
Bayesian Inference and Computational Methods 2009

Homework 3 – Solutions

1. Some useful R commands are:

z = runif(10000) # generate sample

hist(z) # simple check for uniformity

plot(sort(z), ty=’l’) # better check for uniformity

plot(z[-10000],z[-1],pch=3) # check for first-order independence

2. (a) Possible R commands for Z1 = max(Y1, Y2) are:

y1 = runif(10000) # first sample

y2 = runif(10000) # second sample

z1 = pmax(y1,y2) # successive maxima

hist(z1) # compare with theoretical density 2x

plot(ppoints(10000)^0.5,sort(z1),pch=3) # Q-Q plot

mean(z1) # compare with theoretical mean 2/3

Possible R commands for Z2 = min(Y1, Y2) are:

y1 = runif(10000) # first sample

y2 = runif(10000) # second sample

z2 = pmin(y1,y2) # successive minima

hist(z2) # compare with theoretical density 2(1-x)

plot(1-(1-ppoints(10000))^0.5,sort(z2),pch=3) # Q-Q plot

mean(z2) # compare with theoretical mean 1/3

(b) This is similar to (a). Note that in this case there is no easy probability plot for
verifying the distribution of the maximum. However, recall that if Yi ∼ Exp(λi)
are independent random variables then mini Yi ∼ Exp(

∑
i λi). Appropriate R

code to construct a probability plot to check whether data z may reasonably
be modelled as a random sample from an Exp(λ) distribution is given by

plot(-log(1-ppoints(length(z))),sort(z),pch=3)

the plot then corresponding to an approximate straight line of slope λ−1 through
the origin.

(c) This is again similar to (a). There are no easy probability plots.

3. For the given logistic distribution we have F−1(p) = − log(p−1
− 1). Hence suitable

R code to generate a random sample of size 10000 from this distribution is

y = -log(1/runif(10000) - 1)

The true mean and variance are 0 (check the symmetry of the density function) and
π2/3 respectively.

4. Suitable R code for simulating the total shown by three dice, and displaying and
tabulating the probability function is

u = runif(10000)

sample1 = 1 + (u>1/6) + (u>2/6) + (u>3/6) + (u>4/6) + (u>5/6)

u = runif(10000)

sample2 = 1 + (u>1/6) + (u>2/6) + (u>3/6) + (u>4/6) + (u>5/6)

u = runif(10000)

sample3 = 1 + (u>1/6) + (u>2/6) + (u>3/6) + (u>4/6) + (u>5/6)

dice.total = sample1 + sample2 + sample3



library(MASS)

truehist(dice.total)

table(dice.total)/10000

5. (a) The corresponding distribution function F on [0, 1] is given by F (y) = (ey
−

1)/(e − 1), y ∈ [0, 1], and hence F−1(p) = log(1 + (e − 1)p), p ∈ [0, 1]. Hence
appropriate R code for simulation by the inverse transform method is

sample = log(1+(exp(1)-1)*runif(10000))

Appropriate code for simulation by rejection sampling using a U ∼ U(0, 1)
envelope has already been given. The theoretical unconditional acceptance
probability is then e−1EeU = 1 − e−1, which should correspond to the fraction
of the sample from the envelope actually accepted.

(b) The corresponding distribution function F on [0, 1] is given by F (y) = 1− (1−
y)3, y ∈ [0, 1], and hence F−1(p) = 1− (1− p)1/3, p ∈ [0, 1]. Hence appropriate
R code for simulation by the inverse transform method is

sample = 1-(1-runif(10000))^(1/3)

Appropriate code for simulation by rejection sampling using a U ∼ U(0, 1) is

u = runif(10000)

acc = runif(10000) < (1-u)^2 #acceptance decisions

sample = u[acc] #sample with reqd dist

Since, conditional on generating u from the envelope distribution, the accep-
tance probability is (1 − u)2, it follows that the theoretical unconditional ac-
ceptance probability is E(1 − U)2 = 1/3. This should again correspond to the
fraction of the sample from the envelope actually accepted.

6. The difficulty of using the inverse transform method is that of inversion of the
distribution function.

To simulate from the Γ(2, 1) distribution by rejection sampling with envelope the
Exp(1/2) distribution, note that the latter distribution has density proportional to
g where g(y) = e−y/2. Since

sup
y≥0

f(y)

g(y)
= sup

y≥0

ye−y/2 = 2e−1,

we may simulate from the Exp(1/2) distribution and accept each realisation y with
probability ye1−y/2/2. Appropriate R code is

y = rexp(10000,0.5)

acc = runif(10000) < 0.5*y*exp(1-y/2)

sample = y[acc]

To generate a further sample by using instead the result that a gamma random
variable with integer shape parameter can be regarded as a sum of independent
exponential random variables, we may use

y1 = rexp(10000)

y2 = rexp(10000)

sample = y1 + y2

In either case we may check that our sample does indeed come from a Γ(2, 1) distri-
bution by using a Q-Q plot:

plot(qgamma(ppoints(sample),2,1), sort(sample), pch=3)



7. Appropriate R code to generate the sample and display summary statistics, his-
togram and exponential Q-Q plot is

y = rexp(10000)

ind = runif(10000) < 3/4

sample = ind*y + (!ind)*10*y

summary(sample)

mean(sample)

sqrt(var(sample))

hist(sample,n=80)

plot(-log(1-ppoints(10000)),sort(sample),pch=3)

Note the very long tail of the distribution—and also that the distribution of the
sample is not itself exponential (being instead a mixture of two exponential distri-
butions).

8. Appropriate R code to generate a sample as required, and also another of the same
size directly from the Pois(10) distribution, is

y1 = rpois(10000,4)

y2 = rpois(10000,6)

sample1 = y1 + y2

sample2 = rpois(10000,10)

The two samples may be neatly compared as follows

plot(sort(sample2), sort(sample1), pch=3)

9. Appropriate R code to generate the sample is

z = rexp(10000,-log(2/3))

sample = 1 + floor(z) # or use: sample - ceiling(z)

10. Possible R code to generate a sample as the sum of n independent U(0, 1) random
variables, and to verify approximate normality is, with n = 6,

y = rep(0,10000)

for(i in 1:6) y = y + runif(10000)

qqnorm(y)

Note that even with this quite small value of n, the normal approximation is already
very accurate.

11. Possible R code is

times = cumsum(rexp(250,2)) #larger sample than necessary

accept = (runif(250)<0.5*(1+sin(2*pi*times/100))) & times<=100

inhomtimes = times[accept]

plot(inhomtimes,1:length(inhomtimes),xlab=’time’,ylab=’N(t)’,pch=3)


