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Patterns in a permutation

Let Sn be the set of permutations of [n] := {1, . . . , n}.

If σ = σ1 · · ·σk ∈ Sk and π = π1 · · ·πn ∈ Sn, then an occurrence
of σ in π is a subsequence πi1 · · ·πik , with 1 ≤ i1 < · · · < ik ≤ n,
that has the same relative order as σ. σ is called a pattern.

Example: 31425 is an occurence of 213 in 31425

Let nσ(π) be the number of occurrences of σ in π.
For example, n21(π) is the number of inversions in π.

A permutation π avoids a pattern σ if there is no occurence of σ in
π, i.e., if nσ(π) = 0.

Let Sn(τ) := {π ∈ Sn : nτ (π) = 0}, the set of permutations of
length n that avoid τ .

Similarly, let Sn(τ1, . . . , τk) :=
⋂

i Sn(τi ), the set of permutations
of length n that avoid τ1, . . . , τk .



Example

Donald Knuth, The Art of Computer Programming, vol. 1,
Exercise 2.2.1-5:
A permutation π can be obtained by a stack if and only if π is
312-avoiding, i.e., π ∈ Sn(312).

Equivalently:
A permutation π is stack-sortable if and only if π is 231-avoiding.
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Example

A permutation π can be sorted by 2 parallel queues if and only if π
is 321-avoiding, i.e., π ∈ Sn(321). [Tarjan (1972)]

Example

A permutation π is deque-sortable if and only if π is
{2431, 4231}-avoiding, i.e., π ∈ Sn(2431, 4231). [West (1995)]

Further examples, properties and references:
See Stanley, Enumerative Combinatorics,
Exercises 6.19 x (321), y (312), ee (321), ff (312), ii (231), oo
(132), xx (321); 6.25 g (321); 6.39 k, l ({2413, 3142}), m
({1342, 1324}); 6.47 a ({4231, 3412}); 6.48 (1342).

(Or Stanley, Catalan Numbers)



One fundamental question, studied by many authors, is the size of
these classes |Sn(τ)| and |Sn(τ1, . . . , τk)|.

Theorem
If |τ | = 3, then

|Sn(τ)| = Cn =
1

n + 1

(
2n

n

)
,

the nth Catalan number.

The cases with |τ | ≥ 4 are much more complicated. See e.g. Bóna
(2004).



Some results are also known for |Sn(τ1, . . . , τk)| with k ≥ 2.

Example All cases with all |τi | = 3 are treated by Simion and
Schmidt (1995). For example, several such cases yield 2n−1.

Example |Sn(2431, 4231)| = rn−1, a Schröder number.



A related problem is to study properties of a random permutation
chosen uniformly from a class Sn(τ1, . . . , τk).

Several properties of such restricted random permutations have
been studied by a number of authors. For example: consecutive
patterns, descents, major index, number of fixed points, position of
fixed points, exceedances, longest increasing subsequence, shape
and distribution of individual values πi .

I consider here instances of the following general problem:

Fix patterns τ1, . . . , τk and σ. What is the asymptotic distribution,
as n→∞, of nσ(π) for π ∈ Sn(τ1, . . . , τk), chosen uniformly at
random?

Example

Take σ = 21. (Recall that n21(π) is the number of inversions in π.)
What is the asymptotic distribution of the number of inversions in
a random π ∈ Sn(τ1, . . . , τk)?



I consider today only the cases with |τi | = 3, when I can give more
or less complete results.

Also these simple cases are treated case by case, by different
methods.
No general method is known for these problems, even in the
comparatively simple case |τ | = 3.

PLEASE HELP!

Remark. Some impressive results for Sn(2413, 3142) (separable
permutations) are recently given by Bassino, Bouvel, Féray, Gerin,
Pierrot (2018), with generalizations by Bassino, Bouvel, Féray,
Gerin, Maazoun, Pierrot (2017+).
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Pierrot (2018), with generalizations by Bassino, Bouvel, Féray,
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Trivial cases

There are some trivial cases, with |Sn(τ1, . . . , τk)| = 0, 1 or 2.

For example, Sn(123, 321) = ∅. (n ≥ 5)

All cases with |τ1| = · · · = |τk | = 3 and k ≥ 4 are trivial.

We ignore trivial cases.



Symmetries

There are many cases, even with all |τi | = 3, but the number is
reduced by obvious symmetries:

inverse: 25341↔ 51342

reflection left-right: 25431↔ 13452

reflection up-down: 25431↔ 41235

Remark. These generate a dihedral group of 8 symmetries.
If we represent permutations by square 0–1-matrices, then these
symmetries are the usual 8 symmetries of a square.

These symmetries reduce the 37 non-trivial cases Sn(τ1, . . . , τk)
with |τi | = 3 to
1 with k = 0 (unrestricted permutations in Sn)
2 with k = 1
4 with k = 2
4 with k = 3
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Unrestricted permutations

As a background, consider random permutations without
restrictions.

Theorem (Bóna (2007, 2010), Janson, Nakamura and
Zeilberger (2015))

Consider a random unrestricted permutation πn ∈ Sn. Then
nσ(πn) is asymptotically normally distributed, for any σ: if
k := |σ| then

nσ(πn)− nk/k!2

nk−1/2
d−→ N(0, γ2σ)

for some constant γσ > 0.



Proof.
A random permutation πn can be obtained by taking i.i.d. random
variables X1, . . . ,Xn ∼ U(0, 1) and considering their ranks. Then

nσ(πn) =
∑

i1<···<im

f
(
Xi1 , . . . ,Xim

)
for a suitable (indicator) function f .
This sum is an asymmetric U-statistic, and the result follows by
general results on U-statistics [in principle Hoeffding (1948), see
e.g. Janson (1997, 2018)]



The 11 cases all have asymptotic distributions of one of the
following two types. Let πn ∈ Sn(τ1, . . . , τk) be uniformly random.

I. Normal limits: For every σ ∈ S∗(τ1, . . . , τk), there exists
constants α, β, γ such that, as n→∞,

nσ(πn)− βnα

nα−1/2
d−→ N

(
0, γ2

)
,

with convergence of all moments.

In particular, E nσ(πn) ∼ βnα, and we have concentration:

nσ(πn)

E nσ(πn)

p−→ 1.

II. Non-normal limits without concentration: For every
σ ∈ S∗(τ1, . . . , τk), there exists a constant α such that

nσ(πn)

nα
d−→Wσ,

with convergence of all moments, for some random variable
Wσ > 0.



T |Sn(T )| type I type II as. variance = 0

∅ n! |σ|
{132} Cn (|σ|+ D(σ))/2 m · · · 1
{321} Cn (|σ|+ B(σ))/2 1 · · ·m
{132, 312} 2n−1 |σ|
{231, 312} 2n−1 B(σ) 1 · · ·m
{231, 321} 2n−1 B(σ) 1 · · ·m
{132, 321}

(n
2

)
+ 1 |σ|

{231, 312, 321} Fn+1 B(σ) 1 · · ·m
{132, 231, 312} n |σ|
{132, 231, 321} n |σ| − 1 or |σ| 1 · · ·m
{132, 213, 321} n |σ|
{2413, 3142} sn−1 |σ|

This table shows whether nσ(πn) has limits of type I (normal) or II
(non-normal). The exponent α = α(σ) is given in the column for
the type. (The mean is of order nα.)

Cn := 1
n+1

(2n
n

)
is a Catalan number; Fn+1 is a Fibonacci number;

sn−1 is a Schröder number; D(σ) is the number of descents and
B(σ) is the number of blocks in σ.



A block in σ is a minimal interval [i , j ] such that π maps [1, i − 1],
[i , j ] and [j + 1, n] to themselves.

Remark. We do not know whether a general set of forbidden
permutations T has limits in distribution of nσ(πn) (after
normalization) at all.
Even if limits exist, no reason is known that they have to be of
type I or II above.

Remark. The non-normal limits in the cases {132}, {321} and
{2413, 3142} can all be expressed as functionals of a Brownian
excursion e(t). However, the expressions in these three cases are,
in general, quite different (and obtained by quite different
arguments), so there is no obvious hope for a unification.
(The other cases of non-normal limits in the table are different,
and of a more elementary kind.)



132-avoiding permutations (or 213, 231, 312)

Theorem
Let σ ∈ S∗(132) and let λ(σ) := |σ|+ D(σ),where D(σ) is the
number of descents in σ, i.e., indices i such that σi > σi+1 or
i = |σ|.
If πn ∈ Sn(132) is uniformly random, then

nσ(πn)/nλ(σ)/2
d−→ Λσ

for some strictly positive random variable Λσ.

We have 1 ≤ D(σ) ≤ |σ|, and thus

|σ|+ 1 ≤ λ(σ) ≤ 2|σ|,

with the extreme values λ(σ) = |σ|+ 1 if and only if σ = 1 · · · k ,
and λ(σ) = 2|σ| if and only if σ = k · · · 1, for some k = |σ|.



Proof.

I A natural bijection between Sn(132) and binary trees of order
n.

I the standard bijection between the latter and Dyck paths.

I A random Dyck path converges (after scaling) in distribution
to a Brownian excursion.

The limit variables Λσ above can be expressed as functionals of a
Brownian excursion e(x). (This is a random non-negative function
on [0, 1].) The description is, in general, rather complicated, but
some cases are simple.

Moments of the variables Λσ can be calculated by a recursion
formula. (Proved separately from convergence in distribution.)
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Example

In the special case σ = 12, Λ12 =
√

2
∫ 1
0 e(x) dx , this is (apart

from the factor
√

2) the well-known Brownian excursion area.
For the number n21 of inversions in Sn(132), we thus have(n

2

)
− n21(πn)

n3/2
=

n12(πn)

n3/2
d−→ Λ12 =

√
2

∫ 1

0
e(x) dx .

By symmetries, the left-hand side can also be seen as the number
of inversions normalized by n3/2, if we instead avoid 231 or 312.



The bijection with binary trees

Given a permutation π = π1 · · ·πn ∈ Sn(132) find the maximum
πk = n and make it the root. Construct recursively the left subtree
from π1 · · ·πk−1 and the right subtree from πk+1 · · ·πn.

Note that if πi is in the left subtree and πj in the right, then
πi > πj since π avoids 132. Hence the tree determines the
permutation.

Example

If i < j , then πi < πj only if i is a descendant of j (in its left
subtree).
Hence, n12(π) equals the total left path length in the binary tree.



Λ12 =
√

2

∫ 1

0
e(x) dx .

Λ123 =

∫ 1

0
e(x)2 dx .

Λ1...m =
2(m−1)/2

(m − 1)!

∫ 1

0
e(x)m−1 dx .

Λ213 =
√

2

∫∫
0≤x<y≤1

e([x , y ]) dx dy

Λ231 =
√

2

∫∫
0≤x<y≤1

(
e(x)− e([x , y ])

)
dx dy

where
e([x , y ]) := min

z∈[x ,y ]
e(z).



321-avoiding permutations (or 123)

Theorem
Suppose σ ∈ S∗(321). Let m be the number of blocks in σ. Then,
as n→∞, for a random πn ∈ Sn(321),

nσ(πn)/n(|σ|+m)/2 d−→Wσ,

for some random variable Wσ > 0.

Example The number of inversions.

n21(πn)/n3/2
d−→ Λ21 = 2−1/2

∫ 1

0
e(t) dt,

where the random function e(t) is a Brownian excursion.



In general,

Wσ = wσ

∫
t1<···<tm

e(t1)`1−1 · · · e(tm)`m−1 dt1 · · · dtm

where `1, . . . , `m are the lengths of the blocks in σ, and wσ is a
curious combinatorial constant.

Proof.

I A bijection with Dyck paths by Billey, Jockush and Stanley
(1993).

I Further developments by Hoffman, Rizzolo and Slivken (2017).

I A random Dyck path converges (after scaling) in distribution
to a Brownian excursion.



The bijection with binary trees

Fix a Dyck path γ of length 2n, and let m be the number of
increases (or decreases) in γ. Let ai ≥ 1 be the length of the i-th
run of increases, and let di ≥ 1 be the length of the i-th run of
decreases in γ. Let, Ai :=

∑i
j=1 aj and Di :=

∑i
j=1 dj ; let

A := {Ai : 1 ≤ i ≤ m − 1}, A1 := {Ai + 1 : 1 ≤ i ≤ m − 1},
D := {Di : 1 ≤ i ≤ m − 1}, Ac

1 := [n] \ A1, and Dc := [n] \ D.

Finally, define the permutation πγ ∈ Sn as the unique permutation
with π : D → A1, and therefore π : Dc → Ac

1, such that π is
increasing on D and on Dc. (In particular, πγ(Di ) = Ai + 1 for
1 ≤ i ≤ m − 1.)



Example

The Dyck path below has m = 3, (a1, a2, a3) = (1, 2, 2),
(d1, d2, d3) = (1, 1, 3), (A1,A2,A3) = (1, 3, 5),
(D1,D2,D3) = (1, 2, 5), A1 = {2, 4}, D = {1, 2}, Ac

1 = {1, 3, 5},
Dc = {3, 4, 5} and π = 24135.

��@@��
��@@��

��@@
@@
@@r r r r r r r r r r r

A Dyck path of length 10 (n = 5).
Fact:

πγ(i) ≈

{
i + γ(2i), i ∈ D
i − γ(2i), i ∈ Dc

Thus πγ(i) = i + Op(
√
n).



Example

If i < j , then ij is an inversion on πγ if i ∈ D, j ∈ Dc and

0 < j − i <≈ γ(2i) + γ(2j) ≈ 2γ(2i).

Hence

n21(πγ) ≈ 1

22

n∑
i=1

2γ(2i) ≈ n
√

2n

2

∫ 1

0
e(x) dx .



Avoiding {132, 312}

Theorem
Let m ≥ 2 and σ ∈ Sm(132, 312). If πn is random in
Sn(132, 312). then as n→∞,

nσ(πn)− 21−mnm/m!

nm−1/2
d−→ N

(
0, γ2

)
.

Proof.
A permutation π belongs to the class S∗(132, 312) if and only if
every entry πi is either a maximum or a minimum.
[Simion and Schmidt, 1995].
Encode π ∈ Sn(132, 312) by a sequence ξ2, . . . , ξn ∈ {±1}n−1,
where ξj = 1 if πj is a maximum in π, and ξj = −1 if πj is a
minimum. This is a bijection. Hence the code for a uniformly
random πn has ξ2, . . . , ξn i.i.d. with P(ξj = 1) = P(ξj = −1) = 1

2 .



Let σ ∈ Sm(132, 312) have the code η2, . . . , ηm. Then πi1 · · ·πim is
an occurrence of σ in π if and only if ξij = ηj for 2 ≤ j ≤ m.
Consequently, nσ(πn) is an asymmetric U-statistic

nσ(πn) =
∑

i1<···<im

f
(
ξi1 , . . . , ξim

)
,

where

f
(
ξ1, . . . , ξm

)
:=

m∏
j=2

1[ξj = ηj ].

Note that f does not depend on the first argument.

The result follows from the theory of U-statistics.



Example

For the number of inversions, we have σ = 21 and m = 2,
η2 = −1. A calculation yields µ = 1

2 and γ2 = 1
12 , and thus

n21(πn)− n2/4

n3/2
d−→ N

(
0, 1

12

)
,



{231, 312}-avoiding permutations

Theorem
Let σ ∈ S∗(231, 312) have m blocks. Then, for a random
πn ∈ Sn(231, 312),

nσ(πn)− nm/m!

nm−1/2
d−→ N(0, γ2)

for some constant γ2.

Example The number of inversions.

n21(πn)− n

n1/2
d−→ N(0, 6).



Proof.

I π ∈ S∗(231, 312) ⇐⇒ each block is decreasing:
`(`− 1) · · · 21 [Simion and Schmidt, 1995].
(Hence, |Sn(231, 312)| = 2n−1.)

I If the block lengths are `1, . . . , `m, then n21(πn) =
∑m

i=1

(
`i
2

)
.

Similar for general σ, with multiple sum.

I (`1, . . . , `m) is a random composition of n.

I Can be realized as the first elements, up to sum n, of an i.i.d.
sequence L1, L2, . . . of random variables with a Geometric
Ge(1/2) distribution.

I Hence, with τ(n) := min
{
m :

∑m
1 Li ≥ n

}
,

n21(πn)
d
=

τ(n)∑
i=1

(
Li
2

)

I Renewal theory, in a U-statistics version by Janson (2018).



{231, 321}-avoiding permutations

Theorem
Let σ ∈ S∗(231, 321) have m blocks. Then, for a random
πn ∈ Sn(231, 321),

nσ(πn)− µnm

nm−1/2
d−→ N(0, γ2)

for some constants µ, γ.

Example The number of inversions.

n21(πn)− 1
2n

n1/2
d−→ N(0, 14).



Proof.

I π ∈ S∗(231, 321) ⇐⇒ each block is of the type
`12 · · · (`− 1) [Simion and Schmidt, 1995].

I Then as above.



{132, 321}-avoiding permutations

Theorem
For a random πn ∈ Sn(132, 321), the number of inversions has the
asymptotic distribution

n−2n21(πn)
d−→W := XY ,

where (X ,Y ) is uniformly distributed in the triangle
{x , y ≥ 0, x + y ≤ 1}. The limit variable W has density function

2 log
(
1 +
√

1− 4x
)
− 2 log

(
1−
√

1− 4x
)
, 0 < x < 1/4,

and moments

EW r = 2
r !2

(2r + 2)!
, r > 0.

Similar for general σ ∈ S∗(132, 321).



Proof.

I Sn(132, 321) has only
(n
2

)
+ 1 elements:

the identity and
{
πk,`,n−k−` : k, ` ≥ 1, k + ` ≤ n

}
,

where πk,`,m is the permutation
(`+ 1, . . . , `+ k, 1, . . . , `, k + `+ 1, . . . , k + `+m) ∈ Sk+`+m,
consisting of three increasing runs of lengths k , `, m (where
the third run is empty when m = 0).

I n21(πk,`,n−k−`) = kl .



{231, 312, 321}-avoiding permutations

Theorem
Let σ ∈ S∗(231, 312, 321) have m blocks. Then, for a random
πn ∈ Sn(231, 312, 321),

nσ(πn)− µnb

nb−1/2
d−→ N(0, γ2)

for some constants µ, γ.

Example The number of inversions. σ = 21. b = 1. A calculation
yields µ = (3−

√
5)/2 and γ2 = 5−3/2.

n21(πn)− 3−
√
5

2 n

n1/2
d−→ N

(
0, 5−3/2

)
.



Proof.

I π ∈ S∗(231, 312, 321) ⇐⇒ each block is of the type 1 or 21.
[Simion and Schmidt, 1995].

I Thus π is determined by its sequence of block lengths
`1, . . . , `m with `i ∈ {1, 2} and

∑
i `i = n.

I Let p := (
√

5− 1)/2, the golden ratio, so that p + p2 = 1.
Let X1,X2, . . . be an i.i.d. sequence of random variables with

P(Xi = 1) = p, P(Xi = 2) = p2.

Let Sk :=
∑k

i=1 Xi and B(n) := min{k : Sk ≥ n}. Then, the
sequence L1, . . . , LB of block lengths of a uniformly random
permutation πn ∈ S∗(231, 312, 321) has the same distribution
as (X1, . . . ,XB(n)) conditioned on SB(n) = n.
Consequently, nσ(πn) can be expressed as a U-statistic based
on X1, . . . ,XB , conditioned as above. Use general results for
U-statistics.



{132, 231, 312}-avoiding permutations

Theorem
For a random πn ∈ Sn(132, 231, 312), the number of inversions
has the asymptotic distribution

n−2n21(πn)
d−→W := U2/2

with U ∼ U(0, 1). Thus, 2W ∼ B(12 , 1), and W has moments

EW r =
1

2r (2r + 1)
, r > 0.

Similar for general σ ∈ S∗(132, 231, 312).



Proof.

I Sn(132, 231, 312) has only the n elements

πk,n−k := (k , . . . , 1, k + 1, . . . , n), 1 ≤ k ≤ n

I Thus a random πn = πK ,n−K with K ∈ {1, . . . , n} uniformly

random. As n→∞, K/n
d−→ U.

I n21(πK ,n−K ) =
(K
2

)
.



{132, 231, 321}-avoiding permutations

Theorem
For a random πn ∈ Sn(132, 231, 321), the number of inversions
has a uniform distribution on {0, . . . , n − 1}, and thus the
asymptotic distribution

n−1n21(πn)
d−→ U ∼ U(0, 1).

Similar for general σ ∈ S∗(132, 231, 321).



Proof.

I Sn(132, 231, 321) has only the n elements

πk,n−k := (k , 1, . . . , k − 1, k + 1, . . . , n), 1 ≤ k ≤ n

I Thus a random πn = πK ,n−K with K ∈ {1, . . . , n} uniformly

random. As n→∞, K/n
d−→ U.

I n21(πK ,n−K ) = K − 1.



{132, 213, 321}-avoiding permutations

Theorem
For a random πn ∈ Sn(132, 213, 321), the number of inversions
has the asymptotic distribution

n−2n21(πn)
d−→W := U(1− U)

with U ∼ U(0, 1). Thus, 4W ∼ B(1, 12), and W has moments

EW r =
Γ(r + 1)2

Γ(2r + 2)
, r > 0.

Similar for general σ ∈ S∗(132, 213, 321).



Proof.

I Sn(132, 213, 321) has only the n elements

πk,n−k := (k + 1, . . . , n, 1, . . . , k), 1 ≤ k ≤ n

I Thus a random πn = πK ,n−K with K ∈ {1, . . . , n} uniformly

random. As n→∞, K/n
d−→ U.

I n21(πK ,n−K ) = (n − K )K .


