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Graphs

A graph is a set of nodes (or vertices) together with edges (or
links), where each edge connects two nodes.
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Independent set

A set of nodes in a graph is independent if there is no edge
connecting two nodes in the set.
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The red independent set has 7 nodes.



Greedy independent set

We construct a large (but typically not maximum size) independent
set by inspecting the vertices in random order, and selecting every
vertex that is not joined to a vertex already selected.
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We modify a little, by marking a vertex as blocked if it is a
neighbour of a selected vertex.
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Random graphs with given degrees

Fix the node degrees as a given sequence d1, . . . , dn, and take a
random graph, uniformly among all possible graphs with these
degrees.
(We assume that there are any such graphs. In particular,

∑
di

must be even.)



The configuration model

We are interested in a sparse case (with average degree bounded),
and then the standard method is the “Configuration model” by
Bollobás (1980,1985) (see also Bender and Canfield (1978)).

I Assign di “half-edges” to node i , i = 1, . . . , n.

I Pair the half-edges uniformly at random.

I Merge each pair of half-edges into an edge.

This may construct multiple edges and loops, but if we condition
on this not happening, we obtain a uniformly random graph with
the given degrees. In the sparse case, the conditioning is no
problem, and we may work with the random multigraph generated
by the configuration model.
In the pairing step, we may process the half-edges one by one, in
any order, if we like. This gives a useful flexibility.
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Assumptions
We study asymptotics as n→∞. di generally depends on n.
Let

nk = nk(n) = #{i : di = k}, k ∈ {0, 1, 2, . . . },

the number of vertices of degree k .
Let (pk)∞0 be a probability distribution, and assume that

nk(n)/n→ pk

for each k . Assume further that∑
k

k2nk(n) = O(n).

(Equivalently, the second moment of the degree distribution of a
random vertex is uniformly bounded.) Then the distribution (pk)∞0
has a finite and mean λ =

∑
k kpk and the average vertex degree∑

k knk/n converges to λ (since the distribution of the degree of a
random vertex is uniformly integrable). Assume also λ > 0.



Theorem
Let S

(n)
∞ denote the size of a random greedy independent set.

Let τ∞ be the unique value in (0,∞] such that

λ

∫ τ∞

0

e−2σ∑
k kpke−kσ

dσ = 1.

Then

S
(n)
∞
n
→ λ

∫ τ∞

0
e−2σ

∑
k pke−kσ∑
k kpke−kσ

dσ in probability.

This limit is called the jamming constant.
This was proved, without an explicit formula for the jamming
constant (and with somewhat stronger assumptions), by Bermolen,
Jonckheere and Moyal (2013). The version above is by Brightwell,
Janson and Luczak (2015).



Example

A random regular graph, where all nodes have a fixed degree d ≥ 2.
Then pd = 1 and λ = d , and thus

1 =

∫ τ∞

σ=0
e(d−2)σ dσ =

1

d − 2
(e(d−2)τ∞ − 1),

for d ≥ 3, and so τ∞ = log(d−1)
d−2 . For d = 2 we obtain τ∞ = 1. By

the theorem, the jamming constant is∫ τ∞

0
e−2σ dσ =

1

2
(1− e−2τ∞) =

1

2

(
1− 1

(d − 1)2/(d−2)

)
,

for d ≥ 3 [Wormald, 1995], and 1
2(1− e−2) for d = 2 [Flory, 1939].



Proof

We use a standard method and reveal the edges as we go.

I Each vertex is given an independent exponential clock (rate
1).

I Initially, every vertex is empty.

I When the clock at an empty vertex rings, the vertex becomes
selected, its edges are revealed, and its neighbours become
blocked.

I When the clock at a blocked vertex rings, do nothing.

When revealing the edges at a vertex that is selected, we choose a
partner of each half-edge at the vertex, uniformly at random
among all free half-edges.
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The variables that we track, for 0 ≤ t ≤ ∞, are

I Et(k), the number of empty vertices of degree k at time t, for
k ≥ 0.

I Ut , the number of unpaired half-edges

I St , the number of vertices selected so far.

The vector (Ut ,Et(0),Et(1), . . . ,St) is a Markov process.



St has drift
∞∑
k=0

Et(k).

In other words,

St −
∫ t

0

∞∑
k=0

Es(k)ds.

is a martingale.
This is immediate, since St increases by 1 each time the clock at
an empty vertex goes off, and they all go off with rate 1.



Similarly,
Ut has drift

−
∞∑
k=1

kEt(k)
(

2− k − 1

Ut − 1

)
.

Et(k) has drift

−Et(k)−
∞∑
j=1

pjk(Ut)Et(j)
(
Et(k)− δjk

)
,

where pjk is the probability that in a configuration model with u
half-edges, two vertices v and w of degrees j and k, respectively,
are connected by at least one edge.



Thus, for example,

Ut

n
=

U0

n
−
∫ t

0

∞∑
k=1

kEs(k)

n

(
2− k − 1

Us − 1

)
ds +

Mt

n
,

where Mt is a martingale.

I An estimate of the quadratic variation shows, using Doob’s
inequality, that supt |Mt/n| p−→ 0.

I The integrand is uniformly bounded, so the integral is
uniformly Lipschitz, and the Arzela–Ascoli theorem shows that
the stochastic process defined by the integral is tight in
C [0,∞). (I.e., in C [0, t0] for every t0.)

I Hence, Ut/n is tight in D[0,∞).

I Similarly for Et(k)/n.
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Thus, at least along a subsequence, Ut/n and each Et(k)/n
converge in distribution in D[0,∞) to some limits ut and et(k).
By the Skorohod representation theorem, we may assume

Ut/n→ ut , Et(k)/n→ et(k) a.s.

A priori, ut and et(k) are random processes, and depend on the
selected subsequence, but we shall prove that they are
deterministic functions that do not depend on the subsequence.
Thus the convergence holds for the full sequence.



Still considering a suitable subsequence, we use the a.s.
convergence stated above and dominated convergence and obtain
the infinite system of equations

ut = λ− 2

∫ t

0

∞∑
k=1

kes(k) ds

et(k) = pk −
∫ t

0
es(k) ds −

∫ t

0
kes(k)

∑∞
j=1 jes(j)

us
ds, k ≥ 0.

It follows first that ut and et(k) are continuous, and then that they
are continuously differentiable.



The integral equations above thus yield the differential equations

dut

dt
= −2

∞∑
k=1

ket(k)

det(k)

dt
= −et(k)− ket(k)

∑∞
j=1 jet(j)

ut
, k ≥ 0.

with the initial conditions u0 = λ and e0(k) = pk .

Note that the system is infinite, and it is not a priori obvious that
it has a solution, or that the solution is unique. The system is not
obviously Lipschitz with respect to any of the usual norms on
sequence spaces.
Fortunately, it is possible to decouple the system via a change of
variables and a time-change.
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We make the change of variables

ht(j) = etet(j),

for each j , and rescale time by introducing a new time variable
τ = τt such that

dτ

dt
=

∑
j jet(j)

ut
,

with τ0 = 0.

This yields the system

duτ
dτ

=
du

dt

dt

dτ
= −2uτ ,

dhτ (j)

dτ
=

dh(j)

dt

dt

dτ
= −jhτ (j), j ≥ 0,

with the initial conditions u0 = λ and h0(j) = pj .
The system has the obvious unique solution

uτ = λe−2τ

hτ (j) = pje
−jτ , j ≥ 0.
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This yields
dτ

dt
= e−t

∑
k kpke−kτ

λe−2τ
,

and separating the variables gives

1− e−t =

∫ t

0
e−s ds =

∫ τt

0

λe−2σ∑
k kpke−kσ

dσ.

This determines τt uniquely for every t ∈ [0,∞), and thus ut , ht(j)
and et(j) are determined by uτ and hτ (j).
Consequently, the differential equation have a unique solution,
et(k) and ut .

This completes the proof that Ut/n
p−→ ut and Et(k)/n

p−→ et(k)
in D[0,∞).



Furthermore, letting t →∞,∫ τ∞

0

λe−2σ∑
k kpke−kσ

dσ = 1,

as claimed in the theorem. (This determines τ∞ uniquely.)



Similarly,

St

n
→ st :=

∫ t

0

∞∑
k=0

es(k) ds

for any t <∞, and this can be extended to t =∞.
This proves the theorem, with the jamming constant

s∞ = lim
t→∞

st =

∫ ∞
0

∞∑
k=0

et(k) dt.

The equations above yield

s∞ =

∫ ∞
0

∑
k

et(k) dt

=

∫ τ∞

0

uτ
∑

k hτ (k)∑
k khτ (k)

dτ

= λ

∫ τ∞

0
e−2τ

∑
k pke−kτ∑
k kpke−kτ

dτ.


