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U-statistics

A (standard) U-statistic is a sum

Un = Un(f ) =
∑

i1<···<im

f
(
Xi1 , . . . ,Xim

)
where X1, . . . ,Xn is an i.i.d. sequence of random variables, and f is
a measurable function of m ≥ 1 variables.

Xi may take values in any measurable space. For example, Xi may
be real-valued or vectors.

Traditionally (Hoeffding, 1948), f is supposed to be symmetric
(equivalently, the sum is taken over all distinct i1, . . . , im). This is
the case in the original statistical applications (e.g., Kendall’s τ)
but in my applications, I usually need the asymmetric version
above.

Variations will come later.



Remark

The asymmetric case can be reduced to the symmetric as follows:
Let Y1, . . . ,Yn be uniform random variables on [0, 1], independent
of (Xi ) and each other, and define Zi := (Xi ,Yi ). Let

F (Z1, ...,Zm) :=
∑
π∈Sm

f (Xπ(1), . . . ,Xπ(m))1{Yπ(1) < · · · < Yπ(m)}

Then Un(F ) is a symmetric U-statistic, and

Un(F )
d
= Un(f ).

This does not work in the extensions below.
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Theorem (Hoeffding, 1948)

Let E |f (X1, . . . ,Xm)|2 <∞. Then

Un −
(n
m

)
µ

nm−1/2
d−→ N(0, σ2),

where
µ = E f (X1, . . . ,Xm)

and
σ2 ≥ 0.

(Explicit formula, but omitted today.)

Also joint normal limits for several f . (Cramér-Wold device.)
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Degenerate cases

If σ2 = 0, then we get non-normal limits with another
normalization. Typically an infinite sum of squares of normal
variables. (Higher degeneracies lead to higher-degree polynomials.)

Sometimes σ2 = 0 follows from some symmetry property.

In most applications, σ2 > 0 (and thus asymptotic normality), but
this can be surprisingly difficult to show.
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Hoeffding’s proof

Hoeffding’s proof is based on a projection method:
Assume E f (X1, . . . ,Xm) = 0. Define

fi (Xi ) = E
[
f (X1, . . . ,Xm) | Xi

]
.

Approximate f (X1, . . . ,Xm) by f1(X1) + · · ·+ fm(Xm). The
resulting sum is asymptotically normal by the standard central limit
theorem. (Use triangular arrays in the asymmetric case.)
The error has small variance and can be ignored.
QED

Corollary of proof.

σ2 = 0 ⇐⇒ fi (Xi ) = 0 a.s. for every i = 1, . . . ,m.



Application: patterns in random words

Consider a random string Ξn = ξ1 · · · ξn consisting of n i.i.d.
random letters from a finite alphabet A, and consider the number
of occurences of a given word w = w1 · · ·w` as a subsequence; to
be precise, an occurrence of w in Ξn is an increasing sequence of
indices i1 < · · · < i` in [n] = {1, . . . , n} such that

ξi1ξi2 · · · ξi` = w, i.e., ξik = wk for every k ∈ [`]. (1)

Flajolet, Szpankowski and Vallée (2006) proved (by different
methods) that Nn(w) is asymptotically normal as n→∞.

We have

Nn(w) =
∑

i1<···<im

f
(
ξi1 , . . . , ξim

)
= Un(f ).

for an indicator function f . The result thus follows from
Hoeffding’s theorem.
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Application: patterns in a permutation

Let Sn be the set of permutations of [n] := {1, . . . , n}.

If τ = τ1 · · · τk ∈ Sk and π = π1 · · ·πn ∈ Sn, then an occurrence
of τ in π is a subsequence πi1 · · ·πik , with 1 ≤ i1 < · · · < ik ≤ n,
that has the same relative order as τ . τ is called a pattern.

Example: 31425 is an occurence of 213 in 31425

Let occτ (π) be the number of occurrences of τ in π.
For example, occ21(π) is the number of inversions in π.
(Kendall’s τ , again.)

Let π = πn be a random permutation of length n, drawn uniformly
from all permutations in Sn.

Bóna (2007) proved that for any fixed τ , the number of
occurrences occτ (πn) is asymptotically normal.
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We can generate πn by taking a sequence (Xi )
n
1 of i.i.d. random

variables with a uniform distribution Xi ∼ U(0, 1), and then
replacing the values X1, . . . ,Xn, in increasing order, by 1, . . . , n.

Then, the number Nn(τ) of occurrences of a fixed permutation
τ = τ1 · · · τ` in πn is given by the U-statistic Un(f ) with

f (x1, . . . , x`) :=
∏

1≤i<j≤`
1{xi < xj ⇐⇒ τi < τj}. (2)

Thus, Bóna’s theorem follows from Hoeffding’s.
(Janson, Nakamura and Zeilberger 2015)
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Degenerate cases, again

The U-statistics in the applications above are non-degenerate,
except in trivial cases. Some linear combinations are degenerate.

Example

occ123(π)+occ231(π)+occ312(π)−occ132(π)−occ213(π)−occ321(π).

(Fisher and Lee, Nonparametric measures of angular-angular
association, 1982)

In fact, the space of non-trivial linear combinations of occτ (π),
τ ∈ Sk , has dimension k!− 1. The space of normal limits has
dimension (k − 1)2, so the space of degenerate linear combinations
has dimension k!− 1− (k − 1)2. See further Even-Zohar (2020)
and Even-Zohar, Lakrec and Tessler (2021) (random words).



Variations: vincular and constrained patterns

A vincular pattern in a permutation is a pattern where some
entries are marked, and we only count occurrences where a marked
entry is adjacent to the next one.

Example
The vincular pattern 2∗13 counts triples (i , i + 1, j) with i + 1 < j
and πi+1 < πi < πj .

The number of occurences is asymptotically normal (Hofer, 2016).

In particular, marking every element means that we count only
substrings (consecutive patterns) πiπi+1 · · ·πi+m−1 that have the
right order. (Bóna 2010).

More general constraints: gaps at most d , or exactly d . Such
constraints were studied for patterns in random words by Flajolet
et al (2006).
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Vincular and more general constrained patterns correspond to
constrained U-statistics, where the sum is restricted to certain
m-tuples.

Remark. This is an instance of the large class of incomplete
U-statistics introduced by Blom (1976).

Theorem
Hoeffding’s theorem extends to constrained U-statistics. I.e., they
are asymptotically normal.



Proof by example.

In the example 2∗13 of a vincular pattern above, let again π ∈ Sn

be constructed from i.i.d. (Xi )
n
1. Define Yi := (Xi ,Xi+1) ∈ R2.

Then

occτ (π) =
∑

i ,j :i+1<j

f (Yi ,Yj)

for a suitable f . This is, up to a negligible error (viz., terms with
j = i + 1), a U-statistic of order 2 based on (Yi ).

However, the sequence (Yi ) is not i.i.d. !

No problem!
The sequence is 1-dependent, and this is enough for the central
limit theorem (Orey, 1958), and Hoeffding’s proof can be modified.
(Janson, 2022+)
(In general m-dependence is enough.)
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Degenerate cases

New possibilities for degeneracy with vincular patterns.

Example

occ1∗3∗2(π) + occ2∗3∗1(π)− occ2∗1∗3(π)− occ3∗1∗2(π) ∈ {0,±1}.

The possibilities are not completely explored!

For a single constrained pattern count in a random word or
permutation, the U-statistic is not degenerate except in trivial
cases. This is not trivial to show. (I have a general theorem that
can be used; Janson 2022+)
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Other permutation classes

Let S′ ⊂ S be a class of permutations and consider occτ (πn)
where now πn is uniformly random in S′n := S′ ∩Sn.

One important case: Let S′ := S(τ1, . . . , τk), the set of
permutations in S that avoid τ1, . . . , τk , i.e., occτi (π) = 0 for
every τi .

In some cases, it is possible to find an encoding of the
permutations in the class S′ such that the number of occurrences
of a pattern τ can be written as a U-statistic.

Possible only for some permutation classes!
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Block decompositions of permutations

If τ ∈ Sm and τ ∈ Sn, their (direct) sum τ ⊕ τ ∈ Sm+n is defined
by letting τ act on [m + 1,m + n] in the natural way; more
formally, τ ⊕ τ = π ∈ Sm+n where πi = τi for 1 ≤ i ≤ m, and
πj+m = τj + m for 1 ≤ j ≤ n.

A permutation π ∈ S∗ is decomposable if π = τ ⊕ τ for some
τ, τ ∈ S∗, and indecomposable otherwise; we also call an
indecomposable permutation a block.

It is easy to see that any permutation π ∈ S∗ has a unique
decomposition π = π1 ⊕ · · · ⊕ π` into indecomposable
permutations (blocks) π1, . . . , π`; we call these the blocks of π.



Example: {231, 312}-avoiding permutations

Theorem
Let τ ∈ S(231, 312) have b blocks. Then, for a random
πn ∈ Sn(231, 312),

occτ (πn)− nb/b!

nb−1/2
d−→ N(0, γ2)

for some constant γ2.

Example The number of inversions.

occ21(πn)− n

n1/2
d−→ N(0, 6).



Proof.

I π ∈ S(231, 312) ⇐⇒ each block is decreasing:
`(`− 1) · · · 21 [Simion and Schmidt, 1995].

I If the block lengths of πn are `1, . . . , `m, and the block
lengths of τ are s1, . . . , sb, then

occτ (πn) =
∑

i1<···<ib

b∏
j=1

(
`ij
sj

)
.

I If the block lengths of πn are `1, . . . , `m, then
∑

i `i = n, and
(`1, . . . , `m) is a uniformly random composition of n.
Thus, the block lengths `1, . . . , `m can be realized as the first
elements, up to sum n, of an i.i.d. sequence L1, L2, . . . of
random variables with a Geometric Ge(1/2) distribution.
I.e., define N(n) := max{k :

∑k
1 Li ≥ n}. Then the block

lengths can be taken as (L1, . . . , LN(n)) (with the last term
truncated if necessary).



I Hence, up to a negligble error (from the last block),

occτ (πn) =
∑

1≤i1<···<ib≤N(n)

b∏
j=1

(
Lij
sj

)
.

This is a U-statistic, based on the i.i.d. sequence (Li ).

But the sum is up to the random N(n) and not to a fixed n.

I No problem!
Renewal theory shows that Hoeffding’s proof can be adapted.
(Janson, 2018)
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Example: {231, 312, 321}-avoiding permutations

Theorem
Let τ ∈ S(231, 312, 321) have b blocks. Then, for a random
πn ∈ Sn(231, 312, 321),

occτ (πn)− µnb

nb−1/2
d−→ N(0, γ2)

for some constants µ, γ.

Example The number of inversions. τ = 21. b = 1. A calculation
yields µ = (3−

√
5)/2 and γ2 = 5−3/2.

occ21(πn)− 3−
√
5

2 n

n1/2
d−→ N

(
0, 5−3/2

)
.



Proof.

I π ∈ S(231, 312, 321) ⇐⇒ each block is of the type 1 or 21.
[Simion and Schmidt, 1995].

I Thus π is determined by its sequence of block lengths
`1, . . . , `m with `i ∈ {1, 2} and

∑
i `i = n.

I Let p := (
√

5− 1)/2, the golden ratio, so that p + p2 = 1.
Let X1,X2, . . . be an i.i.d. sequence of random variables with

P(Xi = 1) = p, P(Xi = 2) = p2.

Let Sk :=
∑k

i=1 Xi and N(n) := min{k : Sk ≥ n}. Then, the
sequence `1, . . . , `B of block lengths of a uniformly random
permutation πn ∈ S(231, 312, 321) has the same distribution
as (X1, . . . ,XN(n)) conditioned on SN(n) = n.
Consequently, occτ (πn) can be expressed as a U-statistic
based on X1, . . . ,XN(n), conditioned as above.



I This is almost as in the preceding case.

But in this case, we also condition on the event SN(n) = n,
i.e., that some sum Sk exactly equals n.

I No problem!
More renewal theory shows that Hoeffding’s proof can be
adapted to this case too. (Janson, 2018)
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Example: Forest permutations = {321, 3412}-avoiding

If π is a permutation of [n], then its permutation graph Gπ is the
graph with an edge ij for each inversion (i , j) in π.

Acan and Hitczenko (2016) define π to be a tree permutation
[forest permutation] if Gπ is a tree [forest].

{forest permutations} = S(321, 3412).

A permutation is a forest permutation ⇐⇒ every block is a tree
permutation.



Define a random tree permutation (of random length) τ such that,
for every tree permutation τ ,

P(τ = τ) = p|τ |,

with p = (3−
√

5)/2 chosen such that
∑

τ P(τ = τ) = 1.

Let τ 1, τ 2, . . . , be i.i.d. random tree permutations with this
distribution. Let Sk :=

∑k
i=1 |τ k |, the total length of the k first,

and let N(n) := min{k : Sk ≥ n}. Then, conditioned on SN(n) = n,
the sum π := τ 1 ⊕ · · · ⊕ τN(n) is a uniformly distributed forest
permutation of length n.



Let τ = τ1 ⊕ . . . ,⊕τb be a forest permutation, decomposed into
tree permutations τi . Then, up to a small error,

occτ (π) =
∑

i1<···<ib

b∏
j=1

occτj (τ ij ).

This is a U-statistic based on the i.i.d. sequence (τ i ).

Theorem
For a random forest permutation

occτ (πn)− µnb

nb−1/2
d−→ N(0, γ2)

for some constants µ, γ.

Proof.
Hoeffding’s theorem, with renewal theory modifications as
above.



Example: Random tree permutations

Theorem
For a random tree permutation πn of length n, and a tree
permutation τ ,

occτ (πn)− µnb

nb−1/2
d−→ N(0, γ2)

for some b ≥ 1 and constants µ, γ.

Proof.

Uses a coding of tree permutations by a sequence of runs of 0’s or
1’s, which again permits occτ (πn) to be written as a U-statistic.
This time we have to take a vincular U-statistic, and also use
renewal theory as above.
Hence the two variations of U-statistics are combined.
Hoeffding’s proof can still be adapted. (Janson, 2022+)
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