
Bayesian Inference and Computational Methods 2009

Homework 2

1. Inference for a binomial parameter p. Recall that the class of beta distributions
form the natural conjugate class for the binomial/Bernoulli family, and that if y
successes are observed in n trials, a β(a, b) prior distribution is transformed to a
β(a + y, b + n − y) posterior distribution.

Suppose now that a coin is to be tossed so as to make inference for the probability p
of a head.

(a) It is natural to choose a symmetric prior distribution β(a, a) for some a > 0.
Suppose it is believed that the coin is so badly made that there is a 20% chance
that the value of p lies outside the range [0.4, 0.6]. Find, to the nearest integer,
the value of a appropriate to the belief.

(b) Suppose now that the coin is tossed 10 times, and that 1 head is observed.
Using the prior distribution identified above, find the posterior distribution for
p given these observations. Identify its mean and standard deviation, and use
R to sketch it. Suppose further that the coin is to be tossed a further 5 times.
Compute the predictive distribution of the number of heads to be obtained, the
predictive probability that at most 2 heads will be obtained, and the predictive
mean of the number of heads to be obtained.

(c) Suppose instead that, in the original 10 tosses of the coin, it is only observed
that at most 1 head is obtained. Find the new posterior distribution for p, and
compare it graphically with that obtained previously.

2. Inference for a geometric parameter p. Let y = (y1, . . . , yn) be a vector of in-
dependent observations from a Geo(p) distribution (i.e. with probability function
p(y) = p(1 − p)y−1, y = 1, 2, . . . ). Write down the associated likelihood function.
Deduce that Bayesian inference for the parameter p is exactly the same as if p were
a binomial parameter and that in

∑n
i=1 yi trials a total of n successes were observed.

(Understand why this is! ) Deduce that the beta distributions again form the natural
conjugate class for the geometric family. For the β(a, b) prior distribution, what is
the posterior distribution induced by the above data.

3. Inference for a Poisson parameter λ. Recall that the class of gamma distribu-
tions form the natural conjugate class for the Poisson family, and that for Pois-
son observations y = (y1, . . . , yn), a Γ(a, b) prior distribution is transformed to a
Γ(a +

∑n
i=1 yi, b + n) posterior distribution.

Suppose now that, within a given portfolio, motorcycle insurance claims are assumed
to arise as a Poisson process with rate λ per week. The insurance company intends
a Bayesian estimation of λ.

(a) Previous experience suggests the use of a prior distribution whose 0.1-quantile
and 0.9-quantile are approximately 2.9 and 5.2 respectively (e.g., the probability
that λ should be less than 2.9 is approximately 0.1). Show that if the prior
distribution is taken to be Γ(a, b) where, for simplicity, a and b are taken to be
integer valued, then the best choices of these are a = 20 and b = 5.

(b) Over a 45-week period the total number of claims is observed to be 280. Cal-
culate the posterior distribution of λ and sketch its density along with that of
the prior distribution. Comment.

(c) Use this posterior distribution to estimate the predictive distribution of the
number n of claims occurring in the next two weeks. Find the value of n which
is exceeded with probability 0.05.



(d) Suppose instead that the company had had little previous experience of the
claim rate, and had therefore decided to use an Exp(0.1) prior distribution.
(Why might this have been sensible?) Given the above data, what would the
posterior distribution of λ then have been, and how different would it have been
from that found previously?

4. Inference for a Poisson parameter λ—continued. Show that the Jeffreys’ prior dis-
tribution for a Poisson parameter λ is given by the improper prior distribution with
density

π(λ) ∝ λ−1/2.

What is the corresponding posterior distribution, given Poisson observations y =
(y1, . . . , yn)? Interpret this.

5. Inference for an exponential parameter λ.

(a) Show that the class of gamma distributions also form the natural conjugate
class for the exponential family. Given a Γ(a, b) prior distribution, and for
exponential observations y = (y1, . . . , yn), what is the corresponding posterior
distribution? Compare this situation with that for inference for a Poisson pa-
rameter λ and comment intelligently. (Hint: recall the close connection between
the Poisson and exponential distributions via the Poisson process.)

(b) Suppose that, in a certain slightly strange country (where the sole significant
cause of death is accidents), insured lives have durations in years which are
independently Exp(λ)-distributed. As usual a Bayesian estimation of λ is re-
quired. The prior distribution of λ is taken to be Exp(10) (to what sort of belief
about likely lifetimes does this correspond?). A total of 40 new policyholders
are followed for a 10 year period. At the end of this time it is observed that 18
of these have died, with the following insured lifetimes (years).

0.54 0.63 0.93 1.92 2.10 2.13 2.73 2.81 2.82

2.86 2.97 3.30 3.77 5.47 7.22 7.54 8.22 9.68

The remaining policyholders are still alive.

i. Use (e.g.) a Q-Q plot to investigate the assumption that lifetimes are ex-
ponentially distributed, and to make an informal estimate of λ.

ii. Obtain the posterior distribution of λ, and compare it with the prior.

iii. Given this posterior distribution, find the predictive distribution of the in-
sured lifetime of a further policyholder. In particular identify the predictive
probability that a further policyholder survives at least 10 years.

iv. Similarly, given this posterior distribution, find the predictive probability
that two further policyholders both survive at least 10 years. Why is this
not the square of the probability found for a single policyholder?



6. [1997 Statistical Inference Exam, Q4 (modified)] In a raid on a coffee shop, Bayesian
trading inspectors take a random sample of n packets of coffee, each of nominal
weight 125 g. They model these data as independent observations Y1, . . . , Yn from a
Normal N

(

µ, σ2
)

distribution. They take σ2 to be known, while for µ they assume
a prior distribution of N

(

µ0, σ
2
0

)

, where µ0 and σ2
0 are specified values.

The data they obtain are (weights in grams):

105.3 113.3 114.5 121.2 122.9 123.7 124.0 124.6 124.9 124.9

124.9 125.1 125.5 125.9 126.8 127.7 128.2 128.3 128.5 130.2

(n = 20,
∑

yi = 2470.4,
∑

y2
i = 305828.98).

The parameter values they assume are µ0 = 126, σ2
0 = 1, σ2 = 4.

The inspectors can impose a fine if their 95% credible interval for µ falls wholly
below the claimed value of µ = 125 g.

(a) Recall the result of the lecture notes for the posterior distribution for the
N

(

µ, σ2
)

model (with σ2 known) with N
(

µ0, σ
2
0

)

prior distribution for µ. Show
that the inspectors’ 95% credible interval for µ for these data does lie wholly
below 125 g; they therefore impose a fine on the owners of the coffee shop.

(b) Use a normal Q-Q plot (or other appropriate graphical technique) to investigate
the validity of the assumed normal distribution for the data.

(c) Comment briefly as to whether the inspectors are justified in imposing a fine
on the basis of this sample.

(d) Using the posterior distribution found above, calculate the predictive probabil-
ities that

i. a single further randomly chosen packet of coffee weighs at least 125 g;

ii. two further randomly chosen packets of coffee have a mean weight of at
least 125 g.

7. Suppose that y1, y2, . . . , yn form a random sample of observations from an Exp(λ)
distribution where λ is unknown.

(a) Show that the Jeffreys’ prior for λ in this case is given by π(λ) ∝ λ−1.

(b) For n = 5 and
∑5

i=1 yi = 10 calculate a 95% equal-tailed credible interval for λ
using the Jeffreys prior.
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Homework 2 – Solutions

1. (a) It follows from the symmetry of the β(a, a) distribution that we need to choose
a such that the 0.1 quantile of this distribution is 0.4. This is true, to a very
good approximation, if we take a = 20.

(b) The posterior distribution is β(21, 29). It has mean 0.420 and standard devia-
tion 0.069. Suitable R code to sketch the density of this distribution is given
by

p = seq(0,1,0.001)

plot(p,dbeta(p,21,29),type=’l’)

(c) Let Z be the number of heads to be obtained in a further 5 tosses of the coin.
Given p, we have Z ∼ Bin(5, p) and EZ = 5p. Arguing exactly as in the
example of the lecture notes, we have that the predictive probability function of
Z, given this posterior distribution, is given by

f(z |y) =
49!5!

20!28!54!

(20 + z)!(33 − z)!

z!(5 − z)!
, 0 ≤ z ≤ 5.

The predictive probability that at most 2 heads will be obtained is 0.642 and
the predictive mean of the number of heads to be obtained is 2.1. Note that
the predictive mean may also be calculated directly as the expectation of the
conditional expectation 5p with respect to the posterior distribution, i.e. the
predictive mean is

Epos(5p) = 5Epos(p) = 2.1,

where Epos denotes expectation with respect to the posterior distribution.

(d) In the case where, in the original 10 tosses of the coin, it is only observed that
at most 1 head is obtained, the likelihood function becomes

L(p,y) = (1 − p)9(1 + 9p),

and so the posterior density, given these data, is given by

kp19(1 − p)28(1 + 9p),

where the normalising constant

k =
1

229

49!

19!28!
= 7.162 × 1013.

2. The likelihood function is

L(p;y) =
n

∏

i=1

p(1 − p)yi−1

= pn(1 − p)
P

n

i=1
yi−n.

This is the same as the likelihood function in the case where p is a binomial parameter
and, in

∑n
i=1 yi trials, a total of n successes are observed. It follows that Bayesian

inference for p is exactly the same in the two cases. For a β(a, b) prior distribution,
the posterior distribution induced by the above data is β(a + n, b +

∑n
i=1 yi − n).



3. (a) It is simply necessary to verify that, for the suggested values of a and b, the
0.1-quantile and 0.9-quantile are as suggested.

(b) The posterior distribution of λ is Γ(300, 50) (with mean 6.000 and standard
deviation 0.346). Note that suitable R code to plot the density of this distri-
bution, and then to add that of the prior distribution is given by

lambda = seq(1,20,.01)

plot(lambda, dgamma(lambda,300,50), type=’l’)

lines(lambda, dgamma(lambda,20,5))

Note also that most of the contribution to the posterior distribution comes from
the data.

(c) Given λ, the number of claims occurring in the next two weeks has a Pois-
son distribution with parameter (mean) 2λ. Hence, given the above posterior
distribution for λ (with density π(λ |y) say), the predictive distribution of the
number n of claims occurring in the next two weeks has probability function

f(n |y) =

∫

∞

0

e−2λ (2λ)n

n!
π(λ |y) dλ

=

∫

∞

0

e−2λ (2λ)n

n!

50300

299!
λ299e−50λ dλ

=
503002n

299!n!

∫

∞

0

λ299+ne−52λ dλ

=
503002n(299 + n)!

299!n!52300+n

=

(

50

52

)300 (

299 + n

n

)

52−n.

The smallest value of n which is exceeded with predictive probability at most
0.05 is 18. (The predictive probability of obtaining a value greater than 18 is
0.041. Note also that, if instead we simply replaced the posterior distribution of
λ by its mean of 6, so that the number of claims occurring in the next two weeks
was modelled as having a Pois(12) distribution, then, under this distribution,
the probability that the number of claims would exceed 17 is 0.037. The reason
why the two probabilities are relatively similar is that, as the earlier density
plot shows, the posterior distribution of λ is here fairly closely concentrated
around its mean.)

(d) The prior distribution is now Γ(1, 0.1), reflecting little prior knowledge about
the claim rate. Hence, given the above data, the posterior distribution of λ is
Γ(281, 45.1). In particular this has mean 6.23 and standard deviation 0.37, and
so is not too different from the earlier posterior distribution, again reflecting
the fact that most of the weight of the inference is being carried by the data.

4. Given any vector of n observations y, the log-likelihood function is given by

l(λ;y) = −nλ +
n

∑

i=1

yi lnλ + k,

for some k which does not depend on λ. Hence

−l′′(λ;y) =

∑n
i=1 yi

λ2
and so − E(l′′(λ;y)) =

n

λ
.

Thus the Jeffreys’ prior distribution for λ is given by the improper prior distribution
with density π(λ) ∝ λ−1/2 as required.

The corresponding posterior distribution is Γ(1
2

+
∑n

i=1 yi, n), placing nearly all the
weight of inference on the data.



5. (a) For a vector y = (y1, . . . , yn) of independent observations from the Exp(λ)
distribution, we have the likelihood function

l(λ;y) = λne−λ
P

n

i=1
yi ,

and so it is easy to check that a Γ(a, b) prior distribution is transformed by
the observations y to a Γ(a + n, b +

∑n
i=1 yi) posterior distribution. In partic-

ular, the class of gamma distributions form the natural conjugate class for the
exponential family.

(b) Note that the Exp(10) prior distribution for λ has a median of 0.069. If this were
the true value of λ then the mean lifetime 1/λ would be 14.4 years. However
the Exp(10) prior distribution allows for a very wide spread of values of λ (very
little prior information). [Indeed, under the prior distribution, the predictive
mean lifetime 10

∫

∞

0
λ−1e−10λ dλ = ∞.]

i. Suitable R code for a Q-Q plot to investigate the assumption that lifetimes
are exponentially distributed is given by

plot(qexp(ppoints(40)[1:18]),sort(lifetimes))

where lifetimes is a vector of the 18 non-truncated lifetimes. An informal
estimate of λ is given by the reciprocal of the slope of this plot, suggesting
a value of λ of around 0.06.

ii. Arguing as in the example of the lecture notes, the posterior distribution
of λ is Γ(19, 10 +

∑18
i=1 yi + 220) = Γ(19, 307.64). This has mean 0.0618

and standard deviation 0.0142 and is very much more concentrated than
the prior distribution.

iii. For any given Γ(a, b) posterior distribution, a further insured lifetime has
predictive distribution function F with tail (survival function) given by

1 − F (t) =
ba

Γ(a)

∫

∞

0

e−λtλa−1e−bλ dλ =

(

b

b + t

)a

.

The required predictive probability is given by 1 − F (10) with a = 19,
b = 307.64, and hence is 0.545.

iv. For any given Γ(a, b) posterior distribution, the predictive probability that
two further policyholders both survive at least t years is

ba

Γ(a)

∫

∞

0

e−2λtλa−1e−bλ dλ =

(

b

b + 2t

)a

.

For a = 19, b = 307.64 and t = 10 this is 0.302.



6. (a) For the given prior distribution and observed data, the posterior distribution
of µ is N (123.93, 0.1667), and hence the inspectors’ 95% credible interval for µ
is (123.1124.7).

(b) A normal Q-Q plot (qqnorm), or indeed any rough plot, of the data should
indicate that the assumption of normality is suspect, with the three lowest
observations giving a pronounced left tail to the data. The median is 124.9,
much closer to the desired 125 g. than the mean. Finally, the sample variance
is 36.1, much greater than the inspectors’ assumed value of 4 (if we omit the 3
lowest values, this reduces to 5.3).

(c) The coffee packets vary in weight much more than the inspectors assumed,
perhaps representable as a normal distribution contaminated with occasional
outliers. The substandard mean weight can be accounted for by these outliers
(3 in this sample). While the inspectors’ modelling is revealed as less than ideal
for their job, they are probably correct in fining a shop with such poor quality
control.

(d) i. Since σ2 = 4, it follows that, given µ, the probability that a single further
randomly chosen packet of coffee weighs at least 125 g is Φ((µ − 125)/2)
where Φ is the (cumulative) distribution function of the N (0, 1) distribu-
tion. Hence, given the posterior distribution of µ, the predictive probability
that a single further randomly chosen packet of coffee weighs at least 125
g is the expectation of Φ((µ − 125)/2) with respect to this posterior dis-
tribution. This can be evaluated as an integral, or by simulation. More
simply, we may note that Φ((µ − 125)/2) is also the probability, given µ,
that µ plus an N

(

0, 22
)

random variable exceeds 125, so that the required
predictive probability is the probability that an N (123.93, 4.1667) random
variable exceeds 125. This is 0.301.

ii. Given µ, the probability that two further randomly chosen packets of cof-
fee have a mean weight of at least 125 is Φ((µ − 125)/21/2). Arguing
as above, the required predictive probability is the probability that an
N (123.93, 2.1667) random variable exceeds 125. This is 0.234.

7. (a) The log-likelihood function is given by l(λ) = n ln λ−λ
∑n

i=1 yi. Hence l′′(λ) =
−n/λ2 and so E(−l′′(λ)) = n/λ2, giving the required result.

(b) For the Jeffreys prior and these data, the posterior distribution of λ is given by
π(λ |y) ∝ λ4e−10λ, i.e. is Γ(5, 10). Hence a 95% equal-tailed credible interval
for λ is (0.162, 1.024).


