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Flajolet lecture?

I I am the first Flajolet lecturer that has not written a joint
paper with him.

I Flajolet knew many things, but he is mainly known for his
work with generating functions and analysis of them. (See for
example Flajolet & Sedgewick.)

I I usually prefer probabilistic methods.

Therefore I have chosen to speak about a problem where I and my
coauthor have combined both generating functions and
probabilistic methods, to show different parts of the results.
(Convergence in distribution by probabilistic methods; convergence
of moments by generating functions.)

Maybe Flajolet could have proved all our results by a single
method, but I cannot.
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Conclusion

We mathematicians sometimes engage in friendly competitions
between different methods for some problem. This is fine, but we
should all try to respect, love and learn ALL methods!

Different methods are useful for different problems, and it is
sometimes useful to use and combine different methods. I hope
that this will be demonstrated in this lecture.
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General problem

Additive functional: Let f (T ) (the toll function) be a given
functional of rooted trees, and define

F (T ) :=
∑
v∈T

f (Tv ),

where Tv is the fringe tree rooted at v .

Problem: Study asymptotics of F (Tn) (mean, variance,
distribution, . . . ) when Tn is some random tree of “size” n, and
n→∞.



Today, the random tree Tn will be a conditioned Galton–Watson
tree (a.k.a. simply generated tree) with |Tn| = n; the offspring
distribution ξ will be critical with finite variance 0 < σ2 <∞.
(Higher moments usually not needed.)

The toll function will be simply

fα(T ) := |T |α

for a constant α.

Examples.

α = 1 gives F1(T ) = the total path length.

α = 2 gives a functional related to the Wiener index.



We allow α to be complex, and we consider Fα(T ) as a function of
α ∈ C. We write

Xn(α) := Fα(Tn) =
∑
v∈Tn

|(Tn)v |α

X̃n(α) := Xn(α)− EXn(α).



Remark

Why complex α?

I Useful in proofs (also for real α) since powerful methods of
analytic functions can be used.

I Gives us new problems to study. How do the phase transitions
look in the complex plane?
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There are two phase transitions for real α: α = 0 and α = 1
2 .

Thus three phases in the complex plane:

Re(α) < 0, 0 < Re(α) < 1
2 , Re(α) > 1

2 .

What happens at the boundaries Re(α) = 0 and Re(α) = 1
2?
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Re(α) < 0

Let H− := {α : Re(α) < 0}.

Theorem

I There exists a random analytic function X̃ (α), α ∈ H−, such
that, as n→∞,

n−1/2X̃n(α)
d−→ X̃ (α)

for each fixed α ∈ H−, and uniformly on each compact subset
of H−. (I.e., in the space H(H−) of analytic functions on H−.)

I X̃ (α) is a complex Gaussian, for every fixed α ∈ H−.
Also jointly.

I The covariance matrix of X̃ (α) depends on the offspring
distribution.

In this case Xn(α) = Fα(Tn) is dominated by the many small fringe
trees. Hence normality, but not universality.
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Re(α) > 0

Let H+ := {α : Re(α) > 0}.

Theorem

I There exists a random analytic function Ỹ (α), α ∈ H+, such
that, as n→∞,

Ỹn(α) := n−α−
1
2 X̃n(α)

d−→ σ−1Ỹ (α)

for each fixed α ∈ H+, and uniformly on each compact subset
of H+. (I.e., in the space H(H+) of analytic functions on H+.)

I Ỹ (α) is not Gaussian.

I Ỹ (α) does not depend on the offspring distribution.

In this case X̃n(α) = Fα(Tn)− EFα(Tn) is dominated by the large
fringe trees. Therefore universality but not normality.
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Ỹn(α) := n−α−
1
2 X̃n(α)

d−→ σ−1Ỹ (α)
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Let T be an (unconditioned) Galton–Watson tree with the given
offspring distribution. Recall that

P(|T | = n) ∼ cn−3/2.

A random fringe tree has asymptotically the distribution of T , i.e.,
the number of fringe trees of size k in Tn is ≈ cnk−3/2. Let

µ(α) := E |T |α =
∞∑
n=1

nα P(|T | = n).

This converges for Re(α) < 1
2 , and defines an analytic function in

this half-plane.



Theorem

(i). If Re(α) < 1
2 , then

EXn(α) = µ(α)n + o(n)

(ii). If Re(α) > 1
2 , then

EXn(α) =
1√
2σ

Γ(α− 1
2)

Γ(α)
nα+

1
2 + o(nα+

1
2 )

(iii). If α = 1
2 , then

EXn(1/2) =
1√

2πσ2
n log n + o(n log n).



Let

Y (α) := Ỹ (α) +
1√
2σ

Γ(α− 1
2)

Γ(α)
.

Theorem

(i). If Re(α) > 1
2 , then

Yn(α) := n−α−
1
2Xn(α)

d−→ σ−1Y (α).

(ii). If Re(α) < 1
2 , then

n−α−
1
2 [Xn(α)− nµ(α)]

d−→ σ−1Y (α).

(iii). If α = 1
2 , then

EXn(1/2) =
1√

2πσ2
n log n + o(n log n).



Moment convergence

Theorem
All moments converge in the limit theorems above for Reα > 0. If
α 6= 1

2 , the limiting moments κ` := EY (α)` satisfy the recursion

κ1 =
Γ(α− 1

2)
√

2 Γ(α)
,

and, for ` ≥ 2, with α′ := α + 1
2 ,

κ` =
`Γ(`α′ − 1)√
2 Γ(`α′ − 1

2)
κ`−1

+
1

4
√
π

`−1∑
j=1

(
`

j

)
Γ(jα′ − 1

2)Γ((`− j)α′ − 1
2)

Γ(`α′ − 1
2)

κjκ`−j .



Remark. For α = 1
2 , our proof requires that the offspring

distribution ξ satisfies E ξ2+δ <∞ for some δ > 0.

The case Reα < 0?
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Mean and higher moments

The proofs of these results are based on the methods of Fill,
Flajolet and Kapur (2005), see also Flajolet and Sedgewick,
Section VI.10. (Singularity analysis with Hadamard products.)

Let qn := P(|T | = n), and define the generating functions

y(z) := E[z |T |] =
∞∑
n=0

qnz
n,

M`(z) := E
[
F (T )`z |T |

]
=
∞∑
n=0

qn E[F (Tn)`]zn,

B(z) :=
∞∑
n=0

nαzz .

Denote Hadamard products by �.



Then, for every ` ≥ 1,

M`(z) =
zy ′(z)

y(z)

∑̀
m=0

1

m!

∑**
(

`

`0, . . . , `m

)
B(z)�`0

�
[
zM`1(z) · · ·M`m(z)Φ(m)

(
y(z)

)]
,

where
∑** is the sum over all (m + 1)-tuples (`0, . . . , `m) of

non-negative integers summing to ` such that 1 ≤ `1, . . . , `m < `.

Use singularity analysis and find the leading terms . . .
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Brownian excursion, Reα > 1

Let e be a standard Brownian excursion. Recall that this is a
random continuous function [0, 1]→ [0,∞). For a function g and
s < t, define

m(g ; s, t) := inf
u∈[s,t]

g(u).

Theorem
If Reα > 1, we can represent the limit Y (α) as

Y (α) = 2α(α− 1)

∫∫
0<s<t<1

(t − s)α−2m(e; s, t) ds dt.

Proof. If we replace e by a suitably scaled version of the contour
process of Tn, then a calculation shows that the integral equals

Yn(α) = n−α−
1
2Xn(α) + o(1). The contour process converges to e,

and the integral is a continuous functional.



Brownian excursion, Reα > 1/2

Theorem
If Reα > 1/2, we can represent the limit Y (α) as

Y (α) = 2α

∫ 1

0
tα−1e(t) dt

− 2α(α− 1)

∫∫
0<s<t<1

(t − s)α−2[e(t)−m(e; s, t)] ds dt.

Example. α = 1 yields

Y (1) = 2

∫ 1

0
e(t) dt,

the Brownian excursion area, with a distribution called by Flajolet
the Airy distribution.



Tightness

Lemma

(i). If Reα < 0, then E |X̃n(α)|2 ≤ C (α)n.

(ii). If Reα > 0, then E |X̃n(α)|2 ≤ C (α)n2Reα+1, and thus
E |Ỹn(α)|2 ≤ C (α).

In both cases C (α) = O(1 + |α|−2).

This shows tightness at each fixed α.



Magic of analytic functions

Lemma
Let D be a domain in C and let (Yn(z)) be a sequence of random
analytic functions in H(D). Suppose that there exists a function
γ : D → (0,∞), bounded on each compact subset of D, such that

E |Yn(z)| ≤ γ(z)

for every z ∈ D. Then the sequence (Yn) is tight in the space
H(D) of analytic functions on D.

Proof. Cauchy’s integral formula, together with E
∫

=
∫
E.

Hence, the random functions Ỹn(α) are tight in H(H+).
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More magic of analytic functions

Lemma
Let D be a domain in C and let E be a subset of D that has a
limit point in D. (I.e., there exists a sequence zn ∈ E of distinct
points and z∞ ∈ D such that zn → z∞.) Suppose that (Yn) is a
tight sequence of random elements of H(D) and that there exists a
family of random variables {Yz : z ∈ E} such that for each z ∈ E ,

Yn(z)
d−→ Yz and, moreover, this holds jointly for any finite set of

z ∈ E . Then Yn
d−→ Y in H(D), for some random function

Y (z) ∈ H(D).

Proof. Subsequences converge, and limits are determined by the
restriction to E , and therefore unique.

Hence, the random functions Ỹn(α) converge in distribution in
H(H+).
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Critical line Re(α) = 1
2

We have different types of results for Re(α) < 1
2 and Re(α) > 1

2 .
What happens for Re(α) = 1

2?

Theorem
µ(α)→∞ as α↗ 1

2 . However, µ(α) extend to a continuous
function on H ′ := {Re(α) ≤ 1

2} \ {
1
2}. Furthermore,

EXn(α) = µ(α)n + o(n), α ∈ H ′ (1)

n−α−
1
2 [Xn(α)− nµ(α)]

d−→ σ−1Y (α), α ∈ H ′. (2)

(In some sense: Continuity to the left, but not to the right.)
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More details for critical line Re(α) = 1
2

Theorem

(i). If the offspring distribution ξ has E ξ2+δ <∞ for some
δ ∈ (0, 1), then µ(α) extends meromorphically to
{Re(α) < 1

2 + δ
2}, with a single pole at 1

2 .

(ii). If ξ has moments of all orders, µ(α) extends to a
meromorphic function in the entire complex plane.

(iii). There exists an offspring distribution such that µ(α) cannot
be extended beyond Re(α) = 1

2 ; i.e., Re(α) = 1
2 is a natural

boundary.



Critical point α = 0

Obviously, Xn(0) = n is non-random. The derivative X ′n(0) is the
shape functional.

Theorem
At least in E ξ2+δ <∞ for some δ > 0, we have

X ′n(0)− µ′(0)n√
n log n

d−→ N
(
0, 4(1− log 2)σ−2

)
.

Let instead first n→∞, then α↘ 0:

Theorem

(i). Y (α)
p−→ 0 as α↘ 0.

(ii). In fact, α−1/2Y (α)
d−→ N(0, 2(1− log 2)) as α↘ 0.

(iii). If α→ 0 along other lines in H+, then α−1/2Y (α) converges
in distribution to other limits, all complex normal distributions.
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Critical line Re(α) = 0

Conjecture

If t 6= 0, then

Xn(it)− µ(it)n√
n log n

d−→ N
(
0, σ2(t)

)
for some σ2(t) > 0.

Theorem
If α→ it with Re(α) > 0 and t 6= 0, then |Y (α)| p−→∞, and

Re(α)1/2Y (α)
d−→ ζ

where ζ is a symmetric complex normal variable with

E |ζ|2 =
1

2
√
π

Re
Γ(it − 1

2)

Γ(it − 1)
.



Brownian excursion, Reα ≤ 1/2

For Reα > 1/2, we have seen above explicit representations of
Ỹ (α) using a Brownian excursion e(t).

We know that almost surely, this extends to an analytic function in
the halfplane Reα > 0.

Thus there exists a measurable function Ψ : H+ × C [0, 1]→ C
such that

Y (α) = Ψ(α, e), Reα > 0.

Is there an explicit formula giving Y (α) in terms of e(t) also for
0 < Reα < 1

2?
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Some other random trees (partial results known)

Binary Search Tree.

Expected number of fringe trees of size k is ≈ cn/k2. Phase
transitions at α = 1/2 and α = 1. Normal for Re(α) < 1/2.
(Hwang & Neininger 2002; Fill, Flajolet & Kapur 2005; Holmgren
& Janson 2012)

Random Recursive Tree

Similar, but more remains to be done. (Holmgren & Janson, 2015)

d-ary increasing tree

Normal for Re(α) < 0. (Ralaivaosaona & Wagner 2019)
Phase transitions not known(?).

Lots of open questions in all cases!!!
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THE END


