Notes on HW1 Takis Konstantopoulos, Spring 2009

Hw1/Ex2

This problem is not well-defined. Let us examine a more general situation to see what we can do to provide a remedy.

The urn contains a random subset of distinct colours. Not only the elements of the set are random, but also its size.

Say there are n possible distinct colours. Call them 1, 2, ..., n. Define ξ to be one of the n! permutations of these colours.

Now let N be a random integer with values in $\{1, \ldots, n\}$. We are TOLD that P(N = i) = 1/n, for $i = 1, \ldots, n$, i.e. we have complete ignorance of what N is.

What we do is this: we define

$$Y = (\xi_1, \ldots, \xi_N),$$

so, for example, if N = 2, then $Y = (\xi_1, \xi_2)$.

Thus, to define Y, we need two random variables: one is ξ , the other is N. To find the law of Y we need the JOINT law of ξ and N. The problem only tells us the law of N. Now, it is REASONABLE to assume (but this is an ASSUMPTION!) that

$$P(\xi_1 = \alpha_1, \dots, \xi_i = \alpha_i | N = i) = \frac{1}{n} \frac{1}{n-1} \cdots \frac{1}{n-i+1}$$

where $\alpha_1, \ldots, \alpha_i$ are distinct elements of $\{1, \ldots, n\}$. This is tantamount to assuming that ξ and N are independent. (Show this!)

Say colour 1 is the red colour. We are asked to compute a conditional probability of the form

$$P(N=1|1\in Y),$$

where " $1 \in Y$ " is an abbreviation for the statement " $\xi_1 = 1$ or $\xi_2 = 1$ or \cdots or $\xi_N = 1$ ". Having defined the joint law of N and ξ properly, we have no fear to make a mistake like Alice. So here we go:

$$P(N = 1 | 1 \in Y) = \frac{P(N = 1, 1 \in Y)}{P(1 \in Y)} = \frac{P(N = 1, 1 \in Y)}{\sum_{i=1}^{n} P(N = i, 1 \in Y)}$$

 $P(N = i, 1 \in Y) = P(1 \in Y | N = i)P(N = i)$ = $P(\xi_1 = 1 \text{ or } \cdots \text{ or } \xi_i = 1 | N = i)\frac{1}{n}$ = $P(\xi_1 = 1 \text{ or } \cdots \text{ or } \xi_i = 1)\frac{1}{n}$ [by independence between N and ξ] = $\frac{i}{n}\frac{1}{n}$ [because the events between the or's are pairwise disjoint]

Since 1 + 2 + ... + n = n(n-1)/2, we have that $\sum_{i=1}^{n} P(N = i, 1 \in Y) = n(n-1)/2n^2$. So

$$P(N = 1|1 \in Y) = \frac{1/n^2}{n(n-1)/2n^2} = \frac{2}{n(n-1)}.$$

If we have a choice with replacement, we need to change our probability space. Let $1, \ldots, n$ represent the different colours. We let ξ_1, \ldots, ξ_n be i.i.d. colours, i.e., each ξ_i is uniformly distributed in $\{1, \ldots, n\}$ and the ξ_1, \ldots, ξ_n are mutually independent. (This assumption is equivalent to the assumption that the random vector (ξ_1, \ldots, ξ_n) is uniformly distributed in the set $\{1, \ldots, n\}^n$. (WHY?)

Let N be a random variable with values in $\{1, \ldots, N\}$. We are told that P(N = i) = 1/n, for all i.

As before, we look at the random variable $Y = (\xi_1, \ldots, \xi_N)$, and, as before, we are going to make the ASSUMPTION that ξ and N are independent. Hence

$$P(1 \in Y | N = i) = P(\xi_1 = 1 \text{ or } \cdots \xi_i = 1),$$

but now the events are not dijoint: $\{\xi_1 = \xi_2 = 1\} \neq \emptyset$. However, by independence

$$P(\xi_1 \neq 1, \dots, \xi_i \neq 1) = ((n-1)/n)^i.$$

So

$$P(1 \in Y | N = i) = 1 - (1 - (1/n))^{i}.$$

And so

$$P(N = 1|1 \in Y) = \frac{P(1 \in Y|N = 1)P(N = 1)}{\sum_{i=1}^{n} P(1 \in Y|N = i)P(N = i)}$$
$$= \frac{1/n}{n - \sum_{i=1}^{n} (1 - (1/n))^{i}} = \frac{1/n}{n - n(1 - (1 - (1/n))^{n+1})} = \frac{1}{n(1 - (1/n))^{n+1}}$$

But

For large n this is about $1/en \approx 0.37/n$, which is much larger than the previous answer (about $2/n^2$). This is reasonable!

HW1/Ex3

One way to model the situation "there are n balls, some black, some white, but the proportion of the black balls is β " (for given $0 < \beta < 1$) is as follows.

We may take the point of view that each of the balls have been painted black with probability β , independently of one another. This means that the total number of black balls in the urn equals the total number of successes (success=black) in *n* independent coin tosses, whence the number of black balls has law BINOMIAL (n, β) .