
FOURIER AND MELLIN INVERSION

SVANTE JANSON

Abstract. We collect some classical, more or less well known, results on inversion
of Fourier and Mellin transforms of functions and measures, concentrating on
sufficient conditions for pointwise inversion.

Proofs are usually not given.

1. Introduction

The purpose of these notes is to collect some classical, more or less well known,
results on inversion of Fourier transforms of functions and measures on R, and of and
Mellin transforms of functions on p0,8q. We concentrate on sufficient conditions for
pointwise inversion formulas. We try to give the most general statements for each
type of condition, without going too far inte technicalities, and the goal is to present
results in forms convenient for future references.

We give only a few proofs, and otherwise refer to standard references for proofs.

Remark 1.1. There is also a parallel (and even more classical) theory for Fourier
series of functions on T “ R{Z, which can be identified with r0, 1q or r0, 2πq. The
problem of inversion for Fourier transforms corresponds to the problem of conver-
gence of Fourier series, see e.g. [8, Chapter II and VI]. We will not consider Fourier
series in detail here, but we note that many results are essentially the same for
Fourier series and Fourier integrals; for questions on convergence, this follows e.g.
by [8, Theorem XVI.(1.3) and XVI.(1.10)–(1.14)], which allows transfer of results in
both directions. △

1.1. Some notation. When we say that a limit exists, this tacitly includes that the
limit is finite.

For a function f defined in a neighbourhood of x P R, we define, when the limits
exist,

fpx`q :“ lim
yÓx

fpyq, fpx´q :“ lim
yÒx

fpyq. (1.1)

For a function f defined in a (finite or infinite) interval I, we define its modulus
of continuity by

ωpδ; f, Iq :“ supt|fpxq ´ fpyq| : x, y P I with |x ´ y| ď δu, δ ą 0. (1.2)

The function f is Hölderpαq on I, where 0 ă α ď 1, if

ωpδ; f, Iq “ O
`

δα
˘

(1.3)

as δ Ñ 0; equivalently, if (1.3) holds for all δ ď 1, say.
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The function f is locally Hölderpαq on I, where 0 ă α ď 1, if it is Hölderpαq on
a neighbourhood Jx of every x P I; this is equivalent to f being Hölderpαq on every
compact interval J Ď I. (The implicit constant in (1.3) may thus depend on J .)

LppRq (where p ą 0 is a real number) is the space of complex-valued (Lebesgue)
measurable functions f on R such that

ş

R |f |p ă 8. We will mainly be concerned

with the case p “ 1: L1pRq is the space of integrable functions on R.
MpRq is the space of complex (i.e., complex-valued) Borel measures on R. (Re-

call that by definition, complex measures are finite.) A function f P L1pRq can be
identified with the complex measure fpxq dx; this identification embeds L1pRq iso-
metrically as a subspace of MpRq. Complex measures of the form fpxqdx are called
absolutely continuous; the function fpxq is called the density of the measure.

BVpRq is the space of complex functions of bounded variation on R. Every F P

BVpRq defines a complex measure dF P MpRq. This map F ÞÑ dF is onto MpRq,
i.e, every complex measure µ P MpRq equals dF for some F P BVpRq. Moreover,
the map is not injective, but if NBVpRq is the subspace of functions F P BVpRq that
are right-continuous and are normalized by limxÑ´8 F pxq “ 0, then F ÞÑ dF is a
bijection NBVpRq Ñ MpRq.

A function F on R is absolutely continuous if F is continuous and of bounded
variation, and the measure dF is absolutely continuous. (Then the density of dF is
the derivative F 1pxq, which exists a.e.)

2. The Fourier transform

Let f be an integrable complex-valued function on R. (In other words, using
standard notation, f P L1pRq.) We define its Fourier transform by

pfptq :“

ż 8

´8

fpxqeitx dx, t P R. (2.1)

It is well-known that pf is a continuous, bounded function on R, and pfptq Ñ 0 as
t Ñ ˘8 (the Riemann–Lebesgue lemma).

Remark 2.1. This is one of the common definitions, but there are several other ver-
sions, differing by simple changes of variable and sometimes constant factors; some
other common versions are

ş8

´8
fpxqe´itx dx, 1?

2π

ş8

´8
fpxqe´itx dx,

ş8

´8
fpxqe2πitx dx,

ş8

´8
fpxqe´2πitx dx. The results below trivially transfer to all such versions, mutatis

mutandis. △

Similarly, if µ is a complex Borel measure on R (i.e., µ P MpRq), we define its
Fourier transform by

pµptq :“

ż 8

´8

eitx dµpxq, t P R. (2.2)

It is well-known that pµ is a continuous, bounded function on R. However, in general
the Riemann–Lebesgue lemma does not hold for measures.

Note that if we identify an integrable function f with the measure fpxq dx, then
the definitions (2.1) and (2.2) are consistent and yield the same Fourier transform.

Remark 2.2. When µ is a probability measure, the Fourier transform (2.2) is known
(in probability theory) as the characteristic function of µ. △
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Remark 2.3. We focus in these notes on pointwise formulas, and we consider except
in a few comments only integrable functions f , i.e. f P L1pRq; in this case (and only

in this case), the integral (2.1) is absolutely convergent for every t P R, and thus pfptq
is well defined.

However, it should be noted that there are important extensions that we do not

discuss in detail here. In particular, pf can be defined also for f P L2pRq (in a some-
what different way since the integral (2.1) in general is not absolutely convergent, and

not even conditionally convergent for all t); then pf P L2pRq (Plancherel’s theorem);
see e.g. [8, Theorem XVI.(2.17)].

An elegant, and much wider, extension is obtain by going beyond functions and
considering tempered distributions, which formally are defined as elements of the
dual space S 1pRq of the space SpRq of rapidly decreasing test functions; this space
includes L1pRq, L2pRq, the space CbpRq of continuous bounded functions on R, the
space MpRq of complex measures, and much more. The Fourier transform has a
natural definition as a linear operator S 1pRq Ñ S 1pRq which includes as special
cases the Fourier transforms on L1pRq, MpRq, and L2pRq defined above. See e.g. [5,
1.16(v)(vii)] for a quick summary, and [2, Section 2.3] or [6, Section I.3] for a more
detailed treatment; deeper functional analytic properties are treated in [7].

In the settings of L2pRq and S 1pRq, the Fourier transform is a bijection and topo-
logical isomorphism L2pRq Ñ L2pRq and S 1pRq Ñ S 1pRq, and there are “perfect”
inversion formulas. However, these formulas are not of the pointwise type consid-
ered here. △

3. Fourier-Stieltjes transforms

Let F : R Ñ C be a function of bounded variation. As mentioned above, F defines
a complex measure dF on R. The Fourier transform (2.2) of dF is known as the
Fourier–Stieltjes transform of F ; it is thus given by

rF ptq :“ xdF ptq “

ż 8

´8

eitx dF pxq. (3.1)

Remark 3.1. In the setting of distributions, see Remark 2.3, every F P BVpRq can
be regarded as a tempered distribution, and its derivative in distribution sense is the
complex measure dF . It follows that

rF ptq :“ xdF ptq “ ´it pF ptq (3.2)

in distribution sense. In the special case of a function F P BVpRq X L1pRq, (3.2)
thus holds in the usual sense, with all appearing functions continuous on R; this
also follows by integration by parts. (Note that in this case, limxÑ´8 F pxq “

limxÑ8 F pxq “ 0.)
△

4. Fourier Inversion

4.1. Absolute convergence. The Fourier transform is injective on L1pRq, and
more generally on MpRq (and in fact on S 1pRq), and thus a function or measure
is determined by its Fourier transform. There exist several types of inversion for-
mulas giving explicit formulas for f or µ given its Fourier transform, under suitable
conditions. The simplest inversion formula is the following.
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Theorem 4.1. (i) Let f P L1pRq and suppose that pf P L1pRq. Then f is a.e. equal
to a continuous function, and if f is continuous (which we thus may assume), then

fpxq “
1

2π

ż 8

´8

e´ixt
pfptq dt, x P R. (4.1)

In other words, in this case

p

pfpxq “ 2πfp´xq. (4.2)

(ii) Let µ P MpRq and suppose that pµ P L1pRq. Then µ is absolutely continuous
with a continuous density f , and (4.1) holds; equivalently,

fpxq “
1

2π

ż 8

´8

e´ixt
pµptq dt, x P R. (4.3)

Sketch of proof. A short proof uses the theory of distributions mentioned in Re-
mark 2.3. For tempered distributions, the Fourier transform is a bijection, with the
inversion formula (4.2) (in distribution sense). In (ii), apply this to µ, regarded as a
distribution. Since pµ P L1pRq, its Fourier transform in distribution sense equals its

Fourier transform as an integrable function, which means that p

pµp´xq is the continu-
ous function given by the integral in (4.3); the result follows. Finally, (i) is a special
case of (ii).

For (i), see also [6, Corollary 1.21] and [8, Section XVI.2, p. 247]. □

We note also the following result [6, Corollary I.1.26].

Theorem 4.2. Let f P L1pRq and suppose that f is continuous at 0 and that pfptq ě 0

for all t P R. Then pf P L1 and thus Theorem 4.1(i) applies; hence (4.1) holds a.e.,
and in particular at every continuity point of f .

4.2. Symmetric limits. However, even if f is integrable, pf does not have to be
integrable; such cases are more complicated since then the integral (4.1) is not ab-
solutely convergent for any x. In many (but not all) cases, (4.1) still holds with the
integral conditionally convergent in the following sense.

fpxq “
1

2π
lim
AÑ8

ż A

´A
e´ixt

pfptq dt. (4.4)

Three classical sufficient conditions for (4.4) are given in the following theorems.

Remark 4.3. The main conditions are local, i.e., for some small neighbourhood
of x, and thus a function f may satisfy one of them at some point but not at at
others. In fact, the inversion formula (4.4) is itself a local property: if it holds for
some integrable function f , then it holds for any integrable functions g that equals
f in a neighbourhood of x. ([8, Theorem II.(6.6)] for Fourier series; this transfers by
Remark 1.1. Alternatively, apply Theorem 4.5 below to the difference f ´ g, which
is 0 in an interval around x.) △
Remark 4.4. An interchange of the order of integration shows that, for f P L1pRq

and any A ą 0,

1

2π

ż A

´A
e´ixt

pfptq dt “
1

2π

ż A

´A

ż 8

´8

e´ixt`iytfpyqdy dt

“
1

π

ż 8

´8

sinpApx ´ yqq

x ´ y
fpyqdy. (4.5)
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The kernel sinpAxq

πx in (4.5) is known as the Dirichlet kernel on R. △

Theorem 4.5 (Dini test). Suppose that f P L1pRq and that x P R is such that
ż δ

0

|fpx ` yq ` fpx ´ yq ´ 2fpxq|

y
dy ă 8 (4.6)

for some (and thus every) δ ą 0. Then (4.4) holds.
In particular, (4.4) holds if

ż δ

´δ

|fpx ` yq ´ fpxq|

|y|
dy ă 8. (4.7)

Proof. See [8, Theorem II.(6.1)]. (For Fourier series; the result transfers by Re-
mark 1.1.) □

Corollary 4.6. Suppose that f P L1pRq and that f is locally Hölderpαq for some
α ą 0. Then (4.4) holds for every x P R.

If we consider an interval instead of just a single point x, then Theorem 4.5 (at
least partly) and Corollary 4.6 can be improved.

Theorem 4.7 (Dini–Lipschitz test). Suppose that f P L1pRq is continuous, and that

ωpδ; f, Iq “ o
`

| log δ|´1
˘

as δ Ñ 0 (4.8)

for some interval I. Then (4.4) holds for every x in the interior I˝. Moreover, (4.4)
holds uniformly on every compact subinterval of I˝.

In particular, if (4.8) holds locally on R, i.e., for every compact interval I Ă R
(with implicit constant that may depend on I), then (4.4) holds for every x P R,
uniformly on every compact interval.

Proof. See [8, Theorems II.(10.3) and II.(10.5)]. (For Fourier series; the result trans-
fers by Remark 1.1.) □

The third theorem does not use modulus of continuity or related continuity prop-
erties; instead it assumes (locally) bounded variation.

Theorem 4.8 (Dirichlet–Jordan test). Suppose that f P L1pRq and that x P R is
such that f is of bounded variation on some interval px ´ δ, x ` δq with δ ą 0. Then

fpx`q ` fpx´q

2
“

1

2π
lim
AÑ8

ż A

´A
e´ixt

pfptqdt. (4.9)

(The limits fpx ˘ 0q exist since f is of bounded variation near x.)
In particular, if furthermore f is continuous at x, then (4.4) holds.

Proof. See [8, Theorem II.(8.14)]. (For Fourier series; the result transfers by Re-
mark 1.1.) □

Corollary 4.9. Suppose that f P L1pRq and that f is continuous and locally of
bounded variation, i.e., that f is of bounded variation in any finite interval. Then
(4.4) holds for every x P R.

Finally, we give a simple condition that is sufficient for many applications.

Corollary 4.10. Suppose that f P L1pRq and that f is continuously differentiable.
Then (4.4) holds for every x P R.
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Proof. This is a corollary of any of the above results Theorem 4.5, Corollary 4.6,
Theorem 4.7, Theorem 4.8, Corollary 4.9. □

Remark 4.11. Theorems 4.5 and 4.7 are essentially the best possible of this type;
see [8, Chapter VIII, in particular Theorems VIII.(2.4), VIII.(2.1)]. Note also that
Theorem 4.7 requires the estimate (4.8) in an interval. It is not true that the
corresponding estimate at a single point x (i.e., keeping x fixed in (1.2)) implies
convergence at x, see [8, Section VIII.2, p. 303]. △

Remark 4.12. None of the conditions in the theorems above imply that the integral
(4.1) is absolutely convergent. For Fourier series this is shown in [8, Theorem VI.(3.1)
and the example VI.(3.7)] (not even Hölderp12q is enough; bounded variation and
continuity, and even absolute continuity, is not enough). This transfers to Fourier
transforms by extending the examples periodically to R and then multiplying by a
suitable Fejér kernel; we omit the details. See also Example A.3 below, which shows
that neither (4.8) nor absolute continuity (and thus also not bounded variation and
continuity) is enough. △

Remark 4.13. A famous (and difficult) result by Carleson [1] says that if f P L2pRq

(or equivalently, pf P L2pRq), then (4.4) holds for almost every x P R (but not
necessarily for every x). This extends to f P LppRq for any p ą 1 [4], but not to
arbitrary f P L1pRq; in fact, there exist f P L1pRq such that (4.4) does not hold
for any x [8, Theorem VIII.(4.1)]. (These references show the corresponding results
for convergence of Fourier series, but the results transfer to Fourier integrals by
Remark 1.1.) △

4.3. Asymmetric limits. In the inversion formulas above with (4.4), it is in general
important that the symmetric limit is used in (4.4). We may ask whether, more
strongly,

fpxq “
1

2π
lim

A,BÑ8

ż B

´A
e´ixt

pfptqdt, (4.10)

where the upper and lower limits of integration tend to ˘8 independently. (This is
clearly true when the integral (4.1) is absolutely convergent.)

Obviously, the limit in (4.4) is a special case of the limit in (4.10), so if the general
limit in (4.10) exists, then so does the symmetric limit in (4.4) and they are equal.
Consequently, (4.10) implies (4.4). Examples A.1–A.3 below show that the converse
does not hold. We make a simple observation.

Lemma 4.14. Suppose that f P L1pRq, and x P R. Then the following are eqivalent.

(i) (4.10) holds.
(ii)

fpxq “
1

2π

ˆ

lim
AÑ8

ż 0

´A
e´ixt

pfptq dt ` lim
BÑ8

ż B

0
e´ixt

pfptqdt

˙

(4.11)

with both limits existing.
(iii) (4.4) holds and the limit

lim
AÑ8

ż A

´A
e´ixt

pfptq sgnptqdt (4.12)

exists.
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Proof. (i) ðñ (ii): It is easily seen using the Cauchy criterion that if the limit in
(4.10) exists, then so do the two limits in (4.11). The converse is obvious. Moreover,
when all limits exist, the right-hand sides of (4.10) and (4.11) are equal.

(ii) ùñ (iii): We have seen that (4.10) holds, and thus also (4.4). Furthermore,

ż A

´A
e´ixt

pfptq sgnptqdt “ ´

ż 0

´A
e´ixt

pfptqdt `

ż A

0
e´ixt

pfptqdt, (4.13)

where both integrals on the right-hand side have limits as A Ñ 8 by (ii).
(iii) ùñ (i): We have

ż B

0
e´ixt

pfptq dt “
1

2

ż B

´B
e´ixt

pfptq dt `
1

2

ż B

´B
e´ixt

pfptq sgnptq dt, (4.14)

where (iii) implies that both integrals on the right-hand side have limits as B Ñ 8,
and thus the second limit in (4.11) exists. Similarly, the first limit exists. This
implies that the limit in (4.10) exists. As noted above, the limit then equals the
limit in (4.4); since we now assume that (4.4) holds, (4.10) follows. □

Remark 4.15. The limit in (4.12) (if it exists) is, up to an imaginary numerical

factor irrelevant to us, known as the conjugate function f̃pxq. △

The Dini test in Theorem 4.5 (in the one-sided version) actually yields also (4.10).

Theorem 4.16. Suppose that f P L1pRq and that x P R is such that (4.7) holds.
Then (4.10) holds.

Proof. This too follows from [8, Theorem II.(6.1)] (for Fourier series); now together
with Lemma 4.14 and an application of [8, Theorem XVI.(1.3) with XVI.(1.2)] to
show the existence of the conjugate function (4.12). □

Thus we can strengthen Corollary 4.6.

Corollary 4.17. Suppose that f P L1pRq and that f is locally Hölderpαq for some
α ą 0. Then (4.10) holds for every x P R.

However, Theorems 4.7 and 4.8 (and thus Corollary 4.9) cannot be strengthened
in this way; their assumptions do not imply (4.10); see Example A.1–A.3.

4.4. The generalized integral in the inversion formula is known to exist. In
the results above, the existence of the limit in (4.4) or (4.10) is part of the conclusion.
If we know in advance that the limit exists, then the inversion formula holds assuming
only continuity of f .

Theorem 4.18. Suppose that f P L1pRq and that f is continuous at x. If the limit
in (4.4) exists, then (4.4) holds. Similarly, if the limit in (4.10) exists, then (4.10)
holds.

Proof. The second claim follows from the first, since if the limit in (4.10) holds, then
so does the limit in (4.4), and the limits are equal.

The first claim follows from Theorem 4.20 below. □
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4.5. Summability. As noted above, the inversion formula (4.4) does not always
hold, even for continuous f P L1pRq. An important substitute is a weaker property
called (Cesàro) summability, where we take the average of the right-hand side in
(4.4) over all A in an interval r0, Bs, and let B Ñ 8: we thus ask whether

fpxq “
1

2π
lim
BÑ8

1

B

ż B

0
dA

ż A

´A
e´ixt

pfptqdt. (4.15)

Note that (4.15) holds whenever (4.4) holds. The following theorem shows that
(4.15) holds under very general conditions.

Remark 4.19. It follows from (4.5) and an interchange of the order of integration
that

1

2πB

ż B

0
dA

ż A

´A
e´ixt

pfptqdt “
1

π

ż 8

´8

1 ´ cospBpy ´ xqq

Bpy ´ xq2
fpyq dy

“
1

π

ż 8

´8

1 ´ cospByq

By2
fpx ` yq dy. (4.16)

The kernel 1´cospByq

πBy2
“ B

2π

` sinpBy{2q

By{2

˘2
in (4.18) is known as the Fejér kernel on R. △

Theorem 4.20. Suppose that f P L1pRq, and that the limits fpx`q and fpx´q exist
for some x P R. Then

fpx`q ` fpx´q

2
“

1

2π
lim
BÑ8

1

B

ż B

0
dA

ż A

´A
e´ixt

pfptq dt. (4.17)

In particular, if f is continuous at x, then (4.15) holds.
Moreover, (4.15) holds if x is a Lebesgue point of f ; hence, (4.15) holds for a.e.

x P R.

Proof. The corresponding results for Fourier series are [8, Theorems III.(3.4) and
III.(3.9)], and again the results transfer to R by the references in Remark 1.1. We
can also argue directly as follows, see [8, Remark in Section XVI.2, p. 247]. It follows
from (4.16) that, for any a ą 0,

1

2πB

ż B

0
dA

ż A

´A
e´ixt

pfptqdt

“
1

π

ż Ba

´Ba

1 ´ cospyq

y2
fpx ` y{Bqdy `

1

π

ż

|y|ąa

1 ´ cospByq

By2
fpx ` yq dy, (4.18)

and if fpx˘q exist, then the result (4.17) follows by dominated convergence. The
result (4.15) when x is a Lebesgue point follows also easily from (4.16), see [6,
Theorem I.1.25]. □

Remark 4.21. The a.e. summability for any f P L1pRq given by Theorem 4.20
is in contrast to convergence, which does not have to hold anywhere, as said in
Remark 4.13. △

Remark 4.22. It is obvious that we need some kind of regularity of f at x for (4.15)

to hold (since otherwise we can change the value of f at x without changing pfptq
and thus without changing the right-hand side of (4.15)). However, the theorem says
that only a very weak condition is needed, for example that x is a Lebesgue point of
f . △
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5. Fourier-Stieltjes inversion

For the Fourier–Stieltjes transform in Section 3, there is a general inversion for-
mula:

Theorem 5.1. Let F P BVpRq, and let F ˝pxq :“
`

F px`q ´ F px´q
˘

{2. (Thus, in
particular, F ˝pxq “ F pxq when F is continuous at x.) Then, for any x, y P R,

F ˝pyq ´ F ˝pxq “
1

2π
lim
AÑ8

ż A

´A

e´ity ´ e´itx

´it
rF ptq dt. (5.1)

Remark 5.2. The integrand in (5.1) is continuous, also at t “ 0, and thus the
integral exists (as a Lebesgue integral or Riemann integral) for every A ă 8. The
integral

ş8

´8
does not always exist as an (absolutely convergent) Lebesgue integral;

moreover, the symmetric limit in (5.1) in general cannot be replaced by the asym-

metric limit limA,BÑ8

şB
´A, see Examples A.4–A.5. △

Proof. When dF is a probability measure, this is known as the inversion formula
for characteristic functions, see e.g. [3, Theorem 4.1.3]. (Usually stated for right-

continuous F , but that does not matter since neither rF nor F ˝ is changed if F is
replaced by the function F px`q.) The general case follows by linearity.

Alternatively, this is equivalent to [8, Theorem XVI.(4.5)]. □

6. Mellin transform

If f is a function defined on p0,8q, its Mellin transform is defined by

f˚psq :“

ż 8

0
fpxqxs´1 dx (6.1)

for all complex s such that the integral converges absolutely. It is well known that
the domain of such s is a strip D “ ts : Re s P Ju for some interval Jf Ď R (possibly
empty or degenerate), and that f˚psq is analytic in the interior D˝ of D (provided
D˝ is non-empty, i.e., Jf is neither empty nor degenerate).

We write s “ σ ` iτ , with σ, τ P R. The change of variables x “ ey gives, for
σ P Jf ,

f˚pσ ` iτq “

ż 8

´8

fpeyqepσ`iτqy dy “

ż 8

´8

fpeyqeσyeiτy dy “ pgσpτq, (6.2)

where

gσpyq :“ eσyfpeyq, y P R. (6.3)

Note that g P L1pRq when σ P Jf .
Thus, the Mellin transform restricted to a vertical line can be regarded as a Fourier

transform. Hence, the results in Section 4 can be applied, and yield in particular the
following, for a (locally integrable) function f defined on p0,8q.

Theorem 6.1. Let σ P Jf , and suppose that f˚pσ ` iτq P L1p dτq. Then f is a.e.
equal to a continuous function, and if f is continuous (which we thus may assume),
then

fpxq “
1

2π

ż 8

´8

x´pσ`iτqf˚pσ ` iτqdτ “
1

2πi

ż σ`i8

σ´i8
x´sf˚psqds, x ą 0. (6.4)
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Proof. Theorem 4.1 and (6.2)–(6.3) yield, for y P R,

fpeyq “ e´σygσpyq “ e´σy 1

2π

ż 8

´8

e´iyτ
pgσpτq dτ

“ e´σy 1

2π

ż 8

´8

e´iyτf˚pσ ` iτq dτ “
1

2π

ż 8

´8

e´pσ`iτqyf˚pσ ` iτqdτ, (6.5)

which yields (6.4). □

Theorem 6.2 (Dini test). Let σ P Jf , and suppose that x ą 0 is such that
ż δ

´δ

|fpx ` yq ´ fpxq|

|y|
dy ă 8 (6.6)

for some δ ą 0. Then

fpxq “
1

2πi
lim
AÑ8

ż σ`iA

σ´iA
x´sf˚psqds. (6.7)

Proof. By Theorem 4.5 and (6.2)–(6.3). Note that

|gσpx ` yq ´ gσpxq| ď |eσy ´ 1|eσx|fpxq| ` eσpx`yq
∣∣fpex`yq ´ fpexq

∣∣, (6.8)

and it follows easily that (6.6) implies that gσ satisfies (6.6) (which equals (4.7)) at
log x, with some new δ. □

Corollary 6.3. Let σ P Jf , and suppose that f is locally Hölderpαq on p0,8q for
some α ą 0. Then (6.7) holds for every x P p0,8q.

The following results follow similary from Theorems 4.7, 4.8, 4.18, and their corol-
laries; we omit the details.

Theorem 6.4 (Dini–Lipschitz test). Let σ P Jf , and suppose that f is continuous
on p0,8q, and that

ωpδ; f, Iq “ o
`

| log δ|´1
˘

as δ Ñ 0 (6.9)

holds locally, i.e., for every compact interval I Ă p0,8q (with implicit constant that
may depend on I). Then (6.7) holds for every x P p0,8q, uniformly on every compact
interval.

Theorem 6.5 (Dirichlet–Jordan test). Let σ P Jf , and suppose that x P p0,8q is
such that f is of bounded variation on some interval px ´ δ, x ` δq with δ ą 0. Then

fpx`q ` fpx´q

2
“

1

2πi
lim
AÑ8

ż σ`iA

σ´iA
x´sf˚psqds. (6.10)

In particular, if furthermore f is continuous at x, then (6.7) holds.

Corollary 6.6. Let σ P Jf , and suppose that f is continuous and locally of bounded
variation, i.e., that f is of bounded variation in any compact interval interval I Ă

p0,8q. Then (6.7) holds for every x P p0,8q.

Corollary 6.7. Let σ P Jf , and suppose that f is continuously differentiable. Then
(6.7) holds for every x P p0,8q.

Theorem 6.8. Let σ P Jf , and suppose that f is continuous at x P p0,8q. If the
limit in (6.7) exists, then (6.7) holds.

Further results, for example on asymmetric limits as in Theorem 4.16, are left to
the reader.
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Appendix A. Some counter examples

We give a few simple counter examples, showing that the symmetric limits in some
results above cannot be replaced by general asymmetric limits.

In the first three examples, the symmetric limit (4.4) exists but not the general
limit (4.10) in Section 4.3; these examples show that the conditions of Theorems 4.7
and 4.8 do not imply (4.10).

Example A.1. Let

fpxq :“

#

e´x, x ě 0,

0, x ă 0.
(A.1)

Then

pfptq “

ż 8

0
eitx´x dx “

ż 8

0
e´p1´itqx dx “

1

1 ´ it
, t P R. (A.2)

f is smooth at all x ‰ 0, and thus (4.4) and (4.10) hold there by Theorem 4.16. At
x “ 0, f is not continuous, but f is of bounded variation and Theorem 4.8 applies
and yields

fp0`q ` fp0´q

2
“

1

2
“

1

2π
lim
AÑ8

ż A

´A

1

1 ´ it
dt (A.3)

as is easily seen directly.
However, we have, for A,B ě 0,

ż B

´A

pfptq dt “

ż B

´A

1

1 ´ it
dt “ i

`

logp1 ´ iBq ´ logp1 ` iAq
˘

(A.4)

which does not converge as A,B Ñ 8; in fact, the imaginary part of (A.4) is, for
A,B ě 1,

log |1 ´ iB| ´ log |1 ` iA| “ logB ´ logA ` Op1q. (A.5)

Hence (4.10) does not hold. Consequently, Theorem 4.8 cannot be strengthened to
yield (4.10) without further assumptions.

In Lemma 4.14, we similarly see that, for x “ 0, the imaginary parts of the
integrals in (4.11) tend to ´8 and `8 as A Ñ 8 and B Ñ 8; furthermore the
imaginary part of the integral in (4.12) tends to `8. △

Example A.2. The preceding example concerned a discontinuous function f ; how-
ever, it may be modified to a continuous function with similar behaviour. Let

fpxq :“ gpxqe´x, x P R, (A.6)

where g is a continuous increasing function on R with gpxq “ 0 for x ď 0 and and
gpxq “ 1 for x ě 1, which furthermore is continuously differentiable on p0, 1q with
g1pxq weakly decreasing. Obviously, f P L1pRq. Note that both gpxq and e´x are
monotone and bounded on r0,8q, and thus of bounded variation there; consequently
their product fpxq is of bounded variation on r0,8q, and thus on R. Moreover,
since f is continuous, and continuously differentiable except at 0 and (possibly) 1,
the measure df is absolutely continuous, and thus fpxq is an absolutely continuous
function on R.



12 SVANTE JANSON

We have, using integration by parts,

pfptq “

ż 8

0
gpxqe´p1´itqx dx “

1

1 ´ it

ż 8

0
g1pxqe´p1´itqx dx. (A.7)

Let I0 :“ r0, π{p2tqs and In :“ rpn ´ 1
2qπ{t, pn ` 1

2qπ{ts for n ě 1. We have

Re

ż 8

0
g1pxqe´p1´itqx dx “

ż 8

0
g1pxqe´x cosptxq dx “

8
ÿ

n“0

ż

In

g1pxqe´x cosptxq dx.

(A.8)

Let an :“
ş

In
g1pxqe´x cosptxq dx. Since g1pxq ě 0, we have, for t ě 1 and a constant

c :“ e´1 cosp1q ą 0,

a0 ě

ż 1{t

0
g1pxqe´x cosptxq dx ě c

ż 1{t

0
g1pxq dx “ cgp1{tq. (A.9)

Furthermore, since g1pxq is (weakly) decreasing,

|a1| ď

ż

I1

g1pxqe´x dx ď |I1|g1p1{tq “
π

t
g1p1{tq (A.10)

and, for k ě 1,

a2k ` a2k`1 “

ż

I2k

´

g1pxqe´x ´ g1px ` π{tqe´x´π{t
¯

cosptxqdx ě 0. (A.11)

Consequently, (A.8) yields

Re

ż 8

0
g1pxqe´p1´itqx dx “

8
ÿ

n“0

an ě a0 ´ |a1| ě cgp1{tq ´
π

t
g1p1{tq. (A.12)

Furthermore, crudely,∣∣∣∣Im ż 8

0
g1pxqe´p1´itqx dx

∣∣∣∣ ď

∣∣∣∣ż 8

0
g1pxqe´p1´itqx dx

∣∣∣∣ ď

ż 8

0
g1pxq dx “ gp1q “ 1.

(A.13)

We obtain by (A.7) and (A.12)–(A.13), with Qptq :“
ş8

0 g1pxqe´p1´itqx dx, for large
t,

Im pfptq “ Im
1 ` it

1 ` t2
Qptq “

t

1 ` t2
ReQptq `

1

1 ` t2
ImQptq

ě
c

2t
gp1{tq ´

π

t2
g1p1{tq ´

1

t2
. (A.14)

For example, if we take

gpxq “
1

| log x|
“

1

logp1{xq
(A.15)

for small x ą 0, then (for such x)

g1pxq “
1

x log2 x
(A.16)

and thus (A.14) shows that for large t ą 0 and some (new) c ą 0,

Im pfptq ě
c

t log t
. (A.17)
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Consequently,

Im

ż B

0

pfptqdt Ñ `8 (A.18)

as B Ñ 8, and thus (4.10) does not hold. Hence, this example shows that Theo-
rem 4.8 cannot be strengthened to yield (4.10), even if we further assume that fpxq

is an absolutely continuous function on R. △

Example A.3. For another, slightly smoother, example, take again fpxq as in (A.6),
now with

gpxq “
1

logp1{xq log logp1{xq
(A.19)

for small x ą 0, which entails

g1pxq „
1

x log2p1{xq log logp1{xq
(A.20)

as x Ó 0. Thus (A.14) shows that as t Ñ `8, for some c ą 0,

Im pfptq ě
c ` op1q

t log t log log t
. (A.21)

This function too is not integrable on any interval pa,8q. Consequently,

Im

ż B

0

pfptq dt Ñ `8 (A.22)

as B Ñ 8, and thus (4.10) does not hold.
As Example A.2, this example shows that Theorem 4.8 cannot be strengthened to

yield (4.10), even if we further assume that fpxq is an absolutely continuous function
on R. Moreover, it is easily seen that the function f in this example has modulus of
continuity

ωpδ; f, Iq „ gpδq “
1

logp1{δq log logp1{δq
“ o

´ 1

logp1{δq

¯

(A.23)

as δ Ñ 0; hence, (4.8) holds. Thus, this example shows that also Theorem 4.7 cannot
be strengthened to yield (4.10) without further assumptions. △

The next two examples show that the symmetric limit in (5.1) in general cannot
be replaced by a general asymmetric limit, and in particular that the corresponding
integral

ş8

´8
is not always absolutely convergent.

Example A.4. Let F pxq :“ 1tx ě 0u (the Heaviside function), so that dF “ δ0,

the (Dirac) point mass at 0. Then rF ptq :“ xdF ptq “ 1 for all t P R. Take x “ ´1 and
y “ 0 in (5.1); then (5.1) says

1

2
´ 0 “

1

2π
lim
AÑ8

ż A

´A
i
1 ´ eit

t
dt, (A.24)

where it is obvious that the integral
ş8

´8
is not absolutely convergent. Moreover,

Im

ż B

´A
i
1 ´ eit

t
dt “

ż B

´A

1 ´ cos t

t
dt “

ż B

A

1 ´ cos t

t
dt “ logB ´ logA ` op1q

(A.25)
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as A,B Ñ `8. Hence, as asserted in Remark 5.2, the symmetric limit in (5.1)

cannot be replaced by the asymmetric limit limA,BÑ8

şB
´A. △

Example A.5. Let fpxq be as in Example A.2 or A.3. Then f is integrable and

absolutely continuous on R, and thus rfptq “ ´it pfptq by (3.2) and the comments
after it. Hence, the inversion formula (5.1) becomes

fpyq ´ fpxq “
1

2π
lim
AÑ8

ż A

´A

`

e´ity ´ e´itx
˘

pfptq dt. (A.26)

We observe that this formula also can be obtained by taking the difference between
(4.4) for the two points x and y; note that (4.4) holds by Theorem 4.8. Similarly, by
formally taking the difference between (4.10) for x and y, we see that if they hold,
then

fpyq ´ fpxq “
1

2π
lim

A,BÑ8

ż B

´A

`

e´ity ´ e´itx
˘

pfptqdt

“
1

2π
lim

A,BÑ8

ż B

´A

e´ity ´ e´itx

´it
rF ptq dt. (A.27)

Conversely, if we let y :“ ´1, so f vanishes in a neighbourhood of y and thus
(4.10) holds at y by Theorem 4.16, then (A.27) holds if and only if (4.10) holds. In
particular, by Examples A.2 and A.3, (A.27) does not hold for x “ 0 and y “ ´1. △
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