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Renewal Theory

Model

Ξ(1),Ξ(2), . . . is a sequence of i.i.d. random infinite strings
Ξ = ξ1ξ2 · · · .

For simplicity, suppose that the alphabet A = {0, 1}, and that the
individual letters ξi are i.i.d. with ξi ∼ Be(p), i.e., P(ξi = 1) = p
and P(ξi = 0) = q := 1− p.
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Notation

Given a finite string α1 · · ·αn ∈ An, let P(α1 · · ·αn) be the
probability that the random string Ξ begins with α1 · · ·αn:

P(α1 · · ·αn) =
n∏

i=1

P(αi ) =
n∏

i=1

pαi q1−αi .
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Given a random string ξ1ξ2 · · · , we define

Xi := − ln P(ξi ) = − ln
(
pξi q1−ξi

)
=

{
− ln q, ξi = 0,

− ln p, ξi = 1.
(1)

Then X1,X2, . . . are i.i.d. with

E Xi = H := −p ln p − q ln q, (2)

the usual entropy of each letter ξi , and

E X 2
i = H2 := p ln2 p + q ln2 q, (3)

Var Xi = H2 − H2 = pq(ln p − ln q)2 = pq ln2(p/q). (4)

Note that the case p = q = 1/2 is special; in this case Xi = ln 2 is
deterministic and Var Xi = 0.
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Zn ∼ AsN(µn, σ
2
n) means that (Zn − µn)/σn

d−→ N(0, 1).
Here Zn is a sequence of random variables and µn and σ2

n are
sequences of real numbers with σ2

n > 0.

We denote the fractional part of a real number x by
{x} := x − bxc.
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Renewal theory

Let Sn :=
∑n

i=1 Xi , the partial sums of Xi . Thus

P(ξ1 · · · ξn) =
n∏

i=1

P(ξi ) =
n∏

i=1

e−Xi = e−Sn . (5)

This is a random variable, since it depends on the random string
ξ1 · · · ξn; it can be interpreted as the probability that another
random string Ξ(j) begins with the same n letters as observed.
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Let, for t ≥ 0 and n ≥ 1,

ν(t) := min{n : Sn > t}. (6)
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We may also start with an initial random variable X0, which is
independent of X1,X2, . . . , but may have an arbitrary distribution.
We then define

Ŝn :=
n∑

i=0

Xi = X0 +
n∑

i=1

Xi , (7)

ν̂(t) := min{n : Ŝn > t}. (8)

Svante Janson Renewal theory in analysis of tries and strings



Model and notation
Insertion depth in a trie

Imbalance in tries
Random networks

Renewal Theory

lattice and non-lattice

In both renewal theory and in the analysis of tries, there often are
two cases: the arithmetic or lattice case when the support is a
subset of dZ for some d > 0, and the non-arithmetic or non-lattice
case when it is not.

arithmetic The ratio ln p/ ln q is rational. More precisely, Xi

then is d-arithmetic, where d equals gcd(ln p, ln q). If
ln p/ ln q = a/b, where a and b are relatively prime
positive integers, then

d = gcd(ln p, ln q) =
| ln p|

a
=
| ln q|

b
. (9)

non-arithmetic The ratio ln p/ ln q is irrational.
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A trie is a binary tree structure designed to store a set of strings.
The trie is a finite subtree of the complete infinite binary tree T∞,
where the nodes can be labelled by finite strings
α = α1 · · ·αk ∈ A∗ :=

⋃∞
k=0Ak (the root is the empty string). A

string Ξ is stored at the node labelled by α if α is the shortest
prefix of Ξ that is not a prefix of any other string in the set.
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Let Dn be the depth (= path length) of the node containing the
first string in the trie constructed from n random strings
Ξ(1), . . . ,Ξ(n). Denoting the chosen string by Ξ = ξ1ξ2 · · · , the
depth Dn is thus at most k if and only if no other of the strings
begins with ξ1 · · · ξk .
Conditioning on the string Ξ, each of the other strings has this
beginning with probability P(ξ1 · · · ξk), and thus by independence,

P(Dn ≤ k | Ξ) =
(
1− P(ξ1 · · · ξk)

)n−1
=
(
1− e−Sk

)n−1
. (10)
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Let X0 = X
(n)
0 be a random variable, independent of Ξ, with the

distribution

P(X
(n)
0 > x) =

(
1−ex/n

)n−1

+
=
(
1−ex−ln n

)n−1

+
, x ∈ (−∞,∞).

(11)
Then, for any k ≥ 1,

P(Dn ≤ k) = P
(
X0 > ln n − Sk

)
= P

(
Ŝk > ln n

)
= P

(
ν̂(ln n) ≤ k

)
(12)

and thus
Dn

d
= ν̂(ln n). (13)
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Standard renewal theory theorems immediately yields the following.

Theorem
For every p ∈ (0, 1),

Dn

ln n

p−→ 1

H
, (14)

with H the entropy. Moreover, the convergence holds in every Lr ,
r <∞, too. Hence, all moments converge above and

E Dr
n ∼ H−r (ln n)r , 0 < r <∞. (15)
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Theorem
More precisely:
(i) If ln p/ ln q is irrational, then, as n→∞,

E Dn =
ln n

H
+

H2

2H2
+
γ

H
+ o(1). (16)

(ii) If ln p/ ln q is rational, then, as n→∞,

E Dn =
ln n

H
+

H2

2H2
+
γ

H
+ ψ1(ln n) + o(1), (17)

where ψ1(t) is a small continuous function, with period
d = gcd(ln p, ln q) in t, given by

ψ1(t) := − 1

H

∑
k 6=0

Γ(−2πik/d)e2πikt/d . (18)
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Theorem
Suppose that p ∈ (0, 1). Then, as n→∞,

Dn − H−1 ln n√
ln n

d−→ N
(

0,
σ2

H3

)
,

with σ2 = H2 − H2 = pq(ln p − ln q)2. If p 6= 1/2, then σ2 > 0
and this can be written as

Dn ∼ AsN
(
H−1 ln n,H−3σ2 ln n

)
.

Moreover,

Var Dn =
σ2

H3
ln n + o(ln n).
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Imbalance in tries

Let ∆n be the imbalance of a string in a trie, defined as the
number of steps to the right minus the number of steps to the left
in the path from the root to the leaf where the string is stored.
We define

Yi := 2ξi − 1 =

{
−1, ξ1 = 0,

+1, ξ1 = 1,

and denote the corresponding partial sums by Vk :=
∑k

i=1 Yi .
Thus ∆n = VDn , with Dn as above. We have

(Dn,∆n) = (Dn,VDn)
d
=
(
ν̂(ln n),Vbν(ln n)

)
.

In particular,

∆n
d
= Vbν(ln n).
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A general renewal theory theorem applies and yields

Theorem (Mahmoud)

As n→∞,

∆n ∼ AsN

(
p − q

H
ln n,

pq ln2(pq)

H3
ln n

)
.
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Random networks

A random network is a network where nodes or edges or both are
created by some random procedure.
First example: (classical random graphs studied by Erdős and
Rényi and many others from 1959 and until today)

Fix two (large) numbers n (number of nodes) and m (number of
edges). Number the nodes 1, . . . , n. Draw two nodes at random
and join them by an edge. Repeat m times. Denoted G (n,m).

A variant: Fix n (number of nodes) and a probability p. For each
pair of nodes, make a random choice and connect the nodes by an
edge with probability p. (Toss a biased coin, throw dice, get a
random number, or use some other random procedure.)
Denoted G (n, p).

Examples of other, newer, random networks will follow.
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Node degrees

The degree of a node is the number of links connecting the node
to other nodes.
For Internet, as well as for many other graphs in various
applications, it is evident that there is a large dispersion of the
degrees for different nodes.

Examples (incoming links according to Google):

www.google.com: 649000
www.bath.ac.uk: 2180
www.math.uu.se/∼svante/papers: 2
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Power laws

The classical random graphs have node degrees that are random,
but with a rather small random dispersion and very small
probability of having a degree that is much larger than the
average. More precisely, the degree distribution is Hypergeometric
or Binomial and asymptotically Poisson. Hence the distribution has
exponential tails.
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Many graphs from “reality” seem to have node degrees that are
distributed according to a power law, i.e., there are constants γ
and C1 such that

number of nodes with degree k ≈ C1k
−γ−1

or, which is roughly equivalent, with another constant C2,

number of nodes with degree at least k ≈ C2k
−γ .

Since the graphs are finite (although large), this can of course hold
only in some (large) range and not for all k .
Graphs with a power law are often called scale-free.

It has during the last decade been popular to study large graphs
“in real life” and find such power laws for them, often with a value
of γ between 1 and 2. An important example is the Internet.
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Some other examples:

I references between scientific papers in the data base ISI
(783339 articles with 6716198 links) and in Physical Review D
(24296 papers)

I sexual contacts (2810 Swedes)

I collaborations (joint publications) between scientists (1520251
i Medline, and others)

I metabolic reactions in E. coli and other organisms (778
substances)

I interactions between proteins in yeast (S. cerevisiae) (1870
proteins)

I telephone calls in a given day (47000000 telephones)

Svante Janson Renewal theory in analysis of tries and strings



Model and notation
Insertion depth in a trie

Imbalance in tries
Random networks

Degrees
Components
Distances

Components

A component in a network is a connected part of the network.
Example: w
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This network has 4 components.

Svante Janson Renewal theory in analysis of tries and strings



Model and notation
Insertion depth in a trie

Imbalance in tries
Random networks

Degrees
Components
Distances

A typical case is that there is a giant component containing a large
part of all nodes, together with many very small components with
only one or a few nodes each.

Another case, typical for very sparse graphs, is that there are many
small components but no really big one.
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It is also interesting to study what happens if some of the nodes or
edges in a graph are deleted. (Percolation.) What components are
there in the graph that is left, and how large are they?

For example, this is important when studying the vulnerability of
the Internet to technical failures or terrorist attacks: Will there still
be a giant component (= only local disturbances) or are there only
small components left (= the system collapses)?
Another, related, example is the spread of an infectious disease like
Swine flu in a human population. In this case, the objective is the
opposite: one wants to limit the spread and wants graphs with
small components only.
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Theorem (Erdős and Rényi)

A classical random graph G (n,m) with n nodes and m edges has
a giant component if m > n/2 but not otherwise.

More formally: If n→∞ and m ∼ cn for some constant c , and C1

is the largest component of the random graph, then

|C1|
n

p−→

{
0 if c ≤ 1/2,

ρ(2c) > 0 if c > 1/2.

If c < 1/2, then |C1| = Op(log n).
The same holds for G (n, p) with p ∼ c ′/n, with c ′ = 2c so the
threshold is c ′ = 1, i.e. p = 1/n.

ρ(λ) = 1− e−λρ(λ).
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Susceptibility

The susceptibility or mean cluster size χ(G ) is the expected size of
the component containing a random node. Equivalently, it is n
times the probability that two random nodes lie in the same
component (and thus may be connected by a path in the graph).
If the components are C1,C2, . . . , then

χ(G ) =

∑
i |Ci |2

n
.

Theorem
For G (n, p), as n→∞:

χ(G (n, p)) ∼p

{
1

1−np , 1− np � n−1/3

nρ(np)2, np − 1� n−1/3.

¡3-¿
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Distances and diameter

Given that two nodes are in the same component, we may ask for
the distance between them, i.e., the shortest path between them in
the graph. The maximum distance is the diameter. The average
distance between two random nodes is often at least as interesting.

In many graphs, the diameter and average distance are of the order
log n, and thus quite small even when the number n of nodes is
large. This phenomenon is often called Small Worlds.
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