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The trees that we consider are rooted and ordered (= plane); thus each node v
has a number of children, ordered in a sequence v1, . . . , vd, where d = d(v) ≥ 0 is
the outdegree of v. (See [1] for more information on these and other types of trees;
the trees we consider are there called planted plane trees.) We let Tn denote the set
of all ordered rooted trees with n nodes (including the root) and let Tf :=

⋃∞
n=0 Tn

be the set of all finite ordered rooted trees.
Let (wk)k≥0 be a fixed weight sequence of non-negative real numbers. We then

define the weight of a tree T ∈ Tf by

w(T ) :=
∏
v∈T

wd(v),

taking the product over all nodes v in T . Trees with such weights are called simply
generated trees and were introduced by Meir and Moon [5]. To avoid trivialities,
we assume that w0 > 0 and that there exists some k ≥ 2 with wk > 0.

We let Tn be the random tree obtained by picking an element of Tn at random
with probability proportional to its weight, i.e.,

P(Tn = T ) =
w(T )

Zn
, T ∈ Tn,

where the normalizing factor Zn, known as the partition function, is given by

Zn :=
∑

T∈Tn

w(T ).

We consider only n such that Zn > 0.
One particularly important case is when

∑∞
k=0 wk = 1, so the weight sequence

(wk) is a probability distribution on Z≥0. In this case, the random tree Tn is
the same as the random Galton–Watson tree T with offspring distribution (wk)
conditioned on |T | = n. In this case the random tree Tn is thus called a conditioned
Galton–Watson tree.

The distribution of the tree Tn does not change if wk is replaced by w̃k := abkwk

for some a, b > 0. Using this, we can always reduce to one of the three following
cases, where ρ ∈ [0,∞] is the radius of convergence of the generating function
Φ(x) :=

∑∞
k=0 wkx

k and µ :=
∑∞

k=0 kwk = Φ′(1):

(i) Critical Galton–Watson: (wk) a probability distribution with mean µ = 1.
(In this case ρ ≥ 1.)

(ii) Subcritical Galton–Watson: (wk) a probability distribution with mean
µ < 1 and ρ = 1.

(iii) Not Galton–Watson: ρ = 0.

Case (i) is the standard case, and most work has been done for this case only
(often with additional conditions like Var ξ <∞).

Probabilists, including myself, have often dismissed the remaining cases as un-
interesting exceptional cases. However, some researchers, including mathematical
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physicists, have studied such cases and found a condensation, showing that there
are interesting phenomena in the exceptional cases as well. The purpose of this
talk is to give a unified limit theorem of Tn as n→∞ for all simply generated
trees, extending the well-known result in the standard case (i), and to encourage
further research in the other cases too.

A limit theorem

In cases (i) and (ii), let ξ be an integer-valued random variable with distribution

(wk); thus 0 < E ξ ≤ 1. In case (iii), let ξ = 0, so E ξ = 0. In all cases, let ξ̂ be a
random variable with values in {0, 1, . . . ,∞} with the distribution

P(ξ̂ = k) :=

{
k P(ξ = k), k = 0, 1, 2, . . . ,

1− E ξ, k =∞.

In case (i), this is the usual size-biased transformation of ξ.

We define the modified Galton–Watson tree T̂ as follows: There are two types
of nodes: normal and special, with the root being special. Normal nodes have
offspring (outdegree) according to independent copies of ξ, while special nodes

have offspring according to independent copies of ξ̂. Moreover, all children of a
normal node are normal; when a special node gets an infinite number of children,
all are normal; when a special node gets a finite number of children, one of its
children is selected uniformly at random and is special, while all other children are
normal.

The special nodes form a path from the root; we call this path the spine of T̂ .

T̂ behaves differently in our three different cases:

(i) In the critical Galton–Watson case, the spine is an infinite path. Each

outdegree d(v) in T̂ is finite, so the tree is infinite but locally finite. This
is the size-biased Galton–Watson tree defined by Lyons, Pemantle and
Peres [4].

(ii) In the subcritical Galton–Watson case, the spine is a.s. finite with a num-
ber L of vertices that has a (shifted) Geometric distribution Ge(1− µ):

P(L = `) = (1− µ)µ`−1, ` = 1, 2, . . . .

(iii) In the non-Galton–Watson case, the spine consists of the root only; the

root has infinitely many children, and all its children are leaves. T̂ is thus
an infinite star. (This is the limiting case µ = 0 of case (ii).)

In case (i), all vertices have finite degree, while in cases (ii) and (iii), the tree
has (a.s.) exactly one node with infinite outdegree, viz. the top of the spine.

Our main theorem extends a result by Lyons, Pemantle and Peres to cases (ii)
and (iii) in complete generality. For special cases, see [3] and [2].

Theorem 1. In all three cases, Tn converges in distribution to T̂ as n→∞, in
the topology defined by convergence of all finite parts of the tree.

The topology can, equivalently, be defined as convergence of each outdegree.
2



Acknowledgement. This research was started during a visit to NORDITA,
Stockholm, during the program Random Geometry and Applications, 2010. I thank
the participants, in particular Bergfinnur Durhuus, Thordur Jonsson and Sigurður
Stefánsson, for stimulating discussions.

References

[1] M. Drmota, Random Trees, Springer, Vienna, 2009.
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