
Project 2 for Bayesian Inference: SOLUTIONS
Spring 2009

1. Let π(x, y) denote a bivariate density which is uniform over the region bounded
by the lines x = 0, x = 1, x+ y = 1, and x+ y = 2.

(a) Identify the conditional densities π(y|x), π(x|y) for 0 < x < 1 and 0 <
y < 2. (A sketch of the region will help). Design and implement a Gibbs
sample to sample from π, by drawing from these conditional densities.

(b) Generate histogram estimates of the marginal densities π(x) and π(y), and
verify that your algorithm produces estimates that agree with the theoret-
ical marginal densities (which you will have to work out!)

(c) Suppose that you used a similar algorithm to sample from a density that
was uniform on the region bounded by x = 0, x = 1, x + y = 1, and
x + y = 1.1. By considering the shape of this region, suggest why your
Gibbs sampler would not explore the target density efficiently.

ANSWER

(a) We are given a uniform density π(x, y) on the set

A := {(x, y) ∈ R × R : 0 ≤ x ≤ 1, y ≥ 0, 1 ≤ x+ y ≤ 2}.

It is easy to see that, for each 0 ≤ x ≤ 1, the conditional density
π21(y|x) is uniform on the set

Ax := {y ∈ R : (x, y) ∈ A}

= {y ∈ R : 1 − x ≤ y ≤ 2 − x} = [1 − x, 2 − x].

Similarly, for each 0 ≤ y ≤ 2, the conditional density π12(x|y) is
uniform on the set

Ay := {x ∈ R : (x, y) ∈ A}

= {x ∈ R : 0 ≤ x ≤ 1, 1 − y ≤ x ≤ 2 − y}

= {x ∈ R : max(0, 1 − y) ≤ x ≤ min(1, 2 − y)}

= [max(0, 1 − y), min(1, 2 − y)].

We obtain one sample from the uniform[a, b] law by using the com-
mand runif(1,a,b) in R. The code is:

N=10000;

x=c(1:N); y=c(1:N);x[1]=1/2; y[1]=1

for(i in 1:(N-1)){

x[i+1] = runif(1, max(0,1-y[i]), min(1,2-y[i]))

y[i+1] = runif(1, 1-x[i+1], 2-x[i+1]) }

1

Here is a scatter plot of y vs. x:

plot(x,y)

dev.copy(postscript,’figs/scatterxy.ps’)

dev.off()

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Let’s plot the first 100 values of x and y:

plot(x[1:100],type=’l’)

dev.copy(postscript,’figs/xplot100.ps’); dev.off()

plot(y[1:100],type=’l’)

dev.copy(postscript,’figs/yplot100.ps’); dev.off()

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

x[
1:

10
0]

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

Index

y[
1:

10
0]

2

(b) We compute the marginal densities as follows:

π1(x) =

∫

R

π(x, y)dy

= 1(0 ≤ x ≤ 1)

∫

R

1(1 − x ≤ y ≤ 2 − x)dy

= 1(0 ≤ x ≤ 1)

π2(y) =

∫

R

π(x, y)dx

=

∫

R

1(0 ≤ x ≤ 1, 1 − y ≤ x ≤ 2 − y)dx

=

∫

R

1(max(0, 1 − y) ≤ x ≤ min(1, 2 − y))dx

= max
(

0,min(1, 2 − y) − max(0, 1 − y)
)

.

Thus π1 is uniform between 0 and 1, whereas π2 is a “tent” map. We
plot the histogram for x:

hist(x,probability=1)

dev.copy(postscript,’figs/histx.ps’)

dev.off()

It looks fairly ”OK”.
Histogram of x

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

We next plot the histogram for y against its theoretical marginal den-
sity:

p2=function(t){pmax(0, pmin(1,2-t)-pmax(0,1-t))}

hist(y,probability=1)

plot(p2,0,2,add=TRUE)

dev.copy(postscript,’figs/histy.ps’)

dev.off()

3

Histogram of y

y

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Suppose now that the π(x, y) is uniform on

A := {(x, y) ∈ R × R : 0 ≤ x ≤ 1, y ≥ 0, 1 ≤ x+ y ≤ 1.1}.

Then for each 0 ≤ x ≤ 1, the conditional density π21(y|x) is uniform
on the set

Ax = [1 − x, 1.1 − x].

For each 0 ≤ y ≤ 1.1, the conditional density π12(x|y) is uniform on
the set

Ay = [max(0, 1 − y), min(1, 1.1 − y)].

The code is:

N=10000;

x=c(1:N); y=c(1:N);x[1]=0.51; y[1]=0.51

for(i in 1:(N-1)){

x[i+1] = runif(1, max(0,1-y[i]), min(1,1.1-y[i]))

y[i+1] = runif(1, 1-x[i+1], 1.1-x[i+1]) }

Here is a scatter plot:

plot(x,y)

dev.copy(postscript,’figs/scatterxy2.ps’)

dev.off()

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

x

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Let’s plot the first 100 values of x and y:

plot(x[1:100],type=’l’)

dev.copy(postscript,’figs/xplot100_2.ps’); dev.off()

plot(y[1:100],type=’l’)

dev.copy(postscript,’figs/yplot100_2.ps’); dev.off()

0 20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

x[
1:

10
0]

0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Index

y[
1:

10
0]

We see a slower convergence than in the previous case. This is natural
because of the shape of the region.

5

2. Design and implement a Gibbs sampler to simulate from the posterior density
π(µ, ψ|x) where x is a random sample of size n from a Normal distribution
with unknown mean mu, and variance σ2 = 1

ψ
, using independent normal and

Gamma priors for µ and ψ respectively. (Code for this has been given out to the
class.)

(a) Apply your algorithm to investigate π(µ, ψ|x) where x is a random sam-
ple of size 20 from an N(1, 0.5) density (which you will have to generate
yourself! - Remember rnorm() uses the standard deviation.) Use initially
the improper, vague priors (π(µ) ∝ 1, π(ψ) ∝ ψ−1) discussed in lectures.
By generating a suitably long sequence of iterates from the chain, esti-
mate the posterior mean and variance of the parameters, and the posterior
probabilities that µ > 1.5 and σ2 > 0.75.

(b) Repeat these calculations for a sample size of 60 from an N(1, 0.5) distri-
bution.

(c) Consider how you might use standard results (see chapter 3 of notes!) in
order to check whether your Gibbs sampler is working correctly.

ANSWER

Let ϕ(x) = (2π)−1/2e−x
2/2 be the standard N(0, 1) density. Then

ϕµ,σ2 = (1/σ)ϕ((x − µ)/σ) is the N(µ, σ2) density. With

ψ = 1/σ2

we find

ϕµ,1/ψ(x) = (2π)−1/2ψ1/2e−
1
2 (x−µ2)ψ := L(µ,ψ;x)

When we have n data points x1, . . . , xn, presumably coming as inde-
pendent samplings from an N(µ, 1/ψ) density, we evaluate the joint
likelihood as

L(µ,ψ;x) =

n
∏

i=1

L(µ,ψ;xi), x = (x1, . . . , xn).

= (2π)−n/2ψn/2 exp

{

−
ψ

2

n
∑

i=1

(xi − µ)2
}

∝ ψn/2 exp

{

−
ψ

2
((n− 1)s2(x) + n(x − µ)2)

}

where

x =
x1 + · · · + xn

n
, s2(x) =

1

n− 1

n
∑

i=1

(xi − µ)2,

6

are the sample mean and (unbiased version of the) variance of the data
vector x.

We are being told to use the following prior density:

π(µ,ψ) ∝ ψ−1, µ > 0, ψ > 0.

The posterior density therefore becomes

f(µ,ψ|x) = π(µ,ψ)L(µ,ψ;x) ∝ ψn/2−1 exp

{

−
ψ

2
[(n−1)s2(x)+n(x−µ)2]

}

.

We shall write f(µ,ψ), omitting the x.

We compute the marginal distribution of ψ given µ and find that it is
gamma[a, b] with

a = n/2, b = 1
2 [(n− 1)s2(x) + n(x − µ)2].

The marginal distribution of µ given ψ is N(x, 1/nψ).

INPUT: A vector x of size n with sample mean xbar and sample
variance s2.

N= 30000

mu=c(1:N)

psi=c(1:N)

mu[1]=1

psi[1]=2

for(i in 1:(N-1))

{

a = n/2

b = (1/2)*((n-1)*s2+n*(xbar-mu[i])^2)

psi[i+1]=rgamma(1,a,b)

mu[i+1]=rnorm(1,xbar,sqrt(1/(n*psi[i+1])))

}

OUTPUT: The trajectory (µ,ψ) = ((µ1, ψ1), . . . , (µN , ψN)) of a 2-
dimensional Markov chain.

(a) To apply the algorithm, we first generate data:

n=20

x=rnorm(n,1,sqrt(0.5))

xbar = mean(x)

s2 = var(x)

7

Applying the algorithm, we find:

mean(mu) = 1.066220 mean(psi) = 1.779348 var(mu) = 0.03132511
var(psi) = 0.3333739

We have almost identifyied the parameters. Remember that the true
parameters where µ = 1, ψ = 1/0.5 = 2.

But what we have actually obtained is not single parameters, but
posterior distributions. Let’s sample the historgrams for µ and σ which
should serve as proxies for the posterior densities:

hist(mu,probability=1,breaks=50)

dev.copy(postscript,’figs/muhist.ps’)

dev.off()

Histogram of mu

mu

D
en

si
ty

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

hist(psi,probability=1,breaks=50)

dev.copy(postscript,’figs/psihist.ps’)

dev.off()

8

Histogram of psi

psi

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

Estimation of the posterior probability that µ > 1.5:

sum(mu>1.5)/N

The answer is: 0.0091

Estimation of the posterior probability that σ2 > 0.75, i.e. that ψ <
4/3:

sum(psi<4/3)/N

The answer is: 0.2323667

(b) We now generate n = 60 i.i.d. samples from N(1, 0.5) and run the
algorithm on them. We obtain:

Histogram of mu

mu

D
en

si
ty

0.6 0.7 0.8 0.9 1.0 1.1 1.2

0
1

2
3

4
5

9

Histogram of psi

psi

D
en

si
ty

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

mean(mu) = 0.8891722 mean(psi) = 2.442945 var(mu) = 0.007085651
var(psi) = 0.2022883

10

3. Let x = (5.25, 4.80, 4.55, 5.8, 5.3, 4.38, 3.08, 5.60) denote a random sample from
a Γ(α, β) distribution for which

∑

xi = 38.76 and
∏

xi = 266, 274. Assume
that a priori α ∼ U(1, 15) and β ∼ Exp(0.1). Implement in R the Metropolis
algorithm described in lectures for simulating from the posterior π(α, β|x). By
applying the method of moments to the data, identify suitable initial values for
α and β. Use trial and error to identify suitable step-sizes for updates to α and
β.

(a) Estimate the posterior mean and variance of α and β from a suitably long
run of the chain. Examine the shape of the marginal histogram for α and
estimate its posterior mode.

(b) Estimate 90% equal-tailed credible intervals for α and β from the output of
the chain. (You can do this using the sort() command in R which arranges
the elements in a vector in increasing order. The end points of a credible
interval can then be obtained from the ordered Markov chain output.)

(c) How do the marginal distributions of α and β change when the prior for β
is selected to be a) Exp(1) and b) Exp(5)?

(d) By plotting the points (αi, βi) on a scatter diagram, investigate the de-
pendence of α and β in the posterior distribution.

(e) The data were generated from a Gamma(8, 1.5) distribution. Simulate
random samples of size 20 and size 40 from this distribution using the
rgamma(n, alpha, beta) function in R and apply your algorithm to these
samples in order to estimate (α, β) using the Exp(0.1) prior for β. Inves-
tigate how the posterior marginal densities for the parameters change as
the sample size becomes larger.

11

4. Modify your code for the M-H sampler of the previous question (inference on

(α, β) in the Γ(α, β)) distribution) by using a Gibbs update for β instead of

the Metropolis step. By examining trace plots of the values of α and β against

iterate and/or calculating autocorrelation functions determine whether the Gibbs

sampler has superior mixing properties.

12

