Project 2 for Bayesian Inference: SOLUTIONS Spring 2009

- 1. Let $\pi(x,y)$ denote a bivariate density which is uniform over the region bounded by the lines $x=0, \ x=1, \ x+y=1, \ \text{and} \ x+y=2.$
 - (a) Identify the conditional densities $\pi(y|x)$, $\pi(x|y)$ for 0 < x < 1 and 0 < y < 2. (A sketch of the region will help). Design and implement a Gibbs sample to sample from π , by drawing from these conditional densities.
 - (b) Generate histogram estimates of the marginal densities $\pi(x)$ and $\pi(y)$, and verify that your algorithm produces estimates that agree with the theoretical marginal densities (which you will have to work out!)
 - (c) Suppose that you used a similar algorithm to sample from a density that was uniform on the region bounded by x=0, x=1, x+y=1, and x+y=1.1. By considering the shape of this region, suggest why your Gibbs sampler would not explore the target density efficiently.

ANSWER

(a) We are given a uniform density $\pi(x,y)$ on the set

$$A := \{(x, y) \in \mathbb{R} \times \mathbb{R} : 0 \le x \le 1, y \ge 0, 1 \le x + y \le 2\}.$$

It is easy to see that, for each $0 \le x \le 1$, the conditional density $\pi_{21}(y|x)$ is uniform on the set

$$A_x := \{ y \in \mathbb{R} : (x, y) \in A \}$$

= \{ y \in \mathbb{R} : 1 - x \le y \le 2 - x \} = [1 - x, 2 - x].

Similarly, for each $0 \le y \le 2$, the conditional density $\pi_{12}(x|y)$ is uniform on the set

$$A_y := \{x \in \mathbb{R} : (x, y) \in A\}$$

$$= \{x \in \mathbb{R} : 0 \le x \le 1, 1 - y \le x \le 2 - y\}$$

$$= \{x \in \mathbb{R} : \max(0, 1 - y) \le x \le \min(1, 2 - y)\}$$

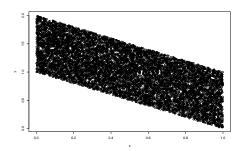
$$= [\max(0, 1 - y), \min(1, 2 - y)].$$

We obtain one sample from the UNIFORM[a, b] law by using the command runif(1,a,b) in R. The code is:

```
N=10000;
x=c(1:N); y=c(1:N);x[1]=1/2; y[1]=1
for(i in 1:(N-1)){
x[i+1] = runif(1, max(0,1-y[i]), min(1,2-y[i]))
y[i+1] = runif(1, 1-x[i+1], 2-x[i+1]) }
```

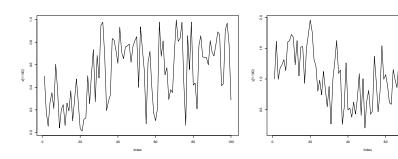
Here is a scatter plot of y vs. x:

```
plot(x,y)
dev.copy(postscript,'figs/scatterxy.ps')
dev.off()
```



Let's plot the first 100 values of x and y:

```
plot(x[1:100],type='l')
dev.copy(postscript,'figs/xplot100.ps'); dev.off()
plot(y[1:100],type='l')
dev.copy(postscript,'figs/yplot100.ps'); dev.off()
```



(b) We compute the marginal densities as follows:

$$\pi_1(x) = \int_{\mathbb{R}} \pi(x, y) dy$$

$$= \mathbf{1}(0 \le x \le 1) \int_{\mathbb{R}} \mathbf{1}(1 - x \le y \le 2 - x) dy$$

$$= \mathbf{1}(0 \le x \le 1)$$

$$\pi_2(y) = \int_{\mathbb{R}} \pi(x, y) dx$$

$$= \int_{\mathbb{R}} \mathbf{1}(0 \le x \le 1, \ 1 - y \le x \le 2 - y) dx$$

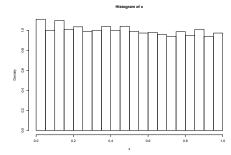
$$= \int_{\mathbb{R}} \mathbf{1}(\max(0, 1 - y) \le x \le \min(1, 2 - y)) dx$$

$$= \max(0, \min(1, 2 - y) - \max(0, 1 - y)).$$

Thus π_1 is uniform between 0 and 1, whereas π_2 is a "tent" map. We plot the histogram for x:

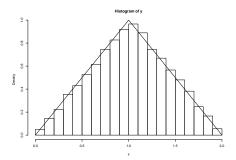
```
hist(x,probability=1)
dev.copy(postscript,'figs/histx.ps')
dev.off()
```

It looks fairly "OK".



We next plot the histogram for y against its theoretical marginal density:

```
p2=function(t){pmax(0, pmin(1,2-t)-pmax(0,1-t))}
hist(y,probability=1)
plot(p2,0,2,add=TRUE)
dev.copy(postscript,'figs/histy.ps')
dev.off()
```



(c) Suppose now that the $\pi(x,y)$ is uniform on

$$A := \{(x, y) \in \mathbb{R} \times \mathbb{R} : 0 \le x \le 1, y \ge 0, 1 \le x + y \le 1.1\}.$$

Then for each $0 \le x \le 1$, the conditional density $\pi_{21}(y|x)$ is uniform on the set

$$A_x = [1 - x, 1.1 - x].$$

For each $0 \le y \le 1.1$, the conditional density $\pi_{12}(x|y)$ is uniform on the set

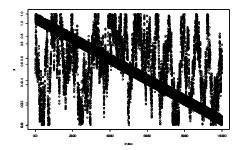
$$A_y = [\max(0, 1 - y), \min(1, 1.1 - y)].$$

The code is:

```
N=10000;
x=c(1:N); y=c(1:N);x[1]=0.51; y[1]=0.51
for(i in 1:(N-1)){
x[i+1] = runif(1, max(0,1-y[i]), min(1,1.1-y[i]))
y[i+1] = runif(1, 1-x[i+1], 1.1-x[i+1]) }
```

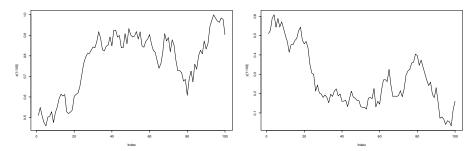
Here is a scatter plot:

```
plot(x,y)
dev.copy(postscript,'figs/scatterxy2.ps')
dev.off()
```



Let's plot the first 100 values of x and y:

```
plot(x[1:100],type='1')
dev.copy(postscript,'figs/xplot100_2.ps'); dev.off()
plot(y[1:100],type='1')
dev.copy(postscript,'figs/yplot100_2.ps'); dev.off()
```



We see a slower convergence than in the previous case. This is natural because of the shape of the region.

- 2. Design and implement a Gibbs sampler to simulate from the posterior density $\pi(\mu,\psi|\mathbf{x})$ where \mathbf{x} is a random sample of size n from a Normal distribution with unknown mean mu, and variance $\sigma^2=\frac{1}{\psi}$, using independent normal and Gamma priors for μ and ψ respectively. (Code for this has been given out to the class.)
 - (a) Apply your algorithm to investigate $\pi(\mu,\psi|\mathbf{x})$ where \mathbf{x} is a random sample of size 20 from an N(1, 0.5) density (which you will have to generate yourself! Remember rnorm() uses the standard deviation.) Use initially the improper, vague priors $(\pi(\mu) \propto 1, \pi(\psi) \propto \psi^{-1})$ discussed in lectures. By generating a suitably long sequence of iterates from the chain, estimate the posterior mean and variance of the parameters, and the posterior probabilities that $\mu > 1.5$ and $\sigma^2 > 0.75$.
 - (b) Repeat these calculations for a sample size of 60 from an N(1, 0.5) distribution.
 - (c) Consider how you might use standard results (see chapter 3 of notes!) in order to check whether your Gibbs sampler is working correctly.

ANSWER

Let $\varphi(x) = (2\pi)^{-1/2}e^{-x^2/2}$ be the standard N(0,1) density. Then $\varphi_{\mu,\sigma^2} = (1/\sigma)\varphi((x-\mu)/\sigma)$ is the $N(\mu,\sigma^2)$ density. With

$$\psi = 1/\sigma^2$$

we find

$$\varphi_{\mu,1/\psi}(x) = (2\pi)^{-1/2} \psi^{1/2} e^{-\frac{1}{2}(x-\mu^2)\psi} := L(\mu,\psi;x)$$

When we have n data points x_1, \ldots, x_n , presumably coming as independent samplings from an $N(\mu, 1/\psi)$ density, we evaluate the joint likelihood as

$$L(\mu, \psi; \boldsymbol{x}) = \prod_{i=1}^{n} L(\mu, \psi; x_i), \qquad \boldsymbol{x} = (x_1, \dots, x_n).$$

$$= (2\pi)^{-n/2} \psi^{n/2} \exp\left\{-\frac{\psi}{2} \sum_{i=1}^{n} (x_i - \mu)^2\right\}$$

$$\propto \psi^{n/2} \exp\left\{-\frac{\psi}{2} ((n-1)s^2(\boldsymbol{x}) + n(\overline{\boldsymbol{x}} - \mu)^2)\right\}$$

where

$$\overline{x} = \frac{x_1 + \dots + x_n}{n}, \quad s^2(x) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \mu)^2,$$

are the sample mean and (unbiased version of the) variance of the data vector \boldsymbol{x} .

We are being told to use the following prior density:

$$\pi(\mu, \psi) \propto \psi^{-1}, \quad \mu > 0, \psi > 0.$$

The posterior density therefore becomes

$$f(\mu, \psi | \boldsymbol{x}) = \pi(\mu, \psi) L(\mu, \psi; \boldsymbol{x}) \propto \psi^{n/2 - 1} \exp\left\{-\frac{\psi}{2} [(n - 1)s^2(\boldsymbol{x}) + n(\overline{\boldsymbol{x}} - \mu)^2]\right\}.$$

We shall write $f(\mu, \psi)$, omitting the x.

We compute the marginal distribution of ψ given μ and find that it is GAMMA[a, b] with

$$a = n/2$$
, $b = \frac{1}{2}[(n-1)s^2(x) + n(\overline{x} - \mu)^2]$.

The marginal distribution of μ given ψ is $N(\overline{x}, 1/n\psi)$.

INPUT: A vector x of size n with sample mean xbar and sample variance s2.

```
N= 30000
mu=c(1:N)
psi=c(1:N)
mu[1]=1
psi[1]=2
for(i in 1:(N-1))
{
    a = n/2
    b = (1/2)*((n-1)*s2+n*(xbar-mu[i])^2)
    psi[i+1]=rgamma(1,a,b)
mu[i+1]=rnorm(1,xbar,sqrt(1/(n*psi[i+1])))
}
```

OUTPUT: The trajectory $(\mu, \psi) = ((\mu_1, \psi_1), \dots, (\mu_N, \psi_N))$ of a 2-dimensional Markov chain.

(a) To apply the algorithm, we first generate data:

```
n=20
x=rnorm(n,1,sqrt(0.5))
xbar = mean(x)
s2 = var(x)
```

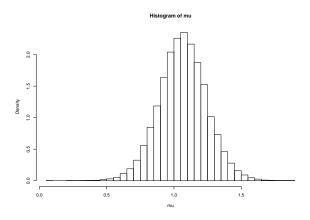
Applying the algorithm, we find:

```
\rm{mean}(mu) = 1.066220~mean(psi) = 1.779348~var(mu) = 0.03132511~var(psi) = 0.3333739
```

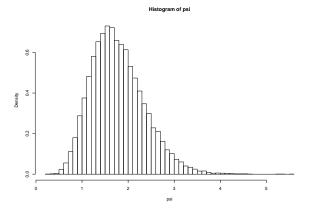
We have almost identifyied the parameters. Remember that the true parameters where $\mu = 1$, $\psi = 1/0.5 = 2$.

But what we have actually obtained is not single parameters, but posterior distributions. Let's sample the historgrams for μ and σ which should serve as proxies for the posterior densities:

```
hist(mu,probability=1,breaks=50)
dev.copy(postscript,'figs/muhist.ps')
dev.off()
```



hist(psi,probability=1,breaks=50)
dev.copy(postscript,'figs/psihist.ps')
dev.off()



Estimation of the posterior probability that $\mu > 1.5$:

sum(mu>1.5)/N

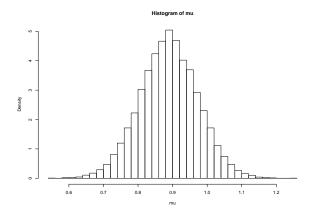
The answer is: 0.0091

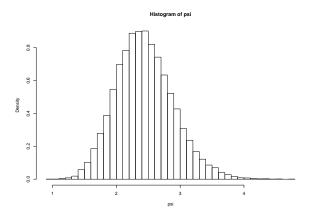
Estimation of the posterior probability that $\sigma^2 > 0.75,$ i.e. that $\psi < 4/3$:

sum(psi<4/3)/N

The answer is: 0.2323667

(b) We now generate n=60 i.i.d. samples from N(1,0.5) and run the algorithm on them. We obtain:





 $\begin{array}{l} mean(mu) = 0.8891722 \ mean(psi) = 2.442945 \ var(mu) = 0.007085651 \\ var(psi) = 0.2022883 \end{array}$

- 3. Let $\mathbf{x}=(5.25,4.80,4.55,5.8,5.3,4.38,3.08,5.60)$ denote a random sample from a $\Gamma(\alpha,\beta)$ distribution for which $\sum x_i=38.76$ and $\prod x_i=266,274$. Assume that a priori $\alpha \sim U(1,15)$ and $\beta \sim Exp(0.1)$. Implement in R the Metropolis algorithm described in lectures for simulating from the posterior $\pi(\alpha,\beta|\mathbf{x})$. By applying the method of moments to the data, identify suitable initial values for α and β . Use trial and error to identify suitable step-sizes for updates to α and β .
 - (a) Estimate the posterior mean and variance of α and β from a suitably long run of the chain. Examine the shape of the marginal histogram for α and estimate its posterior mode.
 - (b) Estimate 90% equal-tailed credible intervals for α and β from the output of the chain. (You can do this using the sort() command in R which arranges the elements in a vector in increasing order. The end points of a credible interval can then be obtained from the ordered Markov chain output.)
 - (c) How do the marginal distributions of α and β change when the prior for β is selected to be a) Exp(1) and b) Exp(5)?
 - (d) By plotting the points (α_i, β_i) on a scatter diagram, investigate the dependence of α and β in the posterior distribution.
 - (e) The data were generated from a Gamma(8,1.5) distribution. Simulate random samples of size 20 and size 40 from this distribution using the rgamma(n, alpha, beta) function in R and apply your algorithm to these samples in order to estimate (α,β) using the Exp(0.1) prior for β . Investigate how the posterior marginal densities for the parameters change as the sample size becomes larger.

4. Modify your code for the M-H sampler of the previous question (inference on (α,β) in the $\Gamma(\alpha,\beta)$) distribution) by using a Gibbs update for β instead of the Metropolis step. By examining trace plots of the values of α and β against iterate and/or calculating autocorrelation functions determine whether the Gibbs sampler has superior mixing properties.