CONSTRUCTIBLE NUMBERS AND GALOIS THEORY

SVANTE JANSON

ABSTRACT. We correct some errors in Grillet [2], Section V.9.

1. INTRODUCTION

The purpose of this note is to correct some errors in Grillet [2], Section
V.9 (in particular Theorem 9.3 and Lemma 9.4). See also [1].

As in Grillet [2], we define a constructible number to be a complex number
such that the corresponding point in the Euclidean plane is constructible
from 0 and 1 by ruler and compass (a.k.a. straightedge and compass). Let
K be the set of constructible numbers. Then, as shown in [2, Proposition 9.1
and Lemma 9.2], K is a subfield of C, which is closed under taking square
roots (i.e., if z € K, then £4/z € K); moreover, K is the smallest such
subfield of C.

Remark. A complex number is constructible if and only if its real and
imaginary parts are constructible [2, Lemma 9.2], so it suffices to study real
constructible numbers. However, for the present purpose it is simpler to
allow complex numbers.

2. MAIN RESULT

Theorem 2.1. The following are equivalent, for a complex algebraic number
z:

(i) z is constructible (z € KC).
(ii) There is a chain of field extensions Q = Fy C Fy C --- C F,, with
z € F, and F; = F;_1(z;) with z2-2 € F;_1 for every i < m.
(iii) There is a chain of field extensions Q = Fy C Fy} C --- C F,, with
z € Fy, and [F; : F;—1] < 2 for every i < m.
(iv) There is a chain of field extensions Q = Fy C Fy C -+ C F,,, with
z € F, and [F; : F;—1] =2 for every i < m.
(v) z € L, where L is some normal field extension of Q of degree 2% for
some k > 0.
(vi) The splitting field of the irreducible polynomial Irr(z : Q) has degree
2k for some k > 0.
(vil) The Galois group Gal(f: Q) of the irreducible polynomial f := Irr(z :
Q) has degree 2% for some k > 0.
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Proof. (i) <= (ii): By Grillet [2].

(i ) — (iii): For every i < m, 2 is a root of f;(X) = X? — b; with
b; = z2-2 € F;_1 and thus X2 — b; € F;_{[X]. Either z; € F;_1, and then
F; = F;_4, or f; is irreducible over F;_j, and then [F; : F;_1] = [F;—1(2;) :
Fi1] = deg(f;) = 2.

(iii) = (iv): Eliminate all repetitions in the sequence Fy, ..., Fp,.

(iv) = (ii): Let i@ < m, and take any a € F; \ F;_;. Then F;_; C
E 1(a) € F;, and since [F; : F_1] = 2, Fj_ 1( ) = F;. Furthermore,
a? € F;, and thus (again using [F; : F;_1] = 2), a® = aa + b for some a,b €

F;_1. Consequently, & = a/2 + y/a?/4 + b. Define z; := \/a?/4 +b. Then
a=a/2+ z, and thus F; = F;_1(a) = F;_1(%), and zz~2 =a?/4+be F.

(ii) = (v): We prove by induction on i that every field F; has an exten-
sion L; such that L; is a normal extension of Q whose degree [L; : Q] is a
power of 2. We then take L = L,, and observe that z € F},, C L,, = L.

To prove this claim, note first that it is trivial for ¢ = 0. For the induction
step, we fix i < m and assume that F;_; C L;_1 where L;_1 is a normal
extension of Q of degree 2* for some k > 0. Let w; := 22-2 € F;_1 and let
{zij }3] 1 be the set of conjugates of z; over Q. For each j, zw = o(z;) for some
K-automorphism o of the algebraic closure Q, and thus z” o(2%) = o(w;)
is conjugate to w; € F;_1 C L;—1. Since L;_1 is a normal extension of Q,
ZZ-ZJ» e L; 1.

Define Lij = Li_l(zil,... ,Zz‘j), and Li = Li]. Thus LiO = Li_1. For
1 < j < J, we have Lij = L;j—1(2) and zizj € Li—1 € L;j—1; hence
[Lij : Lij—1) = 1 or 2 (as in the proof of (ii) = (iii) above). Consequently,

J
[Lz : Lifl] zJ L’LO H Lz] L; i,5— 1 = 2€
J=1

for some £, and [L; : Q] = [L; : L;_1][L;—1 : Q] = 2%, This proves the
induction step, and thus the claim.

(v) = (vi): Let {Zj}}]:1 be the set of conjugates of z. Since L is normal,
each z; € L. Define E := Q(z1,...,2y), the splitting field of Irr(z : Q).
Then Q C E C L, and thus [L : E|[EF: Q] = [L: Q] = 2¥; hence [E: Q] is a
divisor of 2%, and thus a power of 2.

(vi) <= (vii): A splitting field is a Galois extension (in characteristic 0,
at least), and the degree of a Galois extension equals the order of its Galois
group.

(viil) = (iv): Let E be the splitting field of f, and let G be the Galois
group Gal(f:Q) = Gal(E:Q). By Sylow’s first theorem (and induction),
there is a chain of subgroups G = Hy D H; D --- D Hjp = {1} with
|H;| = 2¥=". The fundamental theorem of Galois theory shows that the
corresponding sequence of fixed fields F; := Fixg(H;) satisfies Fy C F} C

- C Fy and [E : Fj] = |H;| = 2" which yields [F; : Q] = 2° and
[F; : Fi_1] = 2. Clearly z € E = F,. O
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Recall that the degree degy («) of an algebraic element « in an exten-
sion of a field K is the degree of its irreducible polynomial. Furthermore,
degy (o) = [K(a) : K]; see [2, Section V.2].

Corollary 2.2. If z is constructible, then z is algebraic and its degree
degg(z) = [Q(2) : Q] is a power of 2.

However, the converse of Corollary 2.2 is not true, as shown by the fol-
lowing example.

Example 2.3. Let « be a root of an irreducible polynomial f(X) € Q[X]
of degree 4, such that the Galois group Gal(f:Q) = S4 or Ay. Since f =
Irr(a : Q), and the order of the Galois group Gal(f: Q) is 24 or 12, and thus
not a power of 2, Theorem 2.1 shows that « is not constructible. On the
other hand, [Q(a) : Q] = deg(f) = 4 = 22.

(Such polynomials f exist. By [2, Proposition V.5.6], any polynomial of
degree 4 such that its cubic resolvent is irreducible will do. X* +2X — 2 is
an explicit example.)

Remark 2.4. It is easily seen that the following properties are equivalent,
for a complex number z.

(i) The degree of z over Q is a power of 2.
(ii) The degree [Q(z) : Q] of Q(z) over Q is a power of 2.
(iii) =z lies in an extension F of Q whose degree [E : Q] is a power of 2.

Corollary 2.2 thus says that these conditions are necessary for z to be con-
structible, but Example 2.3 shows that they are not sufficient. (Cf. Theo-
rem 2.1(v), where the extension is assumed to be normal.)

Furthermore, the set S of z € C that satisfy (i) (or (ii) or (iii)) is not a
field. For example, let o be as in Example 2.3, and let its conjugates be
a1 = a, g, a3,a4. Then the splitting field of f is £ := Q(a1, ag, a3, ay).
For every j, deg(a;) = deg(a) = 4 and thus o; € S. If S were a field, thus
E = Q(a1,as,a3,a4) € S. However, E is a finite and separable extension
of @, and thus it is a simple extension: E = Q(f) for some S € E. Since F,
being a splitting field, is a Galois extension of Q,

dego(B) = [Q(B) : B] = [£: Q] = | Gal(£: Q)| = 12 or 24,
which is not a power of 2; hence 8 ¢ S, and thus E ¢ S. This contradiction
shows that S is not a field.

Remark 2.5. Example 2.3 gives an example of a field extension £ = Q(«) D
Q of degree 4 such that there is no intermediate field Q(«) 2 F 2 Q. (If
there were such an F, then [Q(a) : F] = [F : Q] = 2, and a would satisfy
Theorem 2.1(iv) and thus be constructible, a contradiction.)

3. SOME CLASSICAL APPLICATIONS

The results above are easily applied to the classical problems of construc-
tion by ruler and compass. (See also [2, Section V.9].)
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3.1. Squaring the circle. In modern terms, the problem is to construct
/7 by ruler and compass. Since 7, and therefore also /7, is transcendental
and not algebraic, this is impossible by Corollary 2.2. (The transcendence
of 7 is not so easy to prove; see e.g. [3, Section 11.14].)

3.2. Doubling the cube. The problem is to construct /2. This is a root
of the irreducible polynomial X3 —2 = 0, so its degree is 3 and Corollary 2.2
shows that /2 is not constructible.

3.3. Trisecting the angle. The problem is to construct e?/3 from €l?. We
choose § = 60° = 7/3; then € = (1 +iv/3)/2 is constructible, so the
task is equivalent to constructing a := '%/3 = ¢i™/9 = ¢2m/18 from scratch.
However, « is a primitive 18th root of unity, so its irreducible polynomial is
the cyclotomic polynomial ®15(X), and thus

degg(a) = deg(®1s) = (18) = 6.

By Corollary 2.2, « is not constructible. Hence trisecting an angle by ruler
and compass is in general not possible. (In particular, it is not possible for
a 60° angle.)

3.4. Constructing a regular n-gon. This is equivalent to constructing
the n:th root of unity wy, := e2™/". The irreducible polynomial of w,, is the
cyclotomic polynomial ®,,(X), which has degree ¢(n). The splitting field
of &,(X) is Q(wy) (since all other roots are powers of wy,, and thus belong
to Q(wy)). Consequently, Theorem 2.1(vi) shows that wy, is constructible if
and only if the degree ¢(n) of ®,(X) is a power of 2.

By simple number theory, see e.g. [3, Section 5.5], if n has the prime
factorization n = [, pzk, for some distinct primes p; and exponents aj > 1,
then ¢(n) = [1, pt* ' (px — 1), which is a power of 2 if and only if aj = 1
for every k with py # 2, and py — 1 is a power of 2 for every 4. This implies
that each py, is either 2 or a Fermat number F; = 2% 41 for some j > 0,
see e.g. [2, Section V.9] or [3, Section 2.5]. Consequently:

Theorem 3.1. A regular n-gon is constructible by ruler and compass if and
only if n is a product of a power of 2 and distinct Fermat primes.

The first 5 Fermat numbers Fy = 3, F} = 5, Fy = 17, F3 = 257 and
Fy = 65537 are primes, but no others are known, and it seems likely (but
unproven) that these are the only Fermat primes.

We see that, for example, a regular n-gon is constructible for n = 3, 4, 5,
6, 8, 10, 12, 15, 16, 17, 20, but not for n =7, 9, 11, 13, 14, 18, 19.
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