
1 Introduction

In the last 30 years there has been an enormous increase in the importance
of Bayesian methods of statistical inference. Whereas at one time it was
relatively unusual to see statistical analyses in the literature that used these
methods, it has now become commonplace. Indeed, in some areas such as
genetics, image analysis and epidemiology, the Bayesian approach has become
a standard approach. In this section we will seek to answer the following
questions:

• What are the fundamental principles of the Bayesian approach?

• How does the Bayesian approach differ from other philosophies of sta-
tistical inference?

Therefore we begin with a brief summary of the essential elements of
statistical inference and a brief description of the classical approach.

1.1 Statistical Inference

If you look in the literature you can find many different definitions for the
process of statistical inference. For example, in 1962 Savage stated:

By [statistical] inference I mean how we find things out - whether
with a view to using the new knowledge as a basis for explicit
action or not - and how it comes to pass that we often acquire
practically identical opinions in the light of evidence.

Inference can be described more succinctly as the process whereby we alter
our beliefs regarding the world on the basis of observations. With this in
mind we can recognise ’problems’ such as:

• classifying a target from observed radar echoes;

• diagnosing an illness from a battery of tests;

• estimating the mean lifetime of kind of component from a random
sample;
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as examples of inference problems. A key element of statistical inference is
probability theory. Probability theory is used to construct the models from
which observations (are hypothesised to) arise and also to give a measure of
certainty in the conclusions we extract from observations. It is with respect
to the latter use that the different philosophies of inference differ from each
other. In the next section we describe the main features of the classical (or
frequentist) approach to statistical inference.

1.2 Frequentist methods of inference

If you’ve ever calculated a confidence interval, or calculated a p-value for a
hypothesis test, then you’ve already come across frequentist methods. To
see what distinguishes this approach we have to look at the fundamental
definition of a probability.

1.2.1 Frequentist versus subjective probability

To a pure frequentist, the only meaningful definition of probability of an event
is the frequency with which it occurs over a long sequence of independent
trials. Thus statements such as:

• the probability that a ’6’ is scored when a fair die is rolled is 1
6

• the probability that a ’H’ is uppermost when a fair coin is tossed is 1
2

would be perfectly meaningful to a frequentist. They would be happy to
ponder the probability of any event that corresponds to a subset of outcomes
of an a experiment that can be repeated infinitely often. They would not
recognize, for example:

• the ’probability’ that I voted Labour in the last election

• the ’probability’ that Jack the Ripper was the Duke of Clarence

• the ’probability’ that the average height of Scotsmen is less than 1.7
metres

as true probabilities. These deal with propositions that must either be true
or false, or quantities that have a particular (albeit unknown) value. Note
that the exclusion of this latter form of probability renders the frequentist
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philosophy somewhat restrictive. Most people would agree that these prob-
abilities - which express the degree of belief in a proposition regarding the
world and are known as subjective probabilities - are meaningful.

1.2.2 Frequentist (classical) inference

In this section we discuss how the frequentist goes about statistical infer-
ence. If they are to attach any probabilistic measures of uncertainty to their
conclusions then these must be interpretable as frequencies over multiple
repetitions of the experiment that is being analysed, and are calculated from
the so-called sampling distributions of measured quantities. We illustrate
this with the example of calculating a confidence interval for the mean of a
normally distributed population.

Example 1 - Confidence intervals for the normal mean Suppose we wish
to calculate a 95% confidence interval for the population mean µ based on a
random sample of n observations x1, x2, ..., xn. Suppose that we know the
poplution variance σ2. Standard recipes tell us that we can calculate a 95%
CI for µ as

(x̄− 1.96
σ√
n
, x̄+ 1.96

σ√
n

)

where x̄ denotes the sample mean.
What does this mean – in particular what does the 95% mean? The above

interval can be ’derived’ from the knowledge that over repeated sampling the
distribution of the mean of a random sample X1, X2, ..., Xn is distributed as
N(µ, σ2

n
). Appealing to properties of the normal distribution, it follows that

the frequency with which the sample mean X̄ lies in the interval

(µ− 1.96
σ√
n
, µ+ 1.96

σ√
n

)

over repeated sampling is 0.95. Equivalently we can say that the frequency
with which µ is contained in the interval

(X̄ − 1.96
σ√
n
, X̄ + 1.96

σ√
n

)

is 0.95. Therefore the 95%-CI that we report above for the particular random
sample x1, x2, ..., xn is simply a single random draw from a population of
intervals, 95% of which contain µ. Put another way, it is an interval obtained
via a process which yields an interval containing µ with frequency 0.95.
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What a confidence interval is not.... The quantity 0.95 does not represent
the probability that µ lies in (x̄ − 1.96 σ√

n
, x̄ + 1.96 σ√

n
) conditional on the

observations x1, x2, ..., xn. To see why this is the case, consider an alternative
construction of a confidence interval. Recall that this can be done using the
sample variance

s2 =
1

n− 1
(
∑

x2 − (
∑
x)2

n
)

instead of the variance, yielding a 95% CI

(x̄− tn−1(2.5)
s√
n
, x̄+ tn−1(2.5)

s√
n

)

where tn−1(2.5) denotes the 2.5% point of the t distribution on n− 1 degrees
of freedom. In a sequence of independent experiments, the CI constructed
in this second manner will contain µ with frequency 0.95. However, on any
given trial it is certain that the two intervals will not be equal. One will be
contained in the the other. The conditional probabilty that µ lies in the larger
interval (if it can be defined) should surely by larger than the probability that
it lies in the smaller interval, even though both are 95% CIs.

It is therefore clear that the frequentist measure of ’confidence’ is distinct
from a conditional probability. The next example shows that the concept of
a p-value is similarly hard to interpret.

Example 2. Testing the hypothesis that a distribution is binomial. Sup-
pose that a ornithologist believes that for the sex of an offspring of a certain
species of bird is equally likely to be male or female and is independent of
the sex of any siblings. He selects a random sample of 100 broods with 4
offspring and counts the number of male offspring in each. The results are
summarised in the following table.

Number of males x 0 1 2 3 4
Number of broods fx 5 20 50 20 5

If X denotes the number of male offspring then the scientist’s hypothesis
is that X ∼ Bin(4, 1/2). This can be tested by calculating the so called χ2

statistic - which measures how well the observations conform to the supposed
distribution - as

χ2 =
4∑

x=0

(Ex − fx)
2

Ex
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where Ex is the expected number of broods in category x, under H0. (Note
that these numbers are 6.25, 25, 37.5, 25 and 6.25.) For the above data
χ2 = 6.67. Under H0, over repeated sampling the distribution of the χ2

statistic follows a χ2 distribution on 4 degrees of freedom. The scientist
calculates a p-value (P(χ2

4 > 6.67) = 0.15) and interprets this as a measure
of the strength of the evidence in the data against H0.

Consider now a second scientist who is more open-minded than his col-
league. He hypotheses only that X ∼ Bin(4, p) where p is unknown. To test
his H0 he first calculates the maximum likelihood estimator of p, p̂ = 0.5,
computes the values of Ex using this estimate and calculates χ2 to be 6.67
like his colleague. However, because he is estimating p as part of the process
of computing χ2 over repeated sampling the distribution of his χ2 is (approx-
imately) a χ2 distribution on 3 degrees of freedom. His p-value is therefore
around 0.08.

We now have the somewhat confusing scenario whereby the second scien-
tist finds that the evidence against his null hypothesis is stronger than that
found by the first scientist against his null hypothesis, despite the second
hypothesis being weaker (i.e. a logical consequence of the first). Thus, what-
ever a p-value represents, it must never be interpreted as the probability that
the null hypothesis is true conditional on the observed data. In this example
it simply tells us how ’extreme’ the observed values of χ2 are when compared
to their distribution over many repetitions of the experiment.

However, the logical basis for interpreting a p-value as a measure of ev-
idence against a hypothesis is also questionable. Most people would agree
that any procedure for quantifying evidence should have the property that
if Hypothesis A implies Hypothesis B, then any experiment should provide
at least as much evidence against A as against B. Example 2 shows that a
p-value does not have this desired property.

If your confused, don’t worry. It is always difficult to interpret frequen-
tist inferences as statements about the world in which we live. However it
precisely interpretations aboutthis world that are required if we wish to take
a decision about which course of action to take on the basis of evidence. To
illustrate this we consider a further example.

Example 3: The Monty Hall Problem This is a very famous problem that
has been the subject of much discussion. It is based on an American game
show in which a contestant is shown 3 doors (1, 2 and 3) behind which a star
prize has been randomly placed with equal probability for each door. The
contestant then selects a door after which the host (Monty Hall) opens one
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of the two remaining doors to reveal no star prize behind it. The contestant
is then invited to guess which of the two closed doors hides the star prize.

Suppose that a particular contestant selects door 1, after which 2 is
opened to reveal no prize behind it. Should she stick with door 1 or switch
to door 3 when making her final guess?

The frequentist solution says that it is best to switch since the contestant
only loses by switching if she happens to choose the door hiding the prize at
the first guess. The probability of choosing the correct door first time is 1/3.
Thus the probability that she wins by switching is 2/3. More explicitly, this
means that a contestant adopting a switching strategy over many indepen-
dent repetitions of the game will win with frequency 2/3. One opting for a
’sticking’ strategy will only win with frequency 1/3.

To our contestant, what happens over a long sequence of plays of the
game is irrelevant. She only has one bite at the cherry and wishes to make
judgements only about the particular set of circumstances in which she has
found herself. Is the prize behind 1 or is it behind 3? Does the frequentist
solution allow her to claim that the probability that the prize is behind 3,
conditional on Monty’s actions, is 2/3? As we shall see in the next section,
the problem as described above does not allow her to formulate conditional
probabilities of this kind, without making additional assumptions.

1.3 Conditional probability, Bayes theorem, and infer-
ence

1.3.1 Conditional probability

Let S be a sample space representing the set of outcomes of some experiment.
We recall the definition of the conditional probability of an event. If A and
B are 2 events (subsets) with P (B) > 0, then we say that the conditional
probability of A given B, written P (A|B), is

P (A|B) =
P (A

⋂
B)

P (B)

The frequentist interpretation of P (B|A) is that it represents the frequency
with which A occurs over those experiments in which B occurs. The cal-
culation of a conditional probability can also be seen to be the appropriate
way of expressing our belief in what outcome has occured given partial in-
formation on that outcome. For example, suppose that we randomly draw a
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single card from a pack from which the Ace of Spades is missing. Without
any knowledge of what card has been drawn your subjective probability that
it is an Ace is P (A) = 3/51. Suppose that you are now told the colour of
the card - black in this case (event B). Then your subjective belief that the
card is an Ace should change in the light of this evidence to become 1/25.
This is of course the value that would be obtained by calculating

P (A|B) =
P (A

⋂
B)

P (B)
=
P (Ace of clubs)

P (B)
=

1/51

25/51

Rearranging the above definition of conditional probability and noting the
symmetry of the expression we obtain

P (A
⋂

B) = P (A)P (B|A) = P (B)P (A|B).

This can be rearranged to obtain Bayes’ Law

P (A|B) =
P (A)P (B|A)

P (B)

Actually, Bayes’ law has a more general formulation relating to partitions
of the sample space. Let A1, A2,... denote a partition of the sample space
(i.e. they are mutually exclusive and their union is the whole sample space).
Then since

P (B) =
∑
i

P (Ai)P (B|Ai)

for any j, we can write

P (Aj|B) =
P (Aj)P (B|Aj)∑
i P (Ai)P (B|Ai)

Now let us attempt to analyse the Monty Hall problem within this frame-
work. Let A1, A2, and A3 denote the events that the prize is placed behind
doors 1, 2 and 3, respectively. Let B denote the event that the host opens
door 2 (the contestant having selected door 1). Using the above formulation
of Bayes’ Law, the contestant should calculate the P(A3|B) as

P (A3|B) =
P (A3)P (B|A3)

(P (A1)P (B|A1) + P (A2)P (B|A2) + P (A3)P (B|A3))
.
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Now P(A1) = P(A2) = P(A3) = 1/3 since the prize is initially placed behind
each door equiprobably. Furthermore, P(B|A2) = 0 and P(B|A3) = 1 (since
the host must reveal a door with no prize). However, the quantity P(B|A1)
has not been specified anywhere in the problem. We have not said how the
host selects a door when neither door not selected by the contestant hides
the prize. Therefore we cannot compute the conditional probability P(A3|B)
without further assumptions. For example, we might propose that P(B|A1)
= 1/2, in which case we would have P(A3|B) = 2/3. If we assumed that, when
either door 2 or 3 can be opened, the host selects 2 with some probability p,
0 < p < 1, then all we can say is that 1/2 < P (B|A1) < 1. Nevertheless, this
tells the contestant that, at the very least, nothing will be lost by switching
to door 3 when making the final choice.

This problem illustrates some of the essential elements of the Bayesian
approach (described fully in the next section of the course). In particular,
we highlight the following features.

• The inferences from a Bayesian analysis are expressed in the form of
probabilities that are conditional on the observed events and represent
our subjective beliefs about the world in the light of these events (re-
ferred to as posterior probabilities).

• In order to allow such conditional probabilities to be calculated we
need to ensure that all probabilities involved in the calculations are
defined. This may require additional assumptions to be made (e.g.
P (B|A1) = 1/2 in the Monty Hall problem.)

• When calculating Bayesian posterior probabilities of hypotheses or quan-
tities of interest (parameters) e.g P (Ai|B), i = 1, 2, 3 in the above prob-
lem, we must specify the unconditional probabilities P (Ai), represent-
ing our belief in these possibilities before observing any data and known
as prior probabilities. In the case of the Monty Hall problem the param-
eter (the door hiding the prize) has been generated from a process with
known frequencies of outcomes. It is therefore logical (don’t you think it
is?) that the our beliefs regarding which door hides the prize (given no
other information) should correspond exactly with these frequencies. In
this case, our posterior probabilities will also have a frequentist inter-
pretation. (What is it?) However in many cases, there is no underlying
sampling scheme by which the ’true scenario’ has been selected from
the various possibilities. In these cases, prior probabilities must still
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be assigned but these can only have the interpretation as a measure of
prior belief in the possibilities. This arises in forensic statistics where
the two hypotheses may be the guilt or innocence of a defendant in a
court case. It is the extension of Bayes’ theorem to this kind of scenario
that offends the pure frequentist.

• The Monty Hall problem involves calculating posterior probabilities of
discrete quantities (the number of the door hiding the prize.) However,
the Bayesian approach also extends to continuously valued quantities
for which prior belief must be summarised in terms of a density func-
tion. The mathematics of continous probability densities will therefore
play a prominent role in the rest of the course.
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Exercises

1. Y has a pack of 4 cards (Ace and Queen of clubs, Ace and Queen
of Hearts) from which he deals a random of selection 2 to player X.
What is the probability that X receives both Aces conditional on them
receiving at least 1 Ace. Suppose now that Y deals X two cards from
the pack of 4, after which X says “I have an Ace”.

(a) Discuss whether the above information is sufficient to calculate
the conditional probability P(X has 2 Aces | X says “I have an
Ace”).

(b) If it is not, what other information would be required in order to
calculate this conditional probability?

2. An urn is known to contain n differently coloured balls where n can be
any integer in the set 1, 2, 3. Your prior information tells you that n
is equally likely to be any of these values. A ball is drawn randomly
from the urn - it is red. Alice argues that since the probability of the
red ball being drawn conditional on there being n balls in the urn is
1/n, then

P (n = 1|red ball drawn) =
1
3
× 1

1
1
3
× 1

1
+ 1

3
× 1

2
+ 1

3
× 1

3

and calculates the posterior probabilities of n being 1, 2, and 3 as 6/11,
3/11 and 2/11 respectively. She then expresses her surprise that the
her beliefs regarding N have changed having observed only the colour
of a single draw from the urn.

(a) Explain the fallacy in her argument and why the above the infor-
mation alone does not define a posterior probability for n.

(b) Bertie assumes that the n balls placed in the urn are drawn uni-
formly at random from a large stock of differently coloured balls.
Calculate Bertie’s posterior probabilites for n = 1, 2, 3.

(c) Under what circumstances would Alice’s posterior probabilities be
correct?

3. Suppose now in the situation of question 2, two balls are drawn from
the urn with replacement and the event that both are the same colour
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is observed. Calculate the posterior probabilities for n = 1, 2, 3 in this
case.

4. (Yet more balls and urns) Five balls are drawn uniformly randomly
from a very large population of black and white balls where the pro-
portion of black balls is 1/3. You do not know the colours of the balls
selected.

(a) Give suitable prior probabilities for the number of black balls in
the urn.

(b) You now select two balls uniformly at random from the urn with
replacement. They are both white. Calculate the posterior prob-
abilities for the number of black balls in the urn.

(c) Suppose that the two balls were selected from the urn without
replacement and were both white. Calculate your posterior prob-
abilities for the number of black balls in the urn for this case.

5. A fair coin is tossed n times where n can take the values 1, 2, ..., 5 with
equal probability. Suppose that 2 heads result from the n tosses.

Determine the posterior distribution (i.e. work out the probability
function) of n and identify the value of n that is a posteriori most
likely.

Suppose now the coin is to be tossed repeatedly until m tails are ob-
tained where the value m is first selected from a Geometric(1/3) dis-
tribution. Suppose that 2 heads are obtained in the sequence. What is
the posterior distribution of m given this information? (It is sufficient
to write an expression involving infinite sums!)

6. Formulate a new problem (with solution) to illustrate the use of Bayes’
theorem to calculate posterior probabilities. The best examples will
be given (with appropriate acknowledgement) to the next class to take
this course.
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2 Bayesian Inference

2.1 Priors, Likelihoods and Posteriors

Throughout this section we will consider problems of the following kind.
We carry out some kind of experiment (a procedure where the outcome is
uncertain) for which we believe the outcome can be considered as a random
draw from some probability model. This probability model is specified by an
unknown parameter vector, which we denote by θ. Our aim in carrying out
the experiment is to estimate the unknown θ.

Particular instances of this include:

• estimating the proportion of the population who will vote Labour in
the next election from the results of a poll (θ = p).

• determining whether or not a target is located in a range-cell based
on radar echo (θ here would indicate presence (1) or absence (0) of a
target)

• estimating the mean incubation period of an infectious disease based
on observations of an epidemic

Suppose that our experiment produces observations, y, from which we
must estimate θ. Then in the Bayesian approach we update our knowledge
of θ, having obtained y by applying Bayes’ theorem. Let us suppose for the
moment that both θ and y are discrete quantities. Applying Bayes’ Theorem
we would seek to obtain an expression

P (θj|y) =
P (θj)P (y|θj)∑
i P (θi)P (y|θi)

Working backwards, we can see that this expression can only be made mean-
ingful if we can define the quantities P (y|θj) (the probability of the obser-
vations for parameter value θj and P (θj) (the probability of θj) for each θj.
These two functions of θ are the cornerstones of the Bayesian approach. They
are the likelihood function and the prior distribution for θ respectively and
must be specified in any Bayesian calculation. The conditional distribution
specified by P (θj|y) is known as the posterior distribution of θ, and can be
considered as the complete representation of our knowledge about θ in the
light of y.
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In many situations we will be interested in a continuously-valued parame-
ter. For this case we obtain an expression for the posterior probability density
function of θ,

π(θ|y) =
π(θ)P (y|θ)∫
π(θ′)P (y|θ′)dθ′

(1)

where π(θ) is referred to as the prior density for θ. Students who have done
a course in measure theory will realise that there is no essential conceptual
difference between the expressions for the posterior distribution in discrete
and continuous cases.

We now consider how the prior and the likelihood are specified in more
detail.

2.2 The prior distribution

The major source of controversy in the Bayesian approach is the assignment
of the prior distribution for the unknown parameter θ. Sometimes (if the
value of θ arises through some random sampling procedure) there is no con-
troversy. For example, if θ denotes the presence (θ = 1) or absence (θ = 0)
of a gene that is known to occur in a certain proportion, p of the population,
and y records the presence or absence of an associated characteristic in a
randomly selected member of the population, it would be natural to define
the prior for θ by P (θ = 1) = p. However, in general there will be no such
sampling procedure for θ to which we can appeal. Then we will require to
set the prior for θ using our subjective judgement.

How should this be done? Later in the course we will return to this
question in more detail. For the moment we will simply distinguish two
cases. If we have some prior knowledge of the ’likely’ values of θ then we
might suggest a prior which reflects this and places more weight on the likely
values and less weight on more improbable values. If on the other hand we
have little genuine prior knowledge then we should opt for a prior distribution
that ’supports’ a broad range of values of θ. We can think of this as a
distribution that spreads the available probability mass widely. Precisely
how ’vague’ priors of this kind should be selected is very contentious (see
later).
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2.3 The likelihood function

The likelihood function is fundamental to many statistical inferential proce-
dures, not just Bayesian ones. Since we are thinking of P (y|θ) as a function
of θ (with y fixed) we will write the likelihood as L(θ|y) to emphasise the
dependence on the θ. The importance of the likelihood is summarised by the
likelihood principle, which (in essence) says the following.

Suppose that two experimental outcomes y1 and y2 define like-
lihoods L(θ|y1) and L(θ|y2) that are proportional to each other,
that is L(θ|y1) = C(y1, y2)L(θ|y2), for all θ. Then the conclusions
about θ drawn from y1 and y2 should be identical.

The likelihood principle says that the all the information that the data tell
you about the parameters is embodied in the likelihood. A fuller account
of the likelihood principle - and how it is a logical consequence of two other
principles (the conditionality and sufficiency principles) - can be found in
texts such as Casella & Berger. Further support for the likelihood as the
most appropriate expression of information regarding the plausibility of dif-
ferent values of θ can be seen from the Neyman-Pearson Lemma in classical
hypothesis testing.

All in all, in any problem of statistical estimation or inference it’s a
good idea to see if you can write down a likelihood function for the data.
This requires you to use the rules of probability theory in order to work out
the ’probability’ of the observations given the parameter θ. Depending on
whether the observations y are discrete, continuous, precisely measured, or
censored (known only to lie in certain intervals) constructing likelihoods will
typically require use of probability mass or density functions and cumula-
tive distribution functions. We will illustrate the process of constructing the
likelihood in several practical examples of Bayesian inference.

2.4 Pros and cons of Bayesian inference

There is a long-standing debate within statistical inference with regard to
the most appropriate philosophy of inference. Pure Bayesians will point out
that their approach respects the likelihood principle since it is through the
likelihood only that the data enter the calculations. Critics will point to the
subjectivity in the choice of prior distributions for parameters and its influence
on the conclusions. Bayesians may counter that any source of dubiety in their
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analyses is clearly identified in this single issue (the choice of prior), while
logical inconsistencies can be found throughout classical statistics (e.g. p-
values as a measure of evidence).

A major selling point of the Bayesian approach is that it provides a very
natural means of including prior knowledge of a system in experimental anal-
yses, provided this knowledge can be expressed in terms of a probability dis-
tribution on the parameters. It also provides a natural means of combining
information from several experiments. Since the posterior parameter density
represents the sum total of knowledge of parameters in the light of experi-
mental data, it provides us with the appropriate prior to use in the analysis
of subsequent experiments.

2.5 Some practical examples of Bayesian inference

Example 1: Bayesian estimation of Binomial proportion, p. A geneticist
wishes to estimate the proportion of the population carrrying a certain gene.
They collect DNA from a random sample of 20 individuals, of whom 5 are
found to carry the gene. Carry out an investigation of p using Bayesian
techniques.

The first thing we need to do is construct the likelihood L(p). If Y denotes
the number of gene-carriers in the sample, then this is simply P (Y = 5)
expressed as a function of p. Now, since we are taking a random sample from
a large population then this probability is given by the binomial probability:

L(p) = P (Y = 5|p) =

(
20

5

)
p5(1− p)15.

Now, we need to specify a prior density for p. Let us suppose that the
geneticist has little information on the value of p. To reflect this they choose
for their prior density, π(p) = 1, that is a uniform distribution on the interval
(0, 1). We will later discuss the extent to which a uniform prior can be
considered to represent prior ignorance.

We can now identify the posterior distribution of p as

π(p|y) =
π(p)L(p)∫ 1

0
π(p′)L(p′)dp′

Now the denominator being an integral over the range of p is independent of
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p, therefore we can write

π(p|y) ∝ π(p)L(p) =

(
20

5

)
p5(1− p)15 ∝ p5(1− p)15

This functional dependence on p identifies the π(p|y) as a Beta distribution.
In fact it is a Beta(6, 16) density.

Self-study exercise: Review the properties of the Beta distribution
We can therefore identify the posterior mean of p as 3/11, and the mode

as 1/4.
Example 2. Inference for the Exp(λ) distribution. Suppose that the

lifetime of a particular type of component is believed to be distributed as
an Exp(λ) where λ is unknown. In order to estimate lambda, you se-
lect a random sample of 20 components and measure their lifetimes to be
t1, t2, t3, ..., t20. Carry out a Bayesian analysis of these data to estimate λ.

Again let’s assume that we have little prior knowledge about the value
of λ. Therefore to select a prior we want a density that ’supports’ a broad
range of values of λ. One possibility would be to use an Exp(α) distribution
where α is small in some sense. Suppose we set α = 0.1.

Now suppose that we take the observations and note that
∑
ti = 10.0

time units. Since (we assume) the observed times are independent of each
other, then we express the likelihood as the joint density f(t1, x2, ..., t20|λ).
This is given by

L(λ) = λ20e−
P
λti = λ20e−λ

P
ti

We can now exhibit the posterior density as

π(λ|t) ∝ π(λ)L(λ) = λ20e−λ(α+
P
ti).

We can see that the posterior density of λ must be a Γ(21, 10.1). We can
immediately determine the posterior mean and variance to be 2.08 and 0.21
respectively.

Example 3. Consider the same set-up as Example 2 but suppose that now
the data, rather than giving the precise times of failure of all components,
only record the times of failure up to t = 0.5, at which time the experiment
ceases. Suppose that 14 components fail in this period with

∑i=14
i=1 ti = 2.2,

the remaining 6 components being operational at t = 0.5. To construct the
likelihood for this case we note that P (T > 0.5|λ) = e−0.5λ, and insert this
factor for each component whose lifetime exceeds 0.5. This yields a likelihood

L(λ) = λ14e−λ(3.0+
P14

0 t)i = λ14e−5.2λ.

16



If we again use the Exp(0.1) prior for λ, then the posterior density of λ is
Γ(15, 5.3). In this case the posterior mean and variance of λ are 2.83 and
0.53 respectively.

We can use Bayesian methods whenever we can write down a likelihood
function for the observations that we have.

2.6 Conjugate prior densities - prior elicitation

All the prior densities used in the previous section are examples of conjugate
prior densities. That is, the posterior density derived is another member of
the same family of distributions. In Example 1, the U(0, 1) prior density for
p is a particular case of a Beta distribution - a Beta(1, 1) distribution. The
analysis could have been repeated using any Beta prior distribution, yielding
a Beta posterior. In general, if the prior for p were Beta(α, β), then the
posterior would be Beta(α+ 5, β + 15).

Suppose the geneticist in Example 1 wished to include his prior experience
in the analysis by using a more informative (less vague) Beta prior than the
Beta(1, 1) density. His choice of α and β could loosely be interpreted as
quantifying the extent of this experience. Suppose that the geneticist had
carried out n tests in the past of which r proved to be positive for the gene.
Then he could represent this experience by using a Beta(r + 1, n − r + 1)
density for p. The larger n and r, the smaller the prior variance for p.

The values of α and β used to specify the prior have little effect on the
posterior in the case where a very large sample is collected. If the sample
size is m and the number of positives is q, then the posterior density of p
is Beta(α + q, β +m − q). The mean and variance of this posterior density
depend weakly on α and β when m and q are large. In this case we say that
the data swamp the prior - a nice situation to be in if you’re a statistician.

In Example 2, the choice of Exp(α) as the prior for λ is a particular case
of the Gamma distribution - a Γ(1, α). It is straightforward to check that,
if a Γ(α, β) had been used, then the resulting posterior density would have
been Γ(20 + α, β +

∑
ti). If you wanted to select a more informative prior,

perhaps contentrating weight around a particular value, then larger values
of α and β should be chosen.
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2.6.1 Selecting a prior to represent your knowledge

As mentioned before, it is through the selection of the prior (and the choice
of the model, of course) that subjectivity enters into any Bayesian analyses.
There are various ways in which a prior distribution might be elicited for any
particular parameter in an analysis. Here we will focus on the ’cheap and
cheerful’ approach. Suppose in Example 2 your prior belief is summarised
by the statements:

The probability that the mean lifetime of a component is greater than 2
days is 0.25

The probability that the mean lifetime is less than 0.25 days is 0.25.
Since the mean lifetime is given by 1/λ, this is equivalent to specifying

that the prior for λ should have its quartiles at λ = 0.5 and λ = 4.0 respec-
tively. There is a Gamma distribution with this property but it is rather
messy to obtain, since this requires solution of a system of simultaneous
equations (involving incomplete gamma functions) for α and β.

An easier approach is to consider a Weibull distribution as the prior for
λ. A Weibull(γ, β) density for λ is defined by

f(λ) = γβλγ−1e−βλ
γ

, 0 ≤ λ <∞.

If λ ∼ Weibull(γ, β), then λγ ∼ Exp(β). We now need to solve the system
of equations:

e−β4.0γ

= 0.25

e−β0.5γ

= 0.75

Now transforming these equations we obtain

−β4.0γ = log 0.25

−β0.5γ = log 0.75

It follows that

8γ =
log 0.25

log 0.75

so that

γ = log(
log 0.25

log 0.75
)/ log 8 = 0.756

It follows that β = 0.486. This implies that the prior mean and variance
of λ are 3.07 and 16.97 respectively. Of course a problem with the Weibull
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prior is that we lose the property of conjugacy - our posterior will not be a
Weibull distribution! What if we use a Γ(α, δ) prior with the same mean and
variance? This implies that δ = 3.07/16.97 = 0.181, while α = 3.07δ = 0.556.
Now we can check the values of the cdf for the Γ(0.556, 0.181) at 0.5 and 4.0 to
see how well they match our desired prior specification. The corresponding
values are 0.29 and 0.74, respectively. This is in ’reasonable’ agreement
with our prior specifications, and we could use this gamma prior (with its
convenient conjugacy properties).

Although prior elicitation is an important process, it is more important
to bear in mind that the choice of prior is subjective. It is the most ques-
tionable aspect of the Bayesian approach. In any Bayesian analysis it is
sensible to investigate how the conclusions would be affected if a different
prior were used and to experiment with a few priors with differing degrees of
’informativeness’.

2.7 Reporting conclusions from a Bayesian analysis

Having derived the posterior distribution of a parameter there are several
ways in which we can express the results. For single parameters, a plot of
the posterior density is very informative and shows clearly the range of values
consistent with your posterior beliefs. We can also quote quantities such as
the posterior mean of a parameter or the posterior variance. Indeed any
summary of a distribution can be used.

A natural analogue of the frequentist confidence interval for a parameter
is the Bayesian credible interval. For example, suppose that given data y
you derive the posterior density of θ as π(θ|y)). Then a 95% credible interval
(a, b) is any interval whose posterior probability of containing θ is 0.95. Often
we might quote an equal-tailed interval (obtained by selecting the 97.5% and
2.5% critical points of π(θ|y)), or a minimum-width interval (by thresholding
π(θ|y))) assuming this can be calculated.

To calculate credible intervals for the parameter we need the cumulative
distribution function of the posterior. Where the posterior has a convenient
form, such as a Beta or Gamma distribution, we can usually use standard
functions from a computer package such as ’R’ to do the calculations for us.
For the particular case of the posterior density of θ being Γ(n, β), where n is
an integer, we can exploit the fact that

2βθ ∼ Γ(n, 1/2) ∼ χ2
2n
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and use statistical tables to work out the bounds of the credible region.
Depending on the circumstances, we may be interested in the posterior

probability of a parameter being greater than or less than some threshold.
For example, this might be the case where the experiment has been done for
the purpose of quality control.

2.7.1 Predictive distributions

Usually when we carry out a Bayesian analysis to obtain π(θ|y) our inter-
est lies in predicting some other quantity of practical importance, z, whose
distribution is determined by θ. For example, in the case of Example 2, our
interest may be in the lifetime of the next component that we select. Hav-
ing obtained π(θ|y), what we really want to do is determine the distribution
π(z|y). This distribution, known as the predictive distribution of z, must be
exhibited as a mixture distribution over the possible values of θ. We must
write

π(z|y) =

∫
f(z|θ)π(θ|y)dθ

where f(z|θ) denotes the density of z given θ. In this section we give some
examples of calculating predictive distributions and highlight some of the
mixture distributions that arise in standard problems.

Example 4 Following change in regulations, students are suppose to bring
their own calculators to examinations. However a number invariably forget
and invigilators bring a small number to exams for these individuals. Suppose
that in the first exam after the rule change an invigilator finds that 2 students
out of a class of 30 have forgotten their calculators. The next week she has
to invigilate an exam with 25 students. How many calculators should she
bring in order to be 95% certain that she will have enough? Assume she is a
Bayesian who takes a pessimistic view of the organisational skills of students.

A Bayesian solution. First of all, we need to assume some statistical
model for the number of students that forget to bring a calculator to an exam.
A natural assumption is that this number follows a Bin(n, p) distribution
where n denotes the number of students taking the exam, and that p is the
same for all exams.

Next she needs to identify a prior for p, representing her beliefs before
having seen the data from the 1st exam. Being pessimistic she assumes a U(0,
1) prior for p. Now, as in Example 1 in the previous section she immediately
calculates that a posteriori p ∼ Beta(3, 29).

20



Now she must consider the predictive distribition of Z, the number of
students who forget their calculators in the next exam. Given p, then
Z ∼ Bin(25, p). To get the predictive distribution π(z|y) we need take the
expectation of the binomial probability given p over the posterior distribution
of p. The probability function of Z, given the data, is then

f(z) =

∫ 1

0

π(p|y)
(

25

z

)
pz(1− p)1−zdp, 0 ≤ z ≤ 25

This the pmf of the Beta-Binomial distribution. An explicit formula can be
obtained (see lecture for a derivation of this) as

f(z) =

(
25

z

)
Γ(2 + z + 1)Γ(53− z + 1)Γ(32)

Γ(3)Γ(29)Γ(57)

Now by examining the associated cumulative distribution function, we find
that P (Z ≤ 5) = 0.931 while P (Z ≤ 6) = 0.966. Therefore she should bring
6 calculators to be 95% certain of having enough. In the event she brings 7.
Why?

Exercise Verify the derivation and the calculations using a package like
’R’. What would happen if a more informative prior were used, giving more
weight to smaller values of p?

Example 5. Consider the component experiment of Example 2 above
in which the posterior density of λ was Γ(α, β). Let us suppose that this
component is used in a space vehicle which has to perform a flight of duration
1 day? If the component fails during the flight then it is replaced immediately
from a pool of identical components whose lifetimes are all independent of
each other. How many components in total are needed to ensure that the
vehicle completes the flight with at least 90% certainty?

To solve this we need to consider the predictive distribution of the number
of components, Z, which fail during a 1-day flight. Now, given λ, the distri-
bution of Z is Poisson(λ) (see lecture for a derivation). Therefore to obtain
the predictive probability mass function f(z) we must take the expectation
of this Poisson (conditional) probability over λ. This gives

f(z) =

∫ ∞

0

π(λ|y)e
−λλz

z!
dz, 0 ≤ z ≤ ∞

=
Γ(z + α)

Γ(α)z!
pα(1− p)z, 0 ≤ z ≤ ∞
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where

p =
β

1 + β

This specifies the predictive distribution of Z as being a negative binomial
distribution. By considering the cdf for the case α = 21, β = 10.1 we note
that P (Z ≤ 3) = 0.83, while P (Z ≤ 4) = 0.93. It follows that 5 components
are required to give at last 90% certainty of completing the 1-day flight
successfully.

These examples of calculating predictive distributions show how mixture
distributions naturally arise. In the cases considered so far, there has been
only a single parameter and the integrals have been analytically tractable.
More generally, Bayesian inference and prediction can require calculation of
integrals that may be multidimensional (in the case of more complex models),
or may fail to be analytically tractable. One of the barriers to widespread
implementation of Bayesian ideas in the past was the complexity of the inte-
grations that naturally arose. As we see later in the course, this difficulty has
been overcome to a major extent through the use of stochastic integration
techniques, coupled with modern computer power. This allows such integrals
to be estimated numerically.
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Exercises

1. Let X = (X1, X2, . . . , Xn) be a random sample from the Poisson distri-
bution with mean µ. Show that the conjugate prior is Gamma. Using
µ ∼ Gamma(α, β) as the prior, determine the posterior distribution of
µ.

Suppose you specify µ ∼ Gamma(1, 0.5), n = 5 and observe
∑
xi =

15.0. Calculate an equal-tailed 95% credible region for µ in this case.

2. Let X be a random sample from the Exponential distribution Exp(λ)
with mean 1/λ, i.e. Γ(1, λ). Show that the conjugate prior is Gamma.
In particular, if X is a single observation, show that the prior Γ(α, β)
leads to a posterior density for λ being Γ(α+ 1, β +X).

An important consequence of the conjugacy property is that if obser-
vations arrive sequentially then updating the posterior distribution is
simple. Suppose that the prior distribution is G(α, β) and that x1 is
observed. Obtain the posterior distribution. Now suppose that x2 is
observed. Find the new posterior distribution by updating the existing
posterior. Finally, show that this posterior distribution is the same as
that obtained from the original prior if we observe a random sample of
size 2 consisting of (x1, x2).

3. The lifetime of a component, T , follows an Exp(λ) distribution where
a priori λ ∼ Γ(1, 2). You select a random sample of 5 components for
which

∑
ti = 3.0/days. Find the posterior distribution of λ.

A component of this kind forms part of certain system which is required
to function continuously for a period of 6 hrs. What is the probability
that the component fails before the end of 6 hrs? (You will have to work
out the posterior predictive distribution of the lifetime of a component.)

4. Let x = (x1, x2, . . . , xn) be a random sample from the Pareto distri-
bution with p.d.f. f(x) = θ(1 + x)−(θ+1), 0 < x < ∞. Show that
the Gamma distribution is the conjugate prior for this distribution by
proving that if the prior distribution of θ is G(α, β), then the posterior
is G(α+ n, β + t(x)), where t(x) =

∑
i = log(1 + xi).

5. [1997 Statistical Inference Exam, Q4] In a raid on a coffee shop,
Bayesian trading inspectors take a random sample of n packets of coffee,
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each of nominal weight 125 g. They model these data as independent
values X1, . . . , Xn from a Normal N(µ, σ2) distribution. They take σ2

to be known, while for µ they assume a prior distribution of N(µ0, σ
2
0),

where µ0 and σ2
0 are specified values.

(a) Show that the inspectors’ posterior distribution is also Normal,
and find its mean and variance.

Show that the mean of this distribution is a weighted average of
the prior mean µ0 and the sample mean x̄.

(b) The data they obtain are (weights in grams):

105.3, 113.3, 114.5, 121.2, 122.9, 123.7, 124.0, 124.6, 124.9, 124.9,
124.9, 125.1, 125.5, 125.9, 126.8, 127.7, 128.2, 128.3, 128.5, 130.2
(
∑
xi = 2470.4,

∑
x2
i = 305828.98).

The parameter values they assume are µ0 = 126, σ2
0 = 1, σ2 = 4.

The inspectors can impose a fine if their 95% credible interval falls
wholly below the claimed value of µ = 125 g.

i. Show that the inspectors’ 95% credible interval for µ for these
data does lie wholly below 125 g; they therefore impose a fine
on the owners of the coffee shop.

ii. Sketch the data (a dotplot or similar), and calculate their
sample median and sample variance.

iii. Comment briefly as to whether the inspectors are justified in
imposing a fine on the basis of this sample.
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3 Bayesian inference continued

This section extends the ideas of the previous section to examine some deeper
issues of Bayesian Inference.

3.1 Non-informative prior densities

For some researchers in Bayesian statistics, the concept of a prior density
which represents complete prior ignorance of a parameter is something of a
Holy Grail. In reality, there is no such thing as a truly non-informative prior.
Any prior density assigned to a parameter embodies a lot of information in
the probability statements that would follow from it. It is tempting to think
of a uniform prior density as representing ignorance as in the case of Example
1 in the previous section. By assigning a uniform prior density, however, we
are saying that the value of p is equally likely to fall in e.g. the intervals (0,
0.1), (0.1, 0.2),..., (0.9, 1.0). This says some very particular things about our
prior beliefs and cannot represent total ignorance. That the uniform density
does not really represent prior ignorance is more obvious when we consider
transformations of a parameter. If we have no knowledge of p, then we have
no knowledge of q = p2. However, if the prior distribution of p is uniform,
then the prior distribution of q is certainly not.

Self-study exercise Ensure you are familiar with the method for deriving
the pdf of φ = h(θ) from the pdf of θ for 1-1 differentiable mappings h. What
is the pdf of q above?

What kind of prior distributions can be suggested when there is no avail-
able information? Sticking with the 1-dimensional situation we now look at
the Jeffreys prior Suppose that we wish to estimate q based on some random
observation Y. Now in classical estimation theory a quantity of interest is the
Fisher information defined by

F (θ) = −EY |θ[
∂2logL(θ|Y )

∂θ2
]

Roughly speaking, the reciprocal of this quantity determines the width of
likelihood based confidence intervals (under large sample conditions). Now
suppose that φ(θ) is a transformation of θ, such that F (φ) is constant. Then
we obtain Jeffreys’ prior for θ by placing a uniform prior on φ and then
examining what prior this ’induces’ on θ. It turns out that the induced prior
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on θ must satisfy
π(θ) ∝ F (θ)1/2

Now a Jeffreys prior has certain invariance properties. If we place a Jeffreys
prior on θ and then consider φ(θ), the prior induced on φ is automatically
the Jeffreys prior for φ. We now look at some particular cases of Jeffreys’
priors.

3.1.1 Jeffreys’ prior for a binomial proportion

Suppose that we observe Y successes out of n independent trials where the
probability of success is p. Now it is easily seen that the Fisher information
is

F (p) =
n

p(1− p)

From this we see that our Jeffreys prior for p should satisfy

π(p) ∝ p−1/2(1− p)−1/2.

That is our Jeffreys’ prior for p is Beta(1/2, 1/2).

3.1.2 Jeffreys’ prior for µ in the N(µ, 1)

Suppose we observe random observations Y = (X1, ..., Xn) from a N(µ, 1)
distribution. Then in this case we can show that the Fisher information is

F (µ) = n.

This would imply that our Jeffreys’ prior must be constant over the real
number line. Note that this property does not define a ’proper’ probability
density function in that it could not possible integrate to unity over the
real number line. Nevertheless, (most) Bayesians would admit this choice
of prior because when we plug it into equation (1) in 2.1.1 we obtain a
proper posterior density. In general, we can use an improper prior so long
as the integral of (prior × likelihood) over the parameter space is finite.
Some Bayesians, known as ’proper’ Bayesians, do not approve of the use of
improper prior densities.

Many statisticians choose Jeffreys’ priors to represent lack of knowledge
when they are available. However, cases can be made for other forms of non-
informative priors. Very broadly speaking, so long as there is sufficient data,
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any prior which is reasonably constant over the range of values for which
the likelihood is large should produce similar posterior inferences. If data
are scarce, then some dependence on the particular choice of prior should be
expected. This is a fact of life with Bayesian inference. It is a very good idea
to experiment with a few different priors in any given situation.

3.2 Multiparameter situations - things start getting
more tricky

In many practical situations there will be more than a single unknown param-
eter to estimate. The Bayesian approach can again be applied except that
our 1 − dimensional integrals considered before now become multivariate
integrals. We illustrate the approach for some simple cases.

3.3 Inference for normal mean and variance jointly

Suppose that we observe a random sample x1, x2, ..., xn from a population
that we believe to be N(µ, φ) where the mean µ and variance φ are unknown.
Let us suppose that we propose independent noninformative, improper, uni-
form priors for µ and an improper prior for φ that is inversely proportional
to φ. Then π(µ, φ) ∝ 1

φ
,−∞ < µ < ∞, 0 < φ < ∞. Carry out a Bayesian

analysis in order to estimate µ and φ.
To solve this we simply mirror the 1-dimensional case and first derive the

joint posterior density of θ = (µ, φ). First we construct the likelihood:

L(µ, φ) ∝ φ−n/2exp(−
∑

(xi − µ)2

2φ
)

Then our posterior density π(θ|x) can be written as

π(µ, φ|x) ∝ φ−(n+2)/2exp(−
∑

(xi − µ)2

2φ
)

If we wish to make inference on µ and φ separately then we can do this from
the marginal densities of these parameters. This requires us to integrate the
above posterior with respect to φ and µ respectively.

When we do this (see lectures for a derivation) we can show that

π(µ|x) ∝ (1 +
1

n− 1
(

x̄− µ

V 1/2/n1/2
)2)−n/2
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where V denotes the sample variance. Comparing this with the form of the
density of the t-distribution we see that a posteriori, x̄−µ

V 1/2/n1/2 ∼ tn−1. Since

µ is a linear function of this quantity, then we can make posterior inferences
about it quite easily.

To get the posterior density of φ we have to integrate the joint posterior
with respect to µ. (See lecture for a derivation of this.) ’Cutting to the chase’
we see that the posterior density of φ satisfies

π(φ|x) ∝ ψ
n+1
2 e−

1
2
ψ

where ψ = (n−1)V
φ

. The posterior density of ψ itself is proportional to π(φ|x)

multiplied by the modulus of dφ
dψ

. Therefore we have

π(ψ|x) ∝ ψ
n−3

2 e−
1
2
ψ

from which we see that (n− 1)V/φ ∼ χ2
n−1.

For this choice of prior for (µ, φ) we see that the posterior credible inter-
vals we would calculate for either parameter would correspond exactly with
confidence intervals calculated using classical methods. See section 1 for de-
tails. Priors which lead to posterior inferences that ’match’ the results of
classical analyses are sometimes called probability matching priors.

The above example is a case where things can be tackled analytically. The
poterior densities for both parameters can be indentified and their properties
are well known, and are tabulated in statistical tables. However, in many
other situations in Bayesian analyses the resulting integrals will not be so
simple. For example, consider the case where we wish to make inference on
the parameters of the Γ(α, β) given a random sample x. Then the likelihood
for this case looks like

L(α, β) ∝ βα

Γ(α)
zα−1
1 e−βz2

where z1 and z2 are the product and sum of the x’s respectively. If α is known
and we are only ignorant about β, for which we assign a Gamma prior, then
we can obtain the posterior density of β with little difficulty. However, if α
is unknown, then calculation of marginal posterior densities for α and β will
be much harder.

Frequently, in Bayesian analysis, we will be forced to resort to compu-
tational methods of working out posterior densities, or to investigate their
properties by simulating directly from them. Simulation methods are at the
heart of many developments in modern statistics.
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Exercises

1. Suppose that x1, x2, ..., xn is a random sample of observations from an
Exp(λ) distribution where λ is unknown.

(a) Show that the Jeffreys’ prior for λ in this case satisfies π(λ) ∝ λ−1.

(b) For n = 5 and
∑
xi = 10 calculate a 95% equal-tailed credible

interval for λ using the Jeffreys prior.

2. Show that if x1, x2, ..., xn is a random sample from a Poisson(λ) distri-
bution, then the Jeffrey’s prior for λ is given by π(λ) ∝ λ−1/2. Com-
ment on this in the light of the connection between the Exp(λ) and the
Poisson(λ) distribution.

3. An educationalist is interested in the distribution of the number of
exam attempts required by individuals to qualify in a certain profession.
They believe that it follows a negative binomial distribution with p.m.f.

fX(x) =

(
x− 1

r − 1

)
pr(1− p)x−r

for x = r, r+1, r+2, ..., where r is a postive integer and p a probability
between 0 and 1. Suppose that they place a Uniform(0, 1) prior on p, an
improper prior on r proportional to 1/r and assume that the parameters
are a priori independent of each other. They select a random sample
of 5 qualified individuals and count their exam attempts. These are in
order: 4, 4, 6, 8, 12

(a) Construct the likelihood L(r, p) for these data.

(b) Show that the marginal posterior probability mass function of r
satisfies

p(r|x) ∝ 1

r

(5r)!(5(x̄− r))!

((r − 1)!)5
∏

i(xi − r)!

for r = 1, 2, 3, 4 and is zero for larger values of r.

(c) Calculate (using a computer) the r.h.s. of the above expression
for r = 1, 2, 3, 4 and use the calculated values to make inference
on the value of r.
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4. Suppose that a random sample of size 8 from a normally distributed
population of mean µ and variance φ results in the values

3.1, 3.3, 3.6, 4.2, 4.3, 4.8, 5.4, 5.7.

Assuming that you take independent priors, constant for µ and pro-
portional to φ−1 for φ, calculate:

(a) the posterior probability that µ exceeds 5.0;

(b) the posterior probability that φ is less than 1.
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4 Introduction to simulation techniques

4.1 Simulating continuous random variables by trans-
forming U(0, 1) samples

By a simulation algorithm we mean any computation procedure for producing
a random draw from some desired probability distribution. Most computer
languages have built-in (pseudo-)random number generators that produce
samples that come from a Uniform(0, 1) distribution. In this section we will
look at some ways in which these can be transformed to a give sample from
a desired or ’target’ distribution.

1. Simulating from the Exp(λ) distribution. If X ∼ U(0, 1) then Y =
− log(X) ∼ Exp(1). ( Exercise: verify this!) It follows that Z = Y/λ ∼
Exp(λ). Simple!

2. Simulating from the Normal distribution
First we note that if (X, Y ) ∼ BV N(0, I2) i.e. X and Y are both N(0, 1)

and independent, then X2 + Y 2 ∼ χ2
2. Now the joint density of (X, Y ) has

radial symmetry (its value depends only on r2 = x2+y2), this we can simulate
a sample (x, y) from the BV N(0, I2) by first simulating

R2 ∼ Exp(1/2)

(using the recipe described above) and taking its square root R to obtain a
range. We then obtain two independent samples from theN(0, 1) by selecting
a random angle uniformly from (0, 2π), as Θ = 2πZ, where Z ∼ U(0, 1) and
calculate X = RcosΘ and Y = RsinΘ.

3. Simulating from the Γ(n, λ) (Erlang) distribution
When the first parameter of the Gamma distribution is an integer, we

can exploit the fact that X ∼ Γ(n, λ) can be ’decomposed’ as a sum of n
independent Exp(λ) random variables. A straightforward adaption of the
recipe in 1 above can be used.

4. Simulating by Inversion of the Cumulative Distribution Function
A general recipe that can be applied involves the inverse of the cumulative

distribution function. Suppose that X is a random variable with cdf FX(x)
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and that we can obtain the inverse function F−1
X . Then we can show that

that if Y ∼ U(0, 1), than the cdf of X = F−1
X (Y ) is FX . This means that

we can generate from the target distribution by simulating from the U(0, 1)
and transforming by F−1

X . Actually, recipe (1) is (more or less) an example
of this approach.

Although (4) apparently gives a general recipe for simulating random
variables, in many cases is it not easy to compute F−1

X . Even when FX can
be easily computed (not always the case), it may be necessary to use an
interative scheme to evaluate the inverse function. In these cases, it may
be more efficient to simulate from the desired distribution using a different
approach.

4.2 Rejection sampling methods

Rejection sampling works in the following way. Suppose that q(x) is a prob-
ability density function from which we can simulate samples relatively easily
and that p(x) is the target density from which we would like to simulate
samples. Suppose in addition that there exists a constant, c > 0, such that

p(x)

q(x)
≤ c

whenever p(x) > 0. Then we can formulate an algorithm for simulating from
p(x) as follows.

1. Simulate a value, y from the density q(x).

2. Calculate k(y) = p(y)
cq(y)

and simulate a random number U ∼ U(0, 1)

3. If U < k accept (and report) the value y. Otherwise return to step 1
and repeat the process.

Now if X is the random variable corresponding to the first value that is
accepted, the we can show that the density of X is given by fX(x) = p(x).
Essentially this follows from the fact that

fX(x) ∝ q(x)P (U < k(x)) = q(x)
p(x)

cq(x)
=
p(x)

c
.

This forces fX(x) = p(x) as required.
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We can see that this recipe will be very efficient if the densities q(x) and
p(x) are approximately equal and the constant c can be chosen close to 1. In
this case, k will generally be close to 1 and the value sampled in the first step
above will accepted most of the time. On the other hand, if p(x) and q(x)
are very different, then many repetitions of the algorithm may be required
before a value is finally accepted.

We illustrate the use of rejection sampling to sample from the Beta(2,
2) distribution. In this case p(x) = 6x(1 − x), 0 ≤ x ≤ 1. Suppose that
we select q(x) to be the uniform density on (0, 1). Then we can see that
p/q ≤ 3/2 and the conditions for rejection sampling hold. However, we can
see that the values of k(x) that arise will often be small. For example if
y < 0.25 or y > 0.75 (something that will happen 1/2 of the time) then
k(y) ≤ 3/4. This suggests that there will be a significant chance of rejection
in the algorithm, and that we will probably have to generate considerably
more random numbers than the number of samples from p(x) that we wish
to obtain. For the Beta(3, 3) distribution the rejection rate would be even
higher.

Note that with rejection sampling, once we have accepted n values x1, .., xn
at step 3, then these form the realised values in a random sample from the dis-
tribution. (Recall that a random sample consists of random variables that are
identically distributed and independent of each other (i.i.d.)). This is because
in rejection sampling, successive draws from the density q(x) are independent
of all previous draws. In the next section we shall investigate a simulation
method which generates a sequence of random values X1, X2, ..., Xi, ... where
these random variables are not independent of each other.

4.3 Markov chain Monte Carlo Methods

Modern Bayesian statistics has been revolutionised by these techniques which
have enabled many Bayesian problems that were previously intractable to be
solved. Essentially, they allow posterior distributions to be explored by simu-
lation and conclusions and inferences to be drawn directly from the sampled
values. In this section we introduce the basic ideas behind Markov chain
Monte Carlo in the context of simulating from finite, discrete probability
spaces. Later in the course we will cover the theory of Markov chains in
more detail and look at MCMC as applied in continuous state spaces. We
begin by motivating its use by a (somewhat artificial) example.
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4.3.1 The argumentative party guests

Twelve people (with surnames from A-L) are on the guest list at a very large
party. They arrive at the party in a random order (with all orderings of the
12 equally likely). On arriving at the party they are spotted coming in the
door by each member of the 12 already there (independently of each other)
with unknown probability p. Each of the 12 note the names of the people
that they spotted arriving (but not the order in which they saw them). This
results in the following data The symbol ‘>’ means “spotted on arrival”.

1 > 3 6 7 11 12
2 > 3 6 8
3 > 4
4 > 7 12
5 > 6 9 11 12
6 > 8 11
7 > 8 9 11
8 > 11
9 > 11
10 > 11
11
12

The next day individuals 1, 2 and 5 have an argument each claiming to
have arrived first at the party. Meanwhile 11 and 12 argue - each claiming
that the other was last. You wish to help to resolve these arguments by
investigating the conditional distribution of the name of the 1st arrival and
the last arrival.

How can you do this? Let’s try and solve this using Bayes’ Theorem.
There are two unknown parameters here - the particular order in which
individuals arrived and the fixed, ’detection’ probabability p. Let y denote
the data in the above table. Let s denote an ordering of the guests which
does not contradict the data in y (i.e. does not have any guest arriving before
a guest who claims to have spotted them). Then for any p, I claim,

P (y|s) = p23(1− p)43

and is zero for any s contradicting y. It follows that the posterior probability
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function of the ordering satisfies

π(s|y) ∝ π(s)× P (y|s) ∝ 1.

for all orderings satisfying y since the prior π(s) = 1
12!

(all orderings a priori
equiprobable). Hence the posterior distribution of s is uniform over the set
of orderings that satisfy y.

Now if we can generate samples from π(s|y) we could investigate the
marginal distribution of ’first guest’ and ’last guest’. One way to sample (es-
sentially rejection sampling) would choose random orderings independently
until one satisfies y. This could take a long time since the majority would be
rejected.

What is really required is some algorithm that will restrict attention only
to suitable permutations, and produce a random selection from this subset
(with all suitable permutations equally likely). This is what Markov chain
Monte Carlo will do for us.

4.3.2 Some basic properties of Markov chains

Here we give a very basic introduction to Markov chains and Markov chain
Monte Carlo. Suppose S = {s1, s2, ..., sn} is a discrete finite space (the state
space). Then we can think of a Markov chain on S as a stochastic process
which evolves in discrete time and takes values in S and satisfies certain
additional conditions. Specifically, if Xi denotes the sequence of random
states, then the distribution of Xi conditional on (X1, ..., Xi−1) is the same
as the distribution of Xi conditional on Xi−1. More intuitively, this says
that the probability law for generating the next state in the chain from the
current state is governed entirely by the current state and is independent of
earlier states, given the current state.

Our finite state Markov chain is defined by the transition matrix. This is
a n× n matrix P = pij where the entry pij is the probability that, given the
current state is si, the next state is sj. It follows that the ith row of P contains
the probability function for the next state of the chain given the current
state is si. Now suppose that the current state is drawn from a distribution,
specified by some vector of probabilities q. Then the distribution of the next
state will be a mixture distribution defined by a vector of probabilities, q′,
where

q′j =
∑
i

qipij
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In matrix notation we have that q′ = qP . Now this means that the proba-
bility function of the next state is obtained from the probability function of
the current state simply by post-multiplying by the transition matrix P . We
can also see that in order to work out the distribution of the state reached
after k iterations of the chain we need only calculate qP k. Does this remind
you of anything to do with eigenvalues/eigenvectors? From courses in linear
algebra you may remember that repeated multiplication (followed by nor-
malisation) is one method for determining the eigenvector corresponding to
the maximum eigenvalue and associated eigenvector of a matrix.

Now, if a transition matrix, P has a unique eigenvalue of modulus 1 which
takes the value 1, then there is a unique distribution,π, that satisfies

πP = π

We refer to π as the stationary distribution of the Markov chain. We will
also have that for any initial distribution q, then q(k) = qP k tends to π as k
becomes large. Thus, if we set our initial state to be sj for any j, then the
distribution of the state we reach after k iterations can be made arbirarily
close to π, just by taking k to be sufficiently large. To generate a sample
from the distribution π all we need to do is start our chain in any state and
iterate a suitably large number of times, where an ’iteration’ involves drawing
a sample from the distribution pi to obtain the next state from the current
state si.

In order to check whether a given Markov chain has these properties (i.e.
that q(k) = qP k tends to π as k becomes large), we need only verify that the
following conditions hold.

1. πP = π

2. The Markov chain is irreducible. This means that it is possible to
reach any state sj from any other state si within a finite number of
transitions.

3. The Markov chain is aperiodic. That is, the state space cannot be par-
titioned into disjoint subsets S1, S2, .., Sm for which the Markov chain is
constrained to cycle through these subsets from iteration to iteration.

In the practical design of Markov chains it is usually easy to ensure the last
condition of aperiodicity. The property of irreducibility is sometimes not
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trivial to verify. As regards the first property, we can sometimes show this
by demonstrating that a stronger property holds.

Definition Let π denote a distribution and P denote a transition matrix.
Suppose that for all i, j,

πipij = πjpji

Then we say that chain specified by P satisfies detailed balance with respect
to π. Moreover, it follows that πP = π. This is easily seen since the jth

component of πP is
∑

i πipij =
∑

i πjpji, if detailed balance holds. Now
the jth row of P , being a probability function, sums to unity and the jth

component of πP is therefore πj as required.
In MCMC we are concerned with designing Markov chains whose station-

ary distributions coincide with the target distribution. One of the simplest
recipes for doing this is the Metropolis-Hastings algorithm.

4.3.3 The Metropolis-Hastings Algorithm

We use the same notation as previous sections and consider a finite state-
space on which we have a target distribution π from which we would like to
simulate. We define a Markov chain with stationary distribution π, in the
following way.

Suppose that our state after t iterations is st = si. Then we propose a
new state s′ = sk from a distribution qi known as the proposal distribution.
To get our state at time t+1 we must either accept the proposed state (next
state is st+1 = s′) or reject it (next state is st+1 = si).

The proposed state is accepted with some probability

pacc = min{1, qkiπk
qikπi

}

This 2-stage process defines a Markov chain with a transition matrix P
where the elements of P can be derived from the proposal transition matrix
Q = (q1,q2, ...) and the acceptance probability above. Now we can show
that P satisfies detailed balance with respect to π. If, moreover, we can
show that the chain is irreducible and aperiodic then we are justified in using
it to generate samples from π.

Example 1 Consider a clock with numbers 1, 2, 3, 4 arranged cyclically.
Suppose that we wish to generate samples from a uniform target distribution
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on 1, 2, 3, 4. A Metroplis-Hastings algorithm can be formulated as follows.
If at state i then propose moving to state (i+1)(mod 4) or (i-1)(mod 4) with
probability 1/2. Then accept the proposed state with the above acceptance
probability which in this case is 1 since (in the above notation) qik = qki = 1/2
and πk = πj = 1/4. It is clear that this chian is irreducible, since we can
reach any state from any other in a finite number of steps. However, it is not
aperiodic, since if we start at position 1, for example, we are constrained to
cycle between the sets 2, 4 and 1, 3 after odd and even numbers of iterations.

It is straightforward to remove this periodicity by using a proposal distri-
bution whereby, with probability p we propose the current state (i.e. no
move) and with probability (1 − p)/2 propose steps clockwise and anti-
clockwise.

Example 2 Another way of sampling uniformly from 1, 2, 3, 4 is to for-
mulate a Markov chain that can only move to adjacent states with the states
arranged in a line. This means that if we are in states 1 or 4 we can only
propose moves to 2 and 3 respectively. Consider the following proposal tran-
sition matrix: 

0 1 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0


where the ith row gives the proposal distribution if the current state is i.
Now in the corresponding Metropolis-Hastings sampler, we see that the the
acceptance probabilities are not all 1. Proposed moves between 2 and 3 are
always accepted, proposed moves to 1 and 4 are always accepted, but moves
from 1 and 4 are only accepted with probability 1/2.

Note that this Metropolis-Hastings sampler is aperiodic since there are
states from which the probability of moving at the next iteration is less than
1.

Example 3 We can construct a Markov chain whose state space is the set
of orderings of n objects and whose stationary distribution is uniform on this
set of orderings. If the current state is the ordering s = (i1, i2, i3, ..., in) then
we could propose the next state by selecting a position, j, uniformly from
1, 2, 3, ..., n − 1 and swapping the positions of ij and ij+1. we can check
that the acceptance ratio is 1 here. Of course the Markov chain will not be
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aperiodic, but this could be assured by allowing a non-zero probability of
’staying put’.

For other practical examples of Markov chain Monte Carlo for choosing
random orderings see various methods of shuffling packs of cards.

Returning to the problem of selecting the ordering of party guests consis-
tent with the ’inequalities’, we see that it could be solved by constructing a
Markov chain whose state space is the set of allowable orderings and whose
stationary distribution is uniform on this set. In the assignment (see later)
you are asked to design such a chain, implement it in a programming language
and then use it to answer some questions on the target distribution.

The M-H algorithm is particularly useful in Bayesian statistics because
the target density π only enters the calculations through the acceptance
ratio. Now this means that you only need to know the relative values of
the density (since any unknown normalising constant would cancel from the
ratio). Knowing that a posterior density is π(θ|y) ∝ π(θ)L(θ|y) is sufficient
to formulate a M-H sampler to investigate it. For example, consider the
second part of Qu 5 in Part 1. Here we observed a single sample, y = 2, from
a NBin(m, 1/2) distribution (i.e. the distribution of the number of heads
accrued when a fair coin is tossed until m tails are achieved) where the prior
for m was Geometric(1/3).

Exercise. Design and implement a M-H sampler to generate samples from
π(m|y = 2) for this example.

4.3.4 Using Markov chain output to draw conclusions

Having designed a Markov chain with the desired stationary distribution,
the next step is usually to implement it in a computer programme, select a
starting state and interate the chain by simulation. Suppose that the random
sequence of states visited by the chain is s1, s2, s3, ....... Now it is true that
the marginal distribution of si can be made as close to the target distribution
π as desired simply by choosing i to be sufficiently large. However the states
are not independent of each other. Depending on the particular chain, it
is likely that si+1 will be ’close’ to si in some sense. If we wish to obtain
a random sample (i.e. a set of independent observations from π) then we
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might wish to ’thin’ the chain. This means outputing the state at every mth

iteration, where the m is chosen to be sufficiently large so that si and si+m

are more or less independent.
The smaller the value ofm required for this, the better the mixing qualities

of the chain. In practice, time-series measures, such as autocorrelation, can
be used to assess how ’independent’ a sequence of samples appears to be.

If we wish to investigate properties of π by investigating histograms, it is
not necessary to thin the chain. Even if successive samples are not indepen-
dent, we can use the frequency with which any state occurs in the unthinned
chain to estimate the probability of that state according to π. However, the
standard error in such an estimate will, in reality, be larger than that pre-
dicted assuming independence of samples. In any case, it is normal to discard
a number of iterations at the beginning of a simulation in case the initial state
selected is ’atypical’ of π. This initial period is sometimes referred to as the
burn− in period.
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Exercises

1. Simulating from the Cauchy distribution. The Cauchy distribution is
defined by the density

fX(x) =
1

π

1

1 + x2
,−∞ < x <∞

(a) By first deriving the c.d.f. of X and its inverse function, describe
how samples from a U(0, 1) random number generator could be
transformed to give samples from the Cauchy distribution.

(b) By appealing to the circular symmetry of the standard bivariate
normal distribution, show how samples from a Cauchy distribution
could be generated from independent N(0, 1) samples.

(Comment. The Cauchy distribution is the same as the t1 distri-
bution.)

2. Simulating from the Beta distribution.

(a) Show how U(0, 1) random variates can be transformed by inver-
sion of the c.d.f. to generate samples from a Beta(n, 1) distribu-
tion.

(b) How would you generate samples from a Beta(2, 2) distribution
by inversion of the c.d.f.?

(c) Given that if X ∼ Gamma(n, 1) and Y ∼ Gamma(m, 1) are
independent where n and m are positive integers then X

X+Y
∼

Beta(n,m), describe an algorithm for simulating samples with a
Beta( m, n) distribution from independent samples from a U(0,
1) random number generator.

3. Simulating from the Beta distribution using rejection sampling. De-
sign an algorithm to simulate samples from the Beta(α, β) distribution
where α, β > 1, using the U(0, 1) as the density q(x),

(a) Derive an expression for the probability that a value generated
from the U(0, 1) is accepted for your algorithm.

(b) How does this expression behave as α and β become large?
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4. Assignment Consider the problem regarding the party guests presented
in 4.3.1.

(a) Prove carefully that P (y|s) = p23(1− p)43 and identify the poste-
rior density π(p|y) assuming a suitable non-informative prior for
p (which is is independent of the unknown ordering s).

(b) Design a Markov chain using Metropolis-Hastings (or any appro-
priate MCMC method):

• whose state space, S, is the set of orderings of the 12 guests
that are consistent with the constraints presented in 4.3.1.

• whose stationary distribution, π, is uniform on this state
space.

(c) Verify that the chain you construct satisfies detailed balance, is
aperiodic and irreducible.

(d) Give a description of your algorithm in the form of a flow chart
or pseudo-code and include a copy of source code used for the
computations.

(e) Use your chain to carry out the following computations.

• For each guest, give an estimate of the marginal distribution
of their position in a random ordering generated from π.

• Estimate the distribution of the random variables ’number of
first guest’ and ’number of last guest’.

(f) Comment on how well your chain ’mixes’ e.g. by showing time-
series plots of outputs, or through calculation of autorcorrelation
functions of thinned outputs.

(g) Suppose now that a guest’s number indicate their ranking in order
of height (with 1 the tallest) and, as a result, each has a different
probability pi of spotting any guest on arrival. Suppose further
that these probabilities p1, . . . , p12, are

0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15

respectively. Adapt your Markov chain to investigate the distri-
bution of first and last guest to arrive under this new assumption
regarding detection probabilities. How do your conclusions change
from the constant p case?
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Your report should include a clear description of any mathematical
arguments. You are encouraged to present results in graphical as well
as tabular format. You should identify any statistical packages used.
I am happy to give advice on any aspect of the assignment. Please
contact me by email (gavin@ma.hw.ac.uk) or phone (0131-451-3205) if
you have any queries.

The assignment should be handed in on or before Thursday 24th March.
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