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ABSTRACT. Consider a supercritical Galton—Watson process (Z5)§° with
offspring distribution £ and finite offspring mean A := E£. Assume the
standard condition E£logé < co. Tt is well-known that then Z, /A" 2%
W for some non-trivial random variable W. We give a simple proba-
bilistic proof of the result by Bingham and Doney (1974) that the r:th
moment EW" is finite if and only if E€" is, for any real r > 1.

1. INTRODUCTION

Consider a Galton-Watson process (Zy,)5° with Zy = 1 and offspring given

by independent copies of a random variable & (Thus, £ 4 Z1.) We denote
the mean number of children by A := E&. We assume that the process is
supercritical, i.e., A > 1; moreover, we assume that A < co.

It is well-known that then W,, := A™"Z,, n > 0, is a martingale, which
converges a.s. to a limit W; furthermore, if E£log& < co then EW =1 and
W, — W also in L', but if £ log & = oo, then W = 0 a.s., see e.g. [1, Section
1.10] or [5, Section 2.7]. We consider here only the first case.

The distribution of the limit W can usually not be found explicitly, but
various properties of it can be shown. In particular, Bingham and Doney |3,
Corollary to Theorem 5] proved the following result on existence of moments
of W.

Theorem 1 (Bingham and Doney). Consider a Galton—Watson process
with notation as above. Assume that 1 < A < 0o and E€logé < co. Then,
for any real r > 1,

EW" <00 < E{" < 0. (1.1)

The proof in [3] uses Laplace transforms. We give here a simple proba-
bilistic proof.

Remark 2. Bingham and Doney [3] prove also more general results on the
existence of E[W"L(W)], where L(z) is a slowly varying function; these
results will not be discussed here. i

We split the proof of Theorem 1 into necessity and sufficiency of the
condition E£" < oo, and the latter into the two cases r < 2 and r > 2.

Let || X, := (E|X|")Y" for 7 > 0 and a random variable X. Also, let
& =¢6—- )X soE& =0. C denotes various finite constants, not necessarily
the same each time; these may depend on the distribution of &, but not on
n.
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Proof of Theorem 1, = . This is easy. Since (W,,){° is a martingale which
converges in L', Wi = E(W | W), and thus (all variables are non-negative)

EW; <EW" < 0. (1.2)
Moreover, & 4 Z1=AWjand thus E€" = A"EW"™ < 0. O

Proof of Theorem 1, <—, 1 < r < 2. Conditioned on Z,,, we have that Z,,
is a sum of Z, 1ndependent copies of £. Hence,

Zn Zn,
It = Non =Y (&=N) =) & (1.3)
=1 =1

where &/ are conditionally independent copies of &’. Hence, by the von Bahr
— Esseen inequality [2, Theorem 2],

E(|Znt1 — AZn|" | Zn) < 2E|E')"Z, = CZ, (1.4)
and thus, by taking the expectation,
E|Zy41 — A2, < CEZ, =C\" (1.5)
or
| Zns1 — AZpllr < CAV/T. (1.6)
Since Wyp1 — Wy, = A" Y Z,41 — AZ,,), this yields
[Wost = Walle = AV Zugt = AZull, < OAMOUD (1)

We have assumed r > 1, and thus 1 — 1/r > 0. Hence, by Minkowski’s
inequality, for any finite n,

n—1

Wl < [Woll + > IWiyr — Wi|| < 1+CZ)\ (=1/r) — (1.8)
k=0

Since W,, =% W, Fatou’s lemma yields EW" < C. (]

Proof of Theorem 1, <=, r > 2. We again condition on Z,, and have (1.3).
This time we use Rosenthal’s inequality [4, Theorem 3.9.1] and obtain

E(|Zns1 — AZ0|" | Zy) < CZ,E|E)" + C(Z, E|¢| )T/2 =CZ,+CZ?

<czr?, (1.9)
Hence, using also the Cauchy—Schwarz inequality,
E|Zni1 — \Z|" < CEZI/2 < C(E 2. (1.10)
Thus,
1Zns1 = AZallr < CllZall;"?, (1.11)

and Minkowski’s inequality yields
1Zns1llr < M Znllr + Cll Zally. (1.12)
Let
Ap = [[Wallr = X7 Zallr (1.13)
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and note that A, > [|[W,|1 = EW,, = 1. Then (1.12) and (1.13) yield
Anet S A Zullr + O Zall}/? = An + CAT2AL

<Ay +ONT24, = 14+ 0NV A, (1.14)
Hence, by induction, noting Ao = || 2ol =1,
H (1+CAk/2) < exp(Z O~ ’f/Z) <C, (1.15)
since > o2 s AF/2 < 0.
We have shown EW] = A7 < C, and, as in the case r < 2, Fatou’s lemma
yields EW"™ < cc. O
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