
INHOMOGENEOUS RANDOM GRAPHS

SVANTE JANSON

1. Background

One of the most studied random graphs is G(n, p), which has n vertices
that can be taken as the integers 1, . . . , n, and where each pair of vertices is
connected by an edge with probability p, independently of all other edges.

Consider the case p = c/n for some constant c > 0, and let n→∞.
The degree of a given vertex has a binomial distribution Bi(n − 1, c/n) ≈
Po(c). This is a strongly concentrated distribution with an exponentially
decreasing tail. Many graphs from “real life” have degree distributions with
much larger tails, for example power-law tails. One popular example is the
Internet, either the physical network of servers or the (directed) network
of web pages and links. Other examples that have been studied include,
for example, graphs describing telephone calls, scientific collaborations, and
protein interactions.

It is therefore important to study also random graph models with less
homogeneity, and in particular models with larger tails for the degree distri-
bution. Indeed, several such models have been proposed and studied, more
or less rigorously, see for example Molloy and Reed [36; 37], Kleinberg, Ku-
mar, Raghavan, Rajagopalan and Tomkins [33], Barabási and Albert [4],
Aiello, Chung and Lu [1], Bollobás, Riordan, Spencer and Tusnády [12],
Cooper and Frieze [19], Bollobás and Riordan [10], Buckley and Osthus [16]
and the surveys by Albert and Barabási [2], Dorogovtsev and Mendes [22]
and Bollobás and Riordan [8].

We will describe one class of random graphs that generalize G(n, c/n) but
also allow many less homogeneous examples, for example natural examples
of ‘scale-free’ random graphs, where the degree distribution has a power-law
tail. We believe that when it comes to modelling real-world graphs with,
for example, observed power-laws for vertex degrees, our model provides an
interesting and flexible alternative to existing models.

Nevertheless, we will see that many properties of G(n, c/n) extend to
these random graphs. In particular, we consider the question whether there
exist a giant component or not, and we will, typically, find a phase transition
similar to what happens for G(n, c/n). There are, however, some interesting
twists for some examples.
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We are interested in graphs with a large number of vertices, and in partic-
ular in asymptotics as the number tends to infinity. The graphs we consider
are such that the average degree stays bounded, so they are rather sparse.

These lectures are based on Bollobás, Janson and Riordan [6]. See this
paper for proofs and further details, as well as for further references.

2. Some examples

We will study random graphs where the edges appear independently, as
in G(n, p), but where the probability of an edge may differ between different
pairs of vertices. We begin with some examples of the type of random graph
we consider; further examples are given in Sections 6 and 15–21.

Example 2.1. Let, as above, the vertices be the n integers 1, . . . , n. For
every pair {i, j} with i 6= j, independently of all other pairs, connect i and
j by an edge with probability

pij =
κ(i/n, j/n)

n
(2.1)

for a given symmetric non-negative function κ on (0, 1]2. Taking κ = c con-
stant, we obtain G(n, c/n), but other functions κ give many other interesting
random graphs.

To be precise, this definition requires that κ(i/n, j/n) ≤ n for all i and j,
since otherwise pij > 1. There is no problem if, say, κ is bounded and n is
large; however, we want to allow unbounded κ too. In general, we therefore
modify (2.1) to

pij = min
(κ(i/n, j/n)

n
, 1

)
. (2.2)

For notational simplicity, we will sometimes ignore this in the formulas be-
low; hence, a probability pij > 1 should always be interpreted as 1.

Example 2.2. A specific interesting example of the type in Example 2.1 is
given by the choice κ(x, y) = c/max{x, y}; we then connect i and j by an
edge with probability

pij =
c

max{i, j}
.

Here c > 0 is a parameter that will be kept constant as n varies. (We
assume for simplicity that c ≤ 2; otherwise we have to truncate pij at 1 as
in (2.2).) This example is the uniformly grown random graph, or c/j-graph,
G

1/j
n (c). The graph G1/j

n (c) is thus the graph on {1, 2, . . . , n} in which edges
are present independently, and the probability that for i 6= j the edge ij
is present is pij = c/max{i, j}, or simply c/j if i < j. We return to this
example in Section 16.

In principle, we may take any symmetric non-negative function κ on (0, 1]2

in Example 2.1. However, the function κ is evaluated only at rational points,
so in order to make sense of having κ defined on the entire square, it is
reasonable to impose a continuity condition.
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To assume that κ is continuous (and thus bounded) on the closed unit
square [0, 1]2 would be convenient, but too strong for our purposes since it
excludes the example κ(x, y) = c/max{x, y} just given.

To assume that κ is continuous on the open unit square (0, 1)2 is enough,
but it turns out that it suffices to assume that κ is continuous almost ev-
erywhere in the unit square. This extension is convenient because it allows
piecewise continuous functions as in the following simple example.

Example 2.3. Let M ≥ 2 be a fixed integer and divide (0, 1] into the M
intervals Ik = ((k − 1)/M, k/M ], k = 1, . . . ,M . Let κ be constant on each
square Ik × Il.

This means that the vertices are of M different types, and that the prob-
ability of an edge ij depends (only) on the types of i and j. If n is a
multiple of M , there are n/M vertices of each type. The random graphs
obtained in this way are essentially the same as those defined by Söderberg
[41; 42; 43; 44], see Example 6.2.

3. Variations

We have obtained our edge probabilities pij by evaluating κ at the point
(i/n, j/n). An interesting alternative is to let x1, . . . , xn be n random
points in (0, 1], independent and uniformly distributed, and then take pij =
κ(xi, xj)/n. (As in (2.1) we divide by n in order to keep the average degree
bounded.)

If the vertex labels 1, . . . , n do not have any special significance, we
may order the sequence x1, . . . , xn. The ordered sequence is then close to
1
n ,

2
n , . . . , 1, so it is not surprising that we will obtain a random graph with

the same asymptotic properties as in Example 2.1 above.
As we will see in the general definition below, we can also allow x1, . . . , xn

to be random and dependent; asymptotically, only the density of the points
matter.

There is nothing special with the interval (0, 1] here; it can be replaced by
another space. For example, the finite-type case in Example 2.3 is simpler
described by using a finite type space {1, . . . ,M}, see Example 6.2.

This leads to the general (but long and somewhat technical) definition in
the following section.

4. Definition

The general inhomogeneous random graph GV(n, κ) is defined as follows.
We proceed in two steps, constructing first the vertices and then the edges.
Note that n is a parameter measuring the size of the graph, and we are
primarily interested in asymptotics as n→∞.

In many instances, n is the number of vertices, and for simplicity we begin
with this case.

A vertex space V is a triple (S, µ, (xn)n≥1), such that the following holds.
(i) S is a separable metric space.
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(ii) µ is a Borel probability measure on S, i.e., a (positive) Borel measure
with µ(S) = 1.

(iii) For each n, xn is a deterministic or random sequence (x1, x2, . . . , xn)
of n points in S.

(Formally, we should write xn = (x(n)
1 , . . . , x

(n)
n ), say, as we assume no rela-

tionship between the elements of xn for different n, but we omit this extra
index.)

In general, however, the number of vertices may be random, and we re-
quire only that it is roughly proportional to n. We therefore consider also
the following extension, using vn to denote the number of vertices. There is
in general no need for the parameter n to be integer valued in this version
(but we keep the notation n for consistency), and we assume that I is a
given unbounded subset of (0,∞). Typically, either I = N or I = (0,∞).

A generalized vertex space V is a triple (S, µ, (xn)n≥1), such that the
following holds.

(i) S is a separable metric space.
(ii) µ is a (positive) Borel measure on S with 0 < µ(S) <∞.
(iii) For each n ∈ I, xn is a deterministic or random sequence (x1, x2, . . . , xvn)

of vn points of S, where vn may be random.

(Again, we really should write xn = (x(n)
1 , . . . , x

(n)
vn ), say, but we omit this

extra index for simplicity.)
Let M(S) be the space of all (positive) finite Borel measures on S, and

equip M(S) with the standard weak topology: νn → ν iff
∫
f dνn →

∫
f dν

for all bounded continuous functions f : S → R. Let

µn :=
1
n

vn∑
i=1

δxi

where δx is the Dirac measure at x ∈ S; thus µn is a random element of
M(S). Note that the total mass µn(S) = vn/n; hence µn is a probability
measure if and only if vn = n.

We will further assume, both for vertex spaces and generalized vertex
spaces, that

(iv) µn
p→ µ, as elements of M(S).

Recall that a set A ⊆ S is a µ-continuity set if A is (Borel) measurable and
µ(∂A) = 0, where ∂A is the boundary of A. The convergence condition (iv)
is equivalent to the condition that for every µ-continuity set A,

µn(A) := #{i ≤ vn : xi ∈ A}/n
p→ µ(A).

In particular, it is a consequence of (iv) that vn/n
p→ µ(S). For vertex spaces

this holds trivially; for generalized vertex spaces it says that the number of
vertices is roughly µ(S)n. (The total mass µ(S) appears as a simple scale
factor; it is convenient for applications to allow general finite values of µ(S),
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but it is easy to reduce to the case µ(S) = 1 by reparametrizing and changing
n to µ(S)n.)

We now complete the construction of GV(n, κ). Let V be a (generalized)
vertex space, and let κ be a symmetric non-negative (Borel) measurable
function on S×S. (We call such a function a kernel.) We define the random
graph GV(n, κ) by first letting the vertex set be {1, . . . , vn}. (It is sometimes
more convenient to identify the vertices with the points x1, . . . , xvn in S
rather than integers, but note that this must be done with care if there are
repetitions among the points xi.)

We then add edges as follows. Given the sequence xn, we consider each
pair of vertices {i, j} with i 6= j separately, and let there be an edge between
i and j with probability

pij = min
{κ(xi, xj)

n
, 1

}
.

This random choice is done independently for all pairs {i, j}, conditioned
on xn.

In order to avoid pathologies, we finally assume
(v) κ is continuous a.e. on S × S;
(vi) κ ∈ L1(S × S, µ× µ), i.e.,∫∫

S2

κ(x, y) dµ(x) dµ(y) <∞;

(vii)
1
n

E e
(
GV(n, κ)

)
→ 1

2

∫∫
S2

κ(x, y) dµ(x) dµ(y).

We say that the kernel κ is graphical on the (generalized) vertex space
V = (S, µ, (xn)n≥1) when the conditions (v)–(vii) hold.

It can be shown that (vii) follows from the other assumptions if κ is
bounded and V is a vertex space.

As remarked above, the number of vertices v(GV(n, κ)) = vn is roughly
proportional to n; more precisely,

v(GV(n, κ))
n

=
vn
n

= µn(S)
p→ µ(S).

We sometimes suppress the dependence on V, writingG(n, κ) forGV(n, κ).

Remark 4.1. Some continuity condition on κ is necessary since our defini-
tion of vertex spaces is so general, and the a.s. continuity assumed in (v) is
a weak restriction. See further the discussion in Section 2.

However, this continuity condition is not necessary in the important case
of a vertex space or generalized vertex space where the points xi are i.i.d.,
with the common distribution µ (see Section 3 and Examples 6.4 and 6.5;
such vertex spaces are also commonly used in, e.g., the rank one case dis-
cussed in Section 19). In fact, in this case, the results can be extended to
random graphs defined using a measure space (S, µ) without any topology
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involved. This will be discussed in a future paper Bollobás, Janson and
Riordan [7].

Remark 4.2. Some condition of the type (vii) is necessary in order to
avoid certain pathologies, see Bollobás, Janson and Riordan [6, Example
8.6]. The version given in (vii) is convenient for many applications, since
the expectation on the left hand side usually is easily computed, and the
condition thus is easy to verify. For example, note that the condition always
holds, by a trivial calculation, for a vertex space where the xi are random
i.i.d., with the distribution µ.

Nevertheless, there are applications where the condition is less natural,
for example for a generalized vertex space where the number vn of vertices
is random with so large tails that the mean E vn = ∞ (but still vn/n

p→
µ(S) <∞). In such cases, it is better to replace (vii) by a condition involving
convergence in probability rather than convergence of the mean, but we omit
the details. (Alternatively, one can reduce to the case above by suitable
conditioning, thus eliminating bad events of small probability. In the case
with a random vn just mentioned, one might, for example, condition on
vn ≤ 2µ(S)n.)

More generally, we may consider a sequence (κn) of kernels on S and the
corresponding random graphs GV(n, κn). We say that the sequence (κn) of
kernels on (S, µ) is graphical on V with limit κ if

(v) κ is continuous a.e. on S × S;
(v’) for a.e. (y, z) ∈ S2, yn → y and zn → z imply that κn(yn, zn) →

κ(y, z);
(vi) κ ∈ L1(S × S, µ× µ);

(vii’)
1
n

E e(GV(n, κn)) → 1
2

∫∫
S2

κ(x, y) dµ(x) dµ(y).

We will see that most results for GV(n, κ) hold for GV(n, κn) too.

5. Further variations

A common variation of the construction above is to let the edges be
generated with probability

pij := 1− exp
(
−κ(xi, xj)/n

)
, (5.1)

rather than by min
{
κ(xi, xj)/n, 1

}
as in (2.2). This is the result if we regard

κ as intensities of Poisson processes of edges, and construct a multigraph by
adding a Poisson number of edges between i and j, with mean κ(xi, xj)/n,
and then merge multiple edges. (There will be very few multiple edges, and
for many purposes it does not matter whether we merge them or not.)

We can treat this version by regarding it as an instance of GV(n, κn) with

κn(x, y) := n
(
1− exp(−κ(x, y)/n)

)
.
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It is easily seen that the sequence (κn) is graphical with limit κ if κ is
graphical.

Another alternative, studied by Britton, Deijfen and Martin-Löf [14] in a
special case, is to let

pij
1− pij

=
κ(xi, xj)

n
,

i.e., to take

pij :=
κ(xi, xj)

n+ κ(xi, xj)
. (5.2)

Again, this is an instance of GV(n, κn), now with

κn(x, y) :=
κ(x, y)

n+ κ(x, y)
,

and again the sequence (κn) is graphical with limit κ if κ is graphical.
The version (5.2) is sometimes simpler than our standard one (2.2). In

particular, if the sequence xn is deterministic, and the kernel κ has rank
1, i.e., κ(x, y) = ψ(x)ψ(y) for some function ψ, then the probability of
obtaining a specific graph G on the given vertex set equals

C
∏
i

ψ(xi)di

where di is the degree of vertex i and C is a normalization constant. The
probability thus depends on the degree sequence only. (In other words, using
statistical terminology, the degree sequence is a sufficient statistic.)

Note further that both (5.1) and (5.2) yield pij ∈ [0, 1), avoiding the
minor complication with values greater than 1 that can occur for (2.1).

6. More examples

Example 6.1 (the Erdős-Rényi random graph). If κ = c is constant, then
the edge probabilities pij given by (2.2) are all equal to c/n (for n > c).
Thus any choice of vertex space gives the classical Erdős–Rényi random
graph G(n, c/n). (In fact, Erdős and Rényi [26, 27] studied the closely
related graph G(n,m) with a given number of edges, but as is well-known,
the two random graph models are very similar (if we take m = bcn/2c, say)
and all our results on sizes of the largest components transfer easily from
one model to the other.)

Example 6.2 (the finite-type case). Let S = {s1, . . . , sr} be finite. Then κ
is an r × r matrix. In this case, G(n, κ) has vertices of r different types (or
colours), say ni vertices of type i, with two vertices of types i and j joined
by an edge with probability n−1κ(i, j) (for n ≥ maxκ). The condition (iv)
means that ni/n→ µi for each i (in probability if the ni are random), where
µi := µ{i} ≥ 0.

This case has been studied by Söderberg [41; 42; 43; 44], who noted our
Theorem 9.1 in this case (with κn = κ for all n).
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Note that Example 2.3 is equivalent to an example of this type.

Remark 6.3. Most of our proofs are based on a disguised form of the finite
case, described by the following definition. (This includes Example 2.3 as a
typical case.)

A kernel κ on a (generalized) vertex space (S, µ, (xn)) is regular finitary
if S has a finite partition into µ-continuity sets S1, . . . , Sr such that κ is
constant on each Si × Sj .

Clearly, if κ is regular finitary on (S, µ, (xn)) then the random graph
GV(n, κ) has the same distribution as a finite-type graph GV ′

(n, κ′), V ′ =
(S ′, µ′, (yn)n≥1): take S ′ = {1, . . . , r}, let yk = i whenever xk ∈ Si, and
define µ′{i} and κ′(i, j) in the obvious way.

A finite-type or regular finitary kernel κ on a vertex space V is automat-
ically graphical on V.

Example 6.4 (i.i.d. vertices). For any separable metric space S equipped
with a probability measure µ, we can construct a vertex space by take
x1, . . . , xn to be i.i.d. random points in S with distribution µ. (This has
been proposed by, for example, Söderberg [41].) This is a standard setting,
and various examples are obtained by choosing suitable kernels κ.

Example 6.5 (Poisson process graph). For any separable metric space S
equipped with a probability measure µ, and any λ > 0, we can construct
a generalized vertex space by letting x1, . . . , xN be the points of a Poisson
process on S with intensity measure λµ. In other words, N has a Poisson
distribution Po(λ), and, given N , the points are i.i.d. as in the preceding
example. For any kernel κ on S, we then a random graph G̃λ(κ), where we
use λ as a parameter instead of n.

Conditioned onN = m, this random graph is justG(m, κ̃), with x1, . . . , xm
as in the preceding example and κ̃ := (m/λ)κ.

7. Graph limits

A very similar construction of random graphs has been used by Lovász and
Szegedy [34] in their study of graph limits, see further e.g. Borgs, Chayes,
Lovász, Sós and Vesztergombi [13] for further developments. More precisely,
these authors assume that the kernel κ satisfies 0 ≤ κ ≤ 1 and consider the
random graph defined as above, with xi i.i.d. on S as in Example 6.4, and
usually taking S = [0, 1] with Lebesgue measure, but they take

pij = κ(xi, xj) (7.1)

instead of our (2.2). For each finite n, this gives the same random graphs
as our definition (with this vertex space), by changing the notation and
rescaling κ, but the behaviours as n→∞ are different; we consider the
sparse case where the average degrees stay bounded and the number of
edges grows like n, while they study the dense case where the number of
edges grows like n2.
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This version of the construction, using (7.1) can also be used with an
infinite number of vertices. By a theorem by Aldous [3] and Hoover [29],
the resulting random graphs are exactly the exchangeable infinite random
graphs. See further Diaconis and Janson [21] for the connection between
exchangeable infinite random graphs and the theory of graph limits.

8. More definitions

We are going to state our main results in the following sections, but
first we need some more definitions. For some of the results we need one
additional condition.

Definition. A kernel κ on a (generalized) vertex space (S, µ, (xn)) is re-
ducible if ∃A ⊂ S with 0 < µ(A) < µ(S) such that κ = 0 a.e. on A× (S \A);
otherwise κ is irreducible.

Thus κ is irreducible if A ⊆ S with κ = 0 a.e. on A× (S \A) implies that
µ(A) = 0 or µ(S).

Roughly speaking, κ is reducible if the vertex set of GV(n, κ) can be split
into two parts so that the probability of an edge from one part to the other
is zero, and irreducible otherwise.

A branching process. A main tool to study components of G(n, κ) is a
branching process approximation, generalizing the classical branching pro-
cess approximation for G(n, p) (see, e.g., [31]). We use the multi-type
Galton–Watson branching process with type space S, where a particle of
type x ∈ S is replaced in the next generation by a set of particles dis-
tributed as a Poisson process on S with intensity κ(x, y) dµ(y). (Thus, the
number of children with types in a subset A ⊆ S has a Poisson distribution
with mean

∫
A κ(x, y) dµ(y), and these numbers are independent for disjoint

sets A and for different particles.) We denote this branching process, started
with a single particle of type x, by Xκ(x).

Let ρ(κ;x) be the probability that this branching process Xκ(x) survives
for eternity.

We further define

ρ(κ) :=
∫
S
ρ(κ;x) dµ(x).

When µ is a probability measure, this is the survival probability for the
branching process above started with a single random point with distribution
µ.

An integral operator. Let Tκ be the integral operator on (S, µ) with
kernel κ, defined by

(Tκf)(x) =
∫
S
κ(x, y)f(y) dµ(y),

for any (measurable) function f such that this integral is defined (finite or
+∞) for a.e. x. Note that Tκf is defined for every f ≥ 0, with 0 ≤ Tκf ≤ ∞.
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If κ ∈ L1(S × S), as we assume, then Tκf is also defined for every bounded
f ; in this case Tκf ∈ L1(S) and thus Tκf is finite a.e.

We define

‖Tκ‖ := sup
{
‖Tκf‖2 : f ≥ 0, ‖f‖2 ≤ 1

}
≤ ∞.

Remark 8.1. When finite, ‖Tκ‖ is the norm of Tκ as an operator in L2(S, µ);
it is infinite if Tκ does not define a bounded operator in L2.

Trivially, ‖Tκ‖ is at most the Hilbert–Schmidt norm of Tκ:

‖Tκ‖ ≤ ‖Tκ‖HS := ‖κ‖L2(S×S) =
(∫∫

S2

κ(x, y)2 dµ(x) dµ(y)
)1/2

.

In particular, ‖Tκ‖ <∞ if κ is bounded.

Remark 8.2. Since Tκ is symmetric, ‖Tκ‖ equals also the spectral radius of
the operator Tκ.

Define the non-linear operator Φκ by

Φκf := 1− e−Tκf

for f ≥ 0. For such f we have 0 ≤ Tκf ≤ ∞, and thus 0 ≤ Φκf ≤ 1. We
can characterize ρ(κ;x), and thus ρ(κ), in terms of the non-linear operator
Φκ as follows.

There is a (necessarily unique) maximum solution ρ̃κ to

Φκ(ρ̃κ) = ρ̃κ, (8.1)

i.e., a solution that pointwise dominates all other solutions. Furthermore,
the survival probability ρ(κ;x) = ρ̃κ(x) for a.e. x, and

Φκ(ρκ) = ρκ a.e.,

where the function ρκ is defined by ρκ(x) := ρ(κ;x).
If ‖Tκ‖ ≤ 1, then ρ̃κ is identically zero, and this is thus the only solution.

If ‖Tκ‖ > 1, then ρ̃κ is positive on a set of positive measure. Thus ρ(κ) > 0
if and only if ‖Tκ‖ > 1. In other words, the branching process Xκ (with a
random starting point) a.s. dies out if and only if ‖Tκ‖ ≤ 1.

Furthermore, If ‖Tκ‖ > 1 and κ is irreducible, then ρ̃κ is the unique
non-zero solution of (8.1), and ρ̃κ = ρκ > 0 a.e.

Example 8.3 (the Erdős-Rényi random graph). In the Erdős–Rényi case,
Example 6.1, the simplest choice is to let S consist of a single point. Then
the operator Tκ is simply multiplication by c, so ‖Tκ‖ = c and Corollary 9.2
below yields the classical result that there is a phase transition at c = 1.
Furthermore, the multi-type branching process Xc below reduces in this case
to a single-type Galton–Watson process with Poisson offspring distribution
Po(c), and the function ρ(c;x) below reduces to the single value ρ(c), which
is the survival probability ρ(c) of this branching process and is given by the
formula

ρ(c) = 1− e−cρ(c), with ρ(c) > 0 if c > 1. (8.2)
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Consequently, in this case Theorem 9.1 on the size of the giant component
reduces to the classical result of Erdős and Rényi [26]. (Note that (8.1) in
this case reduces to (8.2).)

Example 8.4 (the finite-type case). In the finite-type case Example 6.2,
the operator Tκ is given by the matrix (κ(i, j)µj)ij , and ‖Tκ‖ may be found
by calculating the largest eigenvalue of this matrix.

9. Giant component

We denote the orders of the components of a graph G by C1(G) ≥
C2(G) ≥ . . . , with Cj(G) = 0 if G has fewer than j components. We
let Nk(G) denote the total number of vertices in components of order k,
and write N≥k(G) for

∑
j≥kNj(G), the number of vertices in components

of order at least k. Our results are asymptotic, and all unspecified limits
are taken as n→∞.

Theorem 9.1. Let (κn) be a graphical sequence of kernels on a (generalized)
vertex space V with limit κ.

(i) If ‖Tκ‖ ≤ 1, then C1

(
GV(n, κn)

)
= op(n), while if ‖Tκ‖ > 1, then

C1

(
GV(n, κn)

)
= Θ(n) whp.

(ii) For any ε > 0, whp we have
1
n
C1

(
GV(n, κn)

)
≤ ρ(κ) + ε.

(iii) If κ is irreducible, then
1
n
C1(GV(n, κn))

p→ ρ(κ).

In all cases ρ(κ) < 1; furthermore, ρ(κ) > 0 if and only if ‖Tκ‖ > 1.

As customary, we say that a sequence of random graphs Gn (with n
vertices in Gn) has a giant component if C1(Gn) = Θ(n) whp.

Corollary 9.2. Let κ be a graphical kernel on a (generalized) vertex space V,
and consider the random graphs GV(n, cκ) where c > 0 is a constant. Then
the threshold for the existence of a giant component is c = ‖Tκ‖−1. More
precisely, if c ≤ ‖Tκ‖−1, then C1

(
GV(n, cκ)

)
= op(n), while if c > ‖Tκ‖−1

and κ is irreducible, then C1

(
GV(n, cκ)

)
= ρ(cκ)n+ op(n) = Θp(n).

Corollary 9.3. Let κ be a graphical kernel on a (generalized) vertex space
V. Then the property that GV(n, cκ) has whp a giant component holds for
every c > 0 if and only if ‖Tκ‖ = ∞. Otherwise it has a finite threshold
c0 > 0.

In the light of the results above, we say that a kernel κ is subcritical if
‖Tκ‖ < 1, critical if ‖Tκ‖ = 1, and supercritical if ‖Tκ‖ > 1. We use the
same expressions for a random graph G(n, κ) and a branching process Xκ;
this agrees with the standard notation for branching processes.
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The number of edges in the graph at the point where the giant component
emerges is maximal in the classical Erdős–Rényi case. (For normalization,
we consider vertex spaces only.)

Proposition 9.4. Let κn be a graphical sequence of kernels on a vertex
space V with limit κ, and assume that κ is critical, i.e. ‖Tκ‖ = 1. Then
1
ne(G

V(n, κn))
p→ 1

2

∫∫
κ ≤ 1/2, with equality in the uniform case κ = 1.

(This should not be surprising, since an inhomogeneity typically means
that some part of the graph has higher density than the average, which
makes it easier to creat a large component there.)

We can also determine the asymptotic number of edges in the giant com-
ponent. As this is not always uniquely defined, for any graph G, let C1(G) be
the largest component of G, i.e., the component with most vertices, chosen
according to any fixed rule if there is a tie. In order to state the next result
concisely, let

ζ(κ) :=
1
2

∫∫
S2

κ(x, y)
(
ρ(κ;x) + ρ(κ; y) − ρ(κ;x)ρ(κ; y)

)
dµ(x) dµ(y).

Theorem 9.5. Let (κn) be a graphical sequence of kernels on a (generalized)
vertex space V with irreducible limit κ. Then

1
n
e
(
C1(GV(n, κn))

) p→ ζ(κ).

The giant component is whp unique when it exists; the second largest
component is much smaller. Indeed, only op(n) vertices are in ‘large’ com-
ponents other than the largest.

Theorem 9.6. Let (κn) be a graphical sequence of kernels on a (generalized)
vertex space V with irreducible limit κ, and let Gn = GV(n, κn). If ω(n) →
∞, then ∑

j≥2: Cj(Gn)≥ω(n)

Cj(Gn) = op(n).

In particular,
C2(Gn) = op(n).

Remark 9.7. If κ and κ′ are two kernels with κ′ ≥ κ, then one can couple
the corresponding graphs or branching processes so that G(n, κ) ⊆ G(n, κ′)
or Xκ ⊆ Xκ′ . Thus ρ(κ) ≤ ρ(κ′).

If κ is irreducible and ρ(κ) > 0, then ρ(κ′) > ρ(κ) unless κ′ = κ a.e.
Similarly, the threshold c0(κ′) := ‖Tκ′‖−1 is at most c0(κ) := ‖Tκ‖−1.
Here, however, somewhat surprisingly, we may have c0(κ′) = c0(κ) even

if κ′ > κ, see Section 18 for an example. On the other hand, it is easily
seen that if Tκ is compact and κ′ > κ on a set of positive measure, then
‖Tκ′‖ > ‖Tκ‖ and thus c0(κ′) < c0(κ).
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10. Stability

The giant component of Gn = GV(n, κn) is stable in the sense that its
size does not change much if we add or delete a few vertices or edges. Note
that the vertices or edges added or deleted do not have to be random or
independent of the existing graph; they can be chosen by an adversary after
inspecting the whole of Gn.

Theorem 10.1. Let (κn) be a graphical sequence of kernels on a (general-
ized) vertex space V with irreducible limit κ, and let Gn = GV(n, κn). For
every ε > 0 there is a δ > 0 (depending on κ) such that, whp,

(ρ(κ)− ε)n ≤ C1(G′
n) ≤ (ρ(κ) + ε)n

for every graph G′
n that may be obtained from Gn by deleting at most δn

vertices and their incident edges, and then adding or deleting at most δn
edges.

In particular, if G′
n is a graph on [n] = 1, . . . , n with e(G′

n4Gn) = op(n)
then

C1(G′
n) = C1(Gn) + op(n) = ρ(κ)n+ op(n).

As pointed out by Britton and Martin-Löf [15], the theorem has the fol-
lowing interpretation: suppose that Gn represents the network of contacts
that may allow the spread of an infectious disease from person to person,
and that we wish to eliminate the possibility of an epidemic by vaccinating
some of the population. Even if the entire network of contacts is known, if
the source of the infection is not known, a significant (constant, as n→∞)
proportion of the population must be vaccinated: otherwise, there is still a
giant component in the graph on the unvaccinated people, and if the infec-
tion starts at one of its vertices, it spreads to Θ(n) people.

11. More on the phase transition

Fix a graphical kernel κ on a (generalized) vertex space V, and study
GV(n, cκ) for a real parameter c > 0 as in the corollary above.

By Theorem 9.1, the size of the largest component of GV(n, cκ) is de-
scribed by the function ρ(cκ), which is 0 for c ≤ c0 := ‖Tκ‖−1 and strictly
positive for larger c. With V and κ fixed, let us denote this function by ρ(c),
c > 0. It turns out that ρ(c) is continuous on (0,∞).

Since ρ(c) = 0 for c ≤ c0 but not for larger c, the function ρ is not analytic
at c0; in physical terminology, there is a phase transition at c0.

For the classical Erdős–Rényi random graph G(n, c/n) (obtained with
κ = 1), it is well-known that ρ is continuous but the first derivative has
a jump at c0 = 1; more precisely, ρ′ jumps from 0 to ρ′+(c0) = 2. For
finite d, we shall say that the phase transition in GV(n, κ) has exponent d
if ρ(c0 + ε) = Θ(εd) as ε ↘ 0. As we have just noted, in G(n, c/n) the
phase transition has exponent 1. If ρ(c0 + ε) = o(εd) for all d, we say that
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the phase transition has infinite exponent. We are deliberately avoiding the
physical term ‘order’, as it is not used in a consistent way in this context.

It has been shown (Dorogovtsev, Mendes and Samukhin (2001), Durrett
(2003) and Bollobás, Janson and Riordan (2005)) that in the case S = (0, 1]
and κ(x, y) = 1/(x ∨ y), the phase transition ‘is of infinite order’, i.e., has
infinite exponent. We shall later see in that it is also possible to have
a phase transition with any finite exponent larger than 1 (including non-
integer values).

The next theorem shows that the phase transition has exponent 1 for a
wide class of kernels κ, including all bounded κ.

Theorem 11.1. Let κ be a kernel on a (generalized) vertex space (S, µ, (xn)).
Suppose that κ is irreducible, and that

sup
x

∫
S
κ(x, y)2 dµ(y) <∞.

(i) The function c 7→ ρ(c) := ρ(cκ) is analytic except at c0 := ‖Tκ‖−1.
(ii) Furthermore, Tκ has an eigenfunction ψ of eigenvalue ‖Tκ‖ < ∞,

and every such eigenfunction is bounded and satisfies

ρ(c0 + ε) = 2c−1
0

∫
S ψ

∫
S ψ

2∫
S ψ

3
ε+O(ε2), ε > 0, (11.1)

so ρ′+(c0) = 2c−1
0

∫
S ψ

∫
S ψ

2/
∫
S ψ

3 > 0 and ρ has a phase transition
at c0 with exponent 1.

Corollary 11.2. Let κ be an irreducible kernel such that (11.1) holds, and
let c0 := ‖Tκ‖−1 > 0. Then c0ρ

′
+(c0) ≤ 2, with equality in the classical

Erdős–Rényi case.

12. Bounds on the small components

For the classical random graph G(n, c/n) it is well-known that in the
subcritical (c < 1) case, C1 = O(log n) whp, and that in the supercritical
(c > 1) case, C2 = O(log n) whp. If we add some conditions, we obtain
similar results. As before, we write Gn for GV(n, κn).

Theorem 12.1. Let (κn) be a graphical sequence of kernels on a (general-
ized) vertex space V with limit κ.

(i) If κ is subcritical, i.e., ‖Tκ‖ < 1, and supx,y,n κn(x, y) < ∞, then
C1(Gn) = O(log n) whp.

(ii) If κ is supercritical, i.e., ‖Tκ‖ > 1, κ is irreducible, and either
infx,y,n κn(x, y) > 0 or supx,y,n κn(x, y) <∞, then C2(Gn) = O(log n)
whp.

Note that in part (ii) we draw the same conclusion from the very different
assumptions infx,y,n κn(x, y) > 0 and supx,y,n κn(x, y) < ∞. There is no
similar result for the subcritical case assuming only that infx,y,n κn(x, y) > 0.
Example: The random graph G

1/j
n (c) defined in Example 2.2 with 0 < c <
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1/4 is subcritical and satisfies C1(G1/j
n (c)) = nΘ(1) whp, see Bollobás, Janson

and Riordan [5].

13. Degree sequence

The degree of a vertex of a given type x is asymptotically Poisson with a
mean

λ(x) :=
∫
S
κ(x, y) dµ(y)

that depends on x. This leads to a mixed Poisson distribution for the degree
D of a random vertex of GV(n, κn). We write Zk for the number of vertices
of GV(n, κn) with degree k.

Theorem 13.1. Let (κn) be a graphical sequence of kernels on a (gener-
alized) vertex space V with limit κ. Define λ(x) as above, and let Ξ have
the mixed Poisson distribution

∫
S Po(λ(x)) dµ(x)/µ(S). Then, for any fixed

k ≥ 0,

Zk/n
p→ P(Ξ = k) =

∫
S

λ(x)k

k!
e−λ(x) dµ(x).

In other words, if D is the degree of a random vertex of GV(n, κn), and
we normalize so that µ(S) = 1, then

L(D | GV(n, κn))
p→ L(Ξ) =

∫
S

Po(λ(x)) dµ(x).

14. Distances between vertices

Let us write d(v, w) for the graph distance between two vertices of Gn =
GV(n, κn), which we take to be infinite if they lie in different components.

We first consider the distance between two random vertices. In the sub-
critical and critical cases, when all components are small, this distance is
whp ∞. In the supercritical case, we have the following result. Equivalently,
the distance between two random vertices in the giant component is whp
(1 + o(1)) log n/ log ‖Tκ‖.

Theorem 14.1. Let κn be a graphical sequence of kernels on a (generalized)
vertex space V with limit κ, with ‖Tκ‖ > 1. Let Gn = GV(n, κn), and let v
and w be two independently chosen random vertices in Gn.

(i) If κ is irreducible and 1 < ‖Tκ‖ <∞, then(
d(v, w)/ log n | d(v, w) <∞

) p→ 1/ log ‖Tκ‖

(ii) If κ is irreducible and ‖Tκ‖ = ∞, then there is a function f(n) =
o(log n) such that

P
(
d(v, w) ≤ f(n) | d(v, w) <∞

)
→ 1.
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Secondly, we consider the maximal finite distance. We define the ‘diam-
eter’ of Gn as

diam(Gn) := max{d(v, w) : v, w ∈ V (G), d(v, w) <∞},

the maximum of the diameters of the components of Gn.

Theorem 14.2. Let κ be a kernel on a finite (generalized) vertex space
(S, µ, (xn)n≥1), S = {1, 2, . . . , r}, with µ({i}) > 0 for each i. If 0 < ‖Tκ‖ <
1, then

diam(Gn)
log n

p→ 1
log ‖Tκ‖−1

as n→∞, where Gn = GV(n, κ). If ‖Tκ‖ > 1 and κ is irreducible, then

diam(Gn)
log n

p→ 2
log ‖Tκ̂‖−1

+
1

log ‖Tκ‖
,

where κ̂ is the dual kernel to κ, defined by κ̂(x, y) = κ(x, y) on (S, µ̂), where
the measure µ̂ is defined by

dµ̂(x) = (1− ρ(κ;x)) dµ(x).

Thus, in the supercritical case, the maximal finite distance is of the same
order log n as the typical finite distances, but the constants differ.

15. Even more examples

Example 15.1 (The homogeneous case). More generally, let the vertex
space (S, µ, (xn)n≥1) be arbitrary, and let κ be irreducible and such that∫
S κ(x, y) dµ(y) is independent of x ∈ S, i.e., that∫

S
κ(x, y) dµ(y) = c for every x,

for some constant c. (This says roughly that, asymptotically, all vertices
have the same average degree.)

Then Tκ1 = c, so the constant function 1 is a positive eigenfunction
with eigenvalue c, and thus ‖Tκ‖ = c, and by Theorem 9.1 there is a giant
component (and ρ(κ) > 0) if and only if c > 1.

In the branching process Xκ, the number of children of each particle has
a Po(c) distribution. Hence, ignoring the types of the particles, the distri-
butions of the process Xκ and the single-type process with Po(c) offspring
are the same. In particular, ρ(κ) = ρ(c), and ρ(κ) = ρ(c) is given by the
same equation (8.2) as in the Erdős–Rényi case Example 6.1.

Thus, the global behaviour of G(n, κ) is exactly the same as that of
G(n, c/n), at least in terms of the size of the giant component. The lo-
cal behaviour can be quite different, though. For example, G(n, κ) may
have many more triangles or other small cycles than G(n, c/n). On the
other hand, the vertex degrees have an asymptotic Po(c) distribution just
as in G(n, c/n).
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A natural example of such a homogeneous κ is given by taking S as
(0, 1] (now better regarded as the circle T), µ as Lebesgue measure, and
κ(x, y) = h(x − y) for an even function h ≥ 0 of period 1. For example, h
can be constant on a small interval (−δ, δ) and vanish outside it; this gives
a modification of G(n, c/n) where only “short” edges are allowed.

More generally, S can be any compact homogeneous space, for example
a sphere, with Haar measure µ and an invariant metric d, and κ(x, y) a
function of the distance d(x, y).

Example 15.2. Take S = (0, 1] with µ the Lebesgue measure, and let
xi = i/n. Set κ(x, y) = 1[x+ y ≤ 1] and consider the kernel cκ, so that

pij =

{
c/n, i+ j ≤ n;
0, i+ j > n.

Thus G(n, cκ) can be obtained from the random graph G(n, c/n) by deleting
all edges ij with i+ j > n.

The operator Tκ is compact, and it easy to see that it has eigenvalues
(−1)kω−1

k and eigenfunctions cos(ωkx), with ωk = (k + 1/2)π, k = 0, 1, . . . .
Hence ‖Tκ‖ = 2/π and the critical value is c0 = π/2. Theorem 11.1 shows
that at the critical value we have c0ρ′+(c0) = 3/2.

Example 15.3 (Edge percolation). Let κ be an irreducible graphical ker-
nel on a (generalized) vertex space V with ‖Tκ‖ > 1, and let 0 < p ≤ 1.
Independently of everything else, keep each edge in G(n, κ) with probabil-
ity p and delete it with probability 1 − p. Denote the resulting graph by
G〈p〉(n, κ).

This random graph G〈p〉(n, κ) is nothing but G(n, κ̃n), where

κ̃n(x, y) := p
(
κ(x, y) ∧ n

)
.

Clearly, xn → x and yn → y imply κ̃n(xn, yn) → pκ(x, y), provided (x, y) is
a point of continuity of κ. Furthermore, E e

(
G〈p〉(n, κ)

)
= pE e

(
G(n, κ)

)
→

p1
2

∫∫
κ. Hence, Theorem 9.1 applies with κ replaced by pκ, so

n−1C1

(
G〈p〉(n, κ)

) p→ ρ(pκ).

In particular, G〈p〉(n, κ) has whp a component of order Θ(n) if and only if
‖Tpκ‖ > 1, i.e., if p > ‖Tκ‖−1.

Example 15.4 (Vertex percolation). Independently of everything else, keep
each vertex in G(n, κ) with probability p and delete it with probability 1−p.
Denote the resulting graph by G[p](n, κ).
G[p](n, κ) is the graphG(m,κn) obtained from a random sample x̃1, . . . , x̃m

of the points x1, . . . , xn, rather than from all of them.
Theorem 9.1 applies, with µ replaced by pµ, and it follows that

n−1C1

(
G[p](n, κ)

) p→ pρ(pκ).
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In particular, G[p](n, κ) has whp a component of order Θ(n) if and only if
‖Tpκ‖ > 1, i.e. if p > ‖Tκ‖−1. We thus obtain the same threshold for vertex
percolation in G(n, κ) as for edge percolation.

In the final sections we study further examples, yielding random graph
models that have been previously studied by various authors.

16. Dubins’ model

A common setting is the following, encountered already in Example 2.1:
the vertex space V is (S, µ, (xn)n≥1), where S = (0, 1], µ is the Lebesgue
measure, and xn = (x1, . . . , xn) with xi = i/n. In this case, we have pij =
κ(i/n, j/n)/n∧1 for the probability of an edge between vertices i and j. We
shall in this and the following sections consider several choices of κ in some
detail.

Observe first that if κ is a positive function on (0,∞)2 that is homogeneous
of degree −1, then (2.2) yields pij = κ(i, j) ∧ 1. Since this does not depend
on n, in this case we can also consider the infinite graph G(∞, κ), defined
in the same way as Gn = GV(n, κ) but on the vertex set {1, 2, . . . }. Note
that the graphs GV(n, κ) are induced subgraphs of G(∞, κ) and that we can
construct them by successively adding new vertices, and for each new vertex
an appropriate random set of edges to earlier vertices.

We first consider, as in Example 2.2, κ(x, y) = c/(x ∨ y) with c > 0, so
that if j ≥ c then

pij = c/j for i < j. (16.1)
In this case we can regard GV(n, κ) as a sequence of graphs grown by adding
new vertices one at a time where, when vertex k is added, it gets Bi(k−1, c/k)
edges, whose other endpoints are chosen uniformly among the other vertices.
(We might instead take Po(c)∧ (k− 1) new edges, without any difference in
the asymptotic results below.)

This infinite graph G(∞, κ) was considered by Dubins in 1984, who asked
when G(∞, κ) is a.s. connected. Dubins’ question was answered partially
by Kalikow and Weiss [32]. A little later Shepp [40] proved that G(∞, κ) is
a.s. connected if and only if c > 1/4. This result was generalized to more
general homogeneous kernels by Durrett and Kesten [25].

The finite random graph GV(n, κ) with this κ, i.e., with edge probabilities
given by (16.1), has been studied by Durrett [24], who points out that it
has the same critical value c = 1/4 for the emergence of a giant component
as the infinite version has for connectedness, and by Bollobás, Janson and
Riordan [5] who rigorously show that this example has a phase transition
with infinite exponent. More precisely, denoting ρ(κ) by ρ(c), it was shown
by Riordan [39] that

ρ(1/4 + ε) = exp
(
−π

2 ε
−1/2 +O(log ε)

)
. (16.2)

A similar formula for the closely related CHKNS model (see Section 18),
introduced by Callaway, Hopcroft, Kleinberg, Newman and Strogatz [17],
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had been given earlier by Dorogovtsev, Mendes and Samukhin [23] using
non-rigorous methods.

To find the critical value by our methods, we have to find the norm of Tκ on
L2(0, 1). Using the isometry U : f 7→ e−x/2f(e−x) of L2(0, 1) onto L2(0,∞),
we may instead consider T̃κ := UTκU

−1, which by a simple calculation is
the integral operator on L2(0,∞) with kernel

κ̃(x, y) = e−x/2κ(e−x, e−y)e−y/2 = ce−x/2−y/2+x∧y = ce−|x−y|/2.

Hence T̃κ is the restriction to (0,∞) of the convolution with h(x) := ce−|x|/2.
Because of translation invariance, it is easily seen that T̃κ has the same norm
as convolution with h on L2(−∞,∞), and taking the Fourier transform we
find

‖Tκ‖ = ‖T̃κ‖ = ‖f 7→ h ∗ f‖L2(−∞,∞) = sup
ξ∈R

|ĥ(ξ)| =
∫ ∞

−∞
h(x) dx = 4c.

Thus, Theorem 9.1 shows that there is a giant component if and only if
c > 1/4, as shown in Durrett [24] and [5].

To find the size of the giant component is more challenging, and we refer
to Riordan [39] for a proof of (16.2). Note that Theorem 11.1(ii) does not
apply. Indeed, it is easy to see that Tκ is a non-compact operator, and that
it has no eigenfunctions at all in L2. We suspect that this is connected to
the fact that the phase transition has infinite exponent.

17. The mean-field scale-free model

Another interesting case with a homogeneous kernel as in Section 16 is
κ(x, y) = c/

√
xy with c > 0; then, for ij ≥ c2, we have

pij = c/
√
ij. (17.1)

This model has been studied in detail by Riordan [39]. Considering the
sequence GV(n, κ) as a growing graph, in this case, together with each new
vertex we add a number of edges that has approximately a Poisson Po(2c)
distribution; the other endpoint of each edge is chosen with probability
proportional to i−1/2, which is approximately proportional to the degree
of vertex i. Hence, this random graph model resembles the growth with
preferential attachment model of Barabási and Albert [4], which was made
precise as the LCD model by Bollobás and Riordan [10]; see also [39].

In fact, up to a factor of 1 + o(i−1) in the edge probabilities, the model
defined by (17.1) is the so called ‘mean-field’ version of the Barabási–Albert
model, having the same individual edge probabilities, but with edges present
independently. (This by now common use of ‘mean-field’ is not the standard
one in physics, where it normally means that all vertices interact equally.)

In this case, Tκ is an unbounded operator, because x−1/2 6∈ L2(0, 1), and
thus there is no threshold. In other words, ρ(c) := ρ(κ) > 0 for every c > 0.
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As shown by Riordan [39], ρ(c) grows very slowly at first in this case too;
more precisely,

ρ(c) ∼ 2e1−γ exp
(
−1/(2c)

)
as c→ 0, (17.2)

where γ is Euler’s constant. The result in [39] for the Barabási–Albert model
is different, showing that in this model the dependence between edges is
important.

Remark 17.1. Random graphs related to the ones defined here and in
Section 16 but with some dependence between edges (and thus not covered
by the present paper) can be obtained by adding at each new vertex a
number of edges with some other distribution, for example Bi(m, p) for some
fixed m and p. Such random graphs have been considered in [9; 11; 20; 39],
and these papers show that not only the expected numbers of edges added
at each step are important, but also the variances; the edge dependencies
shift the threshold.

18. The CHKNS model

The CHKNS model of Callaway, Hopcroft, Kleinberg, Newman and Stro-
gatz [17] grows from a single vertex; vertices are added one by one, and after
each vertex is added, an edge is added with probability δ; the endpoints are
chosen uniformly among all existing vertices. (Multiple edges are allowed;
this does not matter for the asymptotics.)

Following Durrett [24], we consider a modification (which is perhaps at
least as natural): after adding each vertex, add a Poisson Po(δ) number of
edges to the graph, again choosing the endpoints of these edges uniformly
at random. Thus, when vertex k is added, each existing pair of vertices
acquires Po

(
δ/

(
k
2

))
new edges, and these numbers are independent. When

we have reached n vertices, the number of edges between vertices i and j,
with 1 ≤ i ≤ j ≤ n, is thus Poisson with mean

eij :=
n∑
k=j

δ(
k
2

) = 2δ
n∑
k=j

1
k(k − 1)

= 2δ
( 1
j − 1

− 1
n

)
,

and the probability that there is one or more edges between i and j is
pij := 1− exp(−eij).

Hence, ignoring multiple edges, we have a graph Gn of our type, with
S = (0, 1], µ Lebesgue measure, xi = i/n and

κn(x, y) := n
(

1− exp
(
−2δ

( 1
n(x ∨ y)− 1

− 1
n

)))
→ κ(x, y) := 2δ

( 1
x ∨ y

− 1
)
. (18.1)

Theorem 9.1 shows that C1(Gn)/n
p→ ρ(κ).
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The original CHKNS model, G̃n, say, can be treated by a comparison
argument. It follows that C1(G̃n)/n

p→ ρ(κ) holds for the CHKNS model
too.

In particular, the threshold for the CHKNS model, as well as for Durrett’s
modification, is given by ‖Tκ‖ = 1, or 2δ = ‖T‖−1, where T is the integral
operator with kernel 1/(x∨y)−1 on L2(0, 1). This kernel is strictly smaller
that the kernel 1/(x ∨ y) considered in Section 16. However, changing vari-
ables as there, we see that T is equivalent to the operator on L2(0,∞) with
kernel e−|x−y|/2 − e−(x+y)/2. Using translational invariance of the operator
with kernel e−|x−y|/2 considered in Section 16, it is easily seen that T has
the same norm as this operator, namely 4.

Thus the thresholds for the CHKNS model and Durrett’s modification
are both given by 2δ = 1/4, i.e. δ = 1/8, as was found by non-rigorous
arguments by Callaway, Hopcroft, Kleinberg, Newman and Strogatz [17]
and Dorogovtsev, Mendes and Samukhin [23], and first proved rigorously by
Durrett [24].

To study the size of the giant component in these models, let us write
κ0(x, y) := 1/(x ∨ y) and κ1(x, y) := 1/(x ∨ y)− 1. Then κ1 < κ0, and thus
ρ(cκ1) ≤ ρ(cκ0) for each c > 0; in fact, it is easy to see that we have strict
inequality for c > 1/4, see Remark 9.7. Note, however, that, as pointed out
by Durrett [24], we have the same threshold 1/4 for both kernels although we
have twice as many edges in G(n, cκ0) as in G(n, cκ1). On the other hand,
it is easy to see by a coupling argument that for every η with 0 < η < 1,

ρ(cκ0) ≥ ρ(cκ1) ≥ ηρ
(
(1− η)cκ0

)
.

Taking c = 1/4 + ε and η = ε2, relation (16.2) for ρ(cκ0) implies the same
estimate for ρ(cκ1); in other words, if δ = 1/8 + ε, then the size of the giant
component is given by

ρ(κ) = ρ(2δκ1) = exp
(
− π

2
√

2
ε−1/2 +O(log ε)

)
.

In particular, the phase transition has infinite exponent in this example too.
As noted in Section 16, a similar but more precise formula (with no error

term, and a particular constant in front of the exponential) has been given
by Dorogovtsev, Mendes and Samukhin [23] using non-rigorous methods;
see also Durrett [24].

19. The rank 1 case

The rank 1 case is when the kernel κ has the form κ(x, y) = ψ(x)ψ(y)
for some function ψ > 0 on S. We shall assume that

∫
ψ dµ < ∞, but not

necessarily that
∫
ψ2 dµ <∞; we further assume that the kernel is graphical.

This is a special case of our general model that, while very restrictive, is
also very natural, and includes or is closely related to many random graph
models considered by other authors.
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The function ψ(x) can be interpreted as the “activity” of a vertex at x,
with the probability of an edge between two vertices proportional to the
product of their activities.

In the rank 1 case, Tκf =
(∫
fψ

)
ψ, and ‖Tκ‖ = ‖ψ‖2

2 =
∫
ψ2 dµ ≤ ∞.

Thus Tκ is bounded if and only if ψ ∈ L2, in which case Tκ has rank 1,
so it is compact, and ψ is the unique (up to multiplication by constants)
eigenfunction with non-zero eigenvalue.

By Theorem 13.1, the distribution of vertex degrees is governed by the
distribution of the function λ(x) = (

∫
ψ dµ)ψ(x) on (S, µ). In particular,

the degree sequence will (asymptotically) have a power-law tail if the distri-
bution of λ(x) has; for example, if S = (0, 1] with µ Lebesgue measure, and
ψ(x) = cx−1/p.

Another, perhaps more canonical, version is to take ψ(x) = x on S =
[0,∞), with a suitable finite Borel measure µ. Note that every random
graph considered in this example may be defined in this way, since we may
map S to [0,∞) by x 7→ ψ(x). Alternatively, we may map by x 7→ λ(x) and
have ψ(x) = cx with c > 0 and λ(x) = x.

Random graphs of this type have been studied by several authors, e.g,
Chung and Lu [18], Norros and Reittu [38], and Britton, Deijfen and Martin-
Löf [14]. Actually, in [18] and [38] the edge probabilities pij are given by
pij := wiwj/

∑n
i=1wi, with wi deterministic in [18] and random in [38].

Under suitable conditions on the wi, these examples are also special cases of
our general model. More precisely, if w1, . . . , wn are deterministic or random
such that their empirical distribution 1

n

∑n
i=1 δwi

p→ µ for some probability
measure µ on S = [0,∞), and further 1

n

∑n
i=1wi

p→ ω :=
∫∞
0 x dµ(x) ∈

(0,∞), then we can take xi = wi
(∑

j wj/nω
)−1/2 ∈ S and ψ(x) = ω−1/2x,

and thus κ(x, y) = xy/ω. (These assumptions on wi are satisfied for example
for random i.i.d. wi, as in [38], if we further assume Ewi = ω < ∞, taking
µ = L(w1).) It is easily seen that all conditions in Section 4 are satisfied,
except possibly (vii). Typically, (vii) too is satisfied, but sometimes we may
have to condition on e.g.

∑n
1 wi >

1
2nω first, cf. Remark 4.2.

Remark 19.1. The random graphs G(n, κ) obtained from rank 1 kernels
should be compared to the random graphs with a given (suitably chosen)
degree sequence (di)n1 , studied by, for example, Luczak [35], Molloy and Reed
[36; 37] and (in the power-law case) Aiello, Chung and Lu [1]. Note that in
this model, the probability of an edge between i and j is roughly didj/n, but
there are dependencies between the edges. The results by Molloy and Reed
[36; 37] on existence and size of a giant component in this model fits well
with our results in the rank 1 case, although we see no strict implication.

To study the phase transition in the rank 1 case, let us now consider
the kernel cκ(x, y) = cψ(x)ψ(y), with c > 0 a parameter. We study the
size of the giant component (if any) as a function of c, and let α(c) :=
c
∫
ψρcκ dµ, where, as before, ρcκ(x) = ρ(cκ;x) is the survival probability of
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the branching process Xcκ(x). Then ρcκ ↘ 0 a.e. as c↘ c0, and thus so, by
dominated convergence,

α(c)/c↘ 0 as c↘ c0.

We have Tcκρcκ = cTκρcκ = α(c)ψ, and thus

ρcκ = Φcκ(ρcκ) = 1− e−Tcκρcκ = 1− e−α(c)ψ.

Let

β(t) :=
∫
S

(
1− e−tψ(x)

)
ψ(x) dµ(x), t ≥ 0.

Then,

α(c) = c

∫
S
ρcκψ dµ = cβ

(
α(c)

)
.

so c = α(c)/β
(
α(c)

)
, i.e., α is the inverse function to t 7→ γ(t) := t/β(t).

Let us consider some concrete examples. Take, again, S = (0, 1] with µ

Lebesgue measure, and let ψ(x) = x−1/p where 1 < p ≤ ∞. We shall use C,
C1, etc. to denote various positive constants that depend on p.

Case 1: 1 < p < 2. In this case, ‖ψ‖2 = ∞, so c0 = 0. Calculations yield

ρ(c) ∼ C3α(c) = C3γ
−1(c) ∼ C4c

1/(2−p) as c→ 0.

Note that this exponent 1/(2− p) may be any real number in (1,∞).

Case 2: p = 2. This is the case (17.1) studied in Section 17 and [39]. We
still have ‖ψ‖2 = ∞ and thus c0 = 0. We now find that

ρ(c) = e−(1+o(1))/2c as c→ 0.

More refined estimates can be obtained in the same way, see (17.2) and [39].

Case 3: 2 < p < 3. For p > 2 we have
∫
ψ2 dµ <∞, and thus c0 > 0, so

we have a phase transition. (In fact, c0 = 1− 2/p.) Calculations yield

ρ(c0 + ε) ∼ C4α(c0 + ε) ∼ C5ε
1/(p−2) as ε↘ 0.

We thus have a phase transition at c0 with exponent 1/(p−2). Note that this
exponent may be any real number in (1,∞). (Taking instead e.g. ψ(x) =
x−1/2 ln−1(e3/x), it is similarly seen that there is a phase transition with
infinite exponent.)

Case 4: p = 3. Similarly, with c0 = 1/3,

ρ(c0 + ε) ∼ Cα(c0 + ε) ∼ C1ε/ ln(1/ε) as ε↘ 0,

so ρ′(c0) = 0.

Case 5: 3 < p ≤ ∞. In this case,
∫
ψ3 dµ <∞. We find

ρ(c0 + ε) ∼ C2α(c0 + ε) ∼ C3ε,

so we have a phase transition with exponent 1. (This is similar to Theo-
rem 11.1, although the conditions are not quite satisfied.)
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Remark 19.2. In these examples with ψ(x) = x−1/p, the degree distribu-
tion has by Theorem 13.1 a power-law tail with P(D > t) ∼ t−p as t→∞.
In these examples, there is thus a connection between the exponent of the
phase transition and the exponent of the tail of the degree distribution. It
is tempting to guess that this connection, at least in some form, holds more
generally. In this direction, note that for the rank 1 case, by Theorem 13.1,
P(D > t) ∼ ct−p if and only if µ{x : ψ(x) > t} ∼ c1t

−p, and thus by
Corollary 9.3, the threshold c0 = 0 for p ≤ 2 while c0 > 0 for p > 2.

On the other hand, in the case p > 2 where the asymptotic degree dis-
tribution has finite variance and Corollary 9.3 yields a positive threshold
for the existence of a giant component, there is no reason to expect a more
precise connection between the existence of a giant component for a given
ψ or κ and the tail of the degree distribution. For example, we can create
or destroy a giant component by multiplying ψ by a suitable positive con-
stant. Moreover, even if, say, λ(x) ∼ x−1/p (without constant factor), this
only gives the asymptotics of the distribution of ψ on (S, µ), while the exis-
tence of a giant component depends on whether ‖Tκ‖ =

∫
ψ2 dµ > 1 or not,

which is determined by the bulk of the distribution of ψ and is essentially
independent of its tail behaviour. The same applies to the examples with
given degree sequences in e.g. [1]; the relation between the tail of the degree
distribution and existence of a giant component seen in these examples thus
depends on the details of the particular distributions chosen, and does not
reflect a general phenomenon.

20. Turova’s model

Turova [45; 46; 47; 48] has studied a dynamical random graph G(t), t ≥ 0,
defined as follows, using three parameters γ > 0, λ > 0 and δ ≥ 0. The
graph starts with a single vertex at time t = 0. Each existing vertex produces
new, initially isolated, vertices according to a Poisson process with intensity
γ. As soon as there are at least two vertices, each vertex sends out edges
according to another Poisson process with intensity λ; the other endpoint
is chosen uniformly among all other existing vertices. (Multiple edges are
allowed, but this makes little difference.) Vertices live for ever, but edges die
with intensity δ, i.e., the lifetime of an edge has an exponential distribution
with mean 1/δ. (All these random processes and variables are independent.)

By homogeneity we may assume γ = 1; the general case follows by re-
placing λ and δ by λ/γ and δ/γ and changing the time scale.

The vertices proliferate according to a Yule process (binary fission pro-
cess): writing N(t) for the number of vertices at time t, the probability that
a new vertex is added in the infinitesimal time interval [t, t+ dt] is N(t) dt.
It is well-known that

e−tN(t) a.s.→ W as t→∞ (20.1)

for a random variable W with W > 0 a.s. (In fact, W ∼ Exp(1).)
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We condition on the vertex process, and assume, as we may by (20.1),
that

e−tN(t) → w as t→∞ (20.2)

for some w > 0. We then take S = [0,∞) and let x1, . . . , xN(t) be the ages
of the particles existing at time t. It is easily checked that this gives a vertex
space (S, µ,xn), where µ is the measure on [0,∞) given by dµ/dx = e−x

(the exponential distribution).
Moreover, the number of edges at time t between two vertices of ages xi

and xj has a Poisson distribution with mean κ∗t (x, y)/N(t), where

κ∗t (x, y) := 2λ
∫ x∧y

0
e−δs

N(t)
N(t− s)− 1

ds.

It is easily checked that if δ 6= 1 and xt → x, yt → y, then

κ∗t (xt, yt) → κδ(x, y) :=
2λ

1− δ

(
e(1−δ)(x∧y) − 1

)
(20.3)

For δ = 1, corresponding to δ = γ in the non-rescaled model, let

κ1(x, y) := 2λ(x ∧ y). (20.3’)

Then κ∗t (xt, yt) → κδ(x, y) in this case also.
Theorem 9.1 thus applies to G(t) conditioned on the process (N(t))t≥0,

and we find (conditioned on (N(t))t≥0, and thus also unconditionally) that

C1

(
G(t)

)
N(t)

p→ ρ(κδ),

with κδ given by (20.3) and (20.3’).
To study ρ(κδ) further, and in particular to investigate the threshold

as we vary λ keeping µ ≥ 0 fixed, we thus have to investigate the integral
operator Tκδ

with kernel κδ given by (20.3). The change of variables x→ e−x

transforms S and µ to the standard setting (0, 1] with Lebesgue measure,
and the kernel (20.3) becomes

κ̃δ(x, y) :=
2λ

1− δ

(
(x ∨ y)δ−1 − 1

)
, (20.4)

with κ̃1 := 2λ ln(1/(x ∨ y)).
In the case δ = 0, this is the same as (18.1); hence we have the same critical

value 1/8 (for λ) as for the CHKNS model and the same ρ(κ) giving the
size of the giant component; in particular, the phase transition has infinite
exponent. (Indeed, with δ = 0 the model is very similar to (Durrett’s form
of) the CHKNS model discussed in Section 18; now a geometric number of
edges between random vertices is added at each step, rather than a Poisson
number.) For δ > 0, the kernel κ̃δ is in L2((0, 1]2), so Tκ̃δ

is compact and its
norm can be found by finding its eigenvalues. These eigenvalues can be found
by solving the Sturm–Liouville differential equation αG′′(x) = −2λxδ−2G(x)
with boundary values G(0) = G′(1) = 0, where α denotes the eigenvalue.
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The general solution satisfying G(0) = 0 is, up to a constant factor, given
by

G′(x) =
( 2λ
αδ2

xδ
)−(1/δ−1)/2

J1/δ−1

(
2
( 2λ
αδ2

xδ
)1/2)

,

where Jν is a Bessel function. The remaining boundary condition G′(1) = 0
(which gives the formula in Turova [45, Corollary 4.1] and [46]) thus leads

to J1/δ−1

((
8λ
αδ2

)1/2)
= 0, so if zν is the first positive zero of Jν , then

‖Tκδ
‖ = ‖Tκ̃δ

‖ = α1 =
8λ

δ2z2
1/δ−1

.

In other words, the critical value of λ is λcr(δ) = δ2z2
1/δ−1/8, as given by a

related argument by Söderberg [41].
Theorem 11.1 applies only when δ > 1/2, but the eigenfunctions are

continuous and bounded for every δ > 0, and we believe that the phase
transition has exponent 1, and that (11.1) holds, for every δ > 0.

We can easily find the asymptotics of λcr(δ) as δ → 0 or ∞; see Turova
[45]. If λ, δ → ∞ with λ/δ → c > 0, then κ̃δ(x, y) → 2c, pointwise and in
L2((0, 1]2), and it follows that ‖Tκ̃δ

− T2c‖ → 0. Consequently, for large δ,
the graph is subcritical if 2c < 1 and supercritical if 2c > 1. In other words,
λcr(δ)/δ → 1/2 as δ → ∞. Similarly, if δ ↘ 0, then κδ ↗ κ0 and it follows
easily that ‖Tκδ

‖ → ‖Tκ0‖, and thus λcr(δ) → λcr(0) = 1/8.

21. A “quantum random graph”

Ioffe and Levit [28] have recently introduced and studied a new random
graph model related to quantum theory. To construct the graph, start with
n cirles of length β > 0, and break the circles into pieces using independent
Poisson processes of intensity λ. Then connect every pair of circles using a
Poisson process with intensity 1/n of links.

It is easily seen that this is an instance of our model, where S is the family
of all intervals in a circle of length β, µ is a certain measure with total mass
e−λβ + λβ , and

κ(I, J) = |I ∩ J |,
see Janson [30]. More precisely, µ is invariant undewr rotations and can thus
be described by the induced measure µ̂ on Ŝ := (0, β] for the lengths of the
intervals; this measure has a point mass (1 + λβ)e−λβ at β (corresponding
to the “interval” which is the entire circle), and is otherwise continuous with
density βλ2e−λx for x ∈ (0, β).

A calculation [30], using the symmetry and reducing to the integral op-
erator defined by xy/β on (Ŝ, µ̂), shows that

‖Tκ‖ =
2
λ

(
1− e−λβ

)
− βe−λβ.
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Theorem 9.1 applies, and the condition ‖Tκ‖ > 1 yields the threshold
found by Ioffe and Levit [28] for the existence of a giant component.
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graphs with prescribed degree distribution, J. Statist. Phys., to appear.
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lobás & A. Hajnal, Cambridge Univ. Press, Cambridge, 1990, 161–176.
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dom graphs, Vol. 2 (Poznań, 1989), Wiley, New York, 1992, 165–182.



INHOMOGENEOUS RANDOM GRAPHS 29

[36] M. Molloy, & B. Reed, A critical point for random graphs with a given
degree sequence, Random Struct. Alg. 6 (1995), 161–179.

[37] M. Molloy & B. Reed, The size of the giant component of a random
graph with a given degree sequence, Combin. Probab. Comput. 7 (1998),
295–305.

[38] I. Norros & H. Reittu, On a conditionally Poissonian graph process,
Adv. Appl. Probab. 38 (2006), 59–75.

[39] O. Riordan, The small giant component in scale-free random graphs,
Combin. Probab. Comput. 14 (2005), 897–938.

[40] L.A. Shepp, Connectedness of certain random graphs, Israel J. Math.
67 (1989), 23–33.
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