Probabilistic studies of election methods

Svante Janson

KTH, Stockholm, 30 May 2011

Notation

We have m parties with v_{i} votes for party $i ; V:=\sum_{i=1}^{m} v_{i}$ is the total number of votes and $p_{i}:=v_{i} / V$ the proportions of votes for party i.

The house size is n and party i gets s_{i} seats; thus

$$
\sum_{i=1}^{m} s_{i}=n
$$

Seat excess and bias

Strict proportionality would give

$$
\begin{equation*}
q_{i}:=\frac{v_{i}}{V} n=p_{i} n \tag{1}
\end{equation*}
$$

seats to party i. (This is usually not an integer.)
The seat excess for party i is the difference

$$
\begin{equation*}
\Delta_{i}:=s_{i}-q_{i}=s_{i}-p_{i} n \tag{2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sum_{i=1}^{m} \Delta_{i}=\sum_{i=1}^{m} s_{i}-n=0 \tag{3}
\end{equation*}
$$

The bias is the mean $\mathbb{E} \Delta_{i}$ of the seat excess.
This assumes that we consider a random instance. Some possibilities:

- A sample of real elections.
(E.g. Pólya (1918), Balinski and Young (2001).)

The bias is the mean $\mathbb{E} \Delta_{i}$ of the seat excess.
This assumes that we consider a random instance. Some possibilities:

- A sample of real elections.
(E.g. Pólya (1918), Balinski and Young (2001).)
- A sample of simulated elections.
(E.g. Balinski and Young (2001).)

The bias is the mean $\mathbb{E} \Delta_{i}$ of the seat excess.
This assumes that we consider a random instance. Some possibilities:

- A sample of real elections.
(E.g. Pólya (1918), Balinski and Young (2001).)
- A sample of simulated elections.
(E.g. Balinski and Young (2001).)
- Pólya (1918-1919), Pukelsheim and others (2003-): Take p_{1}, \ldots, p_{m} random and uniformly distributed but ordered $p_{1} \geq p_{2} \geq \cdots \geq p_{m}$.

The bias is the mean $\mathbb{E} \Delta_{i}$ of the seat excess.
This assumes that we consider a random instance. Some possibilities:

- A sample of real elections.
(E.g. Pólya (1918), Balinski and Young (2001).)
- A sample of simulated elections.
(E.g. Balinski and Young (2001).)
- Pólya (1918-1919), Pukelsheim and others (2003-): Take p_{1}, \ldots, p_{m} random and uniformly distributed but ordered $p_{1} \geq p_{2} \geq \cdots \geq p_{m}$.
- My approach: Consider p_{1}, \ldots, p_{m} as given but let n be random. (Random in $\{1, \ldots, N\}$; then let $N \rightarrow \infty$.)

Advantages

- Asymptotic results depend on p_{1}, \ldots, p_{m} but not on n. Thus assumptions of random n are more robust than assumptions of random p_{i}.
- More precise information.

Example: d'Hondt's method, three parties.
Pólya: The largest party has a bias of $5 / 12$, the second $-1 / 12$, the smallest $-4 / 12$.
My approach: A party of size p has bias $(3 p-1) / 2$.

- Simpler formulas.

Advantages

- Asymptotic results depend on p_{1}, \ldots, p_{m} but not on n. Thus assumptions of random n are more robust than assumptions of random p_{i}.
- More precise information.

Example: d'Hondt's method, three parties.
Pólya: The largest party has a bias of $5 / 12$, the second $-1 / 12$, the smallest $-4 / 12$.
My approach: A party of size p has bias $(3 p-1) / 2$.

- Simpler formulas.
- Leads to nice and interesting mathematics.

Disadvantages

- In practice, n is not random.
(But neither does $n \rightarrow \infty$ hold.)
- We have to assume that p_{1}, \ldots, p_{m} are linearly independent over the rational numbers.
(But this is implicit when p_{1}, \ldots, p_{m} are random, so it is really nothing new.)

For asymtotic results these are not serious problems.

Rounding

$\lfloor x\rfloor$ and $\lceil x\rceil$ means rounding down and up of a real number x. $\{x\}:=x-\lfloor x\rfloor$ is the fractional part of x.
More generally, let α be a real number. The α-rounding of a real number x is the integer $[x]_{\alpha}$ such that

$$
\begin{equation*}
x-\alpha \leq[x]_{\alpha} \leq x-\alpha+1 \tag{4}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
[x]_{\alpha}=\lceil x-\alpha\rceil=\lfloor x+1-\alpha\rfloor, \tag{5}
\end{equation*}
$$

If $0 \leq \alpha \leq 1$, this means that x is rounded down if its fractional part is less than α and up if its fractional part is greater than α. In particular, $\alpha=\frac{1}{2}$ yields standard rounding, $\alpha=0$ yields rounding up and $\alpha=1$ yields rounding down. (But note that we allow also $\alpha<0$ or $\alpha>1$, in which case $\left|x-[x]_{\alpha}\right|$ may be greater than 1.)

Election methods

- The β-stationary divisor method, or the divisor method with $d(k)=k+\beta$ (where β is a real number): Let

$$
\begin{equation*}
s_{i}:=\left[\frac{v_{i}}{D}\right]_{\beta}=\left[\frac{p_{i}}{D^{\prime}}\right]_{\beta}, \tag{6}
\end{equation*}
$$

where $D\left(\right.$ or $\left.D^{\prime}=D / V\right)$ is chosen such that $\sum_{i=1}^{m} s_{i}=n$. Examples: $\beta=1$ (Jefferson, d'Hondt), $\beta=1 / 2$ (Webster, Sainte-Laguë), $\beta=0$ (Adams), $\beta=2$ (Imperiali).

- The γ-quota method (where γ is a real number): Let $Q:=V /(n+\gamma)$ and let

$$
\begin{equation*}
s_{i}:=\left[\frac{v_{i}}{Q}\right]_{\alpha}=\left[(n+\gamma) p_{i}\right]_{\alpha}, \tag{7}
\end{equation*}
$$

where α is chosen such that $\sum_{i=1}^{m} s_{i}=n$.
Examples: $\gamma=0$ (Hamilton, Hare, method of largest remainder), $\gamma=1$ (Droop), $\gamma=2$ (Imperiali).

Asymptotic bias

Theorem
For the β-stationary divisor method:

$$
\begin{equation*}
\mathbb{E} \Delta_{i} \rightarrow\left(\beta-\frac{1}{2}\right)\left(m p_{i}-1\right) \tag{8}
\end{equation*}
$$

For the γ-quota method:

$$
\begin{equation*}
\mathbb{E} \Delta_{i} \rightarrow \gamma\left(p_{i}-\frac{1}{m}\right) . \tag{9}
\end{equation*}
$$

The asymptotic bias for a party thus depends only on its size and the number of parties, but not on the sizes of the other parties.
In particular, the bias is 0 for every party when $\beta=1 / 2$
(Webster/Sainte-Laguë) or $\gamma=0$ (Hamilton/Hare). This is
well-known with other approaches; our approach confirms this, and shows that the method really is unbiased for a party of any size.

Asymptotic distribution

Theorem
For the β-stationary divisor method:

$$
\begin{equation*}
\Delta_{i} \xrightarrow{\mathrm{~d}} \bar{X}_{i}:=\left(\beta-\frac{1}{2}\right)\left(m p_{i}-1\right)+\widetilde{U}_{0}+p_{i} \sum_{k=1}^{m-2} \widetilde{U}_{k} . \tag{10}
\end{equation*}
$$

For the γ-quota method:

$$
\begin{equation*}
\Delta_{i} \xrightarrow{\mathrm{~d}} Y_{i}:=\gamma\left(p_{i}-\frac{1}{m}\right)+\widetilde{U}_{0}+\frac{1}{m} \sum_{k=1}^{m-2} \widetilde{U}_{k} . \tag{11}
\end{equation*}
$$

Here $\widetilde{U}_{k} \sim \mathrm{U}\left(-\frac{1}{2}, \frac{1}{2}\right)$ are independent.

Asymptotic variance

Corollary
For the β-stationary divisor method:

$$
\begin{equation*}
\operatorname{Var} \Delta_{i} \rightarrow \frac{1+(m-2) p_{i}^{2}}{12} \tag{12}
\end{equation*}
$$

For the γ-quota method:

$$
\begin{equation*}
\operatorname{Var} \Delta_{i} \rightarrow \frac{1+(m-2) / m^{2}}{12}=\frac{(m+2)(m-1)}{12 m^{2}} \tag{13}
\end{equation*}
$$

Violating quota?

We say that a seat assignment s_{i} satisfies lower quota if $s_{i} \geq\left\lfloor q_{i}\right\rfloor$ and satisfies upper quota if $s_{i} \leq\left\lceil q_{i}\right\rceil$; it satisfies quota if both holds.

In terms of the seat excess $\Delta_{i}=s_{i}-q_{i}$, the assignment satisfies lower [upper] quota if and only if $\Delta_{i}>-1\left[\Delta_{i}<1\right]$, and it satisfies quota if and only if $\left|\Delta_{i}\right|<1$.

It is well-known that Hamilton/Hare's method always satisfies quota, while Jefferson's and Droop's methods satisfy lower quota and Adams method satisfies upper quota. It is also well-known that Webster/Sainte-Laguë does not always satisfy quota, but that violations are unusual in practice.

The theorem above enable us to calculate the (asymptotic) probabilities that quota is violated for various methods.

Example

Jefferson/d'Hondt's method $(\beta=1)$, and a party i with three times the average size: $p_{i}=3 / m$.
The bias is 1 . It follows by the theorem above that

$$
\mathbb{P}\left(\Delta_{i}>1\right) \rightarrow 1 / 2
$$

so the (asymptotic) probability that the party violates quota is $1 / 2$. For a larger party, the probability is even greater.

Example

The Swedish parliament contains at present 8 parties; two large with 30% of the votes each and 6 small with $5-8 \%$ percent each.
The seats are in principle distributed by Sainte-Laguë's method ($\beta=1 / 2$).
The small parties always satisfy quota. In fact, for Webster/Sainte-Laguë, only parties with $p_{i} \geq 1 /(m-2)$ can violate quota.

For the large parties we have $p_{i}=0.3$, and thus

An integration yields

$$
\Delta_{i} \rightarrow X_{i}:=\widetilde{U}_{0}+0.3 \sum_{k=1}^{6} \widetilde{U}_{k}
$$

$$
\mathbb{P}\left(\bar{X}_{i} \geq 1\right)=\mathbb{P}\left(\bar{X}_{i} \leq-1\right)=0.00045
$$

Hence, for each of the two large parties the (asymptotic) probability of violating quota is 0.0009 .

The Alabama paradox

(Joint work with Svante Linusson.)

Theorem

The probability that state i suffers from the Alabama paradox when we increase the total number of seats by one equals

$$
\begin{equation*}
\frac{1}{m} \mathbb{E}\left(S_{i}^{-}-S_{i}^{+}-1\right)_{+} \tag{14}
\end{equation*}
$$

where $S_{i}^{+}=\sum_{j: p_{j}<p_{i}} l_{j}^{(i)}$ and $S_{i}^{-}=\sum_{j: p_{j}>p_{i}} l_{j}^{(i)}$ with $l_{j}^{(i)} \sim \operatorname{Be}\left(\left|p_{i}-p_{j}\right|\right)$ and $l_{1}^{(i)}, \ldots, I_{m}^{(i)}$ independent. If the states are ordered with $p_{1} \leq p_{2} \leq \cdots \leq p_{m}$, this can be written

$$
\frac{1}{m} \sum_{s=0}^{i-1} \sum_{k=2}^{m-i}(-1)^{s+k}\binom{s+k-2}{s} e_{s}\left(r_{1}^{(i)}, \ldots, r_{i-1}^{(i)}\right) e_{k}\left(r_{i+1}^{(i)}, \ldots, r_{m}^{(i)}\right),
$$

where $r_{j}^{(i)}:=\left|p_{i}-p_{j}\right|$ and e_{k} is the elementary symmetric polynomial.

Corollary

Suppose that there are three states with relative sizes p_{1}, p_{2}, p_{3}, with $p_{1} \leq p_{2} \leq p_{3}$. Then only the smallest state can suffer from the Alabama paradox, and the probability of this is

$$
\frac{1}{3}\left(p_{2}-p_{1}\right)\left(p_{3}-p_{1}\right) .
$$

The supremum of this probability over all distributions $\left(p_{1}, p_{2}, p_{3}\right)$ is $1 / 12$, and the average is $1 / 36$.

With (uniform) random poulation sizes, the expected number of occurences of the Alabama paradox is ≈ 0.12324 for large m.

Proofs

> Proofs are based on Weyl's theorem: If $W_{i}=\left\{n p_{i}\right\}$ then W_{1}, \ldots, W_{m-1} are (asymptotically) uniformly distributed in $(0,1)$ and independent.

However, W_{m} is determined by W_{1}, \ldots, W_{m-1}. Moreover, the adjustment of the divisor in divisor methods, or the rounding threshold in quota methods, in order to achieve a fixed house size n introduces some rather complicated dependencies. Nevertheless, after some algebraic manipulations we obtain the results above.

Further applications

Further applications

- The probability that a party or coalition with a small majority of the votes but not a majority of the seats.

Further applications

- The probability that a party or coalition with a small majority of the votes but not a majority of the seats.
- Biproportional methods??

