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Abstract. We correct some errors in Grillet [2], Section V.9.

1. Introduction

The purpose of this note is to correct some errors in Grillet [2], Section
V.9 (in particular Theorem 9.3 and Lemma 9.4). See also [1].

As in Grillet [2], we define a constructible number to be a complex number
such that the corresponding point in the Euclidean plane is constructible
from 0 and 1 by ruler and compass (a.k.a. straightedge and compass). Let
K be the set of constructible numbers. Then, as shown in [2, Proposition 9.1
and Lemma 9.2], K is a subfield of C, which is closed under taking square
roots (i.e., if z ∈ K, then ±

√
z ∈ K); moreover, K is the smallest such

subfield of C.

Remark. A complex number is constructible if and only if its real and
imaginary parts are constructible [2, Lemma 9.2], so it suffices to study real
constructible numbers. However, for the present purpose it is simpler to
allow complex numbers.

2. Main result

Theorem 2.1. The following are equivalent, for a complex algebraic number
z:

(i) z is constructible (z ∈ K).
(ii) There is a chain of field extensions Q = F0 ⊆ F1 ⊆ · · · ⊆ Fm with

z ∈ Fm and Fi = Fi−1(zi) with z2i ∈ Fi−1 for every i ≤ m.
(iii) There is a chain of field extensions Q = F0 ⊆ F1 ⊆ · · · ⊆ Fm with

z ∈ Fm and [Fi : Fi−1] ≤ 2 for every i ≤ m.
(iv) There is a chain of field extensions Q = F0 ⊂ F1 ⊂ · · · ⊂ Fm with

z ∈ Fm and [Fi : Fi−1] = 2 for every i ≤ m.
(v) z ∈ L, where L is some normal field extension of Q of degree 2k for

some k ≥ 0.
(vi) The splitting field of the irreducible polynomial Irr(z : Q) has degree

2k for some k ≥ 0.
(vii) The Galois group Gal(f :Q) of the irreducible polynomial f := Irr(z :

Q) has degree 2k for some k ≥ 0.
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Proof. (i)⇐⇒ (ii): By Grillet [2].
(ii) =⇒ (iii): For every i ≤ m, zi is a root of fi(X) = X2 − bi with

bi := z2i ∈ Fi−1 and thus X2 − bi ∈ Fi−1[X]. Either zi ∈ Fi−1, and then
Fi = Fi−1, or fi is irreducible over Fi−1, and then [Fi : Fi−1] = [Fi−1(zi) :
Fi−1] = deg(fi) = 2.

(iii) =⇒ (iv): Eliminate all repetitions in the sequence F0, . . . , Fm.
(iv) =⇒ (ii): Let i ≤ m, and take any α ∈ Fi \ Fi−1. Then Fi−1 (

Fi−1(α) ⊆ Fi, and since [Fi : Fi−1] = 2, Fi−1(α) = Fi. Furthermore,
α2 ∈ Fi, and thus (again using [Fi : Fi−1] = 2), α2 = aα+ b for some a, b ∈
Fi−1. Consequently, α = a/2 ±

√
a2/4 + b. Define zi :=

√
a2/4 + b. Then

α = a/2± zi, and thus Fi = Fi−1(α) = Fi−1(zi), and z2i = a2/4 + b ∈ Fi−1.
(ii) =⇒ (v): We prove by induction on i that every field Fi has an exten-

sion Li such that Li is a normal extension of Q whose degree [Li : Q] is a
power of 2. We then take L = Lm and observe that z ∈ Fm ⊆ Lm = L.

To prove this claim, note first that it is trivial for i = 0. For the induction
step, we fix i ≤ m and assume that Fi−1 ⊆ Li−1 where Li−1 is a normal
extension of Q of degree 2k for some k ≥ 0. Let wi := z2i ∈ Fi−1 and let
{zij}Jj=1 be the set of conjugates of zi over Q. For each j, zij = σ(zi) for some

K-automorphism σ of the algebraic closure Q, and thus z2ij = σ(z2i ) = σ(wi)
is conjugate to wi ∈ Fi−1 ⊆ Li−1. Since Li−1 is a normal extension of Q,
z2ij ∈ Li−1.

Define Lij := Li−1(zi1, . . . , zij), and Li := LiJ . Thus Li0 = Li−1. For
1 ≤ j ≤ J , we have Lij = Li,j−1(zij) and z2ij ∈ Li−1 ⊆ Li,j−1; hence

[Lij : Li,j−1] = 1 or 2 (as in the proof of (ii) =⇒ (iii) above). Consequently,

[Li : Li−1] = [LiJ : Li0] =
J∏
j=1

[Lij : Li,j−1] = 2`

for some `, and [Li : Q] = [Li : Li−1][Li−1 : Q] = 2`+k. This proves the
induction step, and thus the claim.

(v) =⇒ (vi): Let {zj}Jj=1 be the set of conjugates of z. Since L is normal,

each zj ∈ L. Define E := Q(z1, . . . , zJ), the splitting field of Irr(z : Q).

Then Q ⊆ E ⊆ L, and thus [L : E] [E : Q] = [L : Q] = 2k; hence [E : Q] is a
divisor of 2k, and thus a power of 2.

(vi) ⇐⇒ (vii): A splitting field is a Galois extension (in characteristic 0,
at least), and the degree of a Galois extension equals the order of its Galois
group.

(vii) =⇒ (iv): Let E be the splitting field of f , and let G be the Galois
group Gal(f :Q) = Gal(E :Q). By Sylow’s first theorem (and induction),
there is a chain of subgroups G = H0 ⊃ H1 ⊃ · · · ⊃ Hk = {1} with
|Hi| = 2k−i. The fundamental theorem of Galois theory shows that the
corresponding sequence of fixed fields Fi := FixE(Hi) satisfies F0 ⊂ F1 ⊂
· · · ⊂ Fk and [E : Fi] = |Hi| = 2k−i, which yields [Fi : Q] = 2i and
[Fi : Fi−1] = 2. Clearly z ∈ E = Fk. �
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Recall that the degree degK(α) of an algebraic element α in an exten-
sion of a field K is the degree of its irreducible polynomial. Furthermore,
degK(α) = [K(α) : K]; see [2, Section V.2].

Corollary 2.2. If z is constructible, then z is algebraic and its degree
degQ(z) = [Q(z) : Q] is a power of 2.

However, the converse of Corollary 2.2 is not true, as shown by the fol-
lowing example.

Example 2.3. Let α be a root of an irreducible polynomial f(X) ∈ Q[X]
of degree 4, such that the Galois group Gal(f :Q) = S4 or A4. Since f =
Irr(α : Q), and the order of the Galois group Gal(f :Q) is 24 or 12, and thus
not a power of 2, Theorem 2.1 shows that α is not constructible. On the
other hand, [Q(α) : Q] = deg(f) = 4 = 22.

(Such polynomials f exist. By [2, Proposition V.5.6], any polynomial of
degree 4 such that its cubic resolvent is irreducible will do. X4 + 2X − 2 is
an explicit example.)

Remark 2.4. It is easily seen that the following properties are equivalent,
for a complex number z.

(i) The degree of z over Q is a power of 2.
(ii) The degree [Q(z) : Q] of Q(z) over Q is a power of 2.
(iii) z lies in an extension E of Q whose degree [E : Q] is a power of 2.

Corollary 2.2 thus says that these conditions are necessary for z to be con-
structible, but Example 2.3 shows that they are not sufficient. (Cf. Theo-
rem 2.1(v), where the extension is assumed to be normal.)

Furthermore, the set S of z ∈ C that satisfy (i) (or (ii) or (iii)) is not a
field. For example, let α be as in Example 2.3, and let its conjugates be
α1 = α, α2, α3, α4. Then the splitting field of f is E := Q(α1, α2, α3, α4).
For every j, deg(αj) = deg(α) = 4 and thus αj ∈ S. If S were a field, thus
E = Q(α1, α2, α3, α4) ⊆ S. However, E is a finite and separable extension
of Q, and thus it is a simple extension: E = Q(β) for some β ∈ E. Since E,
being a splitting field, is a Galois extension of Q,

degQ(β) = [Q(β) : β] = [E : Q] = |Gal(E :Q)| = 12 or 24,

which is not a power of 2; hence β /∈ S, and thus E 6⊆ S. This contradiction
shows that S is not a field.

Remark 2.5. Example 2.3 gives an example of a field extension E = Q(α) ⊃
Q of degree 4 such that there is no intermediate field Q(α) ) F ) Q. (If
there were such an F , then [Q(α) : F ] = [F : Q] = 2, and α would satisfy
Theorem 2.1(iv) and thus be constructible, a contradiction.)

3. Some classical applications

The results above are easily applied to the classical problems of construc-
tion by ruler and compass. (See also [2, Section V.9].)
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3.1. Squaring the circle. In modern terms, the problem is to construct√
π by ruler and compass. Since π, and therefore also

√
π, is transcendental

and not algebraic, this is impossible by Corollary 2.2. (The transcendence
of π is not so easy to prove; see e.g. [3, Section 11.14].)

3.2. Doubling the cube. The problem is to construct 3
√

2. This is a root
of the irreducible polynomial X3−2 = 0, so its degree is 3 and Corollary 2.2
shows that 3

√
2 is not constructible.

3.3. Trisecting the angle. The problem is to construct eiθ/3 from eiθ. We
choose θ = 60◦ = π/3; then eiθ = (1 + i

√
3)/2 is constructible, so the

task is equivalent to constructing α := eiθ/3 = eiπ/9 = e2πi/18 from scratch.
However, α is a primitive 18th root of unity, so its irreducible polynomial is
the cyclotomic polynomial Φ18(X), and thus

degQ(α) = deg(Φ18) = ϕ(18) = 6.

By Corollary 2.2, α is not constructible. Hence trisecting an angle by ruler
and compass is in general not possible. (In particular, it is not possible for
a 60◦ angle.)

3.4. Constructing a regular n-gon. This is equivalent to constructing
the n:th root of unity ωn := e2πi/n. The irreducible polynomial of ωn is the
cyclotomic polynomial Φn(X), which has degree ϕ(n). The splitting field
of Φn(X) is Q(ωn) (since all other roots are powers of ωn, and thus belong
to Q(ωn)). Consequently, Theorem 2.1(vi) shows that ωn is constructible if
and only if the degree ϕ(n) of Φn(X) is a power of 2.

By simple number theory, see e.g. [3, Section 5.5], if n has the prime
factorization n =

∏
k p

ak
k , for some distinct primes pk and exponents ak ≥ 1,

then ϕ(n) =
∏
k p

ak−1
k (pk − 1), which is a power of 2 if and only if ak = 1

for every k with pk 6= 2, and pk − 1 is a power of 2 for every i. This implies

that each pk is either 2 or a Fermat number Fj = 22
j

+ 1 for some j ≥ 0,
see e.g. [2, Section V.9] or [3, Section 2.5]. Consequently:

Theorem 3.1. A regular n-gon is constructible by ruler and compass if and
only if n is a product of a power of 2 and distinct Fermat primes.

The first 5 Fermat numbers F0 = 3, F1 = 5, F2 = 17, F3 = 257 and
F4 = 65537 are primes, but no others are known, and it seems likely (but
unproven) that these are the only Fermat primes.

We see that, for example, a regular n-gon is constructible for n = 3, 4, 5,
6, 8, 10, 12, 15, 16, 17, 20, but not for n = 7, 9, 11, 13, 14, 18, 19.
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