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Notation

We have m parties with vi votes for party i ; V :=
∑m

i=1 vi is the
total number of votes and pi := vi/V the proportions of votes for
party i .

The house size is n and party i gets si seats; thus

m∑
i=1

si = n.



Seat excess and bias

Strict proportionality would give

qi :=
vi
V

n = pin (1)

seats to party i . (This is usually not an integer.)

The seat excess for party i is the difference

∆i := si − qi = si − pin. (2)

Note that
m∑
i=1

∆i =
m∑
i=1

si − n = 0. (3)



The bias is the mean E∆i of the seat excess.
This assumes that we consider a random instance. Some
possibilities:

I A sample of real elections.
(E.g. Pólya (1918), Balinski and Young (2001).)

I A sample of simulated elections.
(E.g. Balinski and Young (2001).)

I Pólya (1918–1919), Pukelsheim and others (2003-): Take
p1, . . . , pm random and uniformly distributed but ordered
p1 ≥ p2 ≥ · · · ≥ pm.

I My approach: Consider p1, . . . , pm as given but let n be
random. (Random in {1, . . . ,N}; then let N →∞.)
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I Pólya (1918–1919), Pukelsheim and others (2003-): Take
p1, . . . , pm random and uniformly distributed but ordered
p1 ≥ p2 ≥ · · · ≥ pm.

I My approach: Consider p1, . . . , pm as given but let n be
random. (Random in {1, . . . ,N}; then let N →∞.)



Advantages

I Asymptotic results depend on p1, . . . , pm but not on n. Thus
assumptions of random n are more robust than assumptions of
random pi .

I More precise information.
Example: d’Hondt’s method, three parties.
Pólya: The largest party has a bias of 5/12, the second
−1/12, the smallest −4/12.
My approach: A party of size p has bias (3p − 1)/2.

I Simpler formulas.

I Leads to nice and interesting mathematics.
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Disadvantages

I In practice, n is not random.
(But neither does n→∞ hold.)

I We have to assume that p1, . . . , pm are linearly independent
over the rational numbers.
(But this is implicit when p1, . . . , pm are random, so it is
really nothing new.)

For asymtotic results these are not serious problems.



Rounding

bxc and dxe means rounding down and up of a real number x .
{x} := x − bxc is the fractional part of x .

More generally, let α be a real number. The α-rounding of a real
number x is the integer [x ]α such that

x − α ≤ [x ]α ≤ x − α + 1. (4)

Consequently,

[x ]α = dx − αe = bx + 1− αc, (5)

If 0 ≤ α ≤ 1, this means that x is rounded down if its fractional
part is less than α and up if its fractional part is greater than α. In
particular, α = 1

2 yields standard rounding, α = 0 yields rounding
up and α = 1 yields rounding down. (But note that we allow also
α < 0 or α > 1, in which case |x − [x ]α | may be greater than 1.)



Election methods

I The β-stationary divisor method, or the divisor method with
d(k) = k + β (where β is a real number): Let

si :=
[vi

D

]
β

=
[ pi

D ′

]
β
, (6)

where D (or D ′ = D/V ) is chosen such that
∑m

i=1 si = n.
Examples: β = 1 (Jefferson, d’Hondt), β = 1/2 (Webster,
Sainte-Laguë), β = 0 (Adams), β = 2 (Imperiali).

I The γ-quota method (where γ is a real number): Let
Q := V /(n + γ) and let

si :=

[
vi
Q

]
α

= [(n + γ)pi ]α , (7)

where α is chosen such that
∑m

i=1 si = n.
Examples: γ = 0 (Hamilton, Hare, method of largest
remainder), γ = 1 (Droop), γ = 2 (Imperiali).



Asymptotic bias

Theorem
For the β-stationary divisor method:

E∆i →
(
β − 1

2

)
(mpi − 1). (8)

For the γ-quota method:

E∆i → γ
(

pi −
1

m

)
. (9)

The asymptotic bias for a party thus depends only on its size and
the number of parties, but not on the sizes of the other parties.

In particular, the bias is 0 for every party when β = 1/2
(Webster/Sainte-Laguë) or γ = 0 (Hamilton/Hare). This is
well-known with other approaches; our approach confirms this, and
shows that the method really is unbiased for a party of any size.



Asymptotic distribution

Theorem
For the β-stationary divisor method:

∆i
d−→ X̄i := (β − 1

2)(mpi − 1) + Ũ0 + pi

m−2∑
k=1

Ũk . (10)

For the γ-quota method:

∆i
d−→ Yi := γ

(
pi −

1

m

)
+ Ũ0 +

1

m

m−2∑
k=1

Ũk . (11)

Here Ũk ∼ U(−1
2 ,

1
2) are independent.



Asymptotic variance

Corollary

For the β-stationary divisor method:

Var ∆i →
1 + (m − 2)p2

i

12
(12)

For the γ-quota method:

Var ∆i →
1 + (m − 2)/m2

12
=

(m + 2)(m − 1)

12m2
. (13)



Violating quota?

We say that a seat assignment si satisfies lower quota if si ≥ bqic
and satisfies upper quota if si ≤ dqie; it satisfies quota if both
holds.

In terms of the seat excess ∆i = si − qi , the assignment satisfies
lower [upper] quota if and only if ∆i > −1 [∆i < 1], and it
satisfies quota if and only if |∆i | < 1.

It is well-known that Hamilton/Hare’s method always satisfies
quota, while Jefferson’s and Droop’s methods satisfy lower quota
and Adams method satisfies upper quota. It is also well-known
that Webster/Sainte-Laguë does not always satisfy quota, but that
violations are unusual in practice.

The theorem above enable us to calculate the (asymptotic)
probabilities that quota is violated for various methods.



Example

Jefferson/d’Hondt’s method (β = 1), and a party i with three
times the average size: pi = 3/m.
The bias is 1. It follows by the theorem above that

P(∆i > 1)→ 1/2,

so the (asymptotic) probability that the party violates quota is
1/2. For a larger party, the probability is even greater.



Example

The Swedish parliament contains at present 8 parties; two large
with 30% of the votes each and 6 small with 5–8% percent each.
The seats are in principle distributed by Sainte-Laguë’s method
(β = 1/2).

The small parties always satisfy quota. In fact, for
Webster/Sainte-Laguë, only parties with pi ≥ 1/(m − 2) can
violate quota.

For the large parties we have pi = 0.3, and thus

∆i → Xi := Ũ0 + 0.3
6∑

k=1

Ũk .

An integration yields

P(X̄i ≥ 1) = P(X̄i ≤ −1) = 0.00045.

Hence, for each of the two large parties the (asymptotic)
probability of violating quota is 0.0009.



The Alabama paradox
(Joint work with Svante Linusson.)

Theorem
The probability that state i suffers from the Alabama paradox
when we increase the total number of seats by one equals

1

m
E
(
S−i − S+

i − 1
)
+
, (14)

where S+
i =

∑
j :pj<pi

I
(i)
j and S−i =

∑
j :pj>pi

I
(i)
j with

I
(i)
j ∼ Be(|pi − pj |) and I

(i)
1 , . . . , I

(i)
m independent.

If the states are ordered with p1 ≤ p2 ≤ · · · ≤ pm, this can be
written

1

m

i−1∑
s=0

m−i∑
k=2

(−1)s+k

(
s + k − 2

s

)
es(r

(i)
1 , . . . , r

(i)
i−1)ek(r

(i)
i+1, . . . , r

(i)
m ),

where r
(i)
j := |pi − pj | and ek is the elementary symmetric

polynomial.



Corollary

Suppose that there are three states with relative sizes p1, p2, p3,
with p1 ≤ p2 ≤ p3. Then only the smallest state can suffer from
the Alabama paradox, and the probability of this is

1

3
(p2 − p1)(p3 − p1).

The supremum of this probability over all distributions (p1, p2, p3)
is 1/12, and the average is 1/36.

With (uniform) random poulation sizes, the expected number of
occurences of the Alabama paradox is ≈ 0.12324 for large m.



Proofs

Proofs are based on Weyl’s theorem: If Wi = {npi} then
W1, . . . ,Wm−1 are (asymptotically) uniformly distributed in (0, 1)
and independent.

However, Wm is determined by W1, . . . ,Wm−1. Moreover, the
adjustment of the divisor in divisor methods, or the rounding
threshold in quota methods, in order to achieve a fixed house size
n introduces some rather complicated dependencies. Nevertheless,
after some algebraic manipulations we obtain the results above.



Further applications

I The probability that a party or coalition with a small majority
of the votes but not a majority of the seats.

I Biproportional methods??
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