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Bootstrap percolation

Bootstrap percolation is a process of spread of activation (or
infection) on a graph G .
Fix a constant threshold r ≥ 2. (Typically, r = 2.)

We start with some set A0 of the vertices active. At each step
every inactive vertex with at least r active neighbours becomes
active. This is repeated until no more vertices become active.
(Active vertices never become inactive.)
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Bootstrap percolation

Bootstrap percolation is a process of spread of activation (or
infection) on a graph G .
Fix a constant threshold r ≥ 2. (Typically, r = 2.)

We start with some set A0 of the vertices active. At each step
every inactive vertex with at least r active neighbours becomes
active. This is repeated until no more vertices become active.
(Active vertices never become inactive.)

What is the size of the final active set A∗?

In particular: Will eventually all vertices be active?
(“A0 percolates”)
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Applications?

Bootstrap percolation is not a good model for usual infectious
diseases, but it has been studied a lot for other reasons.
Some reasons, apart from the intrinsic mathematical interest:

◮ Epidemics with different degrees of severity (Scalia-Tomba
(1985); Ball and Britton (2005))

◮ A model for the spread of rumors or beliefs.

◮ Neural networks (Amini (2010)).

◮ Spread of defaults in banking systems (Amini, Cont and
Minca (2010+) with a more refined model).

◮ Relations to statistical mechanics and the Ising model.

◮ Cellular automata.

Extensions of the model include different thresholds for different
vertices; weighted edges; directed edges.



Different types of problems

Several types of problems have been studied by a number of
authors:

◮ The graph G can be deterministic (e.g. a grid in 2 or d
dimensions, a torus, a hypercube, a regular infinite tree, . . . )
or random (e.g. an Erdős–Rényi graph G (n, p), a random
regular graph, . . . ).

◮ The initial set A0 can be deterministic (e.g. the minimal
percolating set) or random (with a given number a active
vertices chosen at random, or with each vertex initially active
with probability q, independent of all others).

◮ One can ask for exact results for a fixed graph G , or for
asymptotic results as the size of G grows.



Different types of problems

Several types of problems have been studied by a number of
authors:

◮ The graph G can be deterministic (e.g. a grid in 2 or d
dimensions, a torus, a hypercube, a regular infinite tree, . . . )
or random (e.g. an Erdős–Rényi graph G (n, p), a random
regular graph, . . . ).

◮ The initial set A0 can be deterministic (e.g. the minimal
percolating set) or random (with a given number a active
vertices chosen at random, or with each vertex initially active
with probability q, independent of all others).

◮ One can ask for exact results for a fixed graph G , or for
asymptotic results as the size of G grows.

My main interest is in asymptotic results for a random initial set in
a random graph.



Examples of other types

A classical deterministic folklore problem:

Find the smallest initial set that percolates on a chessboard (8 × 8
grid) with r = 2.

u u u u u u u u

u u u u u u u u
u u u u u u u u

u u u u u u u u
u u u u u u u u

u u u u u u u u
u u u u u u u u
u u u u u u u u



Examples of other types

A classical deterministic folklore problem:

Find the smallest initial set that percolates on a chessboard (8 × 8
grid) with r = 2.

u u u u u u u u

u u u u u u u u
u u u u u u u u

u u u u u u u u
u u u u u u u u

u u u u u u u u
u u u u u u u u
u u u u u u u u

Example: A diagonal.



Examples of other types

A classical deterministic folklore problem:

Find the smallest initial set that percolates on a chessboard (8 × 8
grid) with r = 2.

u u u u u u u u

u u u u u u u u
u u u u u u u u

u u u u u u u u
u u u u u u u u

u u u u u u u u
u u u u u u u u
u u u u u u u u

Example: A diagonal.
This is optimal: At least 8 initially active are needed.



Deterministic graph, random initial set:

Consider a n × n grid and let each vertex be initially active with
probability q = c/ log n (independently of each other). Take r = 2.
Let n → ∞.

Theorem (Holroyd)

If c < π2/18, then P(percolation) → 0 (w.h.p. no percolation)
If c > π2/18, then P(percolation) → 1 (w.h.p. percolation).



Deterministic graph, random initial set:

Consider a n × n grid and let each vertex be initially active with
probability q = c/ log n (independently of each other). Take r = 2.
Let n → ∞.

Theorem (Holroyd)

If c < π2/18, then P(percolation) → 0 (w.h.p. no percolation)
If c > π2/18, then P(percolation) → 1 (w.h.p. percolation).

This has been generalized to any dimension d and 2 ≤ r ≤ d by
Balogh, Bollobás, Duminil-Copin and Morris (2011+); the
threshold is

(

λ(d , r)

log · · · log n

)d−r+1

with an r − 1 iterated logarithm.



Some further references

Deterministic initial set (extremal problem): Balogh and Pete
(1998) and Bollobás (2006) (grids)

Random initial set: Chalupa, Leath and Reich (1979) (regular
infinite tree); Aizenman and Lebowitz (1988), Balogh and Pete
(1998), Cerf and Manzo (2002) (grids); Balogh and Bollobás
(2006) (hypercube); Balogh, Peres and Pete (2006), Fontes and
Schonmann (2008) (infinite trees); Balogh and Pittel (2007),
Janson (2009) (random regular graphs); Amini (2010) (random
graphs with given vertex degrees).
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Consider now the case G = G (n, p), the Erdős–Rényi random
graph with n vertices and each possible edge appearing with
probability p, independently of all other edges.



The random graph G(n,p)

Consider now the case G = G (n, p), the Erdős–Rényi random
graph with n vertices and each possible edge appearing with
probability p, independently of all other edges.

(The random graph G (n,m) with a fixed number m of edges,
uniformly chosen among all such graphs on n labelled vertices,
yields similar asymptotic results as G (n, p) with p = m/

(

n
2

)

.)



Setup

We let G = G (n, p) where p = p(n) and start with a random set
A0 with a = a(n) elements; r ≥ 2 is fixed.

We consider p = p(n) as given, and ask how large a must be in
order to give percolation.

Alternatively, and essentially equivalently, one might regard
a = a(n) as given and ask how large p must be.

We assume for simplicity

n−1 ≪ p ≪ n−1/r .

(Boundary cases p = c/n and p = c/n1/r are similar but different.)
We assume also a ≤ n/2.



Define (the special case r = 2 in blue)

tc :=

(

(r − 1)!

npr

)1/(r−1) 1

np2

ac :=
(

1 − 1

r

)

tc
1

2np2

bc := n
(pn)r−1

(r − 1)!
e−pn n2pe−pn.

Then

tc → ∞, ptc → 0, tc/n → 0,

ac → ∞, pac → 0, ac/n → 0,

pbc → 0, bc/n → 0.



Theorem
(i). If a/ac → α < 1, then |A∗| = (ϕ(α) + op(1))tc, where ϕ(α)

is the unique root in [0, 1] of

rϕ(α) − ϕ(α)r = (r − 1)α.

(For r = 2, ϕ(α) = 1 −
√

1 − α.) Further,

|A∗|/a p−→ ϕ1(α) := r
r−1ϕ(α)/α, with ϕ1(0) := 1. In

particular, |A∗| < 2a w.h.p.

(ii). If a/ac ≥ 1 + δ, for some δ > 0, then |A∗| = n − op(n); in
other words, we have w.h.p. almost percolation. More
precisely, |A∗| = n − Op(bc).

(iii). In case (iii) we further have complete percolation, i.e.
|A∗| = n w.h.p., if and only if bc → 0, if and only if
np − (log n + (r − 1) log log n) → ∞.



The number of vertices with degree ≤ r − 1 is about bc. These
vertices are never activated unless they happen to be among the
initially active a vertices.

Part (iii) of the theorem says that these vertices are the main
obstacle to complete percolation, and it is more interesting to
study almost percolation.



Typical behaviour (when a ≈ ac):

1. First a slow growth; the number of activated vertices in each
generation decreases.

2. There is a bottleneck when the total size of the active set is
≈ tc. The process may die out at this stage. If it does not, it
will then grow rapidly (doubly exponentially) until almost all
vertices are active. (There are many vertices with r − 1 active
neighbours; these have a large chance to become active in the
next round.)

3. If p is sufficiently large, phase 2 ends with all vertices active
(percolation). If p is small, there will be some vertices of
degree < r which will never be activated (perhaps together
with some other vertices). In this case there may be a final
phase of slow growth when the last vertices are activated.



A dynamical version of the threshold

We can study the treshold for a by considering a dynamical version,
where we start with all vertices inactive and then activate them
(from the outside) one by one, in random order. The bootstrap
percolation mechanism works (instantaneously) after each external
activation. Let A0 be the number of externally activated vertices
when the active set A becomes big, say 0.5n vertices (or 0.99n
vertices, or in the case of complete percolation, all vertices).

Theorem

A0/ac
p−→ 1.



More precise threshold

Let

π̃(t) := P
(

Po(tp) ≥ r
)

=
∞
∑

j=r

(pt)j

j!
e−pt .

and

a∗c := − min
t≤3tc

nπ̃(t) − t

1 − π̃(t)
,

Then a∗c ∼ ac.

The precise threshold for a is a∗c ± O(
√
ac),

with a width of the threshold of the order
√
ac ∼

√
a∗c .



More precisely, we have a Gaussian limit.

Theorem

A0 ∼ AsN
(

a∗c , ac/(r − 1)
)

.

In other words,

A0 − a∗c
√

ac/(r − 1)

d−→ N(0, 1).



The number of generations

Theorem
Suppose that a− a∗c ≫ √

ac (so that A(0) w.h.p. almost
percolates) and a = o(n).
Then the number of generations is w.h.p.

∼ π
√

2√
r − 1

( tc
a− a∗c

)1/2
+

1

log r

(

log log(np) − log+ log
a

ac

)

+
log n

np
+Op(1).

The three terms (excepting the error term) correspond to the three
phases above.
Each of the three terms may be the dominating one.



Proofs
We first change the time scale; we forget the generations and
consider at each time step the infections from one vertex only.
Choose u1 ∈ A(0) = A0 and give each of its neighbours a mark;
we then say that u1 is used, and let Z(1) := {u1} be the set of
used vertices at time 1.
We continue recursively: At time t, choose a vertex
ut ∈ A(t − 1) \ Z(t − 1). We give each neighbour of ut a new
mark. Let ∆A(t) be the set of inactive vertices with r marks;
these now become active and we let A(t) = A(t − 1) ∪ ∆A(t) be
the set of active vertices at time t. We finally set
Z(t) = Z(t − 1) ∪ {ut} = {us : s ≤ t}, the set of used vertices.
The process stops when A(t) \ Z(t) = ∅, i.e., when all active
vertices are used. We denote this time by T ;

T := min{t ≥ 0 : A(t) \ Z(t) = ∅}.

The final active set is A(T ).
(Cf. Scalia-Tomba (1985) and Sellke (1983).)
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Let A(t) := |A(t)|, the number of active vertices at time t. Since
|Z(t)| = t and Z(t) ⊆ A(t) for t = 0, . . . ,T , we also have

T = min{t ≥ 0 : A(t) = t} = min{t ≥ 0 : A(t) ≤ t}.

Moreover, since the final active set is A(T ) = Z(T ), its size |A∗| is

|A∗| := A(T ) = |A(T )| = |Z(T )| = T .

Hence, the set A0 percolates if and only if T = n, and A0 almost
percolates if and only if T = n − o(n).



Analysis

We use the standard method of revealing the edges of the graph
G (n, p) only on a need-to-know basis:
We begin by choosing u1 as above and then reveal its neighbours;
we then find u2 and reveal its neighbours, and so on.
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Analysis (cont.)

Let, for i /∈ Z(s), Ii (s) be the indicator that there is an edge
between the vertices us and i . This is also the indicator that i gets
a mark at time s, so if Mi (t) is the number of marks i has at time
t, then

Mi (t) =
t

∑

s=1

Ii (s),

at least until i is activated (and what happens later does not
matter).

◮ If i /∈ A(0), then, for every t ≤ T , i ∈ A(t) if and only if
Mi (t) ≥ r .

◮ The random indicators Ii (s) are i.i.d. Be(p).



We have defined Ii (s) only for s ≤ T and i /∈ Z(s), but we add
further (redundant) variables so that Ii (s) are defined, and i.i.d.
Be(p), for all i ∈ Vn and all s ≥ 1.

Then Mi (t) =
∑t

1 Ii (s) is defined for all t ≥ 0, and has a binomial
distribution Bin(t, p).

Define also, for i ∈ Vn \ A(0),

Yi := min{t : Mi (t) ≥ r}.

If Yi ≤ T , then Yi is the time vertex i becomes active, but if
Yi > T , then Yi never becomes active. Thus, for t ≤ T ,

A(t) = A(0) ∪ {i /∈ A(0) : Yi ≤ t}.

Further, each Yi has a negative binomial distribution NegBin(r , p):

P(Yi = k) = P
(

Mi (k−1) = r−1, Ii (k) = 1
)

=

(

k − 1

r − 1

)

pr (1−p)k−r ;

moreover, these random variables Yi are i.i.d.



We let, for t = 0, 1, 2, . . . ,

S(t) := |{i /∈ A(0) : Yi ≤ t}| =
∑

i /∈A(0)

1[Yi ≤ t],

so
A(t) = A(0) + S(t) = S(t) + a.

and
T = min{t ≥ 0 : S(t) + a ≤ t}



It thus suffices to study the stochastic process S(t).

Note that S(t) is a sum of n − a i.i.d. processes 1[t ≥ Yi ], each of
which is 0/1-valued and jumps from 0 to 1 at time Yi , where Yi

has the distribution NegBin(r , p).
(In other words, S(t)/(n − a) is the empirical distribution function
of {Yi}.)

The fact that S(t), and thus A(t), is a sum of i.i.d. processes
makes the analysis easy; in particular, for any given t,

S(t) ∼ Bin
(

n − a, π(t)
)

,

where

π(t) := P(Y1 ≤ t) = P(M1(t) ≥ r) = P
(

Bin(t, p) ≥ r
)

.

In particular, we have

E S(t) = (n − a)π(t).



E S(t) and t (in units tc)



Random regular graphs

Suppose that G is a regular graph, where each vertex has degree d .
The set of inactive vertices is obtained by first deleting the set A0

from the vertex set, and then sucessively eliminating every vertex
that does not have at least k = d − r + 1 surviving neighbours.
The final result is the k-core of G \ A0, the largest subgraph of
G \ A0 where each vertex has degree ≥ k .
In particular, A0 percolates if and only if the k-core of G \ A0 is
empty.



Let G be a random d-regular graph with n vertices and let each
vertex be initially infected with probability q (independently). Let
n → ∞. Assume 2 ≤ r ≤ d − 2.

Theorem (Balogh and Pittel)

Let
qc := 1 − inf

0<p≤1

p

P
(

Bi(d − 1, 1 − p) ≤ r − 1
) .

(i). If q > qc, then w.h.p. all vertices become activated.

(ii). If q < qc, then w.h.p. a positive fraction of the vertices

remain inactive: (n − |A∗|)/n p−→ c > 0.

(Consistent with branching process approximation, but easier
proved by similar methods as for G (n, p).)


