ξ)〉 = 1 and ξ > 0
}

=
{(
x,
√
|x|2 + 1

)
: x ∈ R2

}
.

(D.4)
H+ is a model of the hyperbolic plane, with metric given by

cosh d
(
(x, ξ), (y, η)

)
= 〈(x, ξ), (y, η)〉 (D.5)

=
√

(1 + |x|2)(1 + |y|2)− 〈x, y〉. (D.6)

(See further [7].)
The isometries are the Lorentz group, which is the subgroup of index 2 of

maps preserving H+ in the group O(2, 1) of all linear maps of R3 onto itself
that preserve the indefinite inner product (D.1).

The lines are the intersections of H+ and planes in R3 (in vector space
sense, i.e., containing 0). There is thus a one-to-one correspondence between
lines and planes in R3 that contain a vector X with 〈X,X〉 > 0. Each such
plane has a normal vector N , determined up to a constant factor, with
〈N,N〉 < 0, and conversely. Thus each line has a normal vector N , and
if we normalize N by 〈N,N〉 = −1, this yields is a 2–1 correspondence
between vectors N with 〈N,N〉 = −1 and lines. The correspondence is 2–1
since ±N are normal vectors to the same line, but we may make it into a
1–1 correspondence between normalized normal vectors and oriented lines,
by giving each line a direction and requiring that if X is a point on the
line, T a tangent vector in the positive direction, and N the corresponding
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(“positive”) normal vector, then (X,T,N) is a positively oriented basis in
R3.

The gauge (1.4)–(1.6) of two lines ` and `′ with normals N and N ′ (in
the signed version for directed lines, with positively oriented N and N ′) is
given by

〈`, `′〉 = −〈N,N ′〉. (D.7)

The points at infinity can be identified by lines (through 0) in R3 contain-
ing only points with 〈X,X〉 = 0 (the light cone), or (equivalently) by the
points in the intersection of the light cone and the (affine) plane {(x, 1)},
which yields the identification

∂H+ ∼= {(x, 1) ∈ R3 : |x| = 1}. (D.8)

With this identification, the two ends of a line ` with normal vector N ,
i.e., the two points at infinity on `, are the two points in (D.8) that are
orthogonal to N .

The hyperboloid H+ is isometric to the hyperbolic models H,D,K in
Appendices A–C. An isometry H+ → D is given by

(x, ξ) 7→ x

1 + ξ
(D.9)

with inverse

x 7→ (2x, 1 + |x|2)

1− |x|2
; (D.10)

geometrically these are stereographic projections with centre (0,−1), with
Dn seen as the subset {(x, 0) ∈ R3 : |x| < 1}. Similarly, an isometry
H+ → K is given by

(x, ξ) 7→ x

ξ
(D.11)

with inverse

x 7→ (x, 1)√
1− |x|2

; (D.12)

geometrically these are stereographic projections with centre 0, with K seen
as the subset {(x, 1) ∈ R3 : |x| < 1}. These isometries H+ → D and H+ →
K extend to the boundary (D.8) in the natural way, mapping (x, 1) 7→ x.

D.1. A matrix model. Any three-dimensional real vector space V with
an indefinite inner product of signature (1, 2) is isometric to R3 with the
Lorentzian inner product (D.1), and may thus be used to define a model of
the hyperbolic plane as one sheet of the hyperboloid {X : 〈X,X〉 = 1}. One
useful version of the hyperboloid model is obtained by taking V as sl(2,R),
the space of all 2× 2-matrices with trace 0:

V := sl(2,R) :=

{(
a b
c −a

)
: a, b, c ∈ R

}
(D.13)

with the inner product

〈A,B〉 := −1
2 Tr(AB). (D.14)
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In particular, if A =
(
a b
c −a

)
, then

〈A,A〉 = −a2 − bc = det(A). (D.15)

Note that 〈A,A〉 = 1 implies bc < 0, and thus c 6= 0; we may thus define
H+ as the sheet

H+ :=

{
A =

(
a b
c −a

)
∈ sl(2,R) : det(A) = 1 and c > 0

}
. (D.16)

Furthermore, a normalized normal vector N has

det(N) = 〈N,N〉 = −1. (D.17)

This model is used by Iversen [6]; it is convenient because further tools
from linear algebra are available, see [6, Chapter III]. In particular, the
gauge (1.4)–(1.6) of two lines ` and `′ with normals N and N ′ (in the signed
version for directed lines, with positively oriented N and N ′) is given by, cf.
(D.7),

〈`, `′〉 = −〈N,N ′〉 = 1
2 Tr(NN ′). (D.18)

The light cone consists of all matrices A in sl(2,R) with det(A) = 0, i.e.,
all singular matrices. These matrices are the matrices

±
(
xy −x2

y2 −xy

)
, x, y ∈ R. (D.19)

The points at infinity, which as said above can be seen as lines in the light
cone, can thus be identified with the projective line R∗ = R ∪ {∞}; the
matrix (D.19) (not identically 0) corresponds to the pair [x, y], i.e., to the
number x/y ∈ R if y 6= 0 and to ∞ if y = 0. The two endpoints of a line
` with normal vector N then correspond to the two pairs [xi, yi], i = 1, 2,
and thus to the extended real numbers xi/yi ∈ R∗, where (xi, yi) are the
eigenvectors of N (which are real and distinct; the eigenvalues are ±1 if N
is normalized).

Remark D.1. Fenchel [5] represents, more generally, lines in three-dimen-
sional hyperbolic space H3 by matrices in sl(2,C) (again up to multiplication
by a constant factor); the ends of the lines are points in ∂H3 ∼= S2, which
is seen as the Riemann sphere C∗ = C ∪ {∞}. If we consider only lines
with endpoints in the real projective line R∗ ⊂ C∗, we obtain all lines in a
projective plane embedded in H3, and their defining matrices can be taken
in sl(2,R); with the identification above of ∂H+ and R∗, this yields the same
correspondence between lines and matrices as above, regarding the matrices
as normal vectors in sl(2,R). (The normalization in [5] is slightly different,
using 〈N,N〉 = detN = +1, which corresponds to multiplying the matrix
by ±i.)
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Appendix E. Canonical embeddings

The three geometries can be treated in a unified way as geometries on
certain submanifolds of R3, which we call canonical embeddings in R3. We
write vectors in R3 as x = (x1, x2, x3).

S: The standard model of spherical geometry is the unit sphere S2 :=
{x ∈ R3 : 〈x, x〉 = 1}, where 〈·, ·〉 is the standard Euclidean inner product
in R3.

H: The model in Appendix D embeds the hyperbolic plane as the sheet
{x3 > 0} of the hyperboloid {x ∈ R3 : 〈x, x〉 = 1}, where 〈·, ·〉 is the
indefinite inner product of signature (1, 2) defined in Appendix D.

E: We embed the Euclidean plane R2 in R3 as the affine plane {x ∈ R3 :
x3 = 1} = {(x1, x2, 1) : x1, x2 ∈ R}. In analogy with the hyperbolic case,
this can be seen as the sheet {x3 > 0} of the degenerate hyperboloid (really
a pair of planes) {x ∈ R3 : 〈x, x〉 = 1}, where 〈·, ·〉 is the degenerate inner
product 〈x, y〉 := x3y3.

In all three cases, we denote the manifold by S ⊂ R3, and let 〈·, ·〉 be
the inner product defined above (E: degenerate; S: positive definite; H:
indefinite).

Remark E.1. In the Euclidean and hyperbolic cases, these embeddings can
be seen as embeddings in the projective plane P2, since no two points in
S are proportional. (Recall that P2 is defined as the set of equivalence
classes [x1, x2, x3] with (x1, x2, x3) ∈ R3 \ {0} under the equivalence relation
[x1, x2, x3] = [tx1, tx2, tx3] for any t 6= 0.) This enables us to include also
infinite points. In the Euclidean case, the embedding is just the standard
embedding of R2 as a subset of P2, with P2\R2 as the set of points at infinity
(see Subsection 1.1).

In the hyperbolic case, the points at infinity are given by the points
[x1, x2, x3] ∈ P2 such that −x2

1 − x2
2 + x2

3 = 0; these can uniquely be repre-
sented as {[x1, x2, 1] : x2

1 + x2
2 = 1} (see Appendix D).

In the spherical and hyperbolic cases, the distance d between two points
can be expressed using the inner products above:

S : cos d(x, y) = 〈x, y〉, (E.1)

H : cosh d(x, y) = 〈x, y〉. (E.2)

(In the Euclidean case, the inner product 〈x, y〉 = 1 for all x, y ∈ S.)

E.1. Lines. In all three cases, the lines are given by the intersections of S
with planes (through 0) in R3. Hence, the line through two distinct points
x, y ∈ S (in the spherical case we assume also x 6= y) is given by

E,S,H : {sx+ ty : s, t ∈ R and sx+ ty ∈ S}. (E.3)

S,H: In the spherical and hyperbolic cases (when the inner product is
nonsingular), a line can equivalently be described by a nonzero normal vector
N ∈ R3 as {x ∈ S : 〈x,N〉 = 0}. Note that N is determined only up to
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a non-zero factor. In the hyperbolic case, we necessarily have 〈N,N〉 < 0.
Hence, we can normalize N be requiring 〈N,N〉 = 1 in the spherical case
and 〈N,N〉 = −1 in the hyperbolic case, i.e.

S,H : 〈N,N〉 = K, (E.4)

the curvature. There is still a non-uniqueness, since ±N define the same
line, and it follows that there is a 2–1 correspondence between vectors in
R3 satisfying (E.4) and lines in the space S. We can make this a 1–1 cor-
respondence between vectors N satisfying (E.4) and directed lines; we may
(for example) let T be a tangent vector in the positive (forward) direction
at a point x on the line and say that N is positively oriented if the linearly
independent vectors (x, T,N) form a poitively oriented basis of R3. With
this convention, the gauge (1.4)–(1.6) of two lines ` and `′ with normals N
and N ′ (in the signed version for directed lines, with positively oriented N
and N ′) is given by (as is said in (D.7) for the hyperbolic case)

S,H : 〈`, `′〉 = K〈N,N ′〉, (E.5)

with K = ±1 the (sectional) curvature of the space, cf. (E.4).
A line (geodesic) parametrized as γ(t) with unit speed satisfies

E : γ(t) = x+ tV, (E.6)

S : γ(t) = cos t · x+ sin t · V, (E.7)

H : γ(t) = cosh t · x+ sinh t · V, (E.8)

where x = γ(0) ∈ S and V = γ̇(0) ∈ R3 is such that 〈x, V 〉 = 0 and
furthermore

E : V = (v1, v2, 0) with ‖(v1, v2)‖ = 1, (E.9)

S : 〈V, V 〉 = 1 (E.10)

H : 〈V, V 〉 = −1. (E.11)

In all three cases, 〈V, V 〉 = K.

E.2. Amplitudes. The parallelepiped in R3 spanned by three vectors x, y, z
is the set {sx + ty + uz : s, t, u ∈ [0, 1]}. (This is a polytope with vertices
in 0, x, y, z, x + y, x + z, y + z, x + y + z.) Denote its volume (in R3) by
V (x, y, z). (The tetrahedron with vertices 0, x, y, z has volume V (x, y, z)/6,
e.g. by a linear map to the case of three orthonormal vectors.) We can
express V (x, y, z) using exterior algebra or coordinates as

V (x, y, z) = |x ∧ y ∧ z| = ±

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ . (E.12)

In the spherical case we thus get, by matrix algebra and (E.1),

S : V (x, y, z)2 =

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈x, x〉 〈x, y〉 〈x, z〉
〈y, x〉 〈y, y〉 〈y, z〉
〈z, x〉 〈z, y〉 〈z, z〉

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
1 cos d(x, y) cos d(x, z)

cos d(y, x) 1 cos d(y, z)
cos d(z, x) cos d(z, y) 1

∣∣∣∣∣∣ . (E.13)

And in the hyperbolic case similarly, using (E.1),

H : V (x, y, z)2 =

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
−1 0 0
0 −1 0
0 0 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈x, x〉 〈x, y〉 〈x, z〉
〈y, x〉 〈y, y〉 〈y, z〉
〈z, x〉 〈z, y〉 〈z, z〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 cosh d(x, y) cosh d(x, z)

cosh d(y, x) 1 cosh d(y, z)
cosh d(z, x) cosh d(z, y) 1

∣∣∣∣∣∣ . (E.14)

In the Euclidean case, we obtain instead

E : V (x, y, z) = ±

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

1 1 1

∣∣∣∣∣∣ = ±
∣∣∣∣x1 − z1 y1 − z1

x2 − z2 y2 − z2

∣∣∣∣ . (E.15)

Either from this, or geometrically by noting that V (x, y, z) is 6 times the
volume of the pyramid (tetrahedron) with base xyz and top vertex 0, and
thus height (altitude) 1, it follows that V (x, y, z) is 2 times the area ∆ of
the triangle xyz; thus by Heron’s formula (2.65)

E : V (x, y, z)2 = 4∆2 = 4s(s− a)(s− b)(s− c), (E.16)

where a, b, c are the sides of the triangle xyz and s = (a+ b+ c)/2.
Comparing (E.13)–(E.16) and (2.91)–(2.95), we see that V (x, y, z) equals

the amplitude amv defined in Subsection 2.5. In other words, as said in
Remark 2.3, for a triangle ABC, using the canonical embedding,

E,S,H : amv = V (A,B,C). (E.17)

S,H: In the spherical and hyperbolic cases, we may similarly consider the
volume of the parallelepiped spanned in R3 by the unit normals Na, Nb, Nc

to the sides of a triangle ABC. We obtain as in (E.13)–(E.14)

S,H : V (Na, Nb, Nc)
2 =

∣∣∣∣∣∣
〈Na, Na〉 〈Na, Nb〉 〈Na, Nc〉
〈Nb, Na〉 〈Nb, Nb〉 〈Nb, Nc〉
〈Nc, Na〉 〈Nc, Nb〉 〈Nc, Nc〉

∣∣∣∣∣∣ . (E.18)

This is not affected if we change the sign of one or several of the normal
vectors Na, Nb, Nc. We may thus assume that the normal vectors correspond
to the orientations AB, BC and CA of the sides (and the lines that extend
them), and then, using (E.5), (1.4)–(1.5) (and comments after them on the
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directed version) and (2.88),

S,H : V (Na, Nb, Nc)
2 = K3

∣∣∣∣∣∣
1 〈BC,CA〉 〈BC,AB〉

〈CA,BC〉 1 〈CA,AB〉
〈AB,BC〉 〈AB,CA〉 1

∣∣∣∣∣∣
= K3

∣∣∣∣∣∣
1 − cosC − cosB

− cosC 1 − cosA
− cosB − cosA 1

∣∣∣∣∣∣
= Kam2

s. (E.19)

Consequently,

S,H : |ams| = V (Na, Nb, Nc). (E.20)

We see also again that am2
s > 0 in the spherical case but am2

s < 0 in the
hyperbolic case, see (2.99)–(2.100).

In the spherical case, the normals Na, Nb, Nc may be taken as the vertices
of the dual triangle, see Section 5 and (5.8). In the hyperbolic case, we may
thus by analogy regard the normal vectors as forming a kind of dual, but
note that the normal vectors do not belong to the hyperbolic plane, since
〈Na, Na〉 = −1 etc., so they are some kind of “imaginary points”.

E.3. Midpoints and centroid. It is easily verified (in all three cases) that
for any two distinct points x, y ∈ S (with x 6= y in the spherical case), the
midpoint of the segment xy is

k(x+ y) (E.21)

where k > 0 is a normalizing constant, given by

k =
1√

〈x+ y, x+ y〉
=

1√
2 + 2〈x, y〉

E : =
1

2
, (E.22)

S : =
1

2 cos d(x, y)/2
, (E.23)

H : =
1

2 cosh d(x, y)/2
. (E.24)

Similarly, and as an easy consequence, the centroid of a triangle ABC
(see Section 13) is k(A+B +C) for a normalizing constant k > 0, given by
(using (E.1)–(E.2))

k =
1√

〈A+B + C,A+B + C〉

E : =
1

3
, (E.25)

S : =
1√

3 + 2 cos a+ 2 cos b+ 2 cos c
, (E.26)



EUCLIDEAN, SPHERICAL AND HYPERBOLIC TRIGONOMETRY 53

H : =
1√

3 + 2 cosh a+ 2 cosh b+ 2 cosh c
. (E.27)

E.4. Isometries. An isometry of the space S can, in all three cases, be
extended to a linear isomorphism of R3 onto itself that preserves the inner
product. The group of isometries of the space S is

E: The affine group A(2;R) realized as matrices
(

a11 a12 b1
a21 a22 b2
0 0 1

)
.

S: The orthogonal group O(3;R).
H: The subgroup O+(2, 1;R) of the Lorentz group O(2, 1;R), where

O(2, 1;R) is the group of linear isomorphisms of R3 that preserve the
indefinite inner product, and O+(2, 1;R) is the subgroup of index 2
consisting of the maps that preserve the sheet H+.
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